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eO
tober 27, 2004Abstra
tMotivation: One important aspe
t of data-mining of mi
roarray data is to dis
over the mole
ular variation among
an
ers. In mi
roarray studies, the number n of samples is relatively small 
ompared to the number p of genes persample (usually in thousands). It is known that standard statisti
al methods in 
lassi�
ation are eÆ
ient (i.e. in thepresent 
ase, yield su

essful 
lassi�ers) parti
ularly when n is (far) larger than p. This naturally 
alls for the use ofa dimension redu
tion pro
edure together with the 
lassi�
ation one.Results: In this paper, the question of 
lassi�
ation in su
h a high dimensional setting is addressed. We viewthe 
lassi�
ation problem as a regression one with few observations and many predi
tor variables. We propose anew method 
ombining Partial Least Squares (PLS) and Ridge penalized logisti
 regression. We review the existingmethods based on PLS and / or penalized likelihood te
hniques, outline their interest in some 
ases and theoreti
allyexplain their sometimes poor behavior. Our pro
edure is 
ompared with these other 
lassi�ers. The predi
tiveperforman
e of the resulting 
lassi�
ation rule is illustrated on three data sets: Leukemia, Colon and Prostate.Availability: Software that implements the pro
edures and data sour
e on whi
h this paper fo
uses are freelyavailable at http://www-lm
.imag.fr/SMS/membres/Gersende Fort,Sophie Lambert.htmlConta
t: Gersende.Fort,Sophie.Lambert�imag.frIntrodu
tionMi
roarray te
hnology generates a vast amount of data by measuring, through the hybridization pro
ess, the levelsof virtually all the genes expressed in a biologi
al sample. One 
an expe
t that knowledge gleaned from mi
roarraydata will 
ontribute signi�
antly to advan
es in fundamental questions in biology as well as in 
lini
al medi
ine.One important goal of analyzing mi
roarray data is to 
lassify the samples. To 
ite a few, Golub et al. [13℄ have
onsidered 
lassi�
ation of a
ute leukemia, Alon et al. [2℄ have addressed the 
luster analysis of tumor and normal1
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olon tissues. The approa
hes developed in these papers 
onsist in dis
rimination methods and ma
hine learningmethods (see [6℄ for a 
omparative study).In mi
roarray studies, the number of samples, n, is relatively small 
ompared to the number of genes, p usually inthousands. Unless a preliminary variable sele
tion step is performed, standard statisti
al methods in 
lassi�
ationperform poorly be
ause there are far more variables than observations. One problem is multi
ollinearity : estimatingequations be
ome singular and have no unique and stable solution. For instan
e, the pooled within-
lass sample
ovarian
e matrix in Fisher's linear dis
riminant fun
tion is singular if n < p + 2. Even if all genes 
an be used asin support ve
tor ma
hines, it seems to be not sensible to use all the genes. Indeed, this use allows presen
e of thenoise asso
iated with genes of little or no dis
rimination power. That inhibits and degrades the performan
es of the
lassi�
ation rules in its appli
ation to un
lassi�ed tumor. In this situation, dimension redu
tion is needed to redu
ethe high p-dimensional gene spa
e. In most previously mentioned works, the authors have used univariate methodsfor redu
ing the number of genes. Alternative approa
hes to handle the dimension redu
tion problem 
an also beused (see for instan
e [11, 22, 26, 3℄).Similar data stru
tures have been en
ountered in the �eld of 
hemometri
s. The method of Partial Least Squares(PLS, [27, 21, 15℄) has been found to be a useful dimension redu
tion te
hnique as well as Prin
ipal ComponentRegression (PCR, [20℄) (see [9℄ for a statisti
al view of PLS and PCR). In the 
ontext of mi
roarrays, the purposeof PCR is to produ
e orthogonal tumor des
riptors that redu
e the dimension to only few gene 
omponents (super-genes)[26℄. But the dimension redu
tion is a
hieved without regard to the response variable and may be ineÆ
ient.
