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SUMMARY

We derive suflicient conditions for subgeometric f-ergodicity of strongly Markovian processes.
We first propose a criterion based on modulated moment of some delayed return-time to a petite
set. We then formulate a criterion for polynomial f-ergodicity in terms of a drift condition on
the generator. Applications to specific processes are considered, including Langevin tempered

diffusions on R™ and storage models.

2000 Mathematics Subject Classifications Primary: 60J25, Secondary: 60J60, 60K30.

Keywords: Markov processes, Subgeometric f-ergodicity, Drift criterion, Langevin diffusions,

Storage models.

Affiliations: G. Fort (Corresponding author), CNRS/LMC-IMAG, 51, rue des Mathématiques,
BP 53, 38041 Grenoble Cedex 9, France, email: Gersende.FortQimag.fr

G.0O. Roberts, Department of Mathematics and Statistics, Lancaster University, Lancaster LA1
4YF, United Kingdom, email: g.o.roberts@lancaster.ac.uk



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 1

1. INTRODUCTION

This paper is devoted to the study of sub-geometric f-ergodicity of a strong Markov semi-
group (P')s>0. That is, for a sub-geometrically increasing rate function r := (r(t))>0, and a

Borel function f > 1, we propose suflicient conditions implying the limit

lim r(®)]|P(z,) == ()ll; =0,

t—+oo
for m-almost all (a.a.) @ where 7 is the unique invariant probability measure. Our main condition
is couched in terms of modulated moments of return-times to a “test-set”. In this form, this con-
dition extends earlier criteria implying different notions of stability (such as Harris-recurrence,
positive Harris-recurrence, ergodicity, f-ergodicity), for continuous-time Markov processes. This
condition is also analogous to the criterion for sub-geometric f-ergodicity of discrete time Markov
chains. We also derive a condition for polynomial ergodicity which is easy to check in many
applications. This condition is expressed in terms of inequality on the semi-group generator,

and is analogous to the so-called drift inequality in the discrete-time case.

We apply our results to the study of strongly Markovian processes, giving three non-trivial
examples, two of which are of considerable applied probabilistic interest. We first consider a
simple jump process as a toy example, demonstrating that f-ergodicity at a logarithmic (resp.
polynomial or sub-exponential) rate is narrowly related to the existence of a logarithmic (resp.
polynomial or sub-exponential) moment of the mean-time spent in each state, with respect to
the jump distribution. We then consider Langevin tempered diffusions on R™ which are relevant
to Markov chain Monte Carlo (MCMC) techniques since they construct a diffusion process with
given stationary distribution 7 (which only needs to be available up to an unknown normalization
constant). When the stationary distribution is polynomial in the tails, the (simple) Langevin
diffusion can not be ergodic at a geometric rate and we show that it is polynomially ergodic.
We also consider Langevin tempered diffusion in which the diffusion matrix is a scalar matrix
with coefficient 7724, d > 0, and prove that even when the target distribution is polynomial in
the tails, a convenient choice of the temperature d involves geometric ergodicity of the process.
Finally, we study a compound Poisson-process driven Ornstein-Uhlenbeck process which is used
in storage models and more recently in financial econometrics. It is known that when the
distribution of the jump F has sufficiently light tails, the process is geometrically ergodic. We
investigate the case where F' is heavy tailed and establish the sub-geometric ergodicity of the

process under appropriate conditions in this case.
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The paper is organised as follows. We first recall basic definitions on Markov process, as
well as reviewing existing results on ergodicity of strongly Markovian process. The new criteria
for sub-geometric ergodicity are given in Section 2, and the proofs are postponed in Section 4.

Section 3 is devoted to the three examples mentioned above.

1.1. Basic definitions on Markov process. Let X’ be alocally compact and separable metric
space endowed with the Borel o-field B(X'). X = (Q, A, (F)i>0, (X¢)1>0,P2), is a A-valued Borel
right process so that it is a temporally homogeneous Markov process, strongly Markovian with
right-continuous sample paths (see e.g. Sharpe (1988)). P, (resp. E,) denotes the canonical
probability (resp. expectation) associated to the Markov process with initial distribution d,, the
Dirac distribution at point 2. Let (P");>o be the associated Markov semi-group.

We recall basic definitions and properties on Markov process that will be used throughout this

paper. The process X is ¢-irreducible for some o-finite measure ¢ on B(X) if
S(A) >0 — E, [/ ]IA(XS)ds] 50,  Veed.
0

If the process is ¢-irreducible, there exists a maximal irreducibility measure 1 that dominates
any irreducibility measure (Nummelin (1984)). In fact, if 7 is an invariant measure i.e. #P" = P!
for all t > 0, then 7 is a maximal irreducibility measure. Any measurable set which is of positive
1-measure is said to be accessible. A set C' € B(X) is vp-petite for the process (or simply petite)
if there exist a probability measure b (resp. non-trivial o-finite measure v3,) on the Borel o-field

of R4 (resp. on B(X')) such that
/ P'(z,)b(dt) > vy (+), forall =€ C.
0

A ¢-irreducible process always possesses an accessible closed petite set (Meyn and Tweedie,
1993a, Proposition 3.2.). A process is Harris-recurrent if there exists a o-finite measure ¢ such

that
$(4) >0 = Px(/ 1A(X5)ds:—|—c>o):17 € X;
0

or, equivalently, if there exists a o-finite measure p such that g(4) > 0 = P.(r4 < o0) = 1 for
all z € X. Harris-recurrence trivially implies ¢-irreducibility. A Harris recurrent right process
possesses an invariant measure (Getoor (1980)). In fact, when the invariant measure is finite, X
is called positive Harris-recurrent. A ¢-irreducible process is aperiodic if there exist an accessible
vs,,-petite set C' and ¢ such that P'(z,C) > 0 for all x € C,t > tg. (Meyn and Tweedie, 1993c,

Proposition 6.1) shows that a positive Harris recurrent process is aperiodic if some skeleton
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chain P™ m > 0, is irreducible i.e. if there exists a o-finite measure ¢ on B(X') such that

$(A) >0 = E, ano Ta(Xym)| > 0forall z € X.

For Borel functions f > 1, g, define the norm |g|; := sup, |g(2)|/f(2) and the Banach
space Ly = {g,|g|; < oo}. For a signed measure p, the total variation norm is given by
llge|lrv := supy p(A) — inf 4 p(A); and the f-norm (for some Borel function f > 1), ||p||f =
SUP(y,gl,=1} [#(9)], so that the total variation norm is the I-norm where I denotes the constant

function 1(¢) = 1. The process is ergodic if
veed, Jlim [Pz, ) = = ()]l =0,
and f-ergodic if 7(f) < oo and

Vo e X, Jim |[P'(z, ) = =)l = 0. (1)
—+00

Finally, X is geometrically (resp. sub-geometrically) f-ergodic if the limit (1) holds at a rate
r(t) := &', for some £ > 1 (resp. r := (r(t))¢>o for some sub-geometrically increasing rate). A
sub-geometric rate is defined as follows (see e.g. Thorisson (1985)). Let Ag be the set of the mea-
surable, bounded on bounded intervals and non-decreasing functions r : R4 — [1, 00), such that
logr(t)/t | 0 ast — 4o00. Let A be the set of the rates 7 := (7(t));>0 such that for some r € Ay,
0 < liminf, 7(¢)/r(t) < limsup, 7(t)/r(t) < co. Ais by definition, the set of the sub-geometric
rates. For example, A contains rates such as 7(t) ~ log” (t+1), 8 > 0, #(t) ~ (1Vt*) log®(t + 1),
a >0, B € R, and sub-exponential rates 7(t) ~ exp(at®), a > 0,0 < 8 < 1.

