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Abstract—During the last decade a lot of effort has been spent
on cellular network optimization to improve network capacity and
end-user Quality of Service (QoS). Coverage analysis remains as
one of the essential topics on which mobile operators still need
innovation in terms of performance and cost. Manual coverage
analysis is an inefficient and costly task. Radio Environment Maps
(REMs) is an efficient coverage analysis solution for present-day
cellular networks. REM concept consists of spatially interpolating
geo-located measurements to build the whole coverage map using
a spatial interpolation technique originating from geo-statistics.
Kriging is such a powerful technique which results in high
performance in terms of prediction quality. However, this method
is costly in terms of computational complexity especially for large
datasets: computational complexity of Kriging is O(n3) where n is
the number of measurements. This paper proposes the application
of a variant of Kriging, Fixed Rank Kriging (FRK), to coverage
analysis in order to reduce the computational complexity of the
spatial interpolation while keeping an acceptable prediction error.

Keywords—Radio Environment Maps (REMs), Coverage anal-
ysis, Fixed Rank Kriging (FRK), Kriging, Cellular network.

I. INTRODUCTION

Network optimization has always been a major operation
for a cellular operator in order to improve the capacity of
its networks and the Quality-of-Service (QoS) offered to the
end users. Among the network optimization tasks, coverage
optimization is the most crucial and fundamental one since it
has a determining impact on the perceived QoS. The first step
towards an efficient coverage optimization is an accurate cov-
erage analysis. For this reason, planning tools use sophisticated
propagation models that take as input, a priori knowledge on
the terrain profile and on the buildings. These propagation
models are then calibrated with field measurements which
are obtained through drive tests. Both the acquisition of the
a priori knowledge on the terrain (which is not even always
available) and the drive tests for the collection of field measure-
ments are costly. Minimization of Drive Tests (MDT), a feature
introduced by the 3rd Generation Partnership Project (3GPP),
in Release 9 [1] consists of collecting geo-located measure-
ments from User Equipments (UEs) and reporting them to the
operator (stored in the MDT server at the management plane).
With the MDT feature, the operator can request geo-located
coverage measurements from UEs in a certain geographical
area where a coverage analysis is needed.

Radio Environment Map (REM) approach proposed in
this paper is intended to be an efficient tool for coverage
analysis. The concept of REM was first introduced in [2] as
an integrated database for Cognitive Radio systems and one
application was on the TV white spaces [3]. The REM of this
paper, however, is different from the integrated database of [2]
and [3], it consists of building a coverage map based on the
MDT measurements for an automated coverage analysis [4].
More precisely, the REM applies powerful spatial interpolation
techniques (coming from geo-statistics) to the reported geo-
located measurements in order to predict the measured quantity
metric on the locations where there are no available measured
data. The main idea behind this way of predicting unavailable
measurements is to benefit from the spatial correlation that
exists in the measurement data to build a complete map over
a geographical area and with a given prediction quality.

In this paper, we focus on the construction of the REM
based on the Kriging interpolation technique which is known
to provide accurate predictions on spatially correlated data [5].
Existing work on REM construction uses Bayesian Kriging
applied to coverage hole detection in cellular networks which
yields promising results [6]–[9]. It is obvious that the predic-
tion quality and precision of Kriging increase with increasing
the number of measurement samples. However, it is also
known that the computational complexity of Kriging increases
geometrically with number of measurement samples. In partic-
ular the computational complexity of Kriging is O(N3) where
N is the number of measurements. This is a considerable
disadvantage for Kriging, especially for large datasets. There-
fore, in this paper, we propose to benefit from the excellent
prediction performance of Kriging without paying the cost of
its computational complexity by using a recently developed
version of Kriging, called as Fixed Rank Kriging (FRK) [10],
[11]. We show that this method enables coverage prediction
from massive datasets (consisting of millions of measurement
samples) within reasonable computational times. The main
contribution of this paper can be summarized as follows: (1)
the application of FRK to cellular coverage measurement data
and the evaluation the prediction performance and (2) the
modification of the original FRK algorithm proposed in [10] to
adapt it to our problem, in particular by using the Expectation
Maximization (EM) algorithm [12] for fitting the Kriging



model parameters to the measurement data. The EM algorithm
is a well-known practical procedure in statistical theory for its
excellent fitting performance.