hosen so that the sample 
ovarian
e between the response and a linear 
ombination of the p predi
tors (genes) ismaximum.Nguyen and Ro
ke [22℄ proposed using PLS for dimension redu
tion as a preliminary step to 
lassi�
ation, basedeither on linear logisti
 dis
rimination, or linear or quadrati
 dis
riminant analysis. However, this seems to beintuitively unappealing be
ause PLS is really designed to handle 
ontinuous responses and models that do not su�erfrom heteros
edasti
ity as it is the 
ase for Bernoulli or multinomial data. Furthermore, in pra
ti
e we have observedproblems in the 
onvergen
e of the Iteratively Reweighted Least Squares (IRLS) algorithm, whi
h is the usualpro
edure for solving the maximum likelihood (ML) equation in the �eld of the generalized linear models (GLM).Indeed, for logisti
 regression, it is well known that 
onvergen
e poses a long standing problem. In�nite parameterestimates 
an o

ur depending on the 
on�guration of the sample points in the observation spa
e ([1℄).Marx [19℄ proposed an extension of PLS to 
ategori
al response variable and illustrates the developments from aspe
tros
opy example. His approa
h embeds the usual PLS steps within the IRLS. Unfortunately, we have observedthat this algorithm does not 
onverge in many 
ases of interest (su
h as in the appli
ations 
onsidered in this paper).More re
ently, Ding and Gentleman [5℄ proposed an approa
h based on this pro
edure. They phrased the problemin a GLM setting and applied Firth's pro
edure to avoid (quasi)separation.To deal with the high dimension problem, another approa
h 
onsists in penalizing the likelihood. Eilers et al.[7℄ propose to use the Ridge penalized logisti
 regression in order to both stabilize the statisti
al problem and
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al degenera
y due to multi
ollinearity. They have shown that this method appears to work well withmi
roarray data. Note that this method is not a dimension redu
tion te
hnique. Indeed all explanatory variablesare allowed into the regression model. From the log-likelihood a so-
alled ridge penalty is subtra
ted. All thegenes 
ontribute, whi
h 
an inhibit and degrade the performan
es of the 
lassi�
ation rules. Note that we 
an �ndalternative approa
hes (see for example [16℄ and [12℄) for whi
h the 
lassi�
ation problem is not viewed as a problemin a logisti
 regression.In this paper, we extend the PLS method to binary response variable. To do that, we want to substitute the
ategori
al response variable in the input of PLS by a 
ontinuous-valued pseudo-response variable whose expe
tedvalue has a linear relationship with the 
ovariates. The limiting pseudo-response variable in the IRLS algorithmseems to be a good 
andidate. Unfortunately, in the present situation \small n, large p", IRLS no longer workssin
e the limiting pseudo-response variable is, in norm, in�nite. The idea developed here is to penalize with a Ridgepenalty the likelihood 
riterion in order to 
onstrain the pseudo-response variable to be �nite. That is, our pro
edure
ombines a Ridge penalty step and a PLS step and the dimension redu
tion step is in
orporated in the 
lassi�
ationstep. Here we present 
lassi�
ation rule for binary response variable indi
ating normal or 
olon tumor, for instan
e.Nevertheless, our approa
h remains valid for multi-
ategori
al response variables. But the binary 
ase is the simplest
ase whi
h allows us to point out whether su
h a pro
edure works well or not and why.This paper is organized as follows. The Methods se
tion is the methodologi
al part of this paper. It 
ontains ades
ription of the logisti
 regression and linear dis
rimination. We then re
all the Ridge regression method andderive a weighted PLS algorithm in order to address the dimension redu
tion in heteros
edasti
 models. We thenintrodu
e an extension of PLS to GLM based on the Ridge penalty, and analyze the Nguyen and Ro
ke, Marx, Dingand Gentleman and Eilers et al. 's algorithms. Appli
ations to disease 
lassi�
ation through mi
roarray are presentedin the Results se
tion.MethodsSome basi
 ingredientsAfter introdu
ing some notations, we re
all the prin
iple of linear logisti
 dis
rimination, some results on the existen
eof the maximumlikelihood estimator and the 
lassi
al algorithmused to 
ompute it. Next, we present a regularizationmethod, a penalized maximum likelihood method, and a dimension redu
tion te
hnique, PLS.NotationsExpression levels of the p genes for the n mi
roarray samples are 
olle
ted in a n � p data matrix X = (xij),1 � i � n; 1 � j � p. The entry xij is the expression level of the variable \gene" j in the mi
roarray sample i, andthe i-th row Xi;� is the ve
tor of a gene expression pro�le for sample i. More generally, for a matrix A, Ai;j denotesthe entry (i; j), A�;j (resp. Ai;�) denotes the 
olumn ve
tor 
olle
ting the 
olumn #j (resp. the row #i). Ai1:i2;j1:j2
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s, 2005 4is the (i2 � i1 + 1) � (j2 � j1 + 1) matrix formed by pi
king out the rows i1 to i2 and 
olumns j1 to j2 of A; A�;j1:j2is formed by pi
king out the 
olumns j1 to j2 of A. The labels of the n mi
roarray samples are 
olle
ted in af0; : : : ; (g�1)gn-valued ve
tor y. In supervised ma
hine learning, ea
h sample is thought to originate from a spe
i�

lass k 2 f0; : : : ; g � 1g where the number of possible 
lasses g is known and �xed. A 
lassi�er 
an be regarded as afun
tion G : Rp! f0; : : : ; g � 1g that predi
ts the unknown 
lass label of a new tissue sample x 2 Rp by G(x). Weassume that the data (y; X) 
olle
t observations of n statisti
ally independent and identi
ally distributed randompairs (Y;X). We 
hoose a logit model for the data (see e.g. [8℄), and the Logisti
 Dis
rimination (LD) method forthe 
lassi�
ation pro
edure (see e.g. [25℄). In the terminology of the regression analysis, (X�;j)1�j�p are the predi
torvariables and (yi)1�i�n the response variables. We in
lude an inter
ept into the regression model, and denote byZ = [1In X℄ the design matrix of size n � (p+ 1), where 1In = (1; � � � ; 1)0 stands for the 
olumn ve
tor of length n (0denotes the transposition operator).Linear Logisti
 Dis
riminationIn logit models, the 
onditional 
lass probability - or equivalently, the 
onditional expe
tation of Y given X -P(Y = 1jX = x; 
) is related to x and some parameter 
 2 Rp+1 through the relation P(Y = 1jX = x; 
) = h([1 x0℄
)where h(�) = 1=(1 + exp(��)). The quantity [1 x0℄
 is 
alled the linear predi
tor. 
