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Abstract An extension of PLS for regression and dimension
reduction in logit models is derived, an extension that still works
when the number of covariates is far larger than the number of
observations. It is applied to classification of Microarray.

1 Introduction

Partial Least Squares (PLS), first introduced in chemometrics [12,
9] is both used as a dimension reduction tool and as a linear re-
gression tool. The goal of the present contribution is to extend its
application to regression in univariate Generalized Linear Models
(GLM) with binary response, an extension that covers the case
where the length p of the covariate vector is larger or equal to the
number of observations n.

PLS constructs predictive models by exhibiting latent covariates
(or scores) that account for most of the variation in the response.
Unlike Principal Component Regression (PCR), the definition of
the scores is based both on the covariates and on the response
variable Y, and in that sense, PLS looks more appropriate than
PCR to overcome the problems involved by the large number of
covariates and their high collinearity. Nguyen and Rocke [10] com-
bines PLS and Iteratively Reweighted Least Squares (IRLS, [6])
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i.e. PLS and a regression analysis based on the Maximum Likeli-
hood (ML) method; they determine the first k PLS components
from Y and the initial design matrix; then a regression onto these
scores is performed in the ML sense. Besides the question on the
pertinence of applying the PLS machinery with a categorical re-
sponse vector, this algorithm has convergence weaknesses since
the ML estimate does not necessarily exist. A second try for ex-
tension of PLS to GLM can be found in Marx [8] in a two step
procedure. The first step is to exhibit x PLS scores at conver-
gence of a PLS-within-IRLS algorithm; the second one runs a ML
regression onto these scores. In many applications, the Marx al-
gorithm is nothing else than the Nguyen and Rocke algorithm and
thus inherits its drawbacks, as discussed in [4].

This is the reason why we introduce an extension, called Ridge-
PLS algorithm, that can be summarized as a weighted PLS al-
gorithm in which the categorical response variable Y is replaced
with a continuous-valued pseudo-variable that captures the infor-
mation contained in Y. Roughly speaking, Ridge fights the mul-
ticollinearity while PLS is the dimension reduction part. In this
contribution, the method is derived for logit models. We show
how Ridge-PLS can be used for supervised classification of Mi-
croarray data, characterized by a number of covariates far larger
than the number of observations.

2 Heuristic of the Ridge-PLS algorithm

We postpone the algorithmic description to Section 4, and start
with a naive description. Ridge-PLS is based on the following
observation : Least Squares inference and ML inference coincide
for regression in a normal linear model which is both a linear
model and a GLM. For canonical GLM, the ML estimate ML
is the weighted least squares estimate when regressing a pseudo-
response variable 1) onto the columns of the design matrix; ¢ is
obtained at convergence of an IRLS procedure, and for normal
models, is equal to Y [6]. As a consequence, our extension of
PLS consists in applying PLS by replacing Y with the pseudo-
variable at convergence of IRLS. Nevertheless, this rough idea



has to be made robust in order (i) to be valid when ML does
not exist and (ii) to take into account the heteroscedasticity of
the pseudo-variable. This is done by respectively (i) substituting
OML for a penalized ML estimator, namely the Ridge one, and (ii)
introducing a Weighted PLS (WPLS) algorithm. Before deriv-
ing Ridge-PLS for logit models, we introduce notations and basic
algorithmic ingredients.

3 Some basic ingredients

For a column-vector u, |[u|| is the Euclidean norm, wy,, collects
the first p components of u. For a matrix A, A’ is the transpose,
A;; denotes the entry (¢,7), and A.;, the matrix that contains
the first r columns of A. 1, is the vector (1,---,1)" of length n
and J) is a diagonal (r 4 1) x (r 4+ 1)-matrix with Jl(;) =0 and
J,gz) = 1 otherwise.

Logit model and Logistic discrimination rule The observa-
tions consist of n independent {0,1} x RP-valued pairs (y;, X.)
where given X., the conditional mean of y; is m;, which is related
to the linear predictor n; by =, = (1 —I—exp(—m))_l, or equiv-
alently n, = In(m;/(1 —m;)). n; depends on the design vector
Z;. = [1 X!] through the relation n; = 7!, where § € RP*! is
the unknown parameter. The n response variables (resp. con-
ditional means) are collected in the vector Y (resp. II). The
n X (p+ 1) design matrix is denoted by 7 = [1I,, X].