The paper is structured as follows: section II introduces
the statistical model of the cellular coverage measurement
data. Then section III presents the key idea of FRK and
details the prediction process together with the estimation of
the model parameters. Finally, interpolation results on realistic
measurements data are presented in section IV and conclusions
are given in section V.

II. MODEL DESCRIPTION

We consider the DownLink (DL) transmission of a cellular
radio access network with a given Base Station (BS) trans-
mitter equipped with an omni-directional antenna. Let Y (si)
denotes the DL received power (in dBm) at location si ∈ D
and D is the set of the spatial locations in the considered
geographic area. Assuming that the fast fading effects are
averaged out by the receivers, Y (si) can be expressed as

Y (si) = p0 − 10κ log10 di + ν(si)︸ ︷︷ ︸
Z(si)

+ ε(si), (1)

where p0 denotes the path-loss coefficient expressed in dBm, di
is the distance between the transmitter antenna and the receiver
location si ∈ D, ν(si) is the shadowing term (in dB), and ε(si)
is the zero-mean additive error term which incorporates the
uncertainties of the measurement process and all other random
effects due to the propagation environment. Z(si) denotes the
received power at the location si without the measurements
error term.

We assume that the power measurements are carried out by
a set of N receiving terminals, located at the set of locations
s1, . . . , sN . Arranging these measurements in a N ×1 column
vector Y , we obtain the vector-matrix relation

Y = Z + ε, (2)

where ε = [ε(s1) . . . ε(sN )]T and Z = Tα+ν and the terms
T , α and ν are given by

T =

1 −10 log10(d1)
...

...
1 −10 log10(dN )

 , α =

[
p0
κ

]
, and ν =

 ν(s1)...
ν(sN )

 .
(3)

Here T is a N × 2 deterministic matrix of known functions
of the measurement locations, α is a 2× 1 parameter vector.
It is assumed that the shadowing process (ν(s), s ∈ D) is
a centred Gaussian process with covariance function C and
independent of the noise measurements (ε(s), s ∈ D). Note
that the noise process is assumed to have a normal distribution
N = (0, σ2Ξ(s)). Therefore, Y is N×1 multivariate Gaussian
vector whose means Tα and covariance matrix Σ is given by

Σij =

{
C(si, sj), if i 6= j

C(si, si) + σ2Ξ(si), if i = j
(4)

From equation (2), we can model the wireless channel in
a statistical manner, where Y can be considered as the sum of

a deterministic linear path-loss term and two stochastic terms:
shadowing and error. Such a model can be viewed as a Spatial
Mixed Effects (SME) model, it was suggested in [6] and was
used to construct the REM for cellular coverage purposes.

III. COVERAGE PREDICTION WITH FIXED RANK KRIGING

A. Prediction

In this section we want to develop the Kriging prediction in
terms of the covariance function Σ. Let s0 denote the location
where we want to predict the coverage metric Z. Kriging
prediction aims at minimizing the Mean Squared Error (MSE)
between the real and the predicted coverage metrics at s0.
Since [Z(s0),Y ]T is a Gaussian vector, the minimum mean-
square error prediction of Z(s0) is the conditional expectation
of Z(s0) given Y , denoted as E[Z(s0)|Y ]. Thus we have,

E[Z(s0)|Y ] = argmin
Z∗(s0)

E{(Z(s0)− Z∗(s0))2}, (5)

where Z∗(s0) is the set of possible prediction of Z from Y
at the location s0. The prediction of Z(s0), denoted as Ẑ(s0),
is obtained by minimizing the mean-square error (MSE) of
equation (5), yielding [5]:

Ẑ(s0) = tT (s0)α+CT (s0)Σ
−1(Y − Tα), (6)

where tT (s0) = [1 ;−10 log10(ds0)] and C(s0) =
[C(s0, s1) . . .C(s0, sN )]T .