 is an unknown parameterthat has to be estimated from the data. In Logisti
 Dis
rimination (LD), it is usually estimated by 
̂ML, the MLestimator. The log-likelihood of the observations for the value 
 of the parameter, simply denoted by l(
), is givenby l(
) = nXi=1 nyi�i(
) � ln (1 + exp(�i(
))o ; (1)where for all 1 � i � n, �i(
) = (Z
)i.For a ve
tor z = [1 x0℄, the predi
ted 
lass ŷ of ea
h sample is 1 if �̂ > 1� �̂ and 0 otherwise, where �̂ = h(z0
̂ML).Nevertheless, as dis
ussed below, in some 
ases, in
luding in pra
ti
e the 
ase n << p, existen
e and uni
ity of 
̂MLfor logit models is not guaranteed.Maximum likelihood estimate and Iteratively Reweighted Least Squares (IRLS)We say that the ML estimate exists if there exists 
 2 Rp+1 of �nite norm whi
h is a maximizer of the 
on
avelog-likelihood l. Hen
e, su
h an estimate is a solution to the normal equation Z0(y � �(
)) = 0, where �(
) is theRn-valued mean ve
tor with 
oordinates �i(
) = h(�i(
)).If Z is full 
olumn-rank, the solution, when exists, is unique. Existen
e of a solution, when Z is full 
olumn-rank,depends on the 
on�guration of the n samples points in the observation spa
e Rp [1, 23℄. There are three ex
lusivesituations: separate, quasi-separate and overlap situations. In the �rst two 
ases, there exists 
̂ su
h that (Z
̂)i � 0for all i su
h that yi = 1 and (Z
̂)i � 0 for all i su
h that yi = 0; roughly speaking, this means that there existsan hyperplane that exa
tly separates the two 
lasses, ex
ept maybe some points that 
an belong to the hyperplane.
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h a 
ase, l rea
hes its maximum as k
k tends to +1 and the ML estimate does not exist. In the third 
ase,the estimate exists and is 
omputed as the limit of a 
onverging Newton-Raphson sequen
e; this algorithm is knownas the Iteratively Reweighted Least Squares (IRLS) algorithm [14℄. Let W (
) be the diagonal n � n matrix withdiagonal entries Wi;i(
) = �i(
)(1 � �i(
)): Ea
h iteration divides into two steps,z (t) = Z
(t) + hW (t)i�1 �y � �(t)� ; (2)
(t+1) = �Z0W (t)Z��1 Z 0W (t)z(t); (3)where W (t) and �(t) are shorthand notations for W (
(t)) and �(
(t)). IRLS 
an thus be 
onsidered as iterativeweighted least square regression of a Rn-valued pseudo-variable z (t) onto the 
olumns of Z.When Z is not full 
olumn-rank, the parameter is not identi�able and the ML estimate is not unique when exists;applying the above iterations (2-3) by repla
ing the inverse matrix (3) with the Moore-Penrose pseudo-inverse, yieldsthe parameter estimate whi
h is of minimal norm among all the solutions. In pra
ti
e, in the present statisti
alframework n << p, n = rank(Z) and the minimal norm solution veri�es for all 1 � i � n, (Z
)i = ln(yi)� ln(1�yi);it is thus of in�nite norm and the ML estimate 
an not exist. This 
alls for regularization methods.Ridge penalty and RIRLSThe ridge estimator [18℄ 
̂R is de�ned as the (unique) maximizer of the penalized likelihood l�(
) = l(
)�0:5�
0�2
,where � > 0 is the shrinkage parameter, and �2 is a diagonal matrix with entries �21;1 = 0 and�2j;j = nXi=1(Zi;j � 1I0nZ�;j=n)2; j 2 f2; � � � ; p+ 1g: (4)The weighted penalty term takes into a

ount the non-s
aling of the 
ovariate matrix X, and does not apply to thelo
ation parameter 
1. 
