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t An extension of PLS for regression and dimensionredu
tion in logit models is derived, an extension that still workswhen the number of 
ovariates is far larger than the number ofobservations. It is applied to 
lassi�
ation of Mi
roarray.1 Introdu
tionPartial Least Squares (PLS), �rst introdu
ed in 
hemometri
s [12,9℄ is both used as a dimension redu
tion tool and as a linear re-gression tool. The goal of the present 
ontribution is to extend itsappli
ation to regression in univariate Generalized Linear Models(GLM) with binary response, an extension that 
overs the 
asewhere the length p of the 
ovariate ve
tor is larger or equal to thenumber of observations n.PLS 
onstru
ts predi
tive models by exhibiting latent 
ovariates(or s
ores) that a

ount for most of the variation in the response.Unlike Prin
ipal Component Regression (PCR), the de�nition ofthe s
ores is based both on the 
ovariates and on the responsevariable Y, and in that sense, PLS looks more appropriate thanPCR to over
ome the problems involved by the large number of
ovariates and their high 
ollinearity. Nguyen and Ro
ke [10℄ 
om-bines PLS and Iteratively Reweighted Least Squares (IRLS, [6℄)
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2 2 HEURISTIC OF THE RIDGE-PLS ALGORITHMi.e. PLS and a regression analysis based on the Maximum Likeli-hood (ML) method; they determine the �rst � PLS 
omponentsfromY and the initial design matrix; then a regression onto theses
ores is performed in the ML sense. Besides the question on thepertinen
e of applying the PLS ma
hinery with a 
ategori
al re-sponse ve
tor, this algorithm has 
onvergen
e weaknesses sin
ethe ML estimate does not ne
essarily exist. A se
ond try for ex-tension of PLS to GLM 
an be found in Marx [8℄ in a two steppro
edure. The �rst step is to exhibit � PLS s
ores at 
onver-gen
e of a PLS-within-IRLS algorithm; the se
ond one runs a MLregression onto these s
ores. In many appli
ations, the Marx al-gorithm is nothing else than the Nguyen and Ro
ke algorithm andthus inherits its drawba
ks, as dis
ussed in [4℄.This is the reason why we introdu
e an extension, 
alled Ridge-PLS algorithm, that 
an be summarized as a weighted PLS al-gorithm in whi
h the 
ategori
al response variable Y is repla
edwith a 
ontinuous-valued pseudo-variable that 
aptures the infor-mation 
ontained in Y. Roughly speaking, Ridge �ghts the mul-ti
ollinearity while PLS is the dimension redu
tion part. In this
ontribution, the method is derived for logit models. We showhow Ridge-PLS 
an be used for supervised 
lassi�
ation of Mi-
roarray data, 
hara
terized by a number of 
ovariates far largerthan the number of observations.2 Heuristi
 of the Ridge-PLS algorithmWe postpone the algorithmi
 des
ription to Se
tion 4, and startwith a naive des
ription. Ridge-PLS is based on the followingobservation : Least Squares inferen
e and ML inferen
e 
oin
idefor regression in a normal linear model whi
h is both a linearmodel and a GLM. For 
anoni
al GLM, the ML estimate �̂MLis the weighted least squares estimate when regressing a pseudo-response variable  onto the 
olumns of the design matrix;  isobtained at 
onvergen
e of an IRLS pro
edure, and for normalmodels, is equal to Y [6℄. As a 
onsequen
e, our extension ofPLS 
onsists in applying PLS by repla
ing Y with the pseudo-variable at 
onvergen
e of IRLS. Nevertheless, this rough idea
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3has to be made robust in order (i) to be valid when �̂ML doesnot exist and (ii) to take into a

ount the heteros
edasti
ity ofthe pseudo-variable. This is done by respe
tively (i) substituting�̂ML for a penalized ML estimator, namely the Ridge one, and (ii)introdu
ing a Weighted PLS (WPLS) algorithm. Before deriv-ing Ridge-PLS for logit models, we introdu
e notations and basi
algorithmi
 ingredients.3 Some basi
 ingredientsFor a 
olumn-ve
tor u, kuk is the Eu
lidean norm, u1:p 
olle
tsthe �rst p 
omponents of u. For a matrix A, A0 is the transpose,Aij denotes the entry (i; j), and A�;1:r the matrix that 
ontainsthe �rst r 
olumns of A. 1In is the ve
tor (1; � � � ; 1)0 of length nand J (r) is a diagonal (r + 1) � (r + 1)-matrix with J (r)11 = 0 andJ (r)kk = 1 otherwise.Logit model and Logisti
 dis
rimination rule The observa-tions 
onsist of n independent f0; 1g � Rp-valued pairs (yi;Xi�)where given Xi�, the 
onditional mean of yi is �i, whi
h is relatedto the linear predi
tor �i by �i = (1 + exp(��i))�1, or equiv-alently �i = ln (�i=(1� �i)). �i depends on the design ve
torZi� := [1 X 0i�℄0 through the relation �i = Z 0i��, where � 2 Rp+1 isthe unknown parameter. The n response variables (resp. 
on-ditional means) are 
olle
ted in the ve
tor Y (resp. �). Then� (p + 1) design matrix is denoted by Z = [1In X℄.For a given estimate �̂, and a new design ve
tor z, the binary vari-able ŷ is predi
ted by applying the logisti
 dis
rimination rule, i.e.ŷ = 1 if �̂ := z0�̂ � 0, and ŷ = 0 otherwise.The Ridge-ML estimator When n > rank(Z), �̂ML is uniquewhen it exists. Unfortunately, the likelihood may be maximalon the boundary of Rp+1 so that k�̂MLk = +1 [11℄. Whenn = rank(Z) - whi
h o

