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1 Description and Version information

This is the MATLAB code that was used to produce the figures and tables in Section V of

F. Forbes and G. Fort, Combining Monte Carlo and mean-field like methods for inference

in Hidden Markov Random Fields, Accepted for publication in IEEE Trans. on Image

Processing, 2006.
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MATLAB has the capability of running functions written in C. The files which hold the source

for these functions are called MEX-Files. Some functions of our codes are written in C.

The purpose of this software is to implement the MCVEM algorithm, described in the paper

mentioned above, when applied to Image Segmentation. MCVEM consists in combining approx-

imation techniques - based on variational EM - and simulation techniques - based on MCMC

-.

This software is the first version that is made publicly available.

2 How to

2.1 Obtain the source code

Download it from

http://www.tsi.enst.fr/∼gfort/INRIA/MCVEM.html

After unpacking the archive, you should obtain

• two MATLAB files ExampleMCVEM.m and MCVEM.m.

• directory CodesMCVEM. This directory contains the codes for running MCVEM. The main

file is InterfaceMCVEM.m, where the different parameters and the different choices of imple-

mentation are fixed.

• directory MEXfiles. This directory contains the C-codes and the associated MEX-files.

• directory Pictures. This directory contains the synthetic and real images, used in the paper.

1. For synthetic images called pict, three dat-files are available: pict true.dat, pict obs.dat

and pict init.dat that contain resp. the true image, the observed image (additive

gaussian noise) and an initial segmentation for the iterative algorithm.

2. For real images, only two dat-files are available: pict obs.dat and pict init.dat.

2.2 Check that it works

Start MATLAB and type ExampleMCVEM. This will run the program MCVEM on four dif-

ferent images (two synthetic images and two real images).

You should see on the screen

• the list of the different displays when running.

• the files where these displays are defined.

After 5 sec, MCVEM starts.

2.3 Understand the program output

2.3.1 Display when running the MCVEM algorithm

MCVEM is an iterative procedure that produces a sequence of parameter estimate (a positive real

number β, and a family of mean and variances) and a sequence of segmented images.

Table 1: We first display the initial value of the different parameters.

2



Initialisation

Mean 26.631337 Mean 460.228581

Std Dev 135.200515 Std Dev 183.897542

Beta 1.000000

Table 1:

Iteration 1.000000

Step 1 : Determine the Q-distribution

Nbr of iteration 46.000000

Control :

Diag of cvgce (1 if OK) 1.000000

Table 2:

Then per iteration :

Table 2: Step 1 is an iterative procedure : we display the number of iterations till the stopping

criterion is reached as well as a binary variable that indicates if the iterative procedure converged.

Step 2a : Update Mean and Variances

Mean 38.931758 Mean 441.489396

Std Dev 147.918913 Std Dev 217.574490

Step 2b : Update Beta

Beta 0.998890

Nbr Simul (and burn in : 0) : 103

Control :

Cvgce of Dichotomy (1 if OK) : 1

-(GradLnW) init : 32282.000000

-(GradLnW) end : 31029.916931

-(MeanH) under Q : 31029.916931

Table 3:

Table 3: Step 2 consists in updating the parameters. The update of the parameter β is done

by running a MCMC algorithm. We thus indicate the number of initial samples that are discarded

in the MCMC path (burn in) as well as the total length of the Markov Chain. This simulation step

is coupled with an optimization step that consists in finding the root of a gradient by dichotomy.

We give a binary indicator of convergence of the iterative optimization procedure, the value of

the gradient when starting the optimization procedure and the final value of the gradient when

stopping the optimization procedure.

Table 4: Step 3 is the segmentation step. We display the number of pixels the class of which

vary between two consecutive iterations, and the number of misclassified samples. The percentage

is in parenthesis.

Four figure windows are opened :

Figure 1: At each iteration, we plot on Figure 1 the observation, the initial segmentation, the

current segmentation and the “true” image when available.

Figure 2: At each iteration, we plot on Figure 2 [top ] Follow the iterative procedure that

solves the fixed point equation verified by the product distribution Q(z) =
∏

k qk(z): at each

pixel k, qk(z) is a distribution on 1, · · · , G. We observe the evolution of qk(1) along this iterative
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Step 3 : Segmentation

Variation in the segmentation : 1583 / 18886 (8.382)

Nbr errors in segmentation : 3528 / 18886 (18.681)

Table 4:

Observation

20406080100120140
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Initial Segm.

20406080100120140
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Current Segm.

20406080100120140
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60
80
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120

Original image

20406080100120140
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Figure 1:
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Figure 2:
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procedure. [bottom ] Follow the path of the Markov chain, produced at each iteration of MCVEM.
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Figure 3:

Figure 3: At each iteration, we plot on Figure 3 different controls of the β-parameter update.