̂R always exists, is unique and is 
omputed as the limit of a Newton-Raphson sequen
e. Wedenote by RIRLS(y; X; �) (shorthand notation for Ridge-IRLS) this algorithm. It 
onsists in repla
ing in IRLS, theweighted regression (3) by a weighted Ridge regression 
(t+1) = (Z0W (t)Z +��2)�1Z 0W (t)z (t), where z (t) is built asin (2).� 
ontrols the amount of shrinkage in the data and 
an be 
hosen as the minimum, over a given range, of the BIC
riterion �2l(
̂R) + log(n)tra
e[Z �Z 0W (
̂R)Z + ��2��1 Z 0W (
̂R)℄ [17℄.Weighted Partial Least Squares (WPLS)Partial Least Squares (PLS) is both a tool for linear regression and a tool for dimension redu
tion [27, 21, 15℄. Lety 2 Rn be a response ve
tor, X be a n� p data matrix and W be a positive de�nite n � n matrix. PLS (i) de�nes� W -orthogonal s
ores (tk)1�k��, linear 
ombinations of the 
olumns of Z and su
h that for all k; 1I0nWtk = 0, and(ii) performs a W -weighted least squares regression of y on (1In; t1; � � � ; t�). This yields the de
ompositiony = q01In + q1t1 + � � �+ q�t� + f�+1 = Z
̂PLS;� + f�+1



This is very 
lose the oÆ
ial version, to be published in Bioinformati
s, 2005 6where the residual term f�+1 isW -orthogonal to the ve
tors (1In; t1; � � � ; t�). Contrary to 
lassi
al dimension redu
tionmethods (su
h as Prin
ipal Component Regression), the s
ores depend on the response ve
tor y; roughly speaking,given (tk)1�k�l, tl+1 is the linear 
ombination of the 
olumns of Z, i.e. is on the form tl+1 = Z
, whi
h is the mostinformative on the residual response variable fl+1, when information is de�ned in terms of the weighted 
ovarian
ejCov(pWZ
;pWfl+1)j (pW denotes the square root matrix of W ) [15℄. While the maximal number of PLS s
ores�max 
an be lower than rank(X), in pra
ti
e, it is often equal to rank(X). Helland [15℄ shows that the WPLSregression applied with � = �max is nothing more than the Weighted Least Squares regression. In the literature, PLSis usually derived with W = I, the identity matrix; we thus detail the algorithm in the weighted 
ase. Let ~� be thep� p positive-de�nite diagonal matrix with diagonal entries �j;j, j � 2, given by (4).1. Xs = X ~��1, t0 = 1In, E0 = Xs; f0 = y.2. For k = 0; � � � ; �,qk = t0kWfk=(t0kWtk); fk+1 = fk � qktk;Ek+1 = Ek � tkt0kWEk=(t0kWtk);tk+1 = Ek+1E0k+1Wfk+1:Hereafter, this pro
edure is denoted by WPLS (y; X;W; �). If Z is full 
olumn-rank, this algorithm determines anunique estimate 
̂PLS;� satisfying y � fk+1 = Z
̂PLS;�; if Z is not full 
olumn-rank, the pro
edure above yields theminimal norm ve
tor among all the ve
tors verifying y � fk+1 = Z
.Ridge Partial Least Squares (RPLS)A dire
t appli
ation of PLS to GLM seems to be intuitively unappealing be
ause PLS handles 
ontinuous responses.This is the reason why, in order to extend PLS to GLM, we want to repla
e the binary ve
tor y with a pseudo-response variable whose expe
ted value has a linear relationship with the 
ovariates. The pseudo-response variable z1at 
onvergen
e of RIRLS(y; X; �) veri�es this 
ondition and is thus our 
andidate : it is on the form z1 = Z
̂R + ",where, 
onditionally to 
̂R being the true value of the parameter, " is a 
entered ve
tor of 
ovarian
e matrix (W1)�1:The main advantage of 
hoosing z1 instead of, for example, the pseudo-variable at 
onvergen
e of IRLS - whi
h hasthe linear stru
ture too- is that this allows the 
ombination of a regularization step and of a dimension redu
tionstep. In addition, this extension is always well-de�ned : re
all indeed that in some 
ases (in
luding the 
ase n << p),the ML estimate does not exist so that the pseudo-variable 'at 
onvergen
e' of IRLS is of in�nite norm.As a 
onsequen
e, we propose a new pro
edure whi
h 
ombines Ridge penalty - the regularization step - and PLS -the dimension redu
tion step - and so 
alled Ridge-PLS (RPLS). Let � be some positive real 
onstant and � be somepositive integer. RPLS divides in two steps:1. (z1;W1) � RIRLS(y; X; �);
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̂PLS;�  �WPLS(z1; X;W1; �):A detailed implementation is given in the Appendix. The �rst step builds a 
ontinuous response variable z1 for theinput of PLS, the \dispersion matrix" of whi
h is [W1℄�1. This explains the 
all, in the se
ond step, to a weightedPLS pro
edure with weight W1. The use of Xs in WPLS and of � in the penalized ridge 
riterion, makes ourpro
edure invariant to the s
aling of the data matrix.RPLS depends on two parameters, � and �. � is determined at the end of Step 1, as minimizing the BIC 
riterion(see the Ridge penalty se
tion), and thus independently of �. In the linear regression setting, the optimal 
hoi
e of �when dimension redu
tion is a
hieved by PLS, is to our best knowledge, an open problem: the non linear dependen
eof 
̂PLS;� upon the response ve
tor, makes an expli
it 
ontrol of the error term f�+1 impossible. Finally, observethat RPLS provides an estimate 
̂RPLS (whi
h is unique, given y, X, � and �).We are now able to answer to the 