We notice that the use of (6) will necessitate the compu-
tation of the N × N matrix Σ−1. When N is very large,
the inversion of Σ is not possible, because it involves a
huge computational cost. In order to reduce the computational
complexity, we propose to use the Fixed Rank Kriging (FRK)
[10]. This method proposes a decomposition of the matrix
Σ which reduces the dimension of the matrix inversion to
r× r, where r is fixed by the user. The basic idea behind the
FRK is to capture the scales of spatial dependence through an
appropriate set of r basis functions chosen to be located at
points s′1, . . . , s

′
r (the choice of the basis functions is detailed

in IV-A). These basis functions are denoted as,

S(s) ≡ [S1(s) . . . Sr(s)]
T
, s ∈ D (7)

where r is fixed and in practice r << N . More precisely, the
spatially correlated random (shadowing) process ν is projected
onto the r basis functions such that,

ν(s) = S(s)Tη, (8)

where η = (η1, . . . , ηr)
T is a random projection coefficient

vector modelled as a zero mean process with a covariance
matrix denoted as K. Thus cov {ν(s1), ν(s2)} is written as

C(s1, s2) = S
T (s1)KS(s2), s1, s2 ∈ D. (9)

Now, the modified model of Y (si) is given by,

Y (si) = t(si)
Tα+ S(si)

T η + ε(si), si ∈ D (10)

assuming η(.) and ε(.) are two independent processes. Using
(9), we get

Σ = SKST + σ2Ξ (11)

= σΞ1/2
(
I + σ−1Ξ−1/2SKSTσ−1Ξ−1/2

)
σΞ1/2,



where S is the N × r matrix whose (i, l)th element is Sl(si).
This implies

Σ−1 = σ−1Ξ−1/2 {I (12)

+(σ−1Ξ−1/2)SKST (σ−1Ξ−1/2)
}−1

σ−1Ξ−1/2.

Employing the following standard matrix result [14], we get(
I + PKP T

)−1
= I − P

(
K−1 + P TP

)−1
P T , (13)

where P and K are respectively N × r and r × r matrices
such that K and K−1 + PTP are invertibles. Using equation
(13) in (12) gives

Σ−1 =
(
σ2Ξ

)−1 − (σ2Ξ
)−1

S
{
K−1

+ST
(
σ2Ξ

)−1
S
}−1

ST
(
σ2Ξ

)−1
. (14)

In addition, using equation (9) we have C(s0)
T =

S(s0)
TKST . Combining this with equation (6) we get

Ẑ(s0) = t
T (s0)α+ S(s0)

TKSTΣ−1(Y − Tα), (15)

where Σ−1 is computed according to equation (14).

As can be noticed by comparing equation (6) with equa-
tions (14) and (15), FRK involves the inversion of the matrix
K which is r×r instead ofΣ which is N×N where r << N .
Noting that Ξ is diagonal so that Ξ−1/2 is easily computable.

The computational complexity reduction is achieved by
projecting the shadowing part of the measurements on a given
number r of basis functions. We assume that the resulting
projection coefficients, ν, have the same spatial characteristics
as the shadowing terms. Since the shadowing can be modelled
as a zero-mean Gaussian random variable that is spatially
correlated according to an exponential correlation model [15],
the projection coefficients are similarly modelled. Thus, the
matrix K is an exponential covariance matrix, defined as,

Ki,j =
1

β
exp

(
−
∥∥s′i − s′j∥∥
exp(φ)

)
, (16)

where
∥∥s′i − s′j∥∥ is the Euclidean distance between two loca-

tions s′i and s′j (more details on the basis functions will be
given in the following section). 1

β and φ are the parameters of
K which are respectively analogous to the shadowing variance
and correlation distance of the exponential shadowing model.
Note that we are using exp(φ), to be sure that the term
in the denominator is always positive. Notice that the FRK
(equation (15)) assumes that the model parameters (α, σ2,K)
are known. Yet, in order to perform the prediction, these
parameters have to be estimated from the observation Y .

B. Model parameter estimation

A first option to estimate the model parameters is by
using method of moments approach, suggested in [10]. When
applied to our cellular data, this method has turned out to
be inconvenient: the estimation of K does not respect the
correlation matrix constraint (K must be positive definite).

The solution proposed to this problem in [11] is to ’lift’1

the eigenvalues of K after estimation, but this approach
seems to be inconvenient for our cellular coverage problem.
Thus, we have refrained from using the eigenvalue lifting
and we propose to use the Expectation Maximization (EM)
algorithm [12]. It is a well-known and efficient iterative method
which performs Maximum Likelihood Estimation (MLE) of
model parameters whose details will be given in the rest of
this subsection.