[top] energy of each Markov chain sample [bottom] weights in the computation of ∇(log W̃ ) (in

red dots, the uniform weights).
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Figure 4:

Figure 4: We plot on Figure 4 the evolution of the parameter β as a function of the iterations

of MCVEM.

2.3.2 Output file

A .mat file is created. It contains different quantities computed when running the algorithm (see

Section 3 for the description of the algorithm and the possible different values for the following

variables).

G: the number of classes for the segmentation.

NbrNeigh: the number of neighbors for each pixel (4 or 8).

HatZ: the segmented picture.

Mu: a matrix that contains the estimated means at each iteration of the algorithm.

Sigma2: a matrix that contains the estimated variances at each iteration of the algorithm.

Beta: a vector that contains the estimates of β-parameter at each iteration of the algorithm.

HQdist: at each iteration of the algorithm, the expectation of lnπ(X ; β) is computed for the

current value of the parameter β. This vector contains the value of this expectation at each

iteration of the algorithm.
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DeltaSegm: the number of pixels that differ between two consecutive segmentations.

MethSimul: the Monte-Carlo sampler.

InitChainMethod: the way in which the Markov Chains are initialized at each iteration of the

algorithm.

BurnIn: the number of samples that are discarded when computing the Monte-Carlo sum.

NbrSimulMin: the minimal length of the Monte-Carlo sum.

DiagCvgQ: At each iteration of the algorithm, a mean-field equation is solved. This is done by an

iterative procedure. This binary-valued vector contains the diagnostic of convergence of this

procedure, at each iteration (1 if convergence).

NbrIterQ: a vector that contains, for each iteration of the algorithm, the number of iterations for

solving the mean-field equation.

DiagCvgNR: At each iteration of the algorithm, an optimization procedure is run. This is done it-

eratively. This binary-valued vector contains the diagnostic of convergence of this procedure,

at each iteration (1 if convergence).

Initialization: Initial segmentation when available. Otherwise, the initial segmentation is obtained

by a k-means procedure applied to the observed picture.

2.4 Specify your own input

2.4.1 When running the function MCVEM.m

MCVEM(Observation,Original,Initialization,NbrNeigh,NbrClass,NameFile)

See ExampleMCVEM.m for an example.

Observation : The observed image (matrix).

Original : The “true” image when available (matrix). [ ] otherwise.

Initialization : The initial segmentation when available (matrix). [ ] otherwise.

NbrNeigh : Either ’4-Neigh’ or ’8-Neigh’. Specify the number of neighbors for each pixel.

NbrClass : The number of class for segmentation.

NameFile : The name of the output file.

2.4.2 Through the file CodesMCVEM/InterfaceMCVEM.m

There are different options when running the algorithm. These options are described in Section 3.
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3 Technical Appendix

3.1 Model

The distribution of the hidden field is a K-color Potts model

pZ(z; β) = W (β)−1 exp(β
∑

i∼j

zt
izj) = W (β)−1 exp(0.5β

N
∑

i=1

∑

j∈Ni

zt
izj) = exp(− lnW (β)−H(z; β))

where W (β) is the normalizing factor and

H(z; β) = −β
∑

i∼j

zt
izj.

The conditional distribution of the observations {yi}1≤i≤N given the missing data {zi}1≤i≤N

is a factorized distribution :

N
∏

i=1

N (µzi
, σ2

zi
)(yi), yi ∈ R, zi ∈ V.

3.2 Algorithm

Step 1 Initialization of the algorithm

Step 1-a Initialize the β-parameter.

Step 1-b Initialize the θ-parameter (means and variances).

Step 2 While non-converged

Step 2-a Update the q-component.

Step 2-b Update the θ-component (means and variances).

Step 2-c Update the β-component.

Step 2-c-i Sample a Markov Chain.

Step 2-c-ii Compute the maximum of the approximated gradient.

3.3 Step 2-a

3.3.1 Description : (qt, Ψt) → qt+1

Find {qk(e)}1≤k≤N,e∈V such that
∑

e∈V qk(e) = 1 and

qk(e) =
αk

σe

exp



−0.5







(yk − µe)
2

σ2
e

− 2βet
∑

j∈Nz
k

∑

z∈V

zqj(z)









 .

αk is the normalizing constant. This is of the form

qk(e) = F ({qk(e)}1≤k≤N,e∈V ) ,

where F depends upon the current value of the parameters Ψt. This fixed point equation is solved

iteratively.

Initialization : q
(0)
k = {q

(0)
k (e)}1≤k≤N,e∈V .
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While stop = False

q
(n+1)
k = F

(

{q
(n)
k (e)}1≤k≤N,e∈V

)

.

End while.

Set qt+1 = q(n+1).

3.3.2 Parameters

InitQdistMethod: describes the initialization procedure.

