
Classi�ation using Partial Least Squares with Penalized LogistiRegressionGersende Fort and Sophie Lambert-LaroixCNRS/LMC-IMAG, BP 53, 38041 Grenoble edex 9, FraneOtober 27, 2004AbstratMotivation: One important aspet of data-mining of miroarray data is to disover the moleular variation amonganers. In miroarray studies, the number n of samples is relatively small ompared to the number p of genes persample (usually in thousands). It is known that standard statistial methods in lassi�ation are eÆient (i.e. in thepresent ase, yield suessful lassi�ers) partiularly when n is (far) larger than p. This naturally alls for the use ofa dimension redution proedure together with the lassi�ation one.Results: In this paper, the question of lassi�ation in suh a high dimensional setting is addressed. We viewthe lassi�ation problem as a regression one with few observations and many preditor variables. We propose anew method ombining Partial Least Squares (PLS) and Ridge penalized logisti regression. We review the existingmethods based on PLS and / or penalized likelihood tehniques, outline their interest in some ases and theoretiallyexplain their sometimes poor behavior. Our proedure is ompared with these other lassi�ers. The preditiveperformane of the resulting lassi�ation rule is illustrated on three data sets: Leukemia, Colon and Prostate.Availability: Software that implements the proedures and data soure on whih this paper fouses are freelyavailable at http://www-lm.imag.fr/SMS/membres/Gersende Fort,Sophie Lambert.htmlContat: Gersende.Fort,Sophie.Lambert�imag.frIntrodutionMiroarray tehnology generates a vast amount of data by measuring, through the hybridization proess, the levelsof virtually all the genes expressed in a biologial sample. One an expet that knowledge gleaned from miroarraydata will ontribute signi�antly to advanes in fundamental questions in biology as well as in linial mediine.One important goal of analyzing miroarray data is to lassify the samples. To ite a few, Golub et al. [13℄ haveonsidered lassi�ation of aute leukemia, Alon et al. [2℄ have addressed the luster analysis of tumor and normal1



This is very lose the oÆial version, to be published in Bioinformatis, 2005 2olon tissues. The approahes developed in these papers onsist in disrimination methods and mahine learningmethods (see [6℄ for a omparative study).In miroarray studies, the number of samples, n, is relatively small ompared to the number of genes, p usually inthousands. Unless a preliminary variable seletion step is performed, standard statistial methods in lassi�ationperform poorly beause there are far more variables than observations. One problem is multiollinearity : estimatingequations beome singular and have no unique and stable solution. For instane, the pooled within-lass sampleovariane matrix in Fisher's linear disriminant funtion is singular if n < p + 2. Even if all genes an be used asin support vetor mahines, it seems to be not sensible to use all the genes. Indeed, this use allows presene of thenoise assoiated with genes of little or no disrimination power. That inhibits and degrades the performanes of thelassi�ation rules in its appliation to unlassi�ed tumor. In this situation, dimension redution is needed to reduethe high p-dimensional gene spae. In most previously mentioned works, the authors have used univariate methodsfor reduing the number of genes. Alternative approahes to handle the dimension redution problem an also beused (see for instane [11, 22, 26, 3℄).Similar data strutures have been enountered in the �eld of hemometris. The method of Partial Least Squares(PLS, [27, 21, 15℄) has been found to be a useful dimension redution tehnique as well as Prinipal ComponentRegression (PCR, [20℄) (see [9℄ for a statistial view of PLS and PCR). In the ontext of miroarrays, the purposeof PCR is to produe orthogonal tumor desriptors that redue the dimension to only few gene omponents (super-genes)[26℄. But the dimension redution is ahieved without regard to the response variable and may be ineÆient.hosen so that the sample ovariane between the response and a linear ombination of the p preditors (genes) ismaximum.Nguyen and Roke [22℄ proposed using PLS for dimension redution as a preliminary step to lassi�ation, basedeither on linear logisti disrimination, or linear or quadrati disriminant analysis. However, this seems to beintuitively unappealing beause PLS is really designed to handle ontinuous responses and models that do not su�erfrom heterosedastiity as it is the ase for Bernoulli or multinomial data. Furthermore, in pratie we have observedproblems in the onvergene of the Iteratively Reweighted