Let’s denote θ = [α, σ2, β, φ]T , as the vector of unknown
parameters. Knowing that the log-likelihood expression of the
problem with the existing data set (which is called as the
incomplete data) is computationally non-tractable, the basic
idea of the EM algorithm is to associate to the given incom-
plete data problem, an augmented data set (which is called
the complete data) with which ML (Maximum log-likelihood)
parameter estimation is computationally more tractable. For
our case, the log-likelihood with the incomplete data, LY (θ) =
log Pr(Y |θ) has a closed-form expression. But the maximiza-
tion of this expression is not straightforward and cannot be
computed analytically, because we will need to inverse and
perform multiplication by the covariance matrixΣ, which is an
N ×N matrix and N is considerably high. Therefore, instead
of maximizing directly the incomplete data log-likelihood, we
maximize a mean complete data log-likelihood LY ,η(θ) =
log Pr(Y ,η|θ), which is computationally tractable when the
mean over the missing data β is with respect to some adequate
expectation (see Eq. (17)).

The EM algorithm proceeds iteratively, where at each
iteration, there are two steps called as the Expectation step (E-
step) and the Maximization step (M-step). Let θ(0) be some
initial value of θ. Then in the first iteration, the E-step requires
the calculation of the expected value of the complete-data
log-likelihood with respect to the unknown data η, given the
observed data Y and the current parameter estimates θ(0),
written as:

Q(θ,θ(0)) = EY ,θ(0)
[log Pr(Y , η|θ)] . (17)

The M-step requires choosing a new θ(1) that maximizes the
quantity Q(θ,θ(0)) with respect to θ. It is equivalent to saying
that θ(1) satisfies the following property,

Q(θ(1),θ(0)) > Q(θ,θ(0)). ∀θ. (18)

The two steps are then carried out again (for the next iteration),
replacing θ(0) with θ(1). Thus the E- and M-steps are alter-
nated repeatedly until the difference between θ(l) and θ(l+1)

changes by an arbitrarily small amount which is determined
by the user. We propose to perform the M-step in four steps,
which consist in updating each component of θ in turn. This
yields the following algorithm where the details can be found
in appendices A and B.

E-step. Given the current estimate of θ(l), calculate
Q(θ,θ(l))

Q(θ,θ(l)) = EY ,θ(l)
[log Pr(Y , η|θ)] . ∀θ (19)

1lift means shifting the eigenvalues to be all positive



M-step 1. Calculate α(l+1) by maximizing Q(θ,θ(l)) with
respect to α keeping σ2, φ and β fixed respectively at σ2

(l),
φ(l) and β(l). This maximization with respect to α can be done
analytically and yields the following expression:

α(l+1) =
(
T TT

)−1
T T

(
Y − SEY |θ(l)

[η]
)
. (20)

M-step 2. Calculate σ2
(l+1) by maximizing Q(θ,θ(l)) with

respect to σ2, keeping φ, β fixed respectively at φ(l) and β(l)
and α fixed at α(l+1). Again, the maximization can be done
analytically and yields the following expression:

σ2
(l+1) =

1

n

∥∥Y − Tα(l+1)

∥∥2 + 1

n
Tr(STSEY |θ(l)

[
ηηT

]
)

− 2

n
(Y − Tα(l+1))

TSEY |θ(l)
[η] . (21)

M-step 3. Calculate β(l+1) by maximizing Q(θ,θ(l)) with
respect to β, keeping φ fixed at φ(l) and α and σ2 fixed re-
spectively at α(l+1) and σ2

(l+1). Once more, this maximization
can be done analytically and yields the following expression:

β(l+1) =
r

Tr
(
K̃(φ)−1EY |θ(l)

[ηηT ]
) , (22)

where K̃(φ) is defined in appendix B.
M-step 4. Finally for the parameter φ, an analytical solution
for maximizing Q(θ,θ(l)) with respect to φ is not possible.
Therefore, we use a one-iteration Newton-Raphson method
[12]. Details of this method are given in appendix B, where
we have considered that α, σ2 and β are fixed respectively at
α(l+1), σ2

(l+1) and β(l+1) for the computation of φ(l+1).
Note that the quantities EY |θ(l)

[η] and EY |θ(l)

[
ηηT

]
have

explicit expressions (see appendix C).