urs if and only if n � (p+1) and Z has fullrank - the solution to the normal equation yields k�̂MLk = +1.Hen
e, inferen
e of the parameter ne
essitates the introdu
tionof a regularization method; we opt for a Ridge-penalized ML ap-
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4 4 THE RIDGE-PLS ALGORITHM, N � P + 1proa
h, whi
h shrinks the 
oeÆ
ients towards zero (ex
ept theinter
ept one �1). The Ridge estimator �̂R is de�ned as the max-imum of the penalized log-likelihood l�l�(�) = nXk=1 fykZ 0k�� � ln(1 + exp(Z 0k��))g � �2 �0�2�; (1)where � > 0 is a shrinkage parameter, and � is a diagonal matrixtaking into a

ount the non-standardization of the 
ovariate ma-trix : �211 = 0 and �2kk =Pnj=1(Zj;k�1I0nZ�;k=n)2 for k 2 [2; p+1℄.�̂R exists, is unique and is 
omputed by the (iterative) Newton-Raphson algorithm, ea
h iteration of whi
h is a weighted Ridge-regression of a pseudo-variable onto the 
olumns of Z.WPLS algorithm For a given Rn-valued observation  , a 
o-variate matrix X, and a positive-de�nite symmetri
 weight ma-trix W , the PLS s
ope is to 
onvey the relation between  andX through the de�nition of � s
ores (tj)1�j��. These are linear
ombinations of the 
olumns of the design matrix Z su
h that forall j, 1I0nWtj = 0 and for all j 6= k, t0jWtk = 0. This yields thede
omposition  = q01In + q1t1 + � � � + q�t� + f�+1 where f�+1 isW -orthogonal to the ve
tors (1In; t1; � � � ; t�). The pairs (qj; tj) arere
ursively 
omputed as follows1. t0 = 1In; E0 = X; f0 =  .2. For j = 0; � � � ; �, set qj = t0jWfj=(t0jWtj), fj+1 = fj � qjtj,Ej+1 = Ej � tjt0jWEj=(t0jWtj), tj+1 = Ej+1E0j+1Wfj+1.We refer to the literature for an interpretation of the above algo-rithm and a dis
ussion on the maximal number of W -orthogonals
ores �max [7℄. WPLS, read as a regression method, yields a PLSestimate �̂PLS;� through the relation  ̂� =  � f�+1 = Z�̂PLS;�.4 The Ridge-PLS algorithm, n � p + 1Given (Y;X), for the parameters (�; �),
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5A. Determine  : 
ompute �̂R, the limiting value of (�(t))t where�(t+1) := �Z 0W (t)Z + ��2��1 Z 0W (t) (�(t)); (2) (�(t)) := Z�(t) + �W (t)��1 �Y ��(t)� ; (3)Z := [1In X℄, �(t) is the mean ve
tor � 
omputed at the
urrent value of the parameter andW (t) is a diagonal matrixwithW (t)kk := �(t)k (1��(t)k ). Set  :=  (�̂R) andW := W (1).B. Run theWPLS with � 
omponents for the variables ( ;X;W )and 
ompute �̂PLS;� as des
ribed in Se
tion 3.Step A builds a 
ontinuous response variable  whose expe
tedvalue has linear relationship with the 
ovariates, for the inputof PLS; 
onditionally to �̂R, the dispersion matrix of  is W�1,whi
h explains the 
all, in Step B, to a weighted PLS pro
edurewith weight W .Implementation The pro
edure, presently derived in Rp+1 
anbe equivalently derived in Rr+1 where r + 1 := rank(Z) � n.To that goal, 
ompute UDV 0, the singular values de
omposition(svd) of (X � 1In1I0nX=n)��1, the standardized 
ovariate matrix,and set � := (UD)�;1:r so that Z� = [1In �℄
 for some 
 2 Rr+1; itis readily seen that the above pro
edure, run by repla
ing (X;�2)by (�; J (r)), yields an estimate 
̂PLS;� uniquely related to �̂PLS;�by the formulas�̂1 = 
̂1 � 1I0nX�̂2:p+1=n �̂2:p+1 = (�2:p+1;2:p+1)�1 V�;1:r
̂2:r+1:Hen
e, up to a single svd, the pro
edure is independent of p whi
his of 
omputational importan
e.In the appli
ation, � is 
hosen as the value �opt in a given rangeR minimizing the BIC 
riterion �2l̂ + log(n)Dim where l̂ is thelog-likelihood for the value �̂R of the parameter, and Dim is thetra
e of Z (Z 0WZ + ��2)�1 Z 0W .