Throughout this paper, we will often make comparison with (discrete time) Markov chains;

the unfamiliar reader can refer to Meyn and Tweedie (1993b).

1.2. (f,r)-modulated moments and stability. Define the hitting-time on a measurable set

C, delayed by & > 0,
T (8) = inf{t > 4, Xy € C'}, (2)
the moment 7¢(0) is denoted by 7¢. It is proved in the literature that modulated moments

of 7¢(9) for some closed petite set are related to Harris-recurrence, positive Harris-recurrence,

[f-ergodicity and geometric f-ergodicity. For a Borel function f > 1, an increasing non-negative
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rate function r = (r(t));>0, 6 > 0, define the (f,r)-modulated moment

T (8)
Gol(z, fir;6) =E, [/0 r(s)f(Xs)ds] .

R1 X is Harris-recurrent if and only if there exists a petite set C' such that for all z € X
P,(rc < 00) =1 (Meyn and Tweedie, 1993a, Theorem 1.1).

R2 If X is Harris-recurrent with invariant measure 7, then for f > 1, 7 (f) < oo if and only
if sup,ec Ge(z, f,1;8) < oo for some closed petite set C' (Meyn and Tweedie, 1993a,
Theorem 1.2.).

R3 A positive Harris-recurrent process is ergodic if and only if some skeleton chain P™ is
irreducible (Meyn and Tweedie, 1993¢c, Theorem 6.1.).

R4 A positive Harris-recurrent process is f-ergodic if (a) some skeleton chain P™ is irre-
ducible, (b) sup,ec Geo(w, h, I;8) < oo where h > sup,.,,, P°f and C' is a closed petite
set, and (c) for all z, Ge(z,h, 1I;9) < co (Meyn and Tweedie, 1993a, Proposition 4.1.)
and (Meyn and Tweedie, 1993c, Theorem 7.2.).

R5 A positive Harris-recurrent process is geometrically f-ergodic if (a) some skeleton chain
P™ is irreducible, (b) there exists a closed petite set C'and > 0 and G'¢(z, h, exp(nt); )
is finite for all z, where h > 1is a Borel function such that ¢; f < fooo exp(—t)P'hdt < cyf
for some finite positive constants ¢;, (¢) supo G (-, h, exp(nt); 6) < oo (Down et al., 1995,
Threorem 7.4.).

In Section 2 we give a criterion of the form R1-5 that implies sub-geometric f-ergodicity.

To date, little is known about general characterisations for f-ergodicity at a sub-geometric
rate for Markov processes. However we note some important special cases which have been
studied in the literature. The work by Ganidis et al. (1999) is restricted (a) to convergence
in total variation norm and (b) to diffusion processes on R? with diffusion matrix equals to
identity. Their proof is based on spectral properties of the transition semi-group seen as an
operator, and differs from the probabilistic approach adopted in the present paper. We will see
in Section 3.2 how to improve their conclusions. Veretennikov (1999) and Malyshkin (2001) deal
with diffusion processes and can be read as a special application of the present paper. The most
related work to the present one is the paper by Dai and Meyn (1995) that considers f-ergodicity

at a polynomial rate of a Markovian state process, in order to study the stability of multi-class
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queuing networks. These results are particularly related to our work and we will describe their

results in Section 2.

1.3. Drift condition and generator. For a Borel function 0 < V < oo, denote by AV the
Borel function - when exists - such that ¢ — AV (X}) is integrable P;-almost surely (a.s.), and

there exists an increasing sequence of stopping-time {7},}, such that for any stopping time 7
TNTh
E; |V(XiaT,) — V(Xo) —/ AV(XS)dS] =0, forall z € &,n>0.
0

When AV exists, V is said to be in the domain of A. If there exists h such that ¢ — A(X,) is
integrable P-a.s. and t — V (X;) -V (Xo) —fg h(X;) ds is a right continuous P;-local martingale
(with respect to the filtration F;), then V is in the domain of A and AV = h (Davis (1993)).
If V is in the domain of the weak infinitesimal generator A then V is in the domain of A and
AV = AV (Dynkin (1965)). If the functions V and AV are right-continuous, these two sufficient
conditions are equivalent and AV = AV.

When AV satisfies a drift condition AV < — f4bll¢ for some closed set C', and a non-negative

function f such that ¢ — f(X;) is integrable P,-a.s., we have G¢(z, f, 1;0) < V(x) 4 §b; this
will be the basic tool to upper bound the (f,r)-modulated moments.
Conditions on AV are analogous to conditions on the variation PV — V for a discrete time
Markov chain with transition kernel P™. It is well-known that the condition P™V — V < —f
outside a “test set” for the skeleton P™ is related (a) to the f-ergodicity of the Markov chain
(Xkm)k (Meyn and Tweedie (1993b)); (b) to the geometric V-ergodicity if f = AV for some
0 < A < 1 (Meyn and Tweedie (1993b)); (c) to the polynomial V-ergodicity if f oc V17
for some 0 < a < 1 (Jarner and Roberts (2002); Fort and Moulines (2003)); (d) and more
generally sub-geometric f-ergodicity is f o ¢(V) for some concave function ¢ (Douc et al.
(2004)). Similar results hold for continuous Markov process. Meyn and Tweedie (1993d) prove
that the condition AV < — f outside a closed petite set is related (a) to the f-ergodicity of the
Markov process X; and (b) to the geometric V-ergodicity if f oc V' (see also Down et al. (1995);
Roberts and Rosenthal (1996); Roberts and Tweedie (2000)). In Section 2, we establish that
the case f oc V172 is related to polynomial f-ergodicity.
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2. STATEMENTS OF THE RESULTS

In Theorem 1, we establish that modulated moment on some delayed hitting-time on a closed
petite set C' provides a criterion for sub-geometric f-ergodicity. We assume that there exist

6 > 0, a Borel function f. > 1 and a rate function r, € A such that
sup G (- fu, 1;6) < 00, supGe (-, 1,7y ) < oo. (3)
C C

We will establish that r. is the maximal rate of convergence (that can be deduced from these
assumptions) and it is associated to convergence in total variation norm i.e. in l-norm, which
is the minimal one. On the other hand, we will show that f, is the largest norm in which

convergence occurs and the associated convergence rate is the minimal one 1.

Using an interpolation technique, we also derive a convergence rate 1 < r; < r, in A associated
to some f-norm, 1 < f < f. (see Douc et al. (2004) for a similar approach in the discrete
time case). The simplest interpolation technique is given by Hélder’s inequality which yields
(from (3)) supes Go(s, fE, riP d) < co. By analogy to the discrete-time case, one would expect
convergence in ff-norm at the rate ri_p, and we will prove the continuous time version of this

result.

More generally, if there exists a pair of non-decreasing positive functions (¥, ¥;) satisfying
\Ill($) \I}z(y)gx+y7 $7y217 (4)

then supy G-, Yo fs), Wi(ry);6) < oo. We will establish that if Wy(r,) € A, this condition
yields convergence in Wy(f.)-norm at the rate Wy(r.). Young functions are closely related to
these pairs of functions (¥, Wy), say. Specifically, if (Hy, Hz) is a pair of Young function, then
(H7', H;') satisfies (4) (see e.g. (Krasnosel’skii and Rutickii, 1961, Chapter 1)). Let Z be
the set of pairs of inverse Young functions, augmented with the pairs (Id, 1) and, (1I,1d). As
commented above, Z contains the pairs ((z/p)?, (y/(1—p))!7P), 0 < p < 1, and more generally,
the pairs of functions increasing at infinity as (a? In® 2, y!=P In=° y) for some 0 < p < 1 and

beR,p=0and b>0,p=1and b<0.