lassi�
ation problem in a high dimensional setting : our 
lassi�
ation pro
edure
onsists in applying LD with the estimate 
̂RPLS.Comparison with other approa
hesWe brie
y review some regression pro
edures that use PLS as the dimension redu
tion tool to manage the highdimensional setting. We outline their interest and in some 
ases, explain their poor behavior.Nguyen and Ro
ke's approa
hNguyen and Ro
ke [22℄ substitute the data matrix X by a n � � matrix ~X , the 
olumns of whi
h are the �rst �PLS-s
ores given by WPLS (y; X; I). Then they estimate the parameter in the ML sense by running IRLS (y; ~X).This yields 
̂NR. As mentioned above, applying PLS with a binary input y is unappealing; in addition, the PLS-regression step does not take into a

ount the heteros
edasti
ity of the response ve
tor y; �nally, in many appli
ations,k
̂NRk =1 sin
e the ML estimate does not exist.In pra
ti
e, IRLS is stopped after a maximal number of iterations nmax thus hiding the non-
onvergen
e of IRLS.Unfortunately, the estimate 
̂NR depends on nmax and this yields an unstable pro
edure for 
lassi�
ation. Weobserved this phenomenon on the Leukemia data set. 
̂NR is estimated by using the data in the Golub's trainingset [13℄; 
lassi�
ation is performed on the samples from the test set. When p = 150 and � = 3, there are 1 (resp. 2)samples in
orre
tly 
lassi�ed if nmax = 7 (resp. nmax = 10) .Marx's approa
hIn Marx [19℄, the parameter 
 is estimated in the ML sense and is obtained at 
onvergen
e of IRLS(y; ~X), where~X is de�ned by IRPLS, an algorithm that extends PLS to GLM. More pre
isely, IRPLS 
an be understood as anIRLS algorithm in whi
h the weighted least squares regression (3) is repla
ed with the weighted PLS regression,WPLS(z (t); X;W (t); rank(E1)). ~X 
olle
ts the �rst � 
omponents \at 
onvergen
e" of IRPLS.
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s, 2005 8As re
alled above, WPLS applied with the maximal number of PLS 
omponents is nothing else than Weighted LeastSquares (note that Marx 
hooses � = rank(E1) while in theory, �max may be stri
tly lower than rank(E1)). Hen
eIRPLS and IRLS 
oin
ide, and, when X is full row-rank (whi
h is most often the 
ase when n << p), IRPLSnever 
onverges. In pra
ti
e, IRPLS is stopped after a �xed number of iterations, thus hiding the non-
onvergen
ephenomenon. In addition, initializing IRPLS by 
hoosing a linear predi
tor on the form �(0) = 
0y � 
0(1In � y)(where for example 
0 = ln(3)), as done in Marx, yields 
̂M = 
̂NR. A trivial indu
tion shows that for all t � 0, z (t) =2
ty�
t1In with 
t = 1+
t�1+exp(�
t�1), andW (t) is proportional to the identity matrix In. Sin
e WPLS(y; X;W; �)= WPLS(�y + �1In; X;W; �) - in terms of the exhibited s
ores -, for all �; � 2 R, WPLS (z (t); X;W (t); �) returnsthe same s
ores as WPLS (y; X; In; �), thus proving 
̂M = 
̂NR.Ding and Gentleman's approa
hThe originality of their work [5℄ is that it simultaneously answers to the regularization question and to the dimensionredu
tion one. They run an approximation of a Newton-Raphson (NR) algorithm for solving a Firth's penalizedML 
riterion. As in IRLS, any iteration of the NR algorithm is a Weighted Least Squares regression and Ding andGentleman repla
e this Least-Square regression by a Weighted PLS one. We 
all this algorithm FPLS.We run their method on the data sets des
ribed in the next se
tion. On the Colon data set and on the prostate dataset, the algorithm does not always 
onverge: we observe a 
y
li
 behavior : after a burn-in period the path is periodi
;the estimate 
̂DG and 
onsequently the 
lassi�
ation rule, may depend on the maximal number of iterations.This approa
h is greatly promising sin
e it addresses both the regularization and the dimension redu
tion problems.Comparisons of our results with their approa
h are of interest and will be explored in future resear
h.Eilers et al. 's approa
hTheir method [7℄ does not use PLS. We nevertheless mention their work sin
e their estimate, 
̂E is the Ridge-penalized ML estimate (with an un-weighted penalty term i.e. �2 = I). The Eilers's et al. method does not redu
ethe dimension and only deals with the regularization question. In parti
ular, all the explanatory variables are allowedand in
luded into the regression model, whi
h 
an deteriorate the performan
es of the 
lassi�er. In the next se
tion,we will outline the high interest of 
ombining a redu
tion step with the Ridge regularization.ResultsWe illustrate the interest of RPLS by 
onsidering appli
ations to 
lassi�
ation of mi
roarrays data. We 
omparethe 
lassi�
ation results from our pro
edure with those of other 
lassi�ers in
luding RIRLS, FPLS, the e�e
tivedimension redu
tion (MAVE,[3℄), diagonal linear dis
riminant analysis (DLDA), diagonal quadrati
 dis
riminantanalysis (DQDA) and k-nearest neighbors (KNN) based on the Eu
lidean distan
e (see [4℄ for an overview of theselast three methods).
