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SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 11. IntrodutionThis paper is devoted to the study of sub-geometri f -ergodiity of a strong Markov semi-group (P t)t�0. That is, for a sub-geometrially inreasing rate funtion r := (r(t))t�0, and aBorel funtion f � 1, we propose suÆient onditions implying the limitlimt!+1 r(t)kP t(x; �)� �(�)kf = 0;for �-almost all (a.a.) x where � is the unique invariant probability measure. Our main onditionis ouhed in terms of modulated moments of return-times to a \test-set". In this form, this on-dition extends earlier riteria implying di�erent notions of stability (suh as Harris-reurrene,positive Harris-reurrene, ergodiity, f -ergodiity), for ontinuous-time Markov proesses. Thisondition is also analogous to the riterion for sub-geometri f -ergodiity of disrete time Markovhains. We also derive a ondition for polynomial ergodiity whih is easy to hek in manyappliations. This ondition is expressed in terms of inequality on the semi-group generator,and is analogous to the so-alled drift inequality in the disrete-time ase.We apply our results to the study of strongly Markovian proesses, giving three non-trivialexamples, two of whih are of onsiderable applied probabilisti interest. We �rst onsider asimple jump proess as a toy example, demonstrating that f -ergodiity at a logarithmi (resp.polynomial or sub-exponential) rate is narrowly related to the existene of a logarithmi (resp.polynomial or sub-exponential) moment of the mean-time spent in eah state, with respet tothe jump distribution. We then onsider Langevin tempered di�usions on Rn whih are relevantto Markov hain Monte Carlo (MCMC) tehniques sine they onstrut a di�usion proess withgiven stationary distribution � (whih only needs to be available up to an unknown normalizationonstant). When the stationary distribution is polynomial in the tails, the (simple) Langevindi�usion an not be ergodi at a geometri rate and we show that it is polynomially ergodi.We also onsider Langevin tempered di�usion in whih the di�usion matrix is a salar matrixwith oeÆient ��2d, d > 0, and prove that even when the target distribution is polynomial inthe tails, a onvenient hoie of the temperature d involves geometri ergodiity of the proess.Finally, we study a ompound Poisson-proess driven Ornstein-Uhlenbek proess whih is usedin storage models and more reently in �nanial eonometris. It is known that when thedistribution of the jump F has suÆiently light tails, the proess is geometrially ergodi. Weinvestigate the ase where F is heavy tailed and establish the sub-geometri ergodiity of theproess under appropriate onditions in this ase.



2 G. FORT AND G.O. ROBERTSThe paper is organised as follows. We �rst reall basi de�nitions on Markov proess, aswell as reviewing existing results on ergodiity of strongly Markovian proess. The new riteriafor sub-geometri ergodiity are given in Setion 2, and the proofs are postponed in Setion 4.Setion 3 is devoted to the three examples mentioned above.1.1. Basi de�nitions on Markov proess. Let X be a loally ompat and separable metrispae endowed with the Borel �-�eld B(X ). X = (
;A; (Ft)t�0; (Xt)t�0;Px), is a X -valued Borelright proess so that it is a temporally homogeneous Markov proess, strongly Markovian withright-ontinuous sample paths (see e.g. Sharpe (1988)). Px (resp. Ex) denotes the anonialprobability (resp. expetation) assoiated to the Markov proess with initial distribution Æx, theDira distribution at point x. Let (P t)t�0 be the assoiated Markov semi-group.We reall basi de�nitions and properties on Markov proess that will be used throughout thispaper. The proess X is �-irreduible for some �-�nite measure � on B(X ) if�(A) > 0 =) Ex �Z 10 1IA(Xs)ds� > 0; 8x 2 X :If the proess is �-irreduible, there exists a maximal irreduibility measure  that dominatesany