Least Squares (IRLS) algorithm, whih is the usualproedure for solving the maximum likelihood (ML) equation in the �eld of the generalized linear models (GLM).Indeed, for logisti regression, it is well known that onvergene poses a long standing problem. In�nite parameterestimates an our depending on the on�guration of the sample points in the observation spae ([1℄).Marx [19℄ proposed an extension of PLS to ategorial response variable and illustrates the developments from aspetrosopy example. His approah embeds the usual PLS steps within the IRLS. Unfortunately, we have observedthat this algorithm does not onverge in many ases of interest (suh as in the appliations onsidered in this paper).More reently, Ding and Gentleman [5℄ proposed an approah based on this proedure. They phrased the problemin a GLM setting and applied Firth's proedure to avoid (quasi)separation.To deal with the high dimension problem, another approah onsists in penalizing the likelihood. Eilers et al.[7℄ propose to use the Ridge penalized logisti regression in order to both stabilize the statistial problem and



This is very lose the oÆial version, to be published in Bioinformatis, 2005 3remove numerial degeneray due to multiollinearity. They have shown that this method appears to work well withmiroarray data. Note that this method is not a dimension redution tehnique. Indeed all explanatory variablesare allowed into the regression model. From the log-likelihood a so-alled ridge penalty is subtrated. All thegenes ontribute, whih an inhibit and degrade the performanes of the lassi�ation rules. Note that we an �ndalternative approahes (see for example [16℄ and [12℄) for whih the lassi�ation problem is not viewed as a problemin a logisti regression.In this paper, we extend the PLS method to binary response variable. To do that, we want to substitute theategorial response variable in the input of PLS by a ontinuous-valued pseudo-response variable whose expetedvalue has a linear relationship with the ovariates. The limiting pseudo-response variable in the IRLS algorithmseems to be a good andidate. Unfortunately, in the present situation \small n, large p", IRLS no longer workssine the limiting pseudo-response variable is, in norm, in�nite. The idea developed here is to penalize with a Ridgepenalty the likelihood riterion in order to onstrain the pseudo-response variable to be �nite. That is, our proedureombines a Ridge penalty step and a PLS step and the dimension redution step is inorporated in the lassi�ationstep. Here we present lassi�ation rule for binary response variable indiating normal or olon tumor, for instane.Nevertheless, our approah remains valid for multi-ategorial response variables. But the binary ase is the simplestase whih allows us to point out whether suh a proedure works well or not and why.This paper is organized as follows. The Methods setion is the methodologial part of this paper. It ontains adesription of the logisti regression and linear disrimination. We then reall the Ridge regression method andderive a weighted PLS algorithm in order to address the dimension redution in heterosedasti models. We thenintrodue an extension of PLS to GLM based on the Ridge penalty, and analyze the Nguyen and Roke, Marx, Dingand Gentleman and Eilers et al. 's algorithms. Appliations to disease lassi�ation through miroarray are presentedin the Results setion.MethodsSome basi ingredientsAfter introduing some notations, we reall the priniple of linear logisti disrimination, some results on the existeneof the maximumlikelihood estimator and the lassial algorithmused to ompute it. Next, we present a regularizationmethod, a penalized maximum likelihood method, and a dimension redution tehnique, PLS.NotationsExpression levels of the p genes for the n miroarray samples are olleted in a n � p data matrix X = (xij),1 � i � n; 1 � j � p. The entry xij is the expression level of the variable \gene" j in the miroarray sample i, andthe i-th row Xi;� is the vetor of a gene expression pro�le for sample i. More generally, for a matrix A, Ai;j denotesthe entry (i; j), A�;j (resp. Ai;�) denotes the olumn vetor olleting the olumn #j (resp. the row #i). Ai1:i2;j1:j2



