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This is very *lose* the oÆial version, published in the Proeedings of COMPSTAT'041RIDGE-PARTIAL LEAST SQUARESFOR GENERALIZED LINEAR MOD-ELS WITH BINARY RESPONSEGersende Fort and Sophie Lambert-LaroixAddress: CNRS/LMC, 51, rue des Math�ematiques, BP 53, 38041Grenoble Cedex 9,FraneE-mail : Gersende.Fort,Sophie.Lambert�imag.frKey words: Partial Least Squares, Ridge-Penalized Logisti Re-gression, Classi�ation of MiroarraysCOMPSTAT 2004 setion: Partial Least Squares.Aknowledgement : We are really grateful to A. Antoniadis foronstrutive and fruitful disussions. This work is supported bythe projet ASBGEN and the IAP researh network P5/24.Abstrat An extension of PLS for regression and dimensionredution in logit models is derived, an extension that still workswhen the number of ovariates is far larger than the number ofobservations. It is applied to lassi�ation of Miroarray.1 IntrodutionPartial Least Squares (PLS), �rst introdued in hemometris [12,9℄ is both used as a dimension redution tool and as a linear re-gression tool. The goal of the present ontribution is to extend itsappliation to regression in univariate Generalized Linear Models(GLM) with binary response, an extension that overs the asewhere the length p of the ovariate vetor is larger or equal to thenumber of observations n.PLS onstruts preditive models by exhibiting latent ovariates(or sores) that aount for most of the variation in the response.Unlike Prinipal Component Regression (PCR), the de�nition ofthe sores is based both on the ovariates and on the responsevariable Y, and in that sense, PLS looks more appropriate thanPCR to overome the problems involved by the large number ofovariates and their high ollinearity. Nguyen and Roke [10℄ om-bines PLS and Iteratively Reweighted Least Squares (IRLS, [6℄)
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2 2 HEURISTIC OF THE RIDGE-PLS ALGORITHMi.e. PLS and a regression analysis based on the Maximum Likeli-hood (ML) method; they determine the �rst � PLS omponentsfromY and the initial design matrix; then a regression onto thesesores is performed in the ML sense. Besides the question on thepertinene of applying the PLS mahinery with a ategorial re-sponse vetor, this algorithm has onvergene weaknesses sinethe ML estimate does not neessarily exist. A seond try for ex-tension of PLS to GLM an be found in Marx [8℄ in a two stepproedure. The �rst step is to exhibit � PLS sores at onver-gene of a PLS-within-IRLS algorithm; the seond one runs a MLregression onto these sores. In many appliations, the Marx al-gorithm is nothing else than the Nguyen and Roke algorithm andthus inherits its drawbaks, as disussed in [4℄.This is the reason why we introdue an extension, alled Ridge-PLS algorithm, that an be summarized as a weighted PLS al-gorithm in whih the ategorial response variable Y is replaedwith a ontinuous-valued pseudo-variable that aptures the infor-mation ontained in Y. Roughly speaking, Ridge �ghts the mul-tiollinearity while PLS is the dimension redution part. In thisontribution, the method is derived for logit models. We showhow Ridge-PLS an be used for supervised lassi�ation of Mi-roarray data, haraterized by a number of ovariates far largerthan the number of observations.2 Heuristi of the Ridge-PLS algorithmWe postpone the algorithmi desription to Setion 4, and startwith a naive desription. Ridge-PLS is based on the followingobservation : Least Squares inferene and ML inferene oinidefor regression in a normal linear model whih is both a linearmodel and a GLM. For anonial GLM, the ML estimate �̂MLis the weighted least squares estimate when regressing a pseudo-response variable  onto the olumns of the design matrix;  isobtained at onvergene of an IRLS proedure, and for normalmodels, is equal to Y [6℄. As a onsequene, our extension ofPLS onsists in applying PLS by replaing Y with the pseudo-variable at onvergene of IRLS. Nevertheless, this rough idea