IV. EVALUATION RESULTS OF THE COVERAGE
PREDICTION ALGORITHM

A. Data set used for evaluation

The geo-located measurements used in this paper are
obtained with a very accurate planning tool [16], which uses
a sophisticated ray-tracing propagation model developed and
used for operational network planning. This tool uses specific
propagation model related to supplied environment information
(like antenna properties, terrain profile etc.) and it is calibrated
through repeated drive tests. Therefore the data produced from
the tool is considered as realistic radio measurements reflecting
the ground-truth on the coverage situation over the area of
interest and can be used in our work.

We consider an urban area located in the southwest of
Paris where we construct an LTE coverage map. This map
is composed of received pilot powers which are computed
at a known location with a 5 m resolution on a surface of
1000 m×1000m (Figure 3a). The environment is covered by
a macrocell with an omnidirectional antenna. We have the
complete coverage map constructed by the simulator, in a total
40401 measurements are available in a regular square grid. We
proceed by obtaining an observed vector which is extracted
uniformly over the entire data (considering a given density p
of the observed data). Then we will have two datasets, one

set chosen randomly to perform model fitting, denoted as the
learning set and the rest of the data considered as a second set
called test set. We predict the measurements over the locations
of the test set and then we compare the obtained prediction to
the real value of the measurements that we have already in
the test set. The difference between the two values represent
the error over it we will build our analysis in the rest of this
paper.

To justify our model choice and assumptions done in
section II, we compute the histogram of a shadowing part
of our measurement data shown in Figure 1a [11]. Fitting a
Gaussian curve to this histogram, we obtain a goodness-of-fit
metric of R2 = 0.9848. Based on this result, we conclude
that our model assumption on the shadowing part is valid. In
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Fig. 1. A histogram (left) and a variogram(right) for the detrended data.

order to verify the model assumption on the shadowing spatial
correlation, we have computed the empirical variogram of the
shadowing component, shown in Figure 1b. As we mentioned
before, the random process can be modelled as an exponential
process. In Figure 1b, the blue line presents an exponential
fit to the empirical variogram, with a goodness-of-fit measure
of R2 = 0.9157, confirming our model assumption on the
shadowing spatial correlation.

Finally, we need to make a choice on the basis function
S. Since no orthogonality assumptions are made on S and
considering our spatial covariance model, we can choose
simple bi-square functions also considered in [10],

Sj(si) =

{[
1−

(∥∥si − s′j∥∥ /rl)2]2 , ∥∥si − s′j∥∥ 6 rl

0, otherwise

where the parameter rl represents the function expansion and
s′j is the center of the jth basis function. Before computing
S, we need to fix a grid of center points of the basis
functions. It yields to a new discrete grid map depicted in
Figure 2a. Figure 2b depicts a two-dimensional view of the
used bi-square function. In Figures 3a and 3b, the realistic
coverage map, provided by the planing tool, and the REM after
FRK prediction are respectively plotted. Figure 3c shows the
empirical error map obtained by taking the difference between
the real and the predicted measurements.
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Fig. 3. Real coverage, interpolated and the error maps for 5× 5 resolution grid of size 1000m×1000m.
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B. Computational complexity evaluation

In this section, we present the computational gain provided
by FRK. FRK is a low-complexity variant of the simple Krig-
ing, where we reduce the rank of the covariance matrix to sim-
plify its inversion. In fact, if we use simple Kriging, we need
to evaluate equation (6), which requires the inversion of the
N×N covariance matrixΣ, an operation with a computational
complexity of O(N3). As our coverage measurement samples
are typically ’massive’ (in the order of thousands to millions),
this inversion operation rapidly becomes intractable. FRK,
on the other hand, relies on equations (15) and (14) where
the computational complexity is O(nr2). Thus, FRK reduces
the computational complexity from O(N3) to O(Nr2) with
r << N . Nevertheless, this technique induces a performance
degradation as shown in Figure 4. In this figure, we consider
a reduced map size (500m×500m), where we compare the cdf
of the prediction error using simple Kriging and FRK, with
N = 2000, r = 121 and r = 441. One can see that the use of
the FRK interpolation decreases slightly the prediction quality.