C
0
4
 
P
A
P
E
R

D
R
A
F
T

6 5 APPLICATION TO BINARY CLASSIFICATION5 Appli
ation to binary 
lassi�
ationWe apply the above pro
edure to supervised 
lassi�
ation of Mi-
roarray data; the data set Leukemia1, 
ontains 72 samples di-vided into 47 
ases of a
ute lymphoblasti
 leukemia, labeled 0, and25 
ases of a
ute myeloid leukemia, labeled 1. Ea
h sample 
on-sists in a f0; 1g-valued label and 7129 gene expression levels (seeGolub et al. [5℄ for a des
ription of the data set). We perform anout of sample (OS) analysis on 100 random partitions of the dataset into a learning set and a test set. The learning set 
ontains27 samples type 0 and 11 samples type 1. We report in Table 1,row "RPLS �" the mean number (and the standard deviation) ofmis
lassi�ed samples in the test set, when the 
lassi�
ation ruleis determined on the learning set [� = 1; � � � ; 6℄. Regression isnot performed with the 7129 initial 
ovariates; some of them areirrelevant and are deleted following the pre-pro
essing method de-s
ribed in Dudoit et al. [2℄. We stress that this �ltering and thenumber of remaining genes depend on the learning set. We testthe pro
edures by 
onsidering di�erent values of p (> n = 38)and sele
t the p most pertinent 
ovariates as advo
ated in Du-doit et al. [2℄. We run the OS analysis for the 
lassi�
ation ruleindu
ed by the Ridge estimator �̂R (row "Ridge", Table 1); theresults outline the interest of a dimension redu
tion step after theregularization one. Eilers et al. [3℄ propose a method quite sim-ilar to the Ridge analysis. They 
ompute �̂ as maximizing the
riterion (1) in whi
h � is repla
ed by J (p) (although Z is notstandardized); then, their 
lassi�
ation rule is based on a Bayesrisk : ŷ = 1 i� �̂ is greater than the empiri
al mean of the obser-vations in the learning set. We run their algorithm and report theresults in row "Eilers", Table 1. Ridge-PLS yields better results;nevertheless, this assertion has to be nuan
ed sin
e for less "reg-ular" data sets, Ridge-PLS and the Eilers et al. 's method mayhave an equivalent behavior.For ea
h partition, �opt is determined as des
ribed above, over 51log10-linearly spa
ed points in R = [10�2; 103℄. The mean valueof �opt over the 100 partitions is given in Table 2 for the Eilers1available at http://www.broad.mit.edu/
gi-bin/
an
er/publi
ations
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7et al. 's algorithm (�E) and the Ridge and Ridge-PLS algorithms(�R). Whatever p, �E > �R, whi
h is due to the standardizationof the design Z.method p=50 p=100 p=300 p=500 p=1000Ridge 1.52 (1.11) 1.35 (1.09) 1.62 (1.05) 1.89 (1.21) 2.83 (1.37)RPLS 1 1.24 (0.93) 1.18 (0.98) 1.12 (0.86) 1.20 (0.97) 1.45 (1.07)RPLS 2 1.36 (0.98) 1.24 (0.91) 1.15 (0.93) 1.08 (0.79) 1.27 (0.96)RPLS 3 1.43 (1.01) 1.32 (0.91) 1.10 (0.77) 1.06 (0.79) 1.14 (0.82)RPLS 4 1.40 (0.94) 1.34 (0.93) 1.09 (0.79) 1.12 (0.85) 1.39 (0.94)RPLS 5 1.40 (0.95) 1.33 (0.96) 1.08 (0.80) 1.12 (0.77) 1.21 (0.74)RPLS 6 1.43 (0.97) 1.27 (0.89) 1.12 (0.79) 1.13 (0.79) 1.25 (0.77)Eilers 1.44 (1.00) 1.52 (1.00) 1.48 (0.94) 1.42 (0.90) 1.45 (0.95)Table 1: Mean number of mis
lassi�ed samples (standard devia-tion between parentheses).p=50 p=100 p=300 p=500 p=1000�E 12.16 26.06 78.60 131.20 269.60�R 0.38 0.94 3.76 7.30 18.42Table 2: Mean value of �opt.6 Con
lusionWe derived an extension of PLS to GLM for logit models. Thenumeri
al results show the pertinen
e of the 
ombination of a reg-ularization step and a dimension redu
tion step. The te
hnique
an be easily adapted to other GLM models su
h as the multi-variate ones, and this will be done in a forth
oming paper. Fu-ture resear
h will 
on
ern the 
hoi
e of the regularization method(based for example on the Firth's penalty, as proposed in [1℄, pri-vate 
ommuni
ation), and the variable sele
tion and the modelsele
tion themes in order to determine optimal values for (�; �).
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