This is very lose the oÆial version, to be published in Bioinformatis, 2005 4is the (i2 � i1 + 1) � (j2 � j1 + 1) matrix formed by piking out the rows i1 to i2 and olumns j1 to j2 of A; A�;j1:j2is formed by piking out the olumns j1 to j2 of A. The labels of the n miroarray samples are olleted in af0; : : : ; (g�1)gn-valued vetor y. In supervised mahine learning, eah sample is thought to originate from a spei�lass k 2 f0; : : : ; g � 1g where the number of possible lasses g is known and �xed. A lassi�er an be regarded as afuntion G : Rp! f0; : : : ; g � 1g that predits the unknown lass label of a new tissue sample x 2 Rp by G(x). Weassume that the data (y; X) ollet observations of n statistially independent and identially distributed randompairs (Y;X). We hoose a logit model for the data (see e.g. [8℄), and the Logisti Disrimination (LD) method forthe lassi�ation proedure (see e.g. [25℄). In the terminology of the regression analysis, (X�;j)1�j�p are the preditorvariables and (yi)1�i�n the response variables. We inlude an interept into the regression model, and denote byZ = [1In X℄ the design matrix of size n � (p+ 1), where 1In = (1; � � � ; 1)0 stands for the olumn vetor of length n (0denotes the transposition operator).Linear Logisti DisriminationIn logit models, the onditional lass probability - or equivalently, the onditional expetation of Y given X -P(Y = 1jX = x; ) is related to x and some parameter  2 Rp+1 through the relation P(Y = 1jX = x; ) = h([1 x0℄)where h(�) = 1=(1 + exp(��)). The quantity [1 x0℄ is alled the linear preditor.  is an unknown parameterthat has to be estimated from the data. In Logisti Disrimination (LD), it is usually estimated by ̂ML, the MLestimator. The log-likelihood of the observations for the value  of the parameter, simply denoted by l(), is givenby l() = nXi=1 nyi�i() � ln (1 + exp(�i())o ; (1)where for all 1 � i � n, �i() = (Z)i.For a vetor z = [1 x0℄, the predited lass ŷ of eah sample is 1 if �̂ > 1� �̂ and 0 otherwise, where �̂ = h(z0̂ML).Nevertheless, as disussed below, in some ases, inluding in pratie the ase n << p, existene and uniity of ̂MLfor logit models is not guaranteed.Maximum likelihood estimate and Iteratively Reweighted Least Squares (IRLS)We say that the ML estimate exists if there exists  2 Rp+1 of �nite norm whih is a maximizer of the onavelog-likelihood l. Hene, suh an estimate is a solution to the normal equation Z0(y � �()) = 0, where �() is theRn-valued mean vetor with oordinates �i() = h(�i()).If Z is full olumn-rank, the solution, when exists, is unique. Existene of a solution, when Z is full olumn-rank,depends on the on�guration of the n samples points in the observation spae Rp [1, 23℄. There are three exlusivesituations: separate, quasi-separate and overlap situations. In the �rst two ases, there exists ̂ suh that (Ẑ)i � 0for all i suh that yi = 1 and (Ẑ)i � 0 for all i suh that yi = 0; roughly speaking, this means that there existsan hyperplane that exatly separates the two lasses, exept maybe some points that an belong to the hyperplane.



This is very lose the oÆial version, to be published in Bioinformatis, 2005 5In suh a ase, l reahes its maximum as kk tends to +1 and the ML estimate does not exist. In the third ase,the estimate exists and is omputed as the limit of a onverging Newton-Raphson sequene; this algorithm is knownas the Iteratively Reweighted Least Squares (IRLS) algorithm [14℄. Let W () be the diagonal n � n matrix withdiagonal entries Wi;i() = �i()(1 � �i()): Eah iteration divides into two steps,z (t) = Z(t) + hW (t)i�1 �y � �(t)� ; (2)(t+1) = �Z0W (t)Z��1 Z 0W (t)z(t); (3)where W (t) and �(t) are shorthand notations for W ((t)) and �((t)). IRLS an thus be onsidered as iterativeweighted least square regression of a Rn-valued pseudo-variable z (t) onto the olumns of Z.When Z is not full olumn-rank, the parameter is not identi�able and the ML estimate is not unique when exists;applying the above iterations (2-3) by replaing the inverse matrix (3) with the Moore-Penrose pseudo-inverse, yieldsthe parameter estimate whih is of minimal norm among all the solutions. In pratie, in the present statistialframework n << p, n = rank(Z) and the minimal norm solution veri�es for all 1 � i � n, (Z)i = ln(yi)� ln(1�yi);it is thus of in�nite norm and the ML estimate an not exist. This alls for regularization methods.Ridge penalty and RIRLSThe ridge estimator [18℄ ̂R is de�ned as the (unique) maximizer of the penalized likelihood l�() = l()�0:5�0�2,where � > 0 is the shrinkage parameter, and �2 is a diagonal matrix with entries �21;1 = 0 and�2j;j = nXi=1(Zi;j � 1I0nZ�;j=n)2; j 2 f2; � � � ; p+ 1g: (4)The weighted penalty term takes into aount the non-saling of the ovariate matrix X, and does not apply to theloation parameter 1. ̂R always exists, is unique and is omputed as the limit of a Newton-Raphson sequene. Wedenote by RIRLS(y; X; �) (shorthand notation for Ridge-IRLS) this algorithm. It onsists in replaing in IRLS, theweighted regression (3) by a weighted Ridge regression (t+1) = (Z0W (t)Z +��2)�1Z 0W (t)z (t), where z (t) is built asin (2).� ontrols the amount of shrinkage in the data and an be hosen as the minimum, over a given range, of the BICriterion �2l(̂R) + log(n)trae[Z �Z 0W (̂R)Z + ��2��1 Z 0W (̂R)℄ [17℄.Weighted Partial Least Squares (WPLS)Partial Least Squares (PLS) is both a tool for linear regression and a tool for dimension redution [27, 21, 15℄. Lety 2 Rn be a response vetor, X be a n� p data matrix and W be a positive de�nite n � n matrix. PLS (i) de�nes� W -orthogonal sores (tk)1�k��, linear ombinations of the olumns of Z and suh that for all k; 1I0nWtk = 0, and(ii) performs a W -weighted least squares regression of y on (1In; t1; � � � ; t�). This yields the deompositiony = q01In + q1t1 + � � �+ q�t� + f�+1 = ẐPLS;� + f�+1