C. Prediction evaluation

In this section we evaluate the FRK prediction quality. We
start by presenting the assumptions made on the EM algorithm
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Fig. 4. CDF of the error in dB for a map size 500m×500m.

to ensure its convergence. We choose the OLS initialisation for
α:

α0 =
(
T TT

)−1
T TY , (23)

The initial values of σ2, β and φ are chosen randomly with
the constraint that β, σ2 > 0. We consider the following
convergence condition:

∥∥θ(l) − θ(l−1)∥∥ < ζ, where θ(l) =
[α(l), σ

2
(l), φ(l), β(l)]

T is the parameter vector at the lth iteration
and ζ = 10−5. It is also important to fix the parameters of the
chosen basis functions. For the bi-square functions detailed
in section IV-A, we fix the expansion parameter rl to be to
be equal to the distance separating two neighbouring basis
functions.

In Figure 5, we show the box plot of the prediction error,
for several choices of r. It can be noticed that the prediction
quality increases with increasing the number of basis functions.
But based on section IV-B, we know that the computational
complexity is O(Nr2) and r << N . As a consequence
the choice of the parameter r defines the trade-off between
computational complexity and prediction quality. Figure 6
presents the prediction error for different numbers of available
measurements, considering the same rank r = 1200. One can
see that when the number of available measurements is much
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higher than r (>= 6000), we do not obtain any additional
gain on the prediction quality by increasing the number of
measurements. This is due to the fact that fixing the rank by
using basis functions with truncated shapes results in decreas-
ing the spatial correlation impact. Notice from Figures 5 and
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6, that the prediction errors involved in FRK are considerably
low (variance in the order of 1-3 dB) when compared to, for
example, errors in typical propagation models (RMSE between
10-50 dB) with the exception of ray-tracing models that have
substantially high computational complexities [17].

V. CONCLUSION

In this paper we have studied the performance of the Fixed
Rank Kriging (FRK) algorithm applied to coverage analysis in
cellular networks. This method is attractive when performing
prediction using massive data sets (order of thousands and
higher) as it offers a good trade-off between prediction quality
and computational complexity compared to classical Kriging
techniques. We have also adapted the FRK algorithm to
the considered radio measurements by introducing the EM

algorithm to estimate the model parameters. To evaluate the
performance of our prediction and estimation method, we have
analysed the prediction error for different numbers of available
measurements and for different values of r, r being the ”rank”
corresponding to the number of basis functions used in FRK.
We have shown that the choice of r impacts the prediction
quality, and that we obtain reasonable prediction errors with a
relatively low computational complexity (compared to typical
errors obtained by existing propagation models, except ray-
tracing models which have very high computational complex-
ities). We have also shown that once r is fixed, limited gain
is obtained by this technique when we increase the number of
measurements. This study has been performed using field-like
measurements obtained from an accurate and realistic planning
tool which uses a ray-tracing propagation model. The next step
of this work consists of applying our algorithm to real field
measurements.
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APPENDIX A
E STEP

Our model is

Y = Tα+ Sη + ε,

where η and ε play the role of random-effect process. Since
η and ε are two independent process, we have

Y |η,θ ∼ N
(
Tα+ Sη, σ2Ξ

)
. (24)

In addition,
η|θ ∼ N(0,K) , (25)

where θ = [α, σ2, φ, β]T and the matrix K is defined in
equation (16). Then, the EM Q-function is written as

Q(θ,θ(l)) = EY |θ(l)
[ln Pr(Y ,η|θ)] ,

= EY |θ(l)
[ln(Pr(Y |η,θ) Pr(η|θ))] , (26)

where under the expectation EY |θ(l)
, the distribution of η is a

Gaussian distribution with mean and covariance matrix given
in appendix C. Using (24) and (25), we have

EY |θ(l)
[ln Pr(Y |η,θ)] (27)

= −n
2
ln(2πσ2)− 1

2σ2
EY |θ(l)

[
‖Y − Tα− Sη‖2

]
and

EY |θ(l)
[Pr(η|θ)] (28)

= −r
2
ln(2π)− 1

2
ln(det(K))− 1

2
EY |θ(l)

[
ηTK−1η

]
Combining (27) and (28) in expression (26) gives

Q(θ,θ(l)) = −
n

2
ln(σ2)− 1

2σ2
EY |θ(l)

[
‖Y − Tα− Sη‖2

]
− 1

2
ln(det(K))− 1

2
EY |θ(l)

[
ηTK−1η

]
+ c,

(29)

where c is a constant, independent of θ. Developing the square
term in expression (29), we get:

Q(θ,θ(l)) = −
n

2
ln(σ2)− 1

2
ln(det(K))− 1

2σ2
‖Y − Tα‖2

+
1

σ2
(Y − Tα)TSEY |θ(l)

[η]

− 1

2
EY |θ(l)

[
ηT (

STS

σ2
+K−1)η

]
+ c.