irreduibility measure (Nummelin (1984)). In fat, if � is an invariant measure i.e. �P t = P tfor all t � 0, then � is a maximal irreduibility measure. Any measurable set whih is of positive -measure is said to be aessible. A set C 2 B(X ) is �b-petite for the proess (or simply petite)if there exist a probability measure b (resp. non-trivial �-�nite measure �b) on the Borel �-�eldof R+ (resp. on B(X )) suh thatZ 10 P t(x; �)b(dt)� �b(�); for all x 2 C:A �-irreduible proess always possesses an aessible losed petite set (Meyn and Tweedie,1993a, Proposition 3.2.). A proess is Harris-reurrent if there exists a �-�nite measure � suhthat �(A) > 0 =) Px�Z 10 1A(Xs)ds = +1� = 1; x 2 X ;or, equivalently, if there exists a �-�nite measure � suh that �(A) > 0 =) Px(�A <1) = 1 forall x 2 X . Harris-reurrene trivially implies �-irreduibility. A Harris reurrent right proesspossesses an invariant measure (Getoor (1980)). In fat, when the invariant measure is �nite, Xis alled positive Harris-reurrent. A �-irreduible proess is aperiodi if there exist an aessible�Æm-petite set C and t0 suh that P t(x; C) > 0 for all x 2 C; t � t0. (Meyn and Tweedie, 1993,Proposition 6.1) shows that a positive Harris reurrent proess is aperiodi if some skeleton



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 3hain Pm, m > 0, is irreduible i.e. if there exists a �-�nite measure � on B(X ) suh that�(A) > 0 =) Ex hPn�0 1IA(Xnm)i > 0 for all x 2 X .For Borel funtions f � 1, g, de�ne the norm jgjf := supx jg(x)j=f(x) and the Banahspae Lf := fg; jgjf < 1g. For a signed measure �, the total variation norm is given byk�kTV := supA �(A) � infA �(A); and the f -norm (for some Borel funtion f � 1), k�kf :=supfg;jgjf=1g j�(g)j, so that the total variation norm is the 1I-norm where 1I denotes the onstantfuntion 1I(t) = 1. The proess is ergodi if8x 2 X ; limt!1 kP t(x; �)� �(�)kTV = 0;and f -ergodi if �(f) <1 and8x 2 X ; limt!1 kP t(x; �)� �(�)kf = 0: (1)Finally, X is geometrially (resp. sub-geometrially) f -ergodi if the limit (1) holds at a rater(t) := �t, for some � > 1 (resp. r := (r(t))t�0 for some sub-geometrially inreasing rate). Asub-geometri rate is de�ned as follows (see e.g. Thorisson (1985)). Let �0 be the set of the mea-surable, bounded on bounded intervals and non-dereasing funtions r : R+! [1;1), suh thatlog r(t)=t # 0 as t! +1. Let � be the set of the rates �r := (�r(t))t�0 suh that for some r 2 �0,0 < lim inf t �r(t)=r(t) � lim supt �r(t)=r(t) < 1. � is by de�nition, the set of the sub-geometrirates. For example, � ontains rates suh as �r(t) � log�(t+1), � � 0, �r(t) � (1_ t�) log�(t+1),� > 0, � 2 R, and sub-exponential rates �r(t) � exp(�t�), � > 0, 0 < � < 1.Throughout this paper, we will often make omparison with (disrete time) Markov hains;the unfamiliar reader an refer to Meyn and Tweedie (1993b).1.2. (f; r)-modulated moments and stability. De�ne the hitting-time on a measurable setC, delayed by Æ > 0, �C(Æ) := infft � Æ;Xt 2 Cg; (2)the moment �C(0) is denoted by �C . It is proved in the literature that modulated momentsof �C(Æ) for some losed petite set are related to Harris-reurrene, positive Harris-reurrene,f -ergodiity and geometri f -ergodiity. For a Borel funtion f � 1, an inreasing non-negative



4 G. FORT AND G.O. ROBERTSrate funtion r = (r(t))t�0, Æ > 0, de�ne the (f; r)-modulated momentGC(x; f; r; Æ) := Ex "Z �C(Æ)0 r(s)f(Xs)ds# :R1 X is Harris-reurrent if and only if there exists a petite set C suh that for all x 2 XPx(�C <1) = 1 (Meyn and Tweedie, 1993a, Theorem 1.1).R2 If X is Harris-reurrent with invariant measure �, then for f � 1, �(f) <1 if and onlyif supx2C GC(x; f; 1I; Æ) < 1 for some losed petite set C (Meyn and Tweedie, 1993a,Theorem 1.2.).R3 A positive Harris-reurrent proess is ergodi if and only if some skeleton hain Pm isirreduible (Meyn and Tweedie, 1993, Theorem 6.1.).R4 A positive Harris-reurrent proess is f -ergodi