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3has to be made robust in order (i) to be valid when �̂ML doesnot exist and (ii) to take into aount the heterosedastiity ofthe pseudo-variable. This is done by respetively (i) substituting�̂ML for a penalized ML estimator, namely the Ridge one, and (ii)introduing a Weighted PLS (WPLS) algorithm. Before deriv-ing Ridge-PLS for logit models, we introdue notations and basialgorithmi ingredients.3 Some basi ingredientsFor a olumn-vetor u, kuk is the Eulidean norm, u1:p olletsthe �rst p omponents of u. For a matrix A, A0 is the transpose,Aij denotes the entry (i; j), and A�;1:r the matrix that ontainsthe �rst r olumns of A. 1In is the vetor (1; � � � ; 1)0 of length nand J (r) is a diagonal (r + 1) � (r + 1)-matrix with J (r)11 = 0 andJ (r)kk = 1 otherwise.Logit model and Logisti disrimination rule The observa-tions onsist of n independent f0; 1g � Rp-valued pairs (yi;Xi�)where given Xi�, the onditional mean of yi is �i, whih is relatedto the linear preditor �i by �i = (1 + exp(��i))�1, or equiv-alently �i = ln (�i=(1� �i)). �i depends on the design vetorZi� := [1 X 0i�℄0 through the relation �i = Z 0i��, where � 2 Rp+1 isthe unknown parameter. The n response variables (resp. on-ditional means) are olleted in the vetor Y (resp. �). Then� (p + 1) design matrix is denoted by Z = [1In X℄.For a given estimate �̂, and a new design vetor z, the binary vari-able ŷ is predited by applying the logisti disrimination rule, i.e.ŷ = 1 if �̂ := z0�̂ � 0, and ŷ = 0 otherwise.The Ridge-ML estimator When n > rank(Z), �̂ML is uniquewhen it exists. Unfortunately, the likelihood may be maximalon the boundary of Rp+1 so that k�̂MLk = +1 [11℄. Whenn = rank(Z) - whih ours if and only if n � (p+1) and Z has fullrank - the solution to the normal equation yields k�̂MLk = +1.Hene, inferene of the parameter neessitates the introdutionof a regularization method; we opt for a Ridge-penalized ML ap-
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4 4 THE RIDGE-PLS ALGORITHM, N � P + 1proah, whih shrinks the oeÆients towards zero (exept theinterept one �1). The Ridge estimator �̂R is de�ned as the max-imum of the penalized log-likelihood l�l�(�) = nXk=1 fykZ 0k�� � ln(1 + exp(Z 0k��))g � �2 �0�2�; (1)where � > 0 is a shrinkage parameter, and � is a diagonal matrixtaking into aount the non-standardization of the ovariate ma-trix : �211 = 0 and �2kk =Pnj=1(Zj;k�1I0nZ�;k=n)2 for k 2 [2; p+1℄.�̂R exists, is unique and is omputed by the (iterative) Newton-Raphson algorithm, eah iteration of whih is a weighted Ridge-regression of a pseudo-variable onto the olumns of Z.WPLS algorithm For a given Rn-valued observation  , a o-variate matrix X, and a positive-de�nite symmetri weight ma-trix W , the PLS sope is to onvey the relation between  andX through the de�nition of � sores (tj)1�j��. These are linearombinations of the olumns of the design matrix Z suh that forall j, 1I0nWtj = 0 and for all j 6= k, t0jWtk = 0. This yields thedeomposition  = q01In + q1t1 + � � � + q�t� + f�+1 where f�+1 isW -orthogonal to the vetors (1In; t1; � � � ; t�). The pairs (qj; tj) arereursively omputed as follows1. t0 = 1In; E0 = X; f0 =  .2. For j = 0; � � � ; �, set qj = t0jWfj=(t0jWtj), fj+1 = fj � qjtj,Ej+1 = Ej � tjt0jWEj=(t0jWtj), tj+1 = Ej+1E0j+1Wfj+1.We refer to the literature for an interpretation of the above algo-rithm and a disussion on the maximal number of W -orthogonalsores �max [7℄. WPLS, read as a regression method, yields a PLSestimate �̂PLS;� through the relation  ̂� =  � f�+1 = Z�̂PLS;�.4 The Ridge-PLS algorithm, n � p + 1Given (Y;X), for the parameters (�; �),
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5A. Determine  : ompute �̂R, the limiting value of (�(t))t where�(t+1) := �Z 0W (t)Z + ��2��1 Z 0W (t) (�(t)); (2) (�(t)) := Z�(t) + �W (t)��1 �Y ��(t)� ; (3)Z := [1In X℄, �(t) is the mean vetor � omputed at theurrent value of the parameter andW (t) is a diagonal matrixwithW (t)kk := �(t)k (1��(t)k ). Set  :=  (�̂R) andW := W (1).B. Run theWPLS with � omponents for the variables ( ;X;W )and ompute �̂PLS;� as desribed in Setion 3.Step A builds a ontinuous response variable  whose expetedvalue has linear relationship with the ovariates, for the inputof PLS; onditionally to �̂R, the dispersion matrix of  is W�1,whih explains the all, in Step B, to a weighted PLS proedurewith weight W .Implementation The proedure, presently derived in Rp+1 anbe equivalently derived in Rr+1 where r + 1 := rank(Z) � n.To that goal, ompute UDV 0, the singular values deomposition(svd) of (X � 1In1I0nX=n)��1, the standardized ovariate matrix,and set � := (UD)�;1:r so that Z� = [1In �℄ for some  2 Rr+1; itis readily seen that the above proedure, run by replaing (X;�2)by (�; J (r)), yields an estimate ̂PLS;� uniquely related to �̂PLS;�by the formulas�̂1 = ̂1 � 1I0nX�̂2:p+1=n �̂2:p+1 = (�2:p+1;2:p+1)�1 V�;1:r̂2:r+1:Hene, up to a single svd, the proedure is independent of p whihis of omputational importane.In the appliation, � is hosen as the value �opt in a given rangeR minimizing the BIC riterion �2l̂ + log(n)Dim where l̂ is thelog-likelihood for the value �̂R of the parameter, and Dim is thetrae of Z (Z 0WZ + ��2)�1 Z 0W .