We introduce one of the matrix expectation properties (See
[19]),

E
[
XTAX

]
= Tr(AE

[
(X − E[X])(X − E[X])T

]
)

+ E[X]TAE[X], (30)

assuming that A is a symmetric matrix and X is a vector of
random variables. Applying this property, equation (26) takes
the form:

Q(θ,θ(l)) = −
n

2
ln(σ2)− 1

2
ln(det(K))− 1

2σ2
‖Y − Tα‖2

− 1

2
Tr

(
(
STS

σ2
+K−1)EY |θ(l)

[
ηηT

])
+

1

σ2
(Y − Tα)TSEY |θ(l)

[η] . (31)

APPENDIX B
M-STEP

In the M step, we need to compute the update θ(l+1) which
is under the following constraint,

Q(θ(l+1),θ(l)) > Q(θ(l),θ(l)). (32)

Then θ(l+1) can be any value that increases Q(θ,θ(l)). If the
maximum of Q(θ,θ(l)) has a close form the update of θ(l+1)

can be given by

θ(l+1) = argmax
θ

Q(θ,θ(l)). (33)

To maximize θ 7→ Q(θ,θ(l)), we can maximize terms contain-
ing each parameter (α, σ2,K). In fact, we start by computing
first derivative with respect to each parameter independently
and then set the obtained derivation equation to zero. The
solution of this equation can be a minimum, a maximum, or
an inflection point. Therefore, we proceed by computing the
second order derivative with respect to the given parameter
evaluated for the obtained solution and check that gives a
negative number.

a) Update α: Deriving equation (31) with respect to α
gives

∂αQ(θ,θ(l)) =
1

σ2
T T (Y −Tα)− 1

σ2
T TSEY |θ(l)

[η] . (34)

We can easily compute αnew which is the solution the equation
(34) setted equal to zero. It is given by,

αnew =
(
T TT

)−1
T T

(
Y − SEY |θ(l)

[η]
)
. (35)

To ensure that the solution of ∂αQ(θ,θ(l)) = 0 is a maximum,
we compute the second order derivative of Q(θ,θ(l)) with
respect to α and check it is negative. This gives

∂2αQ(θ,θ(l))
∣∣
θ=(αnew,σ2,K)

= − 1

σ2
T TT < 0, ∀σ2,∀K

As consequence, the computed update αnew satisfies the M-
step condition, written as

Q(αnew, σ
2,K;θ(l)) > Q(θ;θ(l)). ∀θ (36)



b) update σ2: To find the update of σ2, we derive the
equation (31) with respect to σ2, we get:

∂σ2Q(θ,θ(l)) (37)

= − n

2σ2
+

1

2(σ2)2
Tr
(
STSEY |θ(l)

[
ηηT

])
+

1

2(σ2)2
‖Y − Tα‖2 − 1

(σ2)2
(Y − Tα)TSEY |θ(l)

[η] .

Setting it equal to zero, we obtain

σ2
new =

1

n
‖Y − Tαnew‖2 +

1

n
Tr(STSEY |θ(l)

[
ηηT

]
)

− 2

n
(Y − Tαnew)TSEY |θ(l)

[η] . (38)

Since σ2 is a positive number, we need to check that σ2
new > 0.

Therefore, we re-arrange the terms in equation (38) based on
the property introduced in (30), we get

σ2
new =

1

n
EY |θ(l)

[
‖Y − Tαnew − Sη‖2

]
> 0

and

∂2σ2Q(θ,θ(l))
∣∣
θ=(αnew,σ2

new,K)
= − n

2(σ2
new)

2
< 0. (39)

Then σ2
new satisfies the M-step assumption, which is, ∀σ2,K

Q(αnew, σ
2
new,K;θ(l)) > Q(αnew, σ

2,K;θ(l)). (40)

c) Update β: Based on the definition of the matrix K
introduced in equation (16), we denote K = 1

β K̃(φ). We
derive (31) with respect to β, it gives

∂βQ(θ,θ(l)) =
1

2

r

β
− 1

2
Tr
(
K̃(φ)−1EY |θ(l)

[
ηηT

])
(41)

Setting this derivative equal to zero, we compute the update
of β. It is given by,

βnew =
r

Tr
(
K̃(φ)−1EY |θ(l)

[ηηT ]
) ,

=
r

EY |θ(l)

[
ηT K̃(φ)−1η

] > 0 (42)

where,

∂2βQ(θ,θ(l))
∣∣
θ=(α,σ2,βnew,φ)

= − r

β2
new

< 0 (43)

Considering αnew and σ2
new computed before, we obtain:

∀φ, β

Q(αnew, σ
2
new, βnew, φ;θ(l)) > Q(αnew, σ

2
new, β, φ;θ(l)).