if (a) some skeleton hain Pm is irre-duible, (b) supx2C GC(x; h; 1I; Æ) < 1 where h � sups�m P sf and C is a losed petiteset, and () for all x, GC(x; h; 1I; Æ) < 1 (Meyn and Tweedie, 1993a, Proposition 4.1.)and (Meyn and Tweedie, 1993, Theorem 7.2.).R5 A positive Harris-reurrent proess is geometrially f -ergodi if (a) some skeleton hainPm is irreduible, (b) there exists a losed petite set C and � > 0 and GC(x; h; exp(�t); Æ)is �nite for all x, where h � 1 is a Borel funtion suh that 1f � R10 exp(�t)P th dt � 2ffor some �nite positive onstants i, () supC GC(�; h; exp(�t); Æ)<1 (Down et al., 1995,Threorem 7.4.).In Setion 2 we give a riterion of the form R1-5 that implies sub-geometri f -ergodiity.To date, little is known about general haraterisations for f -ergodiity at a sub-geometrirate for Markov proesses. However we note some important speial ases whih have beenstudied in the literature. The work by Ganidis et al. (1999) is restrited (a) to onvergenein total variation norm and (b) to di�usion proesses on Rd with di�usion matrix equals toidentity. Their proof is based on spetral properties of the transition semi-group seen as anoperator, and di�ers from the probabilisti approah adopted in the present paper. We will seein Setion 3.2 how to improve their onlusions. Veretennikov (1999) and Malyshkin (2001) dealwith di�usion proesses and an be read as a speial appliation of the present paper. The mostrelated work to the present one is the paper by Dai and Meyn (1995) that onsiders f -ergodiityat a polynomial rate of a Markovian state proess, in order to study the stability of multi-lass



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 5queuing networks. These results are partiularly related to our work and we will desribe theirresults in Setion 2.1.3. Drift ondition and generator. For a Borel funtion 0 � V < 1, denote by AV theBorel funtion - when exists - suh that t 7! AV (Xt) is integrable Px-almost surely (a.s.), andthere exists an inreasing sequene of stopping-time fTngn suh that for any stopping time �Ex �V (X�^Tn)� V (X0)� Z �^Tn0 AV (Xs)ds� = 0; for all x 2 X ; n � 0:When AV exists, V is said to be in the domain of A. If there exists h suh that t 7! h(Xt) isintegrable Px-a.s. and t 7! V (Xt)�V (X0)�R t0 h(Xs) ds is a right ontinuous Px-loal martingale(with respet to the �ltration Ft), then V is in the domain of A and AV = h (Davis (1993)).If V is in the domain of the weak in�nitesimal generator ~A then V is in the domain of A andAV = ~AV (Dynkin (1965)). If the funtions V and AV are right-ontinuous, these two suÆientonditions are equivalent and ~AV = AV .When AV satis�es a drift ondition AV � �f+b1IC for some losed set C, and a non-negativefuntion f suh that t 7! f(Xt) is integrable Px-a.s., we have GC(x; f; 1I; Æ) � V (x) + Æb; thiswill be the basi tool to upper bound the (f; r)-modulated moments.Conditions on AV are analogous to onditions on the variation PmV � V for a disrete timeMarkov hain with transition kernel Pm. It is well-known that the ondition PmV � V � �foutside a \test set" for the skeleton Pm is related (a) to the f -ergodiity of the Markov hain(Xkm)k (Meyn and Tweedie (1993b)); (b) to the geometri V -ergodiity if f = �V for some0 < � < 1 (Meyn and Tweedie (1993b)); () to the polynomial V -ergodiity if f / V 1��for some 0 < � � 1 (Jarner and Roberts (2002); Fort and Moulines (2003)); (d) and moregenerally sub-geometri f -ergodiity is f / �(V ) for some onave funtion � (Dou et al.(2004)). Similar results hold for ontinuous Markov proess. Meyn and Tweedie (1993d) provethat the ondition AV � �f outside a losed petite set is related (a) to the f -ergodiity of theMarkov proess X ; and (b) to the geometri V -ergodiity if f / V (see also Down et al. (1995);Roberts and Rosenthal (1996); Roberts and Tweedie (2000)). In Setion 2, we establish thatthe ase f / V 1�� is related to polynomial f -ergodiity.