• either ’ AllTheSame’ i.e. at each loop of MCVEM, the initial point q
(0)
k = {q

(0)
k (e)}1≤k≤N,e∈V

is the same and is defined as the initial segmentation if provided by the user, or by

k-means otherwise.

• or ’LastIn’ i.e. at loop (t + 1) of MCVEM, the initial point q
(0)
k = {q

(0)
k (e)}1≤k≤N,e∈V

is the last point q
(n)
k = {q

(t)
k (e)}1≤k≤N,e∈V obtained at loop t. For the first loop,

q
(0)
k = {q

(0)
k (e)}1≤k≤N,e∈V is defined as the initial segmentation if provided by the user,

or by k-means otherwise.

TolQdist, NbrIterMaxQdist: defines the stopping criterion. The iterative procedure is stopped

when the maximal number of iterations NbrIterMaxQdist is reached, or when the total

variation of the updated vector {qk(e)}1≤k≤N,e∈V is lower that a threshold TolQdist. If the

iteration stops because NbrIterMaxQdist is reaches, the procedure is non-converging and

DiagCvgQ is set to ′0′. Otherwise, it is set to ′1′.

3.4 Step 2-b

3.4.1 Description qt+1 → θt+1

θ contains the means {µk}1≤k≤G and variances {σ2
k}1≤k≤G for the Gaussian distributions. At loop

(t + 1) of MCVEM, given qt+1, the parameter is updated by the explicit formula

µt+1
k =

∑

i∈S yiq
t+1
i (ek)

∑

i∈S qt+1
i (ek)

, 1 ≤ k ≤ G,

and

(σ2
k)t+1 =

∑

i∈S(yi − µt+1
k )2qt+1

i (ek)
∑

i∈S qt+1
i (ek)

, 1 ≤ k ≤ G.

3.4.2 Initialization θ0

The parameters are updated as the empirical means and variances of the classes in the initial

segmentation. This initial segmentation is either provided by the user or obtained by k-means.

The classes are sorted so that the means are in the ascending order : µ1 ≤ µ2 ≤ · · · ≤ µG.

3.5 Step 2-c

3.5.1 Description (qt+1, βt) → βt+1

Sample a Markov Chain {Zj,t}1≤j≤Jt
with invariant distribution πt.
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Calculate

W̃ Jt,π
t

(β) =
1

Jt

Jt
∑

j=1

exp
(

−H(Zj,t; β) − lnπt(Zj,t)
)

.

Set

βt+1 = argmaxβ∈{b,|b−βt|≤γt} −

{

∑

z∈Z

H(z; β)qt+1(z) + ln W̃ Jt,π
t

(β)

}

.

3.5.2 Sample a Markov Chain with target distribution πt

InitChainMethod : defines the initial value of the chain by one of the following policy

• ’LastIn’ set Z0,t+1 = ZJt−1,t.

• ’AllTheSame’ set Z0,t+1 = Z0,1 where Z0,1 is obtained at random.

• ’AtRandom’ choose Z0,t+1 at random.

BurnIn : number of samples that are discarded when computing W̃ Jt,π
t

(β). Set it to ′0′ if the

variable InitChainMethod is set to ’LastIn’.

NbrSimulMin : is the minimal length of the Markov chain.

NbrSimul : is the sequence {Jt}t of the number of simulations at each MCVEM iteration. Choose

it as a polynomially increasing sequence.

MethSimul : Specifies the MCMC sampler and the invariant target distribution πt

• ’PriorGibbsSyst’Run a Gibbs sampler with deterministic scan (columns and rows are

visited according to the lexicographical order). The invariant ditribution is the Potts

distribution for the current value of the parameter : πt(·) = pZ(·; βt).

• ’PriorGibbsNonSyst’Run a Gibbs sampler with deterministic scan (columns and rows

are visited in staggered rows). The invariant ditribution is the Potts distribution for

the current value of the parameter : πt(·) = pZ(·; βt).

• ’PriorGibbsRandom’ Run a Gibbs sampler with random scan : 50% of the picture is

updated and the pixels are chosen at random. The invariant ditribution is the Potts

distribution for the current value of the parameter : πt(·) = pZ(·; βt). This option is

not available when the variable NbrNeigh is set to ’8-Neigh’.

• ’PriorGibbsRandScan’ Run a Gibbs sampler with invariant ditribution is the Potts

distribution for the current value of the parameter : πt(·) = pZ(·; βt). All the pixels are

updated, but they are visited in a random order. This option is not available when the

variable NbrNeigh is set to ’8-Neigh’.

3.5.3 Optimization procedure

Gamma : Sequence {γt}t for the definition of the optimization domain. Can be a constant (if too

large, the sequence {βt}t may be periodic; in that case, re-start the algorithm with a smaller

value of Gamma.
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