Theorem 1. Let f. > 1 be a Borel function and r, € A. Assume that

(i) X is Harris-recurrent with invariant measure =, and some skeleton chain, say P™, is
W-irreducible.
(i1) there exist a closed petite set C' and some § > 0, such that (3) holds.
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(i) there exists a finite constant ¢ such that sup,<,, Ptf. <cf..

Then © is an invariant probability measure, 7(f.) < oo and for any pair ¥ = (¥, W,) € 7

lim  {Uy (r () V1 [P, ) = 7 (lwssvs =0 for all @ € S,

t——+oo

where Sy, which is of m-measure one, is defined by

T (8)
Sy = {x e XK, [/0 Uy (re(s)) \Ilg(f*(Xs))ds] < oo} .

The proof of Theorem 1 is postponed in Section 4.1. We first verify that Wy(r.(t)) V1 €
A. Under (i-ii), C is accessible and the following lemma holds (Meyn and Tweedie, 1993c,
Proposition 6.1.).

Lemma 2. Suppose that X is positive Harris recurrent with invariant distribution 7 and some
skeleton chain P is irreducible. For any accessible petite set C', there exist tg > 0 and an

irreducibility measure v for the process such that v(C) > 0 and infyec infysq P, ) > v(-).

Based on this lemma and on condition (ii), the second step consists in proving that the
skeleton P™ is irreducible, aperiodic and possesses a petite set A such that

Tm,A

suzG(Am)(x, Uy(f), Wi(r) < oo, with GY (e, fr) = B[ Y (k) f(Xkm))s  (5)
zE k=0
where T}, 4 > 1 is the return-time to A for the skeleton chain P™

T4 = inf{k > 1, X}, € A}. (6)

By application of Tuominen and Tweedie (1994), Theorem 2.1, this proves that for m-a.a. z,
limyytoo Uy(re(k)) [P (2, ) — 7 ()llwa(s,) = 0. Using (iii), the limit still holds replacing r.(k)
(resp. P¥™) by r.(t) (resp. P'). We finally establish that the limit holds for all the points
z € Sy and 7(Sy) = 1.

Remark 3. Theorem 1 remains valid by substituting condition (i) for the condition : there exist
a -irreducible, aperiodic and positive recurrent transition kernel P™.

Theorem 1 remains valid by substituting (ii-iii) for the condition : there exist a closed petite
set C' and some ¢ > 0 such that sups Ge(+, h, 1;6) < oo and sups Ge(-, 1,74 0) < oo where
h > sup,<p, P fv.

Condition (iii) implies that the semi-group (P');>0 and the resolvent kernel R = [ exp(—t) P' dt

are bounded on Ly, .
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Remark 4. By (4), it is readily seen that {z; Gc(z, fi, 1;0) + Geo(z, I, r;6) < oo} C Sy. It
may be read from the proof that

lim {1 (@) V1 P () = 7O)llwyryvi =0, (7)

=400

for all probability measure p such that Ge(z, Wa(fe) V 1, ¥i(r.) V 1;6) is p-integrable. Ap-
plying again (4), (7) holds for all distribution g such that {G¢(z, fi, ;) + G (z, I, ry; 6) } is
p-integrable.

Remark 5. For any pair (¥, Uy) € Z, if Uy strongly increases at infinity (for example, ¥y (z) o
zP for some p < 1 close to one), then Wy slowly increases (V2(z) o< 177 for some 1 — p close
to zero) (Krasnosel’skii and Rutickii, 1961, Theorem 2.1. Chapter 1). Hence, the stronger the
norm, the weaker the rate (and conversely). This compromise between the rate function and the
norm of convergence is well-known for discrete parameter Markov chain (Tuominen and Tweedie
(1994); see also Jarner and Roberts (2002), Fort and Moulines (2003), Douc et al. (2004)). As

expected, this property remains valid for continuous-time Markov process.

Corollary 6 provides a condition based on A, well-adapted to prove polynomial ergodicity.

Corollary 6. Let 1 <V < oo be a Borel function and 0 < o < 1. Assume that

(i) some skeleton chain P™ is irreducible.
(ii) there exists a closed petite set C' such that sups V < oo and for all o« < n < 1, t —
V1=(Xy) is integrable Py-a.s. and

AVT < —e, VI™% 4+ b, 0<b<00,0<¢,; <oo. (8)

Then there exists an unique invariant distribution 7, 7(V1=%) < oo and for all 0 < p < 1 and

beRorp=1landb>0o0rp=0andb<0,

Jim 1+ HU=P= 2 (log ) [P, ) = 7 (llya-aw gnvy—s i =0 @ €A
The proof is given in Section 4.2. From (ii), we obtain G¢(z, V1= 1;68) + Ge(x, 1, (1 +
t)1/2=1:5) < ¢V (z); and then we apply Theorem 1.

By choosing b= 0 and p = (1 — k) /(1 — &) for some 1 < k < 1/a, Corollary 6 yields

Vo € X, (t 4+ 1) [P (2, ) = 7 )llyamea = 0. (9)

lim
t—o00
If (9) holds for some V function, we shall say that the Markov chain is polynomially ergodic with
rate (14 ¢)(1=2)/a,
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Remark 7. Corollary 6 can be compared to the paper by Jarner and Roberts (2002) for the
discrete parameter case. They start with proving that if there exist a Borel function 1 <V < oo,

0 < a<1,aset Csuch that forall o« <9 <1
PRV VT < —e, VT 4 bl 0<b<0o0,0< ¢, < oo, (10)

there exists ¢ < oo such that G(Cm)(-ﬂ/l_a7 1) + G(Cm)(-7 I (1+t) /=) < ¢V, where G(Cm) is
given by (5). The drift condition (10) is analogous to (8) and the controls of the moments G(Cm)
and G¢ are similar. If in addition P™ is irreducible, aperiodic and C'is petite for the skeleton,
P™ is positive with invariant distribution 7 such that 7(V!7%) < co and for all 1 < & < 1/«

the skeleton is V!~"*-ergodic with rate (n + 1)*~!. These rates coincide with those in (9).

Remark 8. From the proof of Corollary 6, it may be read than only a finite number of nested drift
conditions is required; nevertheless, in practice, it is not more restricting to verify a continuum
of drift conditions than to verify a finite number of drift conditions. More precisely, assumption
(i) can be substituted for the conditions : (iii) there exist a closed petite set and functions
1 < V,_1 < cfy, such that for all integers 1 < ¢ < p, AV, < —f, +bllg, t — f,(X¢) is integrable
P,-a.s., and sups V, < oo; (iv) there exists § > 0 such that E, [Tg] < fi(z). If such, following
the same lines as in the proof of Proposition 26, it may be proved that G (-, 1I, (t+1)P =145, §) +
Gol, [ 1;6) < ¢V, for some 6 > 0. Together with condition (i), this yields f*l_n—ergodicity at
a rate (t + 1)(P=14+8)7 for all 0 < 5 < 1, where f, is any function satisfying SUPty P fi < fp

Dai and Meyn (1995) (hereafter DM) are, to our best knowledge, the first to exhibit this kind
of nested drift conditions and hence, the first to address ergodicity at a polynomial rate; they
proved this yields f-ergodicity at a rate (¢ + 1)P~! (Theorem 6.3, DM). We are able to obtain
the same result : to that goal, we observe that conditions (iii-iv) are verified with functions

fr < f]f/p, B =1 (as a consequence of Proposition 5.3 and Eq. (6.1), in DM) and f, < f,.