6 G. FORT AND G.O. ROBERTS2. Statements of the resultsIn Theorem 1, we establish that modulated moment on some delayed hitting-time on a losedpetite set C provides a riterion for sub-geometri f -ergodiity. We assume that there existÆ > 0, a Borel funtion f� � 1 and a rate funtion r� 2 � suh thatsupC GC(�; f�; 1I; Æ) <1; supC GC(�; 1I; r�; Æ) <1: (3)We will establish that r� is the maximal rate of onvergene (that an be dedued from theseassumptions) and it is assoiated to onvergene in total variation norm i.e. in 1I-norm, whihis the minimal one. On the other hand, we will show that f� is the largest norm in whihonvergene ours and the assoiated onvergene rate is the minimal one 1I.Using an interpolation tehnique, we also derive a onvergene rate 1 � rf � r� in � assoiatedto some f -norm, 1 � f � f� (see Dou et al. (2004) for a similar approah in the disretetime ase). The simplest interpolation tehnique is given by H�older's inequality whih yields(from (3)) supC GC(�; fp� ; r1�p� ; Æ) < 1. By analogy to the disrete-time ase, one would expetonvergene in fp� -norm at the rate r1�p� , and we will prove the ontinuous time version of thisresult.More generally, if there exists a pair of non-dereasing positive funtions (	1;	2) satisfying	1(x) 	2(y) � x+ y; x; y � 1; (4)then supC GC(�;	2(f�);	1(r�); Æ) < 1. We will establish that if 	1(r�) 2 �, this onditionyields onvergene in 	2(f�)-norm at the rate 	1(r�). Young funtions are losely related tothese pairs of funtions (	1;	2), say. Spei�ally, if (H1; H2) is a pair of Young funtion, then(H�11 ; H�12 ) satis�es (4) (see e.g. (Krasnosel'skii and Rutikii, 1961, Chapter 1)). Let I bethe set of pairs of inverse Young funtions, augmented with the pairs (Id; 1I) and, (1I; Id). Asommented above, I ontains the pairs ((x=p)p; (y=(1� p))1�p), 0 < p < 1, and more generally,the pairs of funtions inreasing at in�nity as (xp lnb x; y1�p ln�b y) for some 0 < p < 1 andb 2 R, p = 0 and b � 0, p = 1 and b � 0.Theorem 1. Let f� � 1 be a Borel funtion and r� 2 �. Assume that(i) X is Harris-reurrent with invariant measure �, and some skeleton hain, say Pm, is -irreduible.(ii) there exist a losed petite set C and some Æ > 0, suh that (3) holds.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 7(iii) there exists a �nite onstant  suh that supt�m P tf� � f�.Then � is an invariant probability measure, �(f�) <1 and for any pair 	 := (	1;	2) 2 Ilimt!+1 f	1(r�(t)) _ 1g kP t(x; �)� �(�)k	2(f�)_1 = 0 for all x 2 S	;where S	, whih is of �-measure one, is de�ned byS	 := (x 2 X ; Ex "Z �C(Æ)0 	1(r�(s)) 	2(f�(Xs))ds# <1) :The proof of Theorem 1 is postponed in Setion 4.1. We �rst verify that 	1(r�(t)) _ 1 2�. Under (i-ii), C is aessible and the following lemma holds (Meyn and Tweedie, 1993,Proposition 6.1.).Lemma 2. Suppose that X is positive Harris reurrent with invariant distribution � and someskeleton hain Pm is irreduible. For any aessible petite set C, there exist t0 > 0 and anirreduibility measure � for the proess suh that �(C) > 0 and infx2C inf t�t0 P t(x; �) � �(�).Based on this lemma and on ondition (ii), the seond step onsists in proving that theskeleton Pm is irreduible, aperiodi and possesses a petite set A suh thatsupx2AG(m)A (x;	2(f�);	1(r�)) <1; with G(m)A (x; f; r) = Ex [Tm;AXk=0 r(k) f(Xkm)℄; (5)where Tm;A � 1 is the return-time to A for the skeleton hain PmTm;A := inffk � 1; Xkm 2 Ag: (6)By appliation of Tuominen and Tweedie (1994), Theorem 2.1, this proves that for �-a.a. x,limk!+1 	1(r�(k)) kP km(x; �)��(�)k	2(f�) = 0. Using (iii), the limit still holds replaing r�(k)(resp. P km) by r�(t) (resp. P t). We �nally establish that the limit holds for all the pointsx 2 S	 and �(S	) = 1.Remark 3. Theorem 1 remains valid by substituting ondition (i) for the ondition : there exista  -irreduible, aperiodi and positive reurrent transition kernel Pm.Theorem 1 remains valid by substituting (ii-iii) for the ondition : there exist a losed petiteset C and some Æ > 0 suh that supC GC(�; h; 1I; Æ) < 1 and supC GC(�; 1I; r�; Æ) < 1 whereh � supt�m P tf�.Condition (iii) implies that the semi-group (P t)t�0 and the resolvent kernel R = R10 exp(�t) P t dtare bounded on Lf� .