For a given estimate é, and a new design vector z, the binary vari-
able y is predicted by applying the logistic discrimination rule, i.e.
y=1ifn:= 20 > 0, and y = 0 otherwise.

The Ridge-ML estimator When n > rank(Z), 0M" is unique
when it exists. Unfortunately, the likelihood may be maximal

on the boundary of RP! so that |[fM:]| = +oo [11]. When
n = rank(Z) - which occurs if and only if n < (p+1) and Z has full
rank - the solution to the normal equation yields ||0™¥|| = +o0.

Hence, inference of the parameter necessitates the introduction
of a regularization method; we opt for a Ridge-penalized ML ap-
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proach, which shrinks the coefficients towards zero (except the
intercept one 0;). The Ridge estimator §% is defined as the max-
imum of the penalized log-likelihood [

[*(0) = Z {yrZ;.0 — In(1 + exp(Z;.0))} — %0’220, (1)

k=1

where A > 0 is a shrinkage parameter, and ¥ is a diagonal matrix
taking into account the non-standardization of the covariate ma-
trix : ¥}, = 0and X3, = 37%  (Z;p — 1, Z 3 /n)? for k € [2,p+1].
R exists, is unique and is computed by the (iterative) Newton-
Raphson algorithm, each iteration of which is a weighted Ridge-
regression of a pseudo-variable onto the columns of Z.

WPLS algorithm For a given R"valued observation ¢, a co-
variate matrix X, and a positive-definite symmetric weight ma-
trix W, the PLS scope is to convey the relation between ¢ and
X through the definition of & scores (¢;)i<j<x. These are linear
combinations of the columns of the design matrix Z such that for
all j, I,Wt; = 0 and for all j # k, /Wi, = 0. This yields the
decomposition ¥ = qoll,, + 1t + -+ + qutx + for1 Where fiiq is
W-orthogonal to the vectors (1,1, -+ , ). The pairs (¢;,1;) are
recursively computed as follows

2. FOI’j — 07 R, set q; = t;Wf]/(t;WtJ)v fj+1 = fj - q]t]7
Ly = B — 5 WE (W)t = B B, W g

We refer to the literature for an interpretation of the above algo-
rithm and a discussion on the maximal number of W-orthogonal
SCOTes Kmay [7]. WPLS, read as a regression method, yields a PLS
estimate FLS» through the relation ;/A)H = — foy1 = ZOFLS =,

4 The Ridge-PLS algorithm, n <p+1

Given (Y, X), for the parameters (A, k),



A. Determine 1 : compute §F, the limiting value of (")), where

00D = (ZW O 7 42527 ZW 000, (2)
¢(0(t)) = 700 4 [W(t)} ! (Y — H(t)> ; (3)

Z = [, X], I is the mean vector II computed at the
current value of the parameter and W is a diagonal matrix

with W,g,? = Hg)(l—ﬂg)). Set ¢ := ¢(éR) and W := W),

B. Run the WPLS with x components for the variables (¢, X, W)

and compute PLS# as described in Section 3.

Step A builds a continuous response variable ¥ whose expected
value has linear relationship with the covariates, for the input
of PLS; conditionally to éR, the dispersion matrix of ¢ is W1,
which explains the call, in Step B, to a weighted PLS procedure
with weight W.

Implementation The procedure, presently derived in RP™! can
be equivalently derived in R"*! where r + 1 := rank(Z) < n.
To that goal, compute UDV’, the singular values decomposition
(svd) of (X — I, I, X/n)X~", the standardized covariate matrix,
and set = := (UD). . so that Z6 = [II, =]y for some v € R"t; it
is readily seen that the above procedure, run by replacing (X, ¥?)
by (Z,J0)), yields an estimate 3745 uniquely related to gPLS
by the formulas

él = FA)/I - H;XéQ:p—I—l/n é?:p—l—l > (ZQ:p—I—l,Z:p—I—l)_l V,l:r’??:r—l—l-

Hence, up to a single svd, the procedure is independent of p which
is of computational importance.