We proved that nested drift conditions on the generator A provide a control of moments G¢
with a polynomially increasing rate function. The converse seems to be an open question. We
nevertheless make mention of Propositions 5.4 and 6.1 in Dai and Meyn (1995), that provide a
(partial) converse condition : from the condition supy G (z, f, 1I;§) < oo, they deduce a drift
condition on A (we point out that this single condition implies a continuum of conditions by using
the same convexity argument as in (Jarner and Roberts, 2002, Lemma 3.5)). Unfortunately, this
drift condition in turn implies only a control of the moment G'¢(z, Rf, ;) where Rf(z) is a

function, which is, in general difficult to compare with f.
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3. EXAMPLES

In this section, (-,-) and |- | denote respectively the scalar product and the Euclidean norm
in R”. If u is a twice continuously differentiable real valued function on R”, Vu (resp. VZu)
denotes its gradient (resp. its Hessian matrix); and du/0x; its partial derivative with respect to
the i-th variable. For a matrix u, Tr (u) stands for the matrix trace and ' the matrix transpose.
For r € A, define the sequence r° by r°(t) = fgr(s)ds. Finally, we largely make use of the
inequality r(s+1¢) < r(s)r(t), s,t > 0, which holds for any rate r € A (Thorisson, 1985, Lemma

1).

3.1. Toy example: Jump process. Consider the jump process on Z, such that given that
X; = 1, the waiting-time to the next jump has an exponential distribution with expectation /\Z»_1
and is independent of the past history. We assume that for all + > 0, A; > 0, and sup;>q A; < oo.
The probability that the jump leads to state j is given by the matrix entry Q(¢, 7). We consider
the case when Q(0,7) = p; and Q(¢,0) = 1 for all ¢ > 1, for some positive sequence (p;);>1 such
that > ., pi = 1. We assume in addition that

liminf A; =0 and Zpix\fl < 0. (11)
! >0
Since sup;sq A; < 00, there exists a Z-valued right-continuous strong Markov process satisfying

the heuristic description above and such that for all (i,7) € Zi, the limit exists

o P0:0) = 6105)

jm n =:A(i,j) < o0 (12)

where 9; is the Dirac-mass at point 4, and for all ¢ > 1
A(0,0) = =X, A(0,7) = Aopi, A(i,0) = —A(i, 1) = A, (13)

and A(7, j) = 0 otherwise (see e.g. (Feller, 1971, p.330)).

Lemma 9. The process is Harris-recurrent, reversible with invariant distribution © given by

m(0) = {1+ ;51 pj/\j_l}_1 and 7 (i) = p; A7 17 (0), i > 1. Any skeleton chain P™ is irreducible.

Proof. We have E; [rp] = (1 — ]Io(i))Ai_l and for all i > 0, j # i, > 0, P(i,j) < p;. Then,
Ei [r0(0)] = 643254 P(i, j)E; [r0] < 642 2]211’]'/\]‘_1- Hence, forall ¢ € Z4, Pi(19(0) < 00) =1

and as {0} is a closed petite set, the process is Harris-recurrent. x is the unique invariant
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probability measure (as unique solution to #A = 0), and since X obeys the detailed balance i.e.

m(1)A(7,j) = 7 (J)A(4, 7) for all 7, j the process is reversible. Finally, for all m > 0, and ¢,5 > 0

m m—s m—(t+s)
P™(i,j) > p]‘AoAZ'A]‘/ ds exp(—Ais)/ dt exp(—Aot)/ du exp(—A;u) >0,
0 0 0

where the inequality says that P™ (¢, j) is greater than the probability of a single visit to 0 before
a jump to j. Similarly, it is easy to prove that P™(0,7) > 0 and P™(5,0) > 0 for any j € Z.
This proves the irreducibility of any skeleton. O

We deduce from R3 that the process is ergodic. Nevertheless, this convergence fails to occur

at a geometric rate as shown in lemma 10, the proof of which relies on the notion of conductance.

Lemma 10. X fails to be geometrically ergodic.

Proof. As X is reversible, any Markov kernel P™ is reversible. It is proved in Lawler and Sokal
(1988) that for a reversible Markov kernel P, the conductance k,, given by k,, :=inf 4 ¢, (A)
where ¢, (A) :={m(A)7(A)}~! [, P™ (¢, A% (dx), is positive if and only if P™ is geometrically
ergodic. We verify that for any skeleton P™, the conductance is zero which will involve that
the skeleton fails to be geometrically ergodic. Consider the set of states ¢ such that = (i) < 1/2.
Then ¢, (1) < 2(1 = P™(1,1)) < 2(1 — exp(—A;m)) upon noting that P™(¢,7) is lower bounded
by the probability that the waiting-time in state 7 is greater than m. Since liminf; 4., A; =0,

for all € > 0, there exists a state 7 such that ¢,, (i) < ¢, which involves k., = 0. (|

We now identify functions V' that are in the domain of A.

Lemma 11. Let 0 <V < oo be a Borel function such that ), p;V (i) < co. Then V is in the
domain of A and AV = AV

Proof. For a function f > 0such that E]‘ p; f(J) < oo, the monotone convergence theorem yields

toe o J po »
fimg D) 20 gy gy 7 g PS) 2 0G)

=1 t10 t Jt4oo = t10 t

fG) = Af@);

in addition, supy, J7YAf] < co. This proves that V is in the domain of the weak infinitesimal

generator A; and thus in the domain of A. O

The expression of the generator suggests that function V on the form A7’ is a candidate to

solve the drift inequality (8). This yields f-ergodicity at a log-polynomial rate.
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Proposition 12. Assume that there exists 5 > 1 such that Zz>1p2 P < 0. Then for all
1E€EZy, 0<k<B—-1landbeRork=0andb<0,orc=-1andb>0,

gig; (L4077 I+ 0" PG - T()H1+AE”[hm1+AElﬂ_b:: 0-
Proof. We apply Corollary 6 : we choose V' > 1 such that for all ¢ > 1, V(i) = c_1V(O)AZ»_”8 for
some ¢ > V(0). Then (8) is verified with « = 87! and the closed petite set C' = {0}. a

When g =1 (i.e. with nothing more than the condition (11)), this establishes the conver-
gence in total variation norm at the rate 1, which corroborates the ergodicity of the process
proved above. Nevertheless, if for some 5 > 0, the sum ) ., p; (1 \Y /\Z»_l) [log(l\/ /\;1)]5
exists, Corollary 6 does not yield a stronger convergence result than the ergodic one. We prove
by application of Theorem 1, that covers more general rates than the polynomial ones, that
convergence in total variation norm occurs at the rate r.(t) ~ [log(¢)]°, and convergence in
norm f.(z) = [log(1 VvV A;1) + 1] occurs at rate 1. We also derive sufficient conditions for
sub-exponential ergodicity.