8 G. FORT AND G.O. ROBERTSRemark 4. By (4), it is readily seen that fx; GC(x; f�; 1I; Æ) + GC(x; 1I; r�; Æ) < 1g � S	. Itmay be read from the proof thatlimt!+1 f	1(r�(t)) _ 1g k�P t(�)� �(�)k	2(f�)_1 = 0; (7)for all probability measure � suh that GC(x;	2(f�) _ 1;	1(r�) _ 1; Æ) is �-integrable. Ap-plying again (4), (7) holds for all distribution � suh that fGC(x; f�; 1I; Æ) + GC(x; 1I; r�; Æ)g is�-integrable.Remark 5. For any pair (	1;	2) 2 I, if 	1 strongly inreases at in�nity (for example, 	1(x) /xp for some p < 1 lose to one), then 	2 slowly inreases (	2(x) / x1�p for some 1 � p loseto zero) (Krasnosel'skii and Rutikii, 1961, Theorem 2.1. Chapter 1). Hene, the stronger thenorm, the weaker the rate (and onversely). This ompromise between the rate funtion and thenorm of onvergene is well-known for disrete parameter Markov hain (Tuominen and Tweedie(1994); see also Jarner and Roberts (2002), Fort and Moulines (2003), Dou et al. (2004)). Asexpeted, this property remains valid for ontinuous-time Markov proess.Corollary 6 provides a ondition based on A, well-adapted to prove polynomial ergodiity.Corollary 6. Let 1 � V <1 be a Borel funtion and 0 < � � 1. Assume that(i) some skeleton hain Pm is irreduible.(ii) there exists a losed petite set C suh that supC V < 1 and for all � � � � 1, t 7!V ���(Xt) is integrable Px-a.s. andAV � � ��V ��� + b1IC ; 0 � b <1; 0 < � <1: (8)Then there exists an unique invariant distribution �, �(V 1��) < 1 and for all 0 < p < 1 andb 2 R or p = 1 and b � 0 or p = 0 and b � 0,limt!+1 (1 + t)(1�p)(1��)=� (log t)b kP t(x; �)� �(�)kV (1��)p (lnV )�b _1 = 0 x 2 X :The proof is given in Setion 4.2. From (ii), we obtain GC(x; V 1��; 1I; Æ) + GC(x; 1I; (1 +t)1=��1; Æ) � V (x); and then we apply Theorem 1.By hoosing b = 0 and p = (1� ��)=(1� �) for some 1 � � � 1=�, Corollary 6 yields8x 2 X ; limt!1 (t+ 1)��1 kP t(x; �)� �(�)kV 1��� = 0: (9)If (9) holds for some V funtion, we shall say that the Markov hain is polynomially ergodi withrate (1 + t)(1��)=�.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 9Remark 7. Corollary 6 an be ompared to the paper by Jarner and Roberts (2002) for thedisrete parameter ase. They start with proving that if there exist a Borel funtion 1 � V <1,0 < � � 1, a set C suh that for all � � � � 1PmV � � V � � ��V ��� + b1IC 0 � b <1; 0 < � <1; (10)there exists  < 1 suh that G(m)C (�; V 1��; 1I) + G(m)C (�; 1I; (1 + t)1=��1) � V , where G(m)C isgiven by (5). The drift ondition (10) is analogous to (8) and the ontrols of the moments G(m)Cand GC are similar. If in addition Pm is irreduible, aperiodi and C is petite for the skeleton,Pm is positive with invariant distribution � suh that �(V 1��) < 1 and for all 1 � � � 1=�,the skeleton is V 1���-ergodi with rate (n + 1)��1. These rates oinide with those in (9).Remark 8. From the proof of Corollary 6, it may be read than only a �nite number of nested driftonditions is required; nevertheless, in pratie, it is not more restriting to verify a ontinuumof drift onditions than to verify a �nite number of drift onditions. More preisely, assumption(ii) an be substituted for the onditions : (iii) there exist a losed petite set and funtions1 � Vq�1 � fq, suh that for all integers 1 � q � p, AVq � �fq + b1IC , t 7! fq(Xt) is integrablePx-a.s., and supC Vp < 1; (iv) there exists � > 0 suh that Ex [��C ℄ � f1(x). If suh, followingthe same lines as in the proof of Proposition 26, it may be proved that GC(�; 1I; (t+1)p�1+�; Æ)+GC(�; fp; 1I; Æ) � Vp for some Æ > 0. Together with ondition (i), this yields f1��� -ergodiity ata rate (t + 1)(p�1+�)� for all 0 � � � 1, where f� is any funtion satisfying supt�m P tf� � fp.Dai