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6 5 APPLICATION TO BINARY CLASSIFICATION5 Appliation to binary lassi�ationWe apply the above proedure to supervised lassi�ation of Mi-roarray data; the data set Leukemia1, ontains 72 samples di-vided into 47 ases of aute lymphoblasti leukemia, labeled 0, and25 ases of aute myeloid leukemia, labeled 1. Eah sample on-sists in a f0; 1g-valued label and 7129 gene expression levels (seeGolub et al. [5℄ for a desription of the data set). We perform anout of sample (OS) analysis on 100 random partitions of the dataset into a learning set and a test set. The learning set ontains27 samples type 0 and 11 samples type 1. We report in Table 1,row "RPLS �" the mean number (and the standard deviation) ofmislassi�ed samples in the test set, when the lassi�ation ruleis determined on the learning set [� = 1; � � � ; 6℄. Regression isnot performed with the 7129 initial ovariates; some of them areirrelevant and are deleted following the pre-proessing method de-sribed in Dudoit et al. [2℄. We stress that this �ltering and thenumber of remaining genes depend on the learning set. We testthe proedures by onsidering di�erent values of p (> n = 38)and selet the p most pertinent ovariates as advoated in Du-doit et al. [2℄. We run the OS analysis for the lassi�ation ruleindued by the Ridge estimator �̂R (row "Ridge", Table 1); theresults outline the interest of a dimension redution step after theregularization one. Eilers et al. [3℄ propose a method quite sim-ilar to the Ridge analysis. They ompute �̂ as maximizing theriterion (1) in whih � is replaed by J (p) (although Z is notstandardized); then, their lassi�ation rule is based on a Bayesrisk : ŷ = 1 i� �̂ is greater than the empirial mean of the obser-vations in the learning set. We run their algorithm and report theresults in row "Eilers", Table 1. Ridge-PLS yields better results;nevertheless, this assertion has to be nuaned sine for less "reg-ular" data sets, Ridge-PLS and the Eilers et al. 's method mayhave an equivalent behavior.For eah partition, �opt is determined as desribed above, over 51log10-linearly spaed points in R = [10�2; 103℄. The mean valueof �opt over the 100 partitions is given in Table 2 for the Eilers1available at http://www.broad.mit.edu/gi-bin/aner/publiations
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7et al. 's algorithm (�E) and the Ridge and Ridge-PLS algorithms(�R). Whatever p, �E > �R, whih is due to the standardizationof the design Z.method p=50 p=100 p=300 p=500 p=1000Ridge 1.52 (1.11) 1.35 (1.09) 1.62 (1.05) 1.89 (1.21) 2.83 (1.37)RPLS 1 1.24 (0.93) 1.18 (0.98) 1.12 (0.86) 1.20 (0.97) 1.45 (1.07)RPLS 2 1.36 (0.98) 1.24 (0.91) 1.15 (0.93) 1.08 (0.79) 1.27 (0.96)RPLS 3 1.43 (1.01) 1.32 (0.91) 1.10 (0.77) 1.06 (0.79) 1.14 (0.82)RPLS 4 1.40 (0.94) 1.34 (0.93) 1.09 (0.79) 1.12 (0.85) 1.39 (0.94)RPLS 5 1.40 (0.95) 1.33 (0.96) 1.08 (0.80) 1.12 (0.77) 1.21 (0.74)RPLS 6 1.43 (0.97) 1.27 (0.89) 1.12 (0.79) 1.13 (0.79) 1.25 (0.77)Eilers 1.44 (1.00) 1.52 (1.00) 1.48 (0.94) 1.42 (0.90) 1.45 (0.95)Table 1: Mean number of mislassi�ed samples (standard devia-tion between parentheses).p=50 p=100 p=300 p=500 p=1000�E 12.16 26.06 78.60 131.20 269.60�R 0.38 0.94 3.76 7.30 18.42Table 2: Mean value of �opt.6 ConlusionWe derived an extension of PLS to GLM for logit models. Thenumerial results show the pertinene of the ombination of a reg-ularization step and a dimension redution step. The tehniquean be easily adapted to other GLM models suh as the multi-variate ones, and this will be done in a forthoming paper. Fu-ture researh will onern the hoie of the regularization method(based for example on the Firth's penalty, as proposed in [1℄, pri-vate ommuniation), and the variable seletion and the modelseletion themes in order to determine optimal values for (�; �).
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