In the application, A is chosen as the value Ay in a given range
R minimizing the BIC criterion —2 + log(n)Dim where [ is the
log-likelihood for the value OF of the parameter, and Dim is the
trace of Z (Z'WZ 4+ AX2)"" Z'W.
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5 Application to binary classification

We apply the above procedure to supervised classification of Mi-
croarray data; the data set Leukemia', contains 72 samples di-
vided into 47 cases of acute lymphoblastic leukemia, labeled 0, and
25 cases of acute myeloid leukemia, labeled 1. Each sample con-
sists in a {0, 1}-valued label and 7129 gene expression levels (see
Golub et al. [5] for a description of the data set). We perform an
out of sample (OS) analysis on 100 random partitions of the data
set into a learning set and a test set. The learning set contains
27 samples type 0 and 11 samples type 1. We report in Table 1,
row "RPLS r” the mean number (and the standard deviation) of
misclassified samples in the test set, when the classification rule
is determined on the learning set [x = 1,---,6]. Regression is
not performed with the 7129 initial covariates; some of them are
irrelevant and are deleted following the pre-processing method de-
scribed in Dudoit et al. [2]. We stress that this filtering and the
number of remaining genes depend on the learning set. We test
the procedures by considering different values of p (> n = 38)
and select the p most pertinent covariates as advocated in Du-
doit et al. [2]. We run the OS analysis for the classification rule
induced by the Ridge estimator gr (row 7 Ridge”, Table 1); the
results outline the interest of a dimension reduction step after the
regularization one. Eilers et al. [3] propose a method quite sim-
ilar to the Ridge analysis. They compute 0 as maximizing the
criterion (1) in which ¥ is replaced by J® (although Z is not
standardized); then, their classification rule is based on a Bayes
risk : y = 1 iff 7 is greater than the empirical mean of the obser-
vations in the learning set. We run their algorithm and report the
results in row ” Filers”, Table 1. Ridge-PLS yields better results;
nevertheless, this assertion has to be nuanced since for less "reg-
ular” data sets, Ridge-PLS and the Filers et al. 's method may
have an equivalent behavior.

For each partition, A, is determined as described above, over 51
log,,-linearly spaced points in R = [1072,10%]. The mean value
of A,y over the 100 partitions is given in Table 2 for the Filers

Lavailable at http://www.broad.mit.edu/cgi-bin/cancer/publications



et al. ’s algorithm (Ag) and the Ridge and Ridge-PLS algorithms
(Ar). Whatever p, Ag > Ag, which is due to the standardization
of the design Z.

| method [| p=50 | p=100 | p=300 [p=500 [p=1000 |

Ridge || 1.52 gy | 1.35 (os) | 1.62 (10s) | 1.89 (1.21) | 2.83 (17
RPLS 1 || 1.24 (0.9 | 1.18 (0.98) | 1.12 (0.86) | 1.20 (0.07) | 1.45 (107
RPLS 2 || 1.36 (0.08) | 1.24 (0.01) | 1.15 (093) | 1.08 (0.r9) | 1.27 (0.96
RPLS 3 || 1.43 .oy | 1.32 (091) | 1.10 07y | 1.06 (0.r9) | 1.14 (052

) (1.09) (1.05) (1.21) (1.37)

(0.93) (0.98) (0.86) (0.97) (1.07)

(0.98) (0.91) (0.93) (0.79) (0.96)

(1.01) (0.91) (0.77) (0.79) (0.82)

RPLS 4 || 1.40 009 | 1.34 (093 | 1.09 079y | 1.12 (0.85) | 1.39 (0.09)
(0.95) (0.96) (0.80) (0.77) (0.74)

(0.97) (0.89) (0.79) (0.79) (0.77)

(1.00) (1.00) (0.94) (0.90) (0.95)

RPLS 5 || 1.40 (005 | 1.33 (096) | 1.08 (0.80) | 1.12 (0.77) | 1.21 (074
RPLS 6 || 1.43 0or | 1.27 (0s9) | 1.12 (0.79) | 1.13 (079) | 1.25 (077
Eilers 144 1.00 152 1.00 148 0.94 142 0.90 145 0.95

Table 1: Mean number of misclassified samples (standard devia-
tion between parentheses).

| || p=50 | p=100 | p=300 | p=500 | p=1000
Mp [ 12.16 | 26.06 | 78.60 | 131.20 | 269.60
Mr | 038 | 094 | 376 | 7.30 | 1842

Table 2: Mean value of A,;.

6 Conclusion

We derived an extension of PLS to GLM for logit models. The
numerical results show the pertinence of the combination of a reg-
ularization step and a dimension reduction step. The technique
can be easily adapted to other GLM models such as the multi-
variate ones, and this will be done in a forthcoming paper. Fu-
ture research will concern the choice of the regularization method
(based for example on the Firth’s penalty, as proposed in [1], pri-
vate communication), and the variable selection and the model
selection themes in order to determine optimal values for (A, x).
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