and Meyn (1995) (hereafter DM) are, to our best knowledge, the �rst to exhibit this kindof nested drift onditions and hene, the �rst to address ergodiity at a polynomial rate; theyproved this yields f1-ergodiity at a rate (t + 1)p�1 (Theorem 6.3, DM). We are able to obtainthe same result : to that goal, we observe that onditions (iii-iv) are veri�ed with funtionsfk � fk=pp , � = 1 (as a onsequene of Proposition 5.3 and Eq. (6.1), in DM) and f� / fp.We proved that nested drift onditions on the generator A provide a ontrol of moments GCwith a polynomially inreasing rate funtion. The onverse seems to be an open question. Wenevertheless make mention of Propositions 5.4 and 6.1 in Dai and Meyn (1995), that provide a(partial) onverse ondition : from the ondition supC GC(x; f; 1I; Æ) < 1, they dedue a driftondition onA (we point out that this single ondition implies a ontinuum of onditions by usingthe same onvexity argument as in (Jarner and Roberts, 2002, Lemma 3.5)). Unfortunately, thisdrift ondition in turn implies only a ontrol of the moment GC(x;Rf; 1I; Æ) where Rf(x) is afuntion, whih is, in general diÆult to ompare with f .



10 G. FORT AND G.O. ROBERTS3. ExamplesIn this setion, h�; �i and j � j denote respetively the salar produt and the Eulidean normin Rn. If u is a twie ontinuously di�erentiable real valued funtion on Rn, ru (resp. r2u)denotes its gradient (resp. its Hessian matrix); and �u=�xi its partial derivative with respet tothe i-th variable. For a matrix u, Tr (u) stands for the matrix trae and u0 the matrix transpose.For r 2 �, de�ne the sequene r0 by r0(t) = R t0 r(s)ds. Finally, we largely make use of theinequality r(s+ t) � r(s)r(t), s; t � 0, whih holds for any rate r 2 � (Thorisson, 1985, Lemma1).3.1. Toy example: Jump proess. Consider the jump proess on Z+ suh that given thatXt = i, the waiting-time to the next jump has an exponential distribution with expetation ��1iand is independent of the past history. We assume that for all i � 0, �i > 0, and supi�0 �i <1.The probability that the jump leads to state j is given by the matrix entry Q(i; j). We onsiderthe ase when Q(0; i) = pi and Q(i; 0) = 1 for all i � 1, for some positive sequene (pi)i�1 suhthatPi�1 pi = 1. We assume in addition thatlim infi �i = 0 and Xi�0 pi��1i <1: (11)Sine supi�0 �i <1, there exists aZ+-valued right-ontinuous strong Markov proess satisfyingthe heuristi desription above and suh that for all (i; j) 2Z2+, the limit existslimt!0 P t(i; j)� Æi(j)t =: A(i; j) <1 (12)where Æi is the Dira-mass at point i, and for all i � 1A(0; 0) = ��0; A(0; i) = �0pi; A(i; 0) = �A(i; i) = �i; (13)and A(i; j) = 0 otherwise (see e.g. (Feller, 1971, p.330)).Lemma 9. The proess is Harris-reurrent, reversible with invariant distribution � given by�(0) = f1+Pj�1 pj��1j g�1 and �(i) = pi��1i �(0), i � 1. Any skeleton hain Pm is irreduible.Proof. We have Ei [�0℄ = (1 � 1I0(i))��1i and for all i � 0, j 6= i, Æ > 0, P Æ(i; j) � pj . Then,Ei [�0(Æ)℄ = Æ+Pj�1 P Æ(i; j)Ej [�0℄ � Æ+2Pj�1 pj��1j . Hene, for all i 2Z+, Pi(�0(Æ) <1) = 1and as f0g is a losed petite set, the proess is Harris-reurrent. � is the unique invariant