This is very lose the oÆial version, to be published in Bioinformatis, 2005 6where the residual term f�+1 isW -orthogonal to the vetors (1In; t1; � � � ; t�). Contrary to lassial dimension redutionmethods (suh as Prinipal Component Regression), the sores depend on the response vetor y; roughly speaking,given (tk)1�k�l, tl+1 is the linear ombination of the olumns of Z, i.e. is on the form tl+1 = Z, whih is the mostinformative on the residual response variable fl+1, when information is de�ned in terms of the weighted ovarianejCov(pWZ;pWfl+1)j (pW denotes the square root matrix of W ) [15℄. While the maximal number of PLS sores�max an be lower than rank(X), in pratie, it is often equal to rank(X). Helland [15℄ shows that the WPLSregression applied with � = �max is nothing more than the Weighted Least Squares regression. In the literature, PLSis usually derived with W = I, the identity matrix; we thus detail the algorithm in the weighted ase. Let ~� be thep� p positive-de�nite diagonal matrix with diagonal entries �j;j, j � 2, given by (4).1. Xs = X ~��1, t0 = 1In, E0 = Xs; f0 = y.2. For k = 0; � � � ; �,qk = t0kWfk=(t0kWtk); fk+1 = fk � qktk;Ek+1 = Ek � tkt0kWEk=(t0kWtk);tk+1 = Ek+1E0k+1Wfk+1:Hereafter, this proedure is denoted by WPLS (y; X;W; �). If Z is full olumn-rank, this algorithm determines anunique estimate ̂PLS;� satisfying y � fk+1 = ẐPLS;�; if Z is not full olumn-rank, the proedure above yields theminimal norm vetor among all the vetors verifying y � fk+1 = Z.Ridge Partial Least Squares (RPLS)A diret appliation of PLS to GLM seems to be intuitively unappealing beause PLS handles ontinuous responses.This is the reason why, in order to extend PLS to GLM, we want to replae the binary vetor y with a pseudo-response variable whose expeted value has a linear relationship with the ovariates. The pseudo-response variable z1at onvergene of RIRLS(y; X; �) veri�es this ondition and is thus our andidate : it is on the form z1 = ẐR + ",where, onditionally to ̂R being the true value of the parameter, " is a entered vetor of ovariane matrix (W1)�1:The main advantage of hoosing z1 instead of, for example, the pseudo-variable at onvergene of IRLS - whih hasthe linear struture too- is that this allows the ombination of a regularization step and of a dimension redutionstep. In addition, this extension is always well-de�ned : reall indeed that in some ases (inluding the ase n << p),the ML estimate does not exist so that the pseudo-variable 'at onvergene' of IRLS is of in�nite norm.As a onsequene, we propose a new proedure whih ombines Ridge penalty - the regularization step - and PLS -the dimension redution step - and so alled Ridge-PLS (RPLS). Let � be some positive real onstant and � be somepositive integer. RPLS divides in two steps:1. (z1;W1) � RIRLS(y; X; �);



This is very lose the oÆial version, to be published in Bioinformatis, 2005 72. ̂PLS;�  �WPLS(z1; X;W1; �):A detailed implementation is given in the Appendix. The �rst step builds a ontinuous response variable z1 for theinput of PLS, the \dispersion matrix" of whih is [W1℄�1. This explains the all, in the seond step, to a weightedPLS proedure with weight W1. The use of Xs in WPLS and of � in the penalized ridge riterion, makes ourproedure invariant to the saling of the data matrix.RPLS depends on two parameters, � and �. � is determined at the end of Step 1, as minimizing the BIC riterion(see the Ridge penalty setion), and thus independently of �. In the linear regression setting, the optimal hoie of �when dimension redution is ahieved by PLS, is to our best knowledge, an open problem: the non linear dependeneof ̂PLS;� upon the response vetor, makes an expliit ontrol of the error term f�+1 impossible. Finally, observethat RPLS provides an estimate ̂RPLS (whih is unique, given y, X, � and �).We are now able to answer to the lassi�ation problem in a high dimensional setting : our lassi�ation proedureonsists in applying LD with the estimate ̂RPLS.Comparison