Lemma 13. Let f. : Z; — [1,00) and r. € A such that
ij (1 Y ,\],—1) J(j) < o0 and Zp] / r(s)Ajexp(—A;s)ds < co.  (14)
jz1 i>1

Then there exists a finite constant ¢ such that for all m > 0, sup,,, Ptf, <cf.. Foralld >0,

there exists a finite constant ¢ such that

Go(x, fi, I; 6) < c (LV AJY) fu(a) Go(z, I, re 8) < c/+oo ro(s) exp(—Ays)ds.
0

Proof. Since P'(z,j) < p; for all  # j, it is trivial to prove that sup,sosup;ez, foiP e < oo,
For f>1and r € A,

§
Go(ac,f,r;(S)g/o r(s)P°f(x)ds + r(o ZP5 z, 1) FU)E [r %(10)].

i>1

To conclude the proof, observe E;[r%(7o)] = A; [ r0(t) exp(=A;s)ds = [ r(t) exp(—A;s)ds. O

Proposition 14. (i) Assume that Y ;5 pi (1V /\Z»_l) [log(1V /\;1)]5 < 00, for some B > 0.
For all0 < k < B,1 € Zy, limy_syo [log(t+1)177% || P(i,-) — ﬂ(-)]\[1+log(1vAi—1)]ﬁ =0.
(it) Assume thaty . p; (1 \Y /\Z»_l) /\;1/2 exp (22/\;1) < 00, for some z > 0. Forall0 < p <1,

P T T oo exp(22(1 = PV PG = 7Ol v e = O
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Proof. In both cases, apply Theorem 1; for case (i), set r.(t) = {log(exp(8 — 1) 4+ t}* and
fe(i) = 14+1og(1V A7 1H)P: and for case (ii), set r.(t) = exp(22tY/2), fu(i) = 1+ /\;1/2 exp(z2A71)
ans observe that [exp(2zs'/2)Xexp(—As)ds < 14 2y/m2A"" 2 exp(22271). O

3.2. Langevin Tempered diffusions on R™. Let us consider a stochastic integral equation
t t
X = XO—I—/ b(Xs)ds—l—/ o(Xs)dWs, (15)
0 0

where W, is a n-dimensional Brownian motion, the drift coefficient b = (by,---,b,)" is on the

form, 1 <7 < n,

n

1 d 1<~ 0
bi(z) = 5 > ai,j(¢) 5 —logm(z) + 5 > 50 % (2);
J j=1 J

j=1
where a = o0’ is the n X n symmetric positive definite matrix. Such a diffusion is the so-called
Langevin diffusion and is defined in such a way that 7 is, up to a multiplicative constant, the
density of the unique invariant probability distribution (with respect to Lebesgue measure on
R™). This property motivates recent interests in Langevin diffusion for their use as MCMC
methods, where the scope of these techniques is to draw samples from a Markov chain with
given stationary density #. The efficiency of these algorithms is linked to the rate at which f-
moments E,[f(X;)] converge to the constant 7(f). This motivates the study of the f-ergodicity.
In practice, discretizations of the continuous-time process are used to solve the MCMC simula-
tion problem and recent works proved that it is possible to find methods of discretizing which
inherit the convergence rates of the continuous-time diffusion (see Roberts and Tweedie (1996);
Stramer and Tweedie (1999a,b); Roberts and Stramer (2003); Roberts and Tweedie (2002) for
methods of discretizing and their use in MCMC techniques). Roberts and Tweedie proved that,
on the real line, when the target density 7 is heavy tailed, the Langevin diffusion with a := 1
can not be geometrically ergodic. We complement this assertion when 7 is polynomial in the
tails, and prove that the Langevin diffusion in the one-dimensional case as well as in the multi-
dimensional one is f-ergodic at a polynomial rate. For such polynomial target density on the
real line, it was observed in Jarner and Roberts (2001) that the polynomial rate of convergence
of the Metropolis-Hastings algorithm could be improved by choosing a heavy-tailed proposal
distribution. This idea, when adapted to the diffusion on the real line, suggests the choice of a
speed measure i.e. of the coeflicient ¢ such that ¢ is small when the process is close to the modes
of 7 and big when far from the modes (Stramer and Tweedie (1999a)). In the multi-dimensional
case, this suggests a(x) on the form 7=24(z)1,,, where I, is the identity matrix on R™, d > 0. In

that case (d > 0) we call these processes Langevin tempered diffusion (see Roberts and Stramer
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(2003) for the justification of these heated diffusions). It was observed in the literature that
by choosing d large enough, a diffusion on the real line with target density polynomial in the
tails is geometrically ergodic. We investigate the behavior of this Langevin tempered diffusions
in the multi-dimensional case, contrarily to most of the mentioned contributions that cover the
one-dimensional case. In Theorem 16, it is proved that up to some critical temperature d, the
diffusion is polynomially ergodic and the larger d, the better the rate. When d > d,, the diffu-
sion is geometrically ergodic. We henceforth consider a diffusion matrix a(z) = o?(2)I,, where

o(z) :=r~%(z) for some d > 0. Assume that

A1l 7 is, up to a multiplicative constant, a positive and twice continuously differentiable

density on R" (with respect to Lebesgue measure).

Define the drift vector

1-2d
2

b(z) := %0'2($) (Vlog{m(z)o?(z)}) 772 (2) Vg m(z). (16)

Under Al, the coeflicients b and ¢ are locally Lipschitz-continuous, which implies that for
any compact set K, sup,cc{|0(z)| + |o(2)|}(1+ |2])~! < co. These local conditions allow the
construction of a continuous process satisfying the stochastic integral equation (15) up to the
explosion time ¢ := lim, o (,, where (, = inf{t > 0,|X¢ > n}. We thus formulate the

following assumption
A2 The process is regular i.e. { = 400 a.s.

Under Al, a sufficient condition for regularity is the existence of a twice continuously dif-
ferentiable non-negative function V and a constant ¢ > 0 such that LV < ¢V on R™ and
limy, o0 inf |45, V(2) = 400 (Has'minskii, 1980, Theorem 3.4.1.) where L is the elliptic opera-
tor

Tr (V2V (2) a(z))
2

=24y it
_ 2( ) ((1—2d><wog7f<96>vw<$>>*g832E2 ))'

LV (z) = (b(z), VV(a)) +

In the one dimensional case, (Has’minskii, 1980, Remark 2, p.105) establishes that the process

is regular if d is chosen such that

/ 21 (2)de = +o0, (17)
R
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since the function V(x) := sign(z) [ Q(y)dy where InQ(2) = —2 J5 b( tydt = (2d —
1)(In7(z) —In7(0)) is finite and satisfies LV = 0 on R. To cover the multi-dimensional case, we

adapt this condition and claim that the process is regular if d is chosen such that

[ole] €
/ " exp (—(1 — 2d) / s7t sup (Vlogr(z), x>d8) dt = +o0. (18)
r r {z,|z|=s}

Indeed, the function V(z) := U(|z|) where for all v > 0,

R R O R (= SR T R

is finite and satisfies LV = 0 on R".

In the one-dimensional case, condition (17) is necessary for the existence of an invariant prob-
ability measure (Has’minskii, 1980, Remark 2, p.105); thus, for the objective of this paper, d
has to be chosen in the set D; of the positive real numbers such that (17) hold. Observe that
D, is non-empty and contains {0,1/2}. In the multi-dimensional case, a necessary condition
for (positive) recurrence is that d checks a condition on the form (18) where the supremum is
replaced by the infimum (Has’minskii, 1960, Theorem II p.194). This involves the definition of
an interval D, limiting the range of the possible temperature d.

Under A1-2, there exists a solution (Q,F, (Fy), (Wy), (X¢),P) where (Q,F, (F), (W), P) is n-
dimensional Brownian motion, (X); is a F;-adapted homogeneous and continuous Markov pro-

cess with Feller transition probability, satisfying (15) P-a.s. and such that both the integral exist

P (/Otb(Xs)ds—|— /Ot o*(X)ds < oo) =1 (19)

A transition semi-group (Pt)tzo has the Feller property if for any continuous bounded real-

i.e. for all t > 0,

valued function f, x — P'f(z) is continuous. (X;) is thus a strongly Markovian process as a
(right)-continuous process with Feller transition probability (Dynkin (1965)).

Let 0 < V < oo be a twice continuously differentiable function such that there exists a non-
negative Borel function ¢, bounded on compact sets, a constant b < oo and a compact set
C such that LV < —¢llge + bllg. From (19) and the continuity of ¢ — VV (X;), the process
t fo X )H{VV(X,)}dWs is a local martingale. Application of the [t&’s rule yields LV = AV,

A3 Torall 1 <i,j<n,d%?(z)/dz;0x; and §*log 7 (z)/dx;0z; are locally uniformly Holder

continuous.
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Proposition 15. Under A1-3, the process is reversible and 7 is, up to a multiplicative constant,
the density of an invariant probability measure. Any skeleton chain is irreducible, and compact

sets are closed petite sets.