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s, 2005 9DLDA, DQDA and KNN are thus introdu
ed in the present paper as "
lassi
al statisti
al method". As 
ommentedin the abstra
t, our goal is to show that these methods poorly behave when applied to high-dimensional data sets.This is exa
tly what happens, thus stressing the interest of methods based on the regularization and dimensionredu
tion.In order to illustrate the interest of PLS over PCR for regression, we 
ompare our algorithm RPLS to 'RPCR' (forRidge-PCR). By nature, PCR handles 
ontinuous responses; this 
alls for an extension of PCR to GLM, in orderto use it as a dimension redu
tion in GLM. The extension we derived for PLS remains valid for PCR: we exhibitthe 
ontinuous-valued pseudo-response variable at 
onvergen
e of the RIRLS algorithm and use this variable as theinput variable for PCR. This yields RPCR.Data, pre-pro
essing and Gene sele
tionWe will 
onsider in turn the Leukemia, Colon and Prostate data sets. 1 The Leukemia data set, 
ontains 72 tissuesamples with pinit = 7129 genes: 47 
ases of a
ute lymphoblasti
 leukemia (ALL), 
oded 0, and 25 
ases of a
utemyeloid leukemia (AML), 
oded 1 [13℄. The Colon data set 
ontains 62 tissue samples with pinit = 2000 genes: 40tumors tissues, 
oded 1, and 22 normal tissues, 
oded 0 [2℄. The Prostate data set 
ontains 102 tissue samples withpinit = 12600 genes: 52 tumors tissues, 
oded 1, and 50 normal tissues, 
oded 0 [24℄.For Leukemia and Colon data (resp. Prostate), the pre-pro
essing steps of [6℄ (resp. [24℄) are applied: thresholding(
oor of 100 (resp. 10) and 
eiling of 16000)/ �ltering (ex
lusion of genes with max/min� 5 and (max-min)� 500(resp. 50)/ log10-transformation / standardization. Noti
e that the �ltering step is applied using only the Learningset. This yields a resulting number of 
ovariates pmax depending on the subdivision Learning and Testing set, lowerthan pinit but still far larger than the number of observations.Although the pro
edures 
an handle a large number (thousands) of genes, the number of genes may be still toolarge for pra
ti
al use. Furthermore, a 
onsiderable per
entage of the genes do not show di�erential expressiona
ross groups and only a subset of genes is of interest. We perform the preliminary sele
tion of gene based on theBSS/WSS 
riterion used in [6℄. When training the rule for the sele
tion of gene, we sele
t p genes by the previous
riterion with p 2 Pl = f50; 300; 500; 1000g for Leukemia data, p 2 P
 = f100; 500; 1000; pmaxg for Colon data andp 2 Pp = f100; 500; 1000; 1500g for Prostate data.Assessing predi
tion methodsIt is 
ommon to assess the performan
e of the 
lassi�
ation rules for a sele
ted subset of genes by their errors on thetest set and also by their leave-one-out 
ross-validated errors. Due to the instability of leave-one-out error rates, wemoreover perform re-randomization study i.e. an out of sample analysis on 100 random subdivisions of the data setinto a learning set and a test set. When a test set is available, we randomly split the original data set into a training1They 
an be downloaded from http: //sdm
.lit.org.sg/GEDatasets/Datasets.html
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s, 2005 10set and a test set of the same size as the original ones. Otherwise, we 
hoose a test set size equal to one third ofthe data (2:1 s
heme of [6℄). Ea
h subdivision yields a test set error rate for ea
h predi
tor; boxplots are used tosummarize these error rates over the runs.The optimal number of PLS or PCR 
omponents (for RPLS, FPLS or RPCR) is sele
ted by 
hoosing the value of� minimizing leave-one-out error rates for the training set. This is also employed for other pro
edures that involvehyperparameters, su
h as MAVE or KNN. In pra
ti
e, on the Leave One Out analyzes performed on the Colon datasets and on the Prostate Data sets, we observed many 
ases of inde
isions for even values of k: This is the reasonwhy, as suggested in Devroye, Gyorki and Lugosi [4℄, we run KNN for odd values of k: We really believe that thefrequent o

urren
e of the inde
ision 
ase shows that KNN is not a pertinent method (for this kind of data sets).The weakness of this 
lassi
al statisti
al method is 
learly illustrated by the numeri
al results.The � range is given by Kl = f1; : : : ; 8g for Leukemia data, K
 = f1; : : : ; 9g for Colon data and Kp = f1; : : : ; 14gfor Prostate data. Moreover, the shrinkage parameter (for RIRLS, RPLS or RPCR) is determined as mentionedabove on 51 log10-linearly spa
ed points in the range [10�2; 103℄. Note that, to fairly evaluate and 
ompare thetest or leave-one-out 
ross-validated errors, pre-pro
essing, gene sele
tion and (hyper)-parameters estimations areperformed on the training set (at ea
h step of the 
ross-validation pro
ess).Dis
ussionDi�erent numeri
al results are reported in Tables 1 to 3 and boxplots are plotted in Figures 1 to 3. In the tables, thenumber in bra