with other approahesWe briey review some regression proedures that use PLS as the dimension redution tool to manage the highdimensional setting. We outline their interest and in some ases, explain their poor behavior.Nguyen and Roke's approahNguyen and Roke [22℄ substitute the data matrix X by a n � � matrix ~X , the olumns of whih are the �rst �PLS-sores given by WPLS (y; X; I). Then they estimate the parameter in the ML sense by running IRLS (y; ~X).This yields ̂NR. As mentioned above, applying PLS with a binary input y is unappealing; in addition, the PLS-regression step does not take into aount the heterosedastiity of the response vetor y; �nally, in many appliations,k̂NRk =1 sine the ML estimate does not exist.In pratie, IRLS is stopped after a maximal number of iterations nmax thus hiding the non-onvergene of IRLS.Unfortunately, the estimate ̂NR depends on nmax and this yields an unstable proedure for lassi�ation. Weobserved this phenomenon on the Leukemia data set. ̂NR is estimated by using the data in the Golub's trainingset [13℄; lassi�ation is performed on the samples from the test set. When p = 150 and � = 3, there are 1 (resp. 2)samples inorretly lassi�ed if nmax = 7 (resp. nmax = 10) .Marx's approahIn Marx [19℄, the parameter  is estimated in the ML sense and is obtained at onvergene of IRLS(y; ~X), where~X is de�ned by IRPLS, an algorithm that extends PLS to GLM. More preisely, IRPLS an be understood as anIRLS algorithm in whih the weighted least squares regression (3) is replaed with the weighted PLS regression,WPLS(z (t); X;W (t); rank(E1)). ~X ollets the �rst � omponents \at onvergene" of IRPLS.



This is very lose the oÆial version, to be published in Bioinformatis, 2005 8As realled above, WPLS applied with the maximal number of PLS omponents is nothing else than Weighted LeastSquares (note that Marx hooses � = rank(E1) while in theory, �max may be stritly lower than rank(E1)). HeneIRPLS and IRLS oinide, and, when X is full row-rank (whih is most often the ase when n << p), IRPLSnever onverges. In pratie, IRPLS is stopped after a �xed number of iterations, thus hiding the non-onvergenephenomenon. In addition, initializing IRPLS by hoosing a linear preditor on the form �(0) = 0y � 0(1In � y)(where for example 0 = ln(3)), as done in Marx, yields ̂M = ̂NR. A trivial indution shows that for all t � 0, z (t) =2ty�t1In with t = 1+t�1+exp(�t�1), andW (t) is proportional to the identity matrix In. Sine WPLS(y; X;W; �)= WPLS(�y + �1In; X;W; �) - in terms of the exhibited sores -, for all �; � 2 R, WPLS (z (t); X;W (t); �) returnsthe same sores as WPLS (y; X; In; �), thus proving ̂M = ̂NR.Ding and Gentleman's approahThe originality of their work [5℄ is that it simultaneously answers to the regularization question and to the dimensionredution one. They run an approximation of a Newton-Raphson (NR) algorithm for solving a Firth's penalizedML riterion. As in IRLS, any iteration of the NR algorithm is a Weighted Least Squares regression and Ding andGentleman replae this Least-Square regression by a Weighted PLS one. We all this algorithm FPLS.We run their method on the data sets desribed in the next setion. On the Colon data set and on the prostate dataset, the algorithm does not always onverge: we observe a yli behavior : after a burn-in period the path is periodi;the estimate ̂DG and onsequently the lassi�ation rule, may depend on the maximal number of iterations.This approah is greatly promising sine it addresses both the regularization and the dimension redution problems.Comparisons of our results with their approah are of interest and will be explored in future researh.Eilers et al. 's approahTheir method [7℄ does not use PLS. We nevertheless mention their work sine their estimate, ̂E is the Ridge-penalized ML estimate (with an un-weighted penalty term i.e. �2 = I). The Eilers's et al. method does not reduethe dimension and only deals with the regularization question. In partiular, all the explanatory variables are allowedand inluded into the regression model, whih an deteriorate the performanes of the lassi�er. In the next setion,we will outline the high interest of ombining a redution step with the Ridge regularization.ResultsWe illustrate the interest of RPLS by onsidering appliations to lassi�ation of miroarrays data. We omparethe lassi�ation results from our proedure with those of other lassi�ers inluding RIRLS, FPLS, the e�etivedimension redution (MAVE,[3℄), diagonal linear disriminant analysis (DLDA), diagonal quadrati disriminantanalysis (DQDA) and k-nearest neighbors (KNN) based on the Eulidean distane (see [4℄ for an overview of theselast three methods).