Proof. There exists a continuous function p : (¢, z, y) — p(t, z, y) such that P'(z, dy) = p(t, z,y)dy
(Kent, 1978, Theorem 1.1.). Since the process is regular (or conservative, in the terminology
of Kent) and = is Lebesgue integrable, (Kent, 1978, Theorems 4.1. and 6.2.) imply that the

process is time-reversible and

lim [ p(t,2,y)dy = (/ﬂ'(x)dx)_l /Aﬂ'(ac)dac. (20)

t—r00
Hence, m(dz) is invariant. Irreducibility of skeletons results from the (20), and petiteness of

compact sets from the continuity of p(t, -, ). O

Finally, we restrict our attention to densities = that are polynomially decreasing in the tails.

A4 7 satisfies Al and A3 and there exists some 0 < 8 < 1/n,

! I
0 < liminf Wfﬂ < ﬁmsupwoﬁgﬂ < oo,
le|stoo TP (x) wlmsto  TP(T)
2 2
28— 1< liminf v 1Ogﬂ-(x2)) < lim sup (v logﬂ-(?) < 0.

Set v = liminf|, 1o Tr(VZlogn(z)) |Viegn(z)|2.

This class is non empty and contains the densities that are polynomially decreasing in the tails
w(z) = ¢|z|~Y? for large ||, where 0 < 8 < 1/n; in that case, vy = 3(2 — n) > 28 — 1. For this
family, the regularity criterion (17) or (18) says that the temperature d has to be chosen in D,, =
[0, (148(2—n))/2]. For any density in the class A4, 0 < lim inf ;) ||’ (z) < lim SUD|y| |2|Pr(z) <
oo. Hence Dy = [0, (1+ 8)/2] and for n > 3, 1/2 ¢ D, If sup,s, supy, p=51(Vlogn(2), z) =
—071 < 0 exists, then [0,1/24 o(1 — n/2)] C D,.

It is readily seen that setting, V = 1+sign(p)7~” outside a compact set, and V' = 1 otherwise,
ol T s (IVlogrl)? TH(7 log 1)

Ly =y — 204 (L o] 1—p—-2d+ ———= 21

2 Tfnr " d p + |[Viegn|2 )’ (21)

for large |z|. As established in (Stramer and Tweedie, 1999a, Theorem 3.1.), the diffusion can

not be geometrically ergodic when 0 < d < 3: by choosing f := 7%= and applying [t6’s formula,
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df (X¢) ~ e1mP~4(Xy)dt + codW; for some constants ¢;; and the drift coefficient tends to zero for
large value of the process. The process (f(X)), fails to be geometrically ergodic, and henceforth,
(Xy)¢ itself.

From (21), for large |z|,

LV < —cVi® where a :=2p71 (8 — d), and ¢>0<= 14+v—p—2d>0.

In any cases, one has to choose p such that ¢ > 0. If & < 0 and p > 0, then the process is
geometrically V-ergodic (Meyn and Tweedie, 1993d, Theorem 6.1.). If 0 < o < 1 and p > 0,
the diffusion is polynomially ergodic as discussed in Section 2. If &« < 1 and p can be set
negative, the process is uniformly ergodic i.e. there exist £ > 1 and a constant ¢ such that for
all z, lim;, o, &' |[P'(z,-) — 7 (:)|]Tv < ¢ and the convergence does not depend on the starting
point. This yields Theorem 16 : the first assertion results from Roberts and Tweedie (1996)
and Corollary 6 of the present paper. The second and third assertions result from (Meyn and

Tweedie, 1993d, Theorem 6.1.).

Theorem 16. Consider the Langevin tempered diffusion on R™ where the target density m is

from the class Af and o := =% for some d satisfying (17) if n =1 or (18) if n > 2.
(i) If 0 < d < B, the process fails to be geometrically ergodic. For all0 <k < 14~ — 2,
. l+y-28-k
T i o) — . k= - - @
i ()7 P )~ 7O =0 7 < T
(i) If B < d < (14 7)/2, then for all 0 < rk < 14 v — 2d, the diffusion is geometrically

(22)

V-ergodic with V := 1+ 77",
(iii) If B < d, the diffusion is uniformly ergodic.

Theorem 16 extends earlier results to the multi-dimensional case and provides polynomial
rates of convergence of the “cold” Langevin tempered diffusions for a wide family of norms.
In the one-dimensional case, when d = 0, (Ganidis et al., 1999, Result R3, p.245) only claim
that the convergence in total variation norm is polynomial, with no explicit value of the rate of
convergence. We establish that for a given 77 "-norm, the minimal rate of convergence is achieved
with d = 0 and in that case coincides with the rate of convergence of the symmetric random walk
Hastings-Metropolis algorithm with light proposal distribution (Jarner and Roberts (2001)). By
choosing a diffusion matrix which is heavy where the target distribution is light, and conversely,
improves the rate of convergence as evidenced by (22). The critic temperature is d = 5. For

d > f3, the diffusion is no more polynomially ergodic and geometric rates can be reached. This
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critic temperature coincides with the critic one given in (Stramer and Tweedie, 1999a, Theorem

3.1.) for the real-valued diffusion.

Remark: General diffusions on R"™. The techniques above can be adapted for the analyzes
of diffusions satisfying (15). Under conditions implying (a) the existence of a solution, (b)
the condition (i) of Corollary 6 and (c) the petiteness property of the compact sets, (see e.g.
Has’minskii (1980); Veretennikov (1999); Malyshkin (2001)), we are able to prove that when
there exist M, 3,7 > 0 and [ < 2 such that

sup o]~ (e a(a)e) = 5, sup || Tr (a(x)) = v
{.[e]>M} {.[e]>M}

sup 2|7l < b(x),x >=: —r for some r>(y—pl)/2,
{.[e]>M}

then the diffusion is polynomially ergodic and for all z, for all 0 < x < {4+ 871(2r — )

. 2 —
Tim (140)7 1P, ) = 7)1 = 0, " < % SERLES

3.3. Compound Poisson-Process driven Ornstein-Uhlenbeck processes. Let X be an

Ornstein-Uhlenbeck process driven by a finite rate subordinator:
dXt = —,uXtdt + th

where 7; := Zf\;tl Wi, {W;}i>1 is an independent and identically distributed collection of ran-
dom variables from probability measure I’ and {N};>o is a Poisson-Process of finite rate A,
independent of the collection {Wi}iZI- Such processes are used as storage models (see for ex-
ample Lund et al. (1996)) and have recently been used in financial econometrics as models for
stochastic volatility (see Barndorff-Nielsen and Shephard (2001)).

The exponential decay of X except at jump points leads to geometric ergodicity of X when
the tails of F'(-) are sufficiently light. Here we shall explore the case where F(-) is extremely
heavy-tailed. First we make this concept precise: we say a probability measure is heavy-tailed
if, under that probability measure, for all £ > 0, E[¢"%] = co. Now let & denote the law of the
log jump sizes, that is G(A) = F(e?). We have the following negative result showing that for
sufficiently heavy-tailed jumps, geometric ergodicity, and even ergodicity can fail. As usual, we

let 7 denote the invariant probability measure (should it exist).

Lemma 17. (i) Suppose [ 2G(dz) = oo, then X fails to be positive recurrent.
(ii) Suppose G is heavy-tailed, then X fails to be geometrically ergodic.
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Proof. Suppose Xy = 2 and consider the petite set C' = [0, 1]. Then
P (¢ > t) > P[jump of size > €' occurs before time log 2/p] = (1—27*) / G(z)dz. (23)
ut

For positive recurrence, we require that E(7¢) to be finite, that is that P[rc > t] be integrable.