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 11probability measure (as unique solution to �A = 0), and sine X obeys the detailed balane i.e.�(i)A(i; j) = �(j)A(j; i) for all i; j the proess is reversible. Finally, for all m > 0, and i; j > 0Pm(i; j)� pj�0�i�j Z m0 ds exp(��is) Z m�s0 dt exp(��0t) Z m�(t+s)0 du exp(��ju) > 0;where the inequality says that Pm(i; j) is greater than the probability of a single visit to 0 beforea jump to j. Similarly, it is easy to prove that Pm(0; j) > 0 and Pm(j; 0) > 0 for any j 2 Z+.This proves the irreduibility of any skeleton. �We dedue from R3 that the proess is ergodi. Nevertheless, this onvergene fails to ourat a geometri rate as shown in lemma 10, the proof of whih relies on the notion of ondutane.Lemma 10. X fails to be geometrially ergodi.Proof. As X is reversible, any Markov kernel Pm is reversible. It is proved in Lawler and Sokal(1988) that for a reversible Markov kernel Pm, the ondutane �m given by �m := infA m(A)where m(A) := f�(A)�(A)g�1 RA Pm(x;A)�(dx), is positive if and only if Pm is geometriallyergodi. We verify that for any skeleton Pm, the ondutane is zero whih will involve thatthe skeleton fails to be geometrially ergodi. Consider the set of states i suh that �(i) � 1=2.Then m(i) � 2(1� Pm(i; i)) � 2(1� exp(��im)) upon noting that Pm(i; i) is lower boundedby the probability that the waiting-time in state i is greater than m. Sine lim inf i!+1 �i = 0,for all � > 0, there exists a state i suh that m(i) � �, whih involves �m = 0. �We now identify funtions V that are in the domain of A.Lemma 11. Let 0 � V <1 be a Borel funtion suh that Pi�1 piV (i) <1. Then V is in thedomain of A and AV = AV .Proof. For a funtion f � 0 suh thatPj pjf(j) <1, the monotone onvergene theorem yieldsXj�1 limt#0 P t(i; j)� Æi(j)t f(j) = limJ"+1 JXj=0 limt#0 P t(i; j)� Æi(j)t f(j) = Af(i);in addition, supZ+ f�1jAf j <1. This proves that V is in the domain of the weak in�nitesimalgenerator A, and thus in the domain of A. �The expression of the generator suggests that funtion V on the form ���i is a andidate tosolve the drift inequality (8). This yields f -ergodiity at a log-polynomial rate.



12 G. FORT AND G.O. ROBERTSProposition 12. Assume that there exists � � 1 suh that Pi�1 pi���i < 1. Then for alli 2Z+, 0 < � < � � 1 and b 2 R or � = 0 and b � 0, or � = � � 1 and b � 0,limt!1 (1 + t)��1�� [ln(1 + t)℄b kP t(i; �)� �(�)k1+���x [ln(1+��1x )℄�b = 0:Proof. We apply Corollary 6 : we hoose V � 1 suh that for all i � 1, V (i) = �1V (0)���i forsome  > V (0). Then (8) is veri�ed with � = ��1 and the losed petite set C = f0g. �When � = 1 (i.e. with nothing more than the ondition (11)), this establishes the onver-gene in total variation norm at the rate 1I, whih orroborates the ergodiity of the proessproved above. Nevertheless, if for some � > 0, the sum Pi�1 pi �1 _ ��1i � �log(1 _ ��1i )��exists, Corollary 6 does not yield a stronger onvergene result than the ergodi one. We proveby appliation of Theorem 1, that overs more general rates than the polynomial ones, thatonvergene in total variation norm ours at the rate r�(t) � [log(t)℄�, and onvergene innorm f�(x) = [log(1 _ ��1x ) + 1℄� ours at rate 1I. We also derive suÆient onditions forsub-exponential ergodiity.Lemma 13. Let f� :Z+! [1;1) and r� 2 � suh thatXj�1 pj �1 _ ��1j � f�(j) <1 and Xj�1 pj ��1j Z +10 r�(s)�j exp(��js)ds <1: (14)Then there exists a �nite onstant  suh that for all m > 0, supt�m P tf� � f�. For all Æ > 0,there exists a �nite onstant  suh thatG0(x; f�; 1I; Æ) �  �1 _ ��1x � f�(x) G0(x; 1I; r�; Æ) �  Z +10 r�(s) exp(��xs)ds:Proof. Sine P t(x; j) � pj for all x 6= j, it is trivial to prove that supt>0 supi2Z+ f�1� P tf� < 1.For f � 1 and r 2 �,G0(x; f; r; Æ)� Z Æ0 r(s)P sf(x)ds+ r(Æ) Xj�1 P Æ(x; j)f(j)Ej [r0(�0)℄:To onlude the proof, observe Ej [r0(�0)℄ = �j R r0(t) exp(��js)ds = R r(t) exp(��js)ds. �Proposition 14. (i) Assume that Pi�1 pi �1 _ ��1i � �log(1 _ ��1i )�� < 1, for some � � 0.For all 0 � � � �, i 2Z+, limt!+1 [log(t+ 1)℄��� kP t(i; �)� �(�)k[1+log(1_��1i )℄� = 0.(ii) Assume thatPi�1 pi �1 _ ��1i ���1=2i exp �z2��1i � <1, for some z > 0. For all 0 � p � 1,i 2Z+, limt!