This is very lose the oÆial version, to be published in Bioinformatis, 2005 9DLDA, DQDA and KNN are thus introdued in the present paper as "lassial statistial method". As ommentedin the abstrat, our goal is to show that these methods poorly behave when applied to high-dimensional data sets.This is exatly what happens, thus stressing the interest of methods based on the regularization and dimensionredution.In order to illustrate the interest of PLS over PCR for regression, we ompare our algorithm RPLS to 'RPCR' (forRidge-PCR). By nature, PCR handles ontinuous responses; this alls for an extension of PCR to GLM, in orderto use it as a dimension redution in GLM. The extension we derived for PLS remains valid for PCR: we exhibitthe ontinuous-valued pseudo-response variable at onvergene of the RIRLS algorithm and use this variable as theinput variable for PCR. This yields RPCR.Data, pre-proessing and Gene seletionWe will onsider in turn the Leukemia, Colon and Prostate data sets. 1 The Leukemia data set, ontains 72 tissuesamples with pinit = 7129 genes: 47 ases of aute lymphoblasti leukemia (ALL), oded 0, and 25 ases of autemyeloid leukemia (AML), oded 1 [13℄. The Colon data set ontains 62 tissue samples with pinit = 2000 genes: 40tumors tissues, oded 1, and 22 normal tissues, oded 0 [2℄. The Prostate data set ontains 102 tissue samples withpinit = 12600 genes: 52 tumors tissues, oded 1, and 50 normal tissues, oded 0 [24℄.For Leukemia and Colon data (resp. Prostate), the pre-proessing steps of [6℄ (resp. [24℄) are applied: thresholding(oor of 100 (resp. 10) and eiling of 16000)/ �ltering (exlusion of genes with max/min� 5 and (max-min)� 500(resp. 50)/ log10-transformation / standardization. Notie that the �ltering step is applied using only the Learningset. This yields a resulting number of ovariates pmax depending on the subdivision Learning and Testing set, lowerthan pinit but still far larger than the number of observations.Although the proedures an handle a large number (thousands) of genes, the number of genes may be still toolarge for pratial use. Furthermore, a onsiderable perentage of the genes do not show di�erential expressionaross groups and only a subset of genes is of interest. We perform the preliminary seletion of gene based on theBSS/WSS riterion used in [6℄. When training the rule for the seletion of gene, we selet p genes by the previousriterion with p 2 Pl = f50; 300; 500; 1000g for Leukemia data, p 2 P = f100; 500; 1000; pmaxg for Colon data andp 2 Pp = f100; 500; 1000; 1500g for Prostate data.Assessing predition methodsIt is ommon to assess the performane of the lassi�ation rules for a seleted subset of genes by their errors on thetest set and also by their leave-one-out ross-validated errors. Due to the instability of leave-one-out error rates, wemoreover perform re-randomization study i.e. an out of sample analysis on 100 random subdivisions of the data setinto a learning set and a test set. When a test set is available, we randomly split the original data set into a training1They an be downloaded from http: //sdm.lit.org.sg/GEDatasets/Datasets.html



This is very lose the oÆial version, to be published in Bioinformatis, 2005 10set and a test set of the same size as the original ones. Otherwise, we hoose a test set size equal to one third ofthe data (2:1 sheme of [6℄). Eah subdivision yields a test set error rate for eah preditor; boxplots are used tosummarize these error rates over the runs.The optimal number of PLS or PCR omponents (for RPLS, FPLS or RPCR) is seleted by hoosing the value of� minimizing leave-one-out error rates for the training set. This is also employed for other proedures that involvehyperparameters, suh as MAVE or KNN. In pratie, on the Leave One Out analyzes performed on the Colon datasets and on the Prostate Data sets, we observed many ases of indeisions for even values of k: This is the reasonwhy, as suggested in Devroye, Gyorki and Lugosi [4℄, we run KNN for odd values of k: We really believe that thefrequent ourrene of the indeision ase shows that KNN is not a pertinent method (for this kind of data sets).The weakness of this lassial statistial method is learly illustrated by the numerial results.The � range is given by Kl = f1; : : : ; 8g for Leukemia data, K = f1; : : : ; 9g for Colon data and Kp = f1; : : : ; 