However the integrated right hand side of (23) is just

/dt/ G(x)dac:/ ptaG(z)de = 0o
0 ut 0

by hypothesis, so that E(7¢) = oo too, so that positive recurrence must fail, proving (7). For (ii),
we recall that for geometric ergodicity, we require that for some k > 0, E[e"¢] < co. (Although
not necessary, we shall again assume that Xo = 2 and €' = [0,1].) Thus from (23) we require

that
/ e”tdt/ G(z)de = pr™* / (™ = 1)G(pa)dz < oo. (24)
0 ut 0

However this is precluded by the heavy-tailed nature of G, thus proving (ii).

g

Examples of jump distributions for which geometric ergodicity fails (case 2 above), though

we will see that X is positive Harris recurrent, include the following;:

d —(logz)’ g
° - at least for & > 1; F(dz) = € "% for some B<1.
T

F = g yr

Lemma 18. Suppose that for some r > 1, m, = ["[log(1 4+ u)]"F(du) < oco. Then, X is
polynomially ergodic with rate (14 ¢)0=1),
Proof. For differentiable functions V in the domain of A,
AV = / (V(z 4+ u) — V(2))AF(du) — paV'(z) .
0

Now set V(2) = (logz)", then by direct calculation,

log )71

X

AV = [ ((og(o+ )" = (g2 Fid) - H7 (25)

Now the finiteness of m, merely ensures the finiteness of the first term on the right hand side
of (25). So, noting that (logx)"" is concave beyond z = e"~! for all 0 < n < 1, we find that in
fact the first term on the right hand side of (25) is bounded as a function of , so that for some

positive constant c,

X

00 nr—1
AV < / MAF(du)c —ru(logz)7 L
0
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It is easy to check that all bounded sets are petite in this example, and therefore the conditions

for the application of Corollary 6 with o = r=1.

4. PROOFS OF SECTION 2

When not explicitly defined, ¢ denotes a generic finite positive constant. @ is the usual shift

operator on the canonical probability space of the strong Markov process.

Lemma 19. If V™! is a Young function and r € Ag (resp. A), [¥(r)V 1] € Ag (resp. A).

Proof. Let r € Ag. W~! is a continuous, increasing and convex function, so ¥ is measur-
able and bounded on bounded sets ((Krasnosel’skii and Rutickii, 1961, Chapter 1)). Fur-
thermore, there exists a right-continuous non decreasing function ¢ such that In ¥(r(t)) =
Inr(t) + In{r(t)! fg(t) ¢(s)ds}; thus proving that InW(r(¢))/t | 0 as t — oo. This yields
W € Ag. The second assertion deduces easily from the definition of A and the upper bound
supy>1 W(at)/¥(t) < oo for all @ > 0 (Krasnosel’skii and Rutickii, 1961, Chapter 1, p.7-8). O

While Theorem 1 and Corollary 6 are claimed for a rate function r € A, Lemma 19 shows

that they can be established for a rate r € Ag, and we will do so.

4.1. Proof of Theorem 1. Without loss of generality, we assume Wy (r,) > 1 and ¥y(f,) > 1.

Lemma 20. Let r € Ag and f > 1 be a Borel function. For any closed set C' such that
supc G-, f,r;0) < oo, there exists a constant M < oo such that for all x € X and t > 9,
GC($7f7r;t) S MLt/SJGC(xv.ﬁr;(S)'

Proof. The proof is on the same lines than the proof of Lemma 4.1. Meyn and Tweedie (1993a)
that adresses the case r = 1, and the details are omitted. Using the property r(s 4+ t) <
r(s)r(t) (Thorisson, 1985, Lemma 1(d)), we obtain M = 1+sup,>s [r(t)/ro(t)] supe Gel-, for;6)
which is finite since lim; r(¢) /r%(¢t) = 0 (this is a consequence of (Thorisson, 1985, Lemma 1)). O

Proposition 21. Let r € Ag and f > 1 be a Borel function. Assume that X is ¢-irreducible
and supy G (-, f,r;0) < oo for some closed petite set C' and 6 > 0. @ — Gc(x, f,r;0) is finite

p-almost surely for some (and then any) mazximal irreducibility measure 1, and C' is accessible.
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Proof. By (Meyn and Tweedie, 1993a, Proposition 3.2.(ii)), for all A > 0, there exist a positive
integer m and a maximal irreducibility measure 1 such that ¢ () < infyec RY (z,-), where R,
is the resolvent kernel Ry(z,-) = [ Xexp(—At)P'(z,-)dt. By Lemma 20, R\G¢ (-, f,7;8)(z) <
cGc(z, f,r;d) where ¢ is finite for some convenient A. Hence, G (-, f,r;d) < oo, proving the
first statement. This implies that there exists an accessible set B such that sup,cpg E;[7¢(8)] <
sup,ep Gol(x, f,r;6) < co. Then for ¢ large enough, inf,ep Pr(rc(6) < ¢) > 0 and, for any z,
E;[nc] > P*(z, B)inf,ep Py(7c(8) < q) > 0 for some n depending upon (z, B). Hence C is

accessible. O

Proposition 22. Suppose Assumptions (i-ii) of Theorem 1. Then

(i) There exist tg and a measure v such that infi>4, infyec PH(z,-) > v(:), and v(C) > 0.
(ii) For any set B such that v(B) > 0, E.[r°(T,,.58)] < Rp E.[r%(rc(8))] for some finite
constant R; B.
(iii) For anyt > 0 and any accessible set B, E,[r(t5(t))] < Ri.p E:[r°(rc(8))] for some finite

constant R; B.

Proof. (i) results from R2, Proposition 21 and Lemma 2. (ii) Let ¢y and v be given by (i). Set
T = 7¢(to + m); and define the sequence of iterates 7! = 7 and for n > 2, 7" = 7""1 470 g7

Finally, let (u)n>2, be a {0, 1}-valued process given by w, = 1 if X n-144) € Band 0

[mm
otherwise. [t] denotes the upper integer part of t. Then w, € H, with H, = o(X,t < 77),
and by the strong Markov property P.(u, = 1|H,—1) > v(C) > 0 for n > 2. Finally, set
n = inf{n > 2,u, = 1}, so that E,[r®(Ts 5)] < E.[r°(r")]. Using again the strong Markov
property and the inequality r%(¢; + ¢2) < r%(¢1) + r(t1)r°(t2) (Thorisson (1985)),

N < DB [P yza] =3 {aa(n) +sup e [1(7)] b)), (26)

n>2 n>2 z€C
for all n > 2, where a,(n) = E;[r°(r" " )1,5,] and b.(n) = E.[r(7""")1,>,]. Since, by
Lemma 20, supg E,[r%(7)] < oo, there exists 0 < p < 1 and a finite constant ¢ such that
by(n) < pby(n—1)+c(1—v(C))" 1, a;(n) < (1-v(C))ay(n—1)4+by(n—1) supE, [ro(r)] :
zeC

and 0,(2) = E.[r(7)], a»(2) = E.[r°(7)]. The proof is on the same lines than the proof of
(Nummelin and Tuominen, 1983, Lemma 3.1.) and is omitted for brevity. Hence, E, [r®(T,, 5)] <
c (Ex [ro(7)] + E. [r(T)]) for some ¢ < oo. The proof is concluded, applying again Lemma 20 and
the bound sup,, r(t)/r°(t) < oo for all a > 0 (see the proof of Lemma 19).
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(iii) B is accessible and C' petite so there exist tg > 0 and v > 0 such that inf,cc Py(t5 < to+t) >
infec Po(tp < to) > 7. Set 7 = 7¢(t + to) and u,, = 1 if for some 7771 < s < 7771 4+ ¢ + ¢,
X, € B; and u,, = 0 otherwise. Following the same lines as in the proof of (ii), it may be proved
that there exists ¢ < oo such that E,[r%(75(¢))] < ¢ E.[r®(rc (¢ + to))]. The proof is concluded

by applying Lemma 20. (|

Proposition 23. Suppose Assumptions (i-ii) of Theorem 1. For any (V1,V3) € Z, C is a
(Yo (fe), Yi(rs))-reqgular set for the process i.e. supy GB(-, Yo fi), Vi(rs);t) < 0o for any t > 0
and any accessible set B. Gz, Wa(f.), V1(ri);t) < oo for all z € Sy and 7(Sy) = 1.