(44)

d) Update φ: We notice that when deriving equation
(31) with respect to φ, we get a complicated expression with
no explicit solution when setted equal to zero. In such a case
when no closed form exists it may be feasible to attempt to find
the value φ that globally maximizes the function Q(θ,θ(l)).
This case is defined as the generalized EM algorithm (GEM),
for which the M-step requires only that φ(l+1) satisfies

Q(α, σ2, β, φ(l+1);θ(l)) > Q(α, σ2, β, φ(l),θ(l)), ∀α∀β,∀σ2.
(45)

In this situation, where we don’t have a closed form for
updating parameter φ, we can use one step of the Newton-
Raphson (NR) method [12], as the M-step. This gives

φ(l+1) = φ(l) − a(l)
∂φQ(θ,θ(l))

∣∣
θ=

(
α(l+1),σ

2
(l+1)

,β(l+1),φ(l)

)
∂2φQ(θ,θ(l))

∣∣∣
θ=

(
α(l+1),σ

2
(l+1)

,β(l+1),φ(l)

) ,
(46)

where 0 < a(l) 6 1. This parameter controls the convergence
rate, we can choose a(l) = 1. We compute derivatives involved
in equation (46) based on some results from matrix derivation
theory detailed in [22] and we get

∂φQ(θ,θ(l)) = −
1

2
Tr

(
K−1

∂K

∂φ

)
(47)

+
1

2
Tr

(
K−1

∂K

∂φ
K−1EY |θ(l)

[
ηηT

])
,

∂2φQ(θ,θ(l)) =
1

2
Tr

(
K−1

∂2K

∂2φ
(K−1EY |θ(l)

[
ηηT

]
− Idr)

)
+

1

2
Tr

(
K−1

∂K

∂φ
K−1

∂K

∂φ
(Idr − 2K−1EY |θ(l)

[
ηηT

]
)

)
.

Finally the derivatives of K with respect to φ are defines as,[
∂K

∂φ

]
i,j

=

[
∂K(β, φ)

∂φ

]
i,j

=
‖si − sj‖2

exp(φ)
Ki,j

and[
∂2K

∂2φ

]
i,j

= −
[
∂K(β, φ)

∂φ

]
i,j

+
‖si − sj‖2

exp(φ)

[
∂K(β, φ)

∂φ

]
i,j

.

APPENDIX C
CHARACTERIZATION OF η

We want to identify the conditional distribution of η given
Y when the value of the parameter is θ, it is denoted by
Pr (η|Y ,θ). We have,

Pr (η|Y ,θ) = Pr (Y |η,θ) Pr (η|θ)
Pr (Y |θ)

.

Using expression (24) and (25) and up to a multivariate
constant independent of η, we can write:

Pr (η|Y ,θ) ∝ exp(− 1

2σ2
‖Y − Tα− Sη‖2) (48)

× exp(−1

2
ηTK−1η)

∝ exp

(
1

σ2
(Y − Tα)TSη (49)

−1

2
ηT (

SSt

σ2
+K−1)η

)
,

We observe that η 7→ Pr (η|Y ,θ) follows a Gaussian distri-
bution with mean µ and covariance matrix C. We have

Pr (η|Y ,θ) ∝ exp

(
−1

2
(η − µ)TC−1(η − µ)

)
,

∝ exp

(
−µTC−1η − 1

2
ηTC−1η

)
. (50)



Using (48) and (50), we can identify the mean and the
covariance of η|Y ,θ:{

µ = EY |θ [η] = (STS + σ2K−1)−1ST (Y − Tα),
C = EY |θ

[
(η − µ)(η − µ)T

]
= (S

TS
σ2 +K−1)−1,

which yields,

EY |θ
[
ηηT

]
= (

STS

σ2
+K−1)−1 + µµT . (51)