14gfor Prostate data. Moreover, the shrinkage parameter (for RIRLS, RPLS or RPCR) is determined as mentionedabove on 51 log10-linearly spaed points in the range [10�2; 103℄. Note that, to fairly evaluate and ompare thetest or leave-one-out ross-validated errors, pre-proessing, gene seletion and (hyper)-parameters estimations areperformed on the training set (at eah step of the ross-validation proess).DisussionDi�erent numerial results are reported in Tables 1 to 3 and boxplots are plotted in Figures 1 to 3. In the tables, thenumber in brakets for RPLS, RPCR, FPLS or MAVE are the optimal numbers of omponents hosen as previouslyindiated and those for KNN are the optimal numbers of nearest neighbors. The numerial results and graphis showthe neessity of the dimension redution step. This is partiularly evident from the Colon and prostate data results.Indeed note that most of the lassi�ers proposed in the literature well behave on the Leukemia data set though theother data set are known to be more 'problemati'. In partiular, the boxplots suggest that errors rates for RPLS,RPCR and FPLS are typially lower and less variable. There is no obvious di�erene between the distributions oferror rates for these three methods. However, we an mention that for Colon and Prostate data FPLS has onvergedonly for small � values; and that RPCR needs � values greater than the one of RPLS. Otherwise these methods arerobust to the growth of p, thanks to the dimension redution step (the larger p is, the larger � has to be hosento reah the best lassi�ation result exept for FPLS whih does not onverge for large �), and to an inreasingvalue of the shrinkage parameter. The good performane of these methods when p = pmax (Table 2) is partiularlyinteresting when applied to Miroarrays, sine it an allow the pratitioner to avoid a pre-seletion step and thusmakes the lassi�ation result independent of the riterion applied in this preliminary seletion. On the other hand,the methods suh as RIRLS, DLDA, DQDA or KNN have very poor performanes when p gets large. Note thatMAVE stands between the both although being a dimension redution method.Conerning the omparison between RPLS and RIRLS, as mentioned above we do not trust RIRLS due to thenon-saling of the design matrix that makes the interest of their method problem spei�. It may be read in the tables



This is very lose the oÆial version, to be published in Bioinformatis, 2005 11and �gures below that RPLS and RIRLS have an equivalent behavior for \small" p values. Nevertheless the later isnot robust to large p: This legitimately suggests to add to this method a dimension redution step; we observed onthe three data sets, in the resampling analysis, that this would improve RIRLS method.RPLS on�rms di�erent analyzes in the literature. For example, it is known that in the Leukemia data set, samples#28; 66; 67 have a high mislassi�ation rate (heneforth denoted MR[i℄ for sample #i) [6℄. In the resampling study,for � 2 Kl and p 2 Pl, RPLS systematially mislassi�es sample #66, whereas MR[28℄ and MR[67℄ derease when �and p both inrease: for p = 1000 and � = 3 (resp. p = 50 and � = 1), MR[28℄=7:02% and MR[67℄=7:55% (resp.38:60% and 39:62%). Another example is given by the Colon data set, for whih samples N8; 34 and T30; 33; 36are mislassi�ed by both the ontributions [2, 10℄; in the resampling analysis, performed for � 2 K, p 2 P,N8; 34 and T36 are systematially mislassi�ed, MR[T30℄ � 88:89% and MR[T33℄ � 96:87%. In addition, RPLSalways mislassi�es N36 (a sample pointed out in [10℄), and behaves poorly for samples T2; 33 (samples pointed outin [2℄). For the Prostate Data Set, in the leave one out study, the minimal number of mislassi�ed samples is 5(and is reahed by RPLS), namely samples 32; 64; 68; 84;92. The samples 32; 84; 92 are mislassi�ed for all of the LOanalysis (p 2 Pp; � 2 Kp); samples 64 and 68 are mislassi�ed in more than 96% and 91% of the LO analysis. In theresampling study, MR[32℄ = 1, MR[64℄ � 0:41, MR[68℄ � 0:72, MR[84℄= 1 and MR[92℄� 0:90.ConlusionsWe have proposed a statistial dimension redution approah for the lassi�ation of tumor based on miroarraygene expression data. Our method is designed to address the urse of dimensionality to overome the problem of ahigh dimensional gene expression spae so ommon in suh type of problems. We have