Proof. (Wa(f.), ¥1(rs))-regularity is a consequence of the Young’s inequality (4), the (f., 1I)-
regularity of C' (Meyn and Tweedie, 1993a, Proposition 4.1.) and Proposition 22(iii). For the

second statement, write

rgodTc(t)
G, Va(f), Ui(r);t) < Gol(z, Ua(f), Wi(ra)st) + E, / Wy (ra(s)) Wa(fu(Xs))ds)|

c(?)

The result now follows from the strong Markov property, Lemma 20 and the inequality Wy (r«(s+
t)) < Wi (re(s))¥yi(r.(t)) which holds since ¥; o r, € Ag. Finally, 7(Sy) =1 by Proposition 21.
O

Proposition 24. Suppose Assumptions (i-ii) of Theorem 1. The skeleton chain P™ is -

irreducible and aperiodic and possesses an accessible petite set A such that for all (V1,V3) € Z,

T, a—1
sup E, > (k) Ta(fulXpm)) | < o0 (27)
ze k=0

Proof. For the definitions of accessibility, smallness, petiteness, aperiodicity of a discrete-time
Markov chains, see Meyn and Tweedie (1993b) (hereafter MT). From Proposition 22(i), C' is
small for the skeleton P™ and the skeleton is aperiodic (Theorem 5.4.4 MT). In addition, by
R2, the skeleton is positive and 7(fs) < co. Let C), be a petite set (for the skeleton P”) such
that A = C' N, is of positive v-measure

Trm,p—1

ap B | S0 LX) <o 29)
z€Cn k=0

for any accessible set B (for the skeleton); the existence of such a set is a consequence of
(Theorems 14.2.3 and 14.2.11, MT) and Proposition 22(ii). The set A is accessible and petite

for the skeleton. (27) now results from the Young’s inequality (4), (28) and Proposition 22(ii).
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[Proof of Theorem 1]. By Proposition 24 and (Tuominen and Tweedie, 1994, Theorem 2.1 and
Proposition 3.2), lim, oo Vi(r«(n)) [[P""(z,") — 7()|lw,s) = 0 for 7 a.a. x. By Jensen’s
inequality, the upper bound sup;>; W3 (at)/Wy(t) < co for all a > 0, and assumption (iii), we have
for all t < m, P'Wy(f,) < c¢¥s(fs). In addition, since Wy(r,) € A, ¥y(re(n+1t)) < cWy(r.(n))
for all t < m (Thorisson, 1985, Lemma 1). Hence,

Jim Wy (0) 1P ) = Ol =0, 7 (20)

We now prove that this convergence occurs for all # € Sy which is of m-measure one, by
Proposition 23. To that goal, we mimic the proof of (Meyn and Tweedie, 1993c, Theorem 7.2.).
By Egorov’s Theorem, there exists a set A, 7(A) > 0, such that (29) holds uniformly for all
x € A. For all Borel function g € Ly, (y,), set g :== g — 7(g). Since ¥y (r.) € Ao,

Wi (ra(t) |Ex [9(X)lr, <] < ‘I’l(r*(t))/o zlelglpt_sgl(y) Po(74 € ds)

< M AE, [W1(ra(ra)] + o [W1(ra(a)) Uru 2] 3,

where M = sup,¢ 4 8up,>q r«(s)|P°g|(y). Let @ € Sy; from Proposition 23, E, [V (r«(74))] < 0o
and lim_,o By [W1(r(74))1;,5¢/2] = 0. Since the limit (29) holds uniformly for all z € A, M
is finite. Hence, lim¢ oo W1 (r«(t)) [Ex [g(X:) 1, <¢]| = 0 uniformly for all g € Ly, (y,)-

Since 7(f,) < 00, |Ey [§(X¢) 1Ly, >¢]| < ¢ By [Wo(fi(X¢))ILr,>¢]. Following the same lines as in the
proof of (Meyn and Tweedie, 1993c, Theorem 7.2.), using again SUPy <y, P fi < ¢fi, we obtain,

W (1)) B [l £ (X)) ] € € Wa(m)) ind Wt =) B (W £ (Ximu) i)

By Proposition 23, G 4(x, U3 ( fi), ¥1(r«);0) < oo, which implies that the upper limit in the right-
hand side is zero, proving that lim; o, Wq(r«(t)) E.[Va(fu(X¢)) 1L, >¢] = 0. Hence, uniformly
for g € Ly, (), iMoo Wi(re(t)) |E: [g(Xe)1s,>][ = 0. This concludes the proof.

4.2. Proof of Corollary 6. Set f.:= V'~ and r.(t) := (t + 1)"/o~1,

Lemma 25. Suppose Assumption (ii) of Corollary 6. For any a < n < 1, t > 0, and any
Fi-stopping-time T,

e, Ey [ /0 - vn—a(xs)ds] FE, [VT(Xopg)] < V(2) + bE, [ /0 - ]Ig(Xs)ds] .
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Proof. By definition of AV,
TAtATy TAIATy,
¢,E, [ / vn—a(Xs)ds] FE, [V (Xoninr)] < V7 () + OE, [ / e (X,)ds|
0 0

The right-hand side is upper bounded by V(z) 4 bt and by the monotone convergence theorem,
it converges to V(z) + bE,

fOTM ]Ic(XS)dS} as n — 00. The Lemma now results from Fatou’s

Lemma. O

Proposition 26. Suppose Assumption (ii) of Corollary 6. For all 6 > 0, there exists ¢ < oo
such that for all x € X, Go(z, 1, r0) < cV(z).

Proof. Set q := |1/« where |-| denotes the lower integer part. By Lemma 25, we have E,[r¢] <
c¢V?(z) and by Jensen’s inequality, we obtain E, [Tg_l_q] < V1792 (z). We prove by induction
that for all integer 1 <[ < ¢, E, [Tg_l_l] < eV17¥(z). The case [ = q holds; assume it is verified

for some 2 <[ < gq. The induction hypothesis and Lemma 25 yield

_ TC _ TC
E, {Tg 14“} <cE, [/0 Eyx. {Tg 1_1} ds] <cE, [/0 Vl_la(Xs)ds] < c‘/l_la‘i'a(av)7

which concludes the induction. For [ = 1, this yields G¢(z, 1,r,;0) < ¢V(z). Finally, by
standard manipulations and Lemma 25, we have G¢(, 1,7, 8) < c(1+ PV (z)) < ¢V (2).

[Proof of Corollary 6]. We check the conditions for the application of Theorem 1. Lemma 25
and Proposition 26 imply G¢(z, fo, 1;0) < ¢V (2) and Ge(z, 1,7 0) < ¢V (z), from which we
deduce the condition (ii) of Theorem 1, and by R1, condition (i) of Theorem 1. Condition (iii)

follows from Lemma 25. Finally, Sy = X.
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