kets for RPLS, RPCR, FPLS or MAVE are the optimal numbers of 
omponents 
hosen as previouslyindi
ated and those for KNN are the optimal numbers of nearest neighbors. The numeri
al results and graphi
s showthe ne
essity of the dimension redu
tion step. This is parti
ularly evident from the Colon and prostate data results.Indeed note that most of the 
lassi�ers proposed in the literature well behave on the Leukemia data set though theother data set are known to be more 'problemati
'. In parti
ular, the boxplots suggest that errors rates for RPLS,RPCR and FPLS are typi
ally lower and less variable. There is no obvious di�eren
e between the distributions oferror rates for these three methods. However, we 
an mention that for Colon and Prostate data FPLS has 
onvergedonly for small � values; and that RPCR needs � values greater than the one of RPLS. Otherwise these methods arerobust to the growth of p, thanks to the dimension redu
tion step (the larger p is, the larger � has to be 
hosento rea
h the best 
lassi�
ation result ex
ept for FPLS whi
h does not 
onverge for large �), and to an in
reasingvalue of the shrinkage parameter. The good performan
e of these methods when p = pmax (Table 2) is parti
ularlyinteresting when applied to Mi
roarrays, sin
e it 
an allow the pra
titioner to avoid a pre-sele
tion step and thusmakes the 
lassi�
ation result independent of the 
riterion applied in this preliminary sele
tion. On the other hand,the methods su
h as RIRLS, DLDA, DQDA or KNN have very poor performan
es when p gets large. Note thatMAVE stands between the both although being a dimension redu
tion method.Con
erning the 
omparison between RPLS and RIRLS, as mentioned above we do not trust RIRLS due to thenon-s
aling of the design matrix that makes the interest of their method problem spe
i�
. It may be read in the tables
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s, 2005 11and �gures below that RPLS and RIRLS have an equivalent behavior for \small" p values. Nevertheless the later isnot robust to large p: This legitimately suggests to add to this method a dimension redu
tion step; we observed onthe three data sets, in the resampling analysis, that this would improve RIRLS method.RPLS 
on�rms di�erent analyzes in the literature. For example, it is known that in the Leukemia data set, samples#28; 66; 67 have a high mis
lassi�
ation rate (hen
eforth denoted MR[i℄ for sample #i) [6℄. In the resampling study,for � 2 Kl and p 2 Pl, RPLS systemati
ally mis
lassi�es sample #66, whereas MR[28℄ and MR[67℄ de
rease when �and p both in
rease: for p = 1000 and � = 3 (resp. p = 50 and � = 1), MR[28℄=7:02% and MR[67℄=7:55% (resp.38:60% and 39:62%). Another example is given by the Colon data set, for whi
h samples N8; 34 and T30; 33; 36are mis
lassi�ed by both the 
ontributions [2, 10℄; in the resampling analysis, performed for � 2 K
, p 2 P
,N8; 34 and T36 are systemati
ally mis
lassi�ed, MR[T30℄ � 88:89% and MR[T33℄ � 96:87%. In addition, RPLSalways mis
lassi�es N36 (a sample pointed out in [10℄), and behaves poorly for samples T2; 33 (samples pointed outin [2℄). For the Prostate Data Set, in the leave one out study, the minimal number of mis
lassi�ed samples is 5(and is rea
hed by RPLS), namely samples 32; 64; 68; 84;92. The samples 32; 84; 92 are mis
lassi�ed for all of the LOanalysis (p 2 Pp; � 2 Kp); samples 64 and 68 are mis
lassi�ed in more than 96% and 91% of the LO analysis. In theresampling study, MR[32℄ = 1, MR[64℄ � 0:41, MR[68℄ � 0:72, MR[84℄= 1 and MR[92℄� 0:90.Con
lusionsWe have proposed a statisti
al dimension redu
tion approa
h for the 
lassi�
ation of tumor based on mi
roarraygene expression data. Our method is designed to address the 
urse of dimensionality to over
ome the problem of ahigh dimensional gene expression spa
e so 
ommon in su
h type of problems. We have provided a new extension ofPartial Least Squares to binary response data, that seems to have better properties than some of the 
urrently usedmethods. We restri
ted our attention to the binary 
ase, but the methodology 
an be extended to 
over multi-
lassproblems and we are interested in making it. Indeed the stru
ture of the algorithm for the binary 
ase and multi-
lass
ase is the same, but the 
hoi
e of the parameter � ne
essitates more attention in the multi-
lass 
ase than in thebinary 
ase. Future resear
h will also 
on
ern the variable and model sele
tion themes in order to determine optimalvalues for (�; �).A
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s, 2005 12resear
h network in Statisti
s P5/24.Appendix: RPLSFor given (y; X), � > 0 and � � 1.1. Compute Z  � [1In X℄ and � as in (4).2. RIRLS stepa. Initialize 
(0) 2 Rp+1.t � 0.b. Until 
onvergen
e, do�(t)  � Z
(t).�(t)  � �(1 + exp(��(t)k ))�1; 1 � k � n�0.W (t)  � diag ��(t)(1� �(t))�.z (t)  � �(t) + �W (t)��1 �y � �(t)�.