provided a new extension ofPartial Least Squares to binary response data, that seems to have better properties than some of the urrently usedmethods. We restrited our attention to the binary ase, but the methodology an be extended to over multi-lassproblems and we are interested in making it. Indeed the struture of the algorithm for the binary ase and multi-lassase is the same, but the hoie of the parameter � neessitates more attention in the multi-lass ase than in thebinary ase. Future researh will also onern the variable and model seletion themes in order to determine optimalvalues for (�; �).AknowledgementsThe authors are really grateful to A. Antoniadis for onstrutive and fruitful disussions and to the referees for theironstrutive omments and ritiisms whih have substantially improved this artile. They would like also thankI. De Feis for helpful omments and B. Ding and R. Gentleman for providing a preprint of their paper prior topubliation.Part of this work was supported by the researh projet ASBGEN and the Interuniversity Attration Pole (IAP)



This is very lose the oÆial version, to be published in Bioinformatis, 2005 12researh network in Statistis P5/24.Appendix: RPLSFor given (y; X), � > 0 and � � 1.1. Compute Z  � [1In X℄ and � as in (4).2. RIRLS stepa. Initialize (0) 2 Rp+1.t � 0.b. Until onvergene, do�(t)  � Z(t).�(t)  � �(1 + exp(��(t)k ))�1; 1 � k � n�0.W (t)  � diag ��(t)(1� �(t))�.z (t)  � �(t) + �W (t)��1 �y � �(t)�.(t+1)  � �Z0W (t)Z + ��2��1Z 0W (t)z (t).t � t+ 1.. Setz1  � z (t�1).W1  �W (t�1).3. WPLS stepa. ~� � �2:p+1;2:p+1; Xs  � X ~��1:b. t0  � 1In, E0  � Xs; f0  � z1; !0  � 0Rp,   � Ip:. For k = 0; � � � ; �,qk  � t0kW1fk=(t0kW1tk):pk  � E0kW1tk=(t0kW1tk):fk+1  � fk � qktk:Ek+1 � Ek � tkp0k:  �  (Ip � !kp0k):!k+1  � E0k+1W1fk+1:~ k+1  �  !k+1:
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REFERENCES 16RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNNp LO OS LO OS LO OS LO OS LO OS LO OS LO OS LO OS50 0 1 0 (3) 1 1 (1) 1 0 (2) 1 4 (3) 1 1 1 1 1 1 (1) 2300 2 3 0 (1) 3 0 (2) 1 0 (2) 0 2 (1) 0 1 2 1 1 1 (1) 1500 2 3 0 (1) 3 0 (3) 2 0 (2) 0 0 (1) 0 0 2 0 1 0 (1) 11000 2 3 0 (2) 2 0 (4) 2 0 (2) 0 1 (1) 0 0 2 0 2 0 (1) 1Table 1: Comparison of mislassi�ation for Leukemia Data: Leave One Out and Out Of Sample analyzes performedon the Learning/Test set of the Golub's subdivision.p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN100 9 9 (1) 7 (6) 8 (1)* 12 (1) 17 17 7 (5)500 10 8 (3) 8 (5) 8 (1)* 7 (6) 18 22 9 (5)1000 15 7 (3) 7 (6) 8 (1)* 15 (1) 20 23 8 (7)pmax 17 7 (3) 7 (6) 8 (1)* 6 (4) 22 25 8 (7)Table 2: Comparison of mislassi�ation for Colon Data: Leave One Out analysis performed on 62 subdivisions ofthe data set into a learning set (resp. test set) of ardinal 61 (resp. ardinal 1). * means that during the Leave OneOut proedure, for a given � in the range K, some FPLS algorithms did not onverge. The optimal value of � ishosen among the values for whih all the FPLS steps onverged.p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN100 9 7 (3) 6 (8) 8 (2)* 51 (1) 11 11 7 (3)500 10 8 (2) 9 (6) 8 (2)* 7 (2) 21 18 8 (13)1000 10 5 (3) 5 (13) 8 (2)* 8 (4) 28 24 10 (3)1500 10 7 (4) 5 (12) 10 (2)* 14 (4) 31 28 12 (3)Table 3: Comparison of mislassi�ation for Prostate Data: Leave One Out analysis performed on 102 subdivisionsof the data set into a learning set (resp. test set) of ardinal 101 (resp. ardinal 1). * has the same meaning as inTable 2.
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Resampling analysis: Leukemia data set
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Figure 1: Resampling analysis for Leukemia data: Boxplots of test error rates for lassi�ers with 50 (white), 300(light grey), 500 (dark grey) and 1000 (blak) genes.
Resampling analysis: Colon data set
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Figure 2: Resampling analysis for Colon data: Boxplots of test error rates for lassi�ers with 100 (white), 500 (lightgrey), 1000 (dark grey) and pmax (blak) genes (2:1 sheme).
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Resampling analysis: Prostate data set
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Figure 3: Resampling analysis for Prostate data: Boxplots of test error rates for lassi�ers with 100 (white), 500(light grey), 1000 (dark grey) and 1500 (blak) genes (2:1 sheme).