(t+1)  � �Z0W (t)Z + ��2��1Z 0W (t)z (t).t � t+ 1.
. Setz1  � z (t�1).W1  �W (t�1).3. WPLS stepa. ~� � �2:p+1;2:p+1; Xs  � X ~��1:b. t0  � 1In, E0  � Xs; f0  � z1; !0  � 0Rp,   � Ip:
. For k = 0; � � � ; �,qk  � t0kW1fk=(t0kW1tk):pk  � E0kW1tk=(t0kW1tk):fk+1  � fk � qktk:Ek+1 � Ek � tkp0k:  �  (Ip � !kp0k):!k+1  � E0k+1W1fk+1:~ k+1  �  !k+1:
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REFERENCES 16RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNNp LO OS LO OS LO OS LO OS LO OS LO OS LO OS LO OS50 0 1 0 (3) 1 1 (1) 1 0 (2) 1 4 (3) 1 1 1 1 1 1 (1) 2300 2 3 0 (1) 3 0 (2) 1 0 (2) 0 2 (1) 0 1 2 1 1 1 (1) 1500 2 3 0 (1) 3 0 (3) 2 0 (2) 0 0 (1) 0 0 2 0 1 0 (1) 11000 2 3 0 (2) 2 0 (4) 2 0 (2) 0 1 (1) 0 0 2 0 2 0 (1) 1Table 1: Comparison of mis
lassi�
ation for Leukemia Data: Leave One Out and Out Of Sample analyzes performedon the Learning/Test set of the Golub's subdivision.p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN100 9 9 (1) 7 (6) 8 (1)* 12 (1) 17 17 7 (5)500 10 8 (3) 8 (5) 8 (1)* 7 (6) 18 22 9 (5)1000 15 7 (3) 7 (6) 8 (1)* 15 (1) 20 23 8 (7)pmax 17 7 (3) 7 (6) 8 (1)* 6 (4) 22 25 8 (7)Table 2: Comparison of mis
lassi�
ation for Colon Data: Leave One Out analysis performed on 62 subdivisions ofthe data set into a learning set (resp. test set) of 
ardinal 61 (resp. 
ardinal 1). * means that during the Leave OneOut pro
edure, for a given � in the range K
, some FPLS algorithms did not 
onverge. The optimal value of � is
hosen among the values for whi
h all the FPLS steps 
onverged.p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN100 9 7 (3) 6 (8) 8 (2)* 51 (1) 11 11 7 (3)500 10 8 (2) 9 (6) 8 (2)* 7 (2) 21 18 8 (13)1000 10 5 (3) 5 (13) 8 (2)* 8 (4) 28 24 10 (3)1500 10 7 (4) 5 (12) 10 (2)* 14 (4) 31 28 12 (3)Table 3: Comparison of mis
lassi�
ation for Prostate Data: Leave One Out analysis performed on 102 subdivisionsof the data set into a learning set (resp. test set) of 
ardinal 101 (resp. 
ardinal 1). * has the same meaning as inTable 2.
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Resampling analysis: Leukemia data set
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Figure 1: Resampling analysis for Leukemia data: Boxplots of test error rates for 
lassi�ers with 50 (white), 300(light grey), 500 (dark grey) and 1000 (bla
k) genes.
Resampling analysis: Colon data set
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Figure 2: Resampling analysis for Colon data: Boxplots of test error rates for 
lassi�ers with 100 (white), 500 (lightgrey), 1000 (dark grey) and pmax (bla
k) genes (2:1 s
heme).
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Resampling analysis: Prostate data set
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Figure 3: Resampling analysis for Prostate data: Boxplots of test error rates for 
lassi�ers with 100 (white), 500(light grey), 1000 (dark grey) and 1500 (bla
k) genes (2:1 s
heme).