+1 exp(2z(1� p)t1=2) kP t(i; �)� �(�)k[1+��1=2i exp(z2��1i )℄p = 0.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 13Proof. In both ases, apply Theorem 1; for ase (i), set r�(t) = flog(exp(� � 1) + tg� andf�(i) = 1+ log(1_ ��1i )� ; and for ase (ii), set r�(t) = exp(2zt1=2), f�(i) = 1+��1=2i exp(z2��1i )ans observe that R exp(2zs1=2)� exp(��s)ds � 1 + 2p�z��1=2 exp(z2��1). �3.2. Langevin Tempered di�usions on Rn. Let us onsider a stohasti integral equationXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dWs; (15)where Wt is a n-dimensional Brownian motion, the drift oeÆient b = (b1; � � � ; bn)0 is on theform, 1 � i � n, bi(x) = 12 nXj=1 ai;j(x) ��xj log �(x) + 12 nXj=1 ��xj ai;j(x);where a = ��0 is the n� n symmetri positive de�nite matrix. Suh a di�usion is the so-alledLangevin di�usion and is de�ned in suh a way that � is, up to a multipliative onstant, thedensity of the unique invariant probability distribution (with respet to Lebesgue measure onRn). This property motivates reent interests in Langevin di�usion for their use as MCMCmethods, where the sope of these tehniques is to draw samples from a Markov hain withgiven stationary density �. The eÆieny of these algorithms is linked to the rate at whih f -moments Ex [f(Xt)℄ onverge to the onstant �(f). This motivates the study of the f -ergodiity.In pratie, disretizations of the ontinuous-time proess are used to solve the MCMC simula-tion problem and reent works proved that it is possible to �nd methods of disretizing whihinherit the onvergene rates of the ontinuous-time di�usion (see Roberts and Tweedie (1996);Stramer and Tweedie (1999a,b); Roberts and Stramer (2003); Roberts and Tweedie (2002) formethods of disretizing and their use in MCMC tehniques). Roberts and Tweedie proved that,on the real line, when the target density � is heavy tailed, the Langevin di�usion with a := 1an not be geometrially ergodi. We omplement this assertion when � is polynomial in thetails, and prove that the Langevin di�usion in the one-dimensional ase as well as in the multi-dimensional one is f -ergodi at a polynomial rate. For suh polynomial target density on thereal line, it was observed in Jarner and Roberts (2001) that the polynomial rate of onvergeneof the Metropolis-Hastings algorithm ould be improved by hoosing a heavy-tailed proposaldistribution. This idea, when adapted to the di�usion on the real line, suggests the hoie of aspeed measure i.e. of the oeÆient � suh that � is small when the proess is lose to the modesof � and big when far from the modes (Stramer and Tweedie (1999a)). In the multi-dimensionalase, this suggests a(x) on the form ��2d(x)In, where In is the identity matrix on Rn, d > 0. Inthat ase (d > 0) we all these proesses Langevin tempered di�usion (see Roberts and Stramer



14 G. FORT AND G.O. ROBERTS(2003) for the justi�ation of these heated di�usions). It was observed in the literature thatby hoosing d large enough, a di�usion on the real line with target density polynomial in thetails is geometrially ergodi. We investigate the behavior of this Langevin tempered di�usionsin the multi-dimensional ase, ontrarily to most of the mentioned ontributions that over theone-dimensional ase. In Theorem 16, it is proved that up to some ritial temperature d� thedi�usion is polynomially ergodi and the larger d, the better the rate. When d � d�, the di�u-sion is geometrially ergodi. We heneforth onsider a di�usion matrix a(x) = �2(x)In where�(x) := ��d(x) for some d � 0. Assume thatA1 � is, up to a multipliative onstant, a positive and twie ontinuously di�erentiabledensity on Rn (with respet to Lebesgue measure).De�ne the drift vetorb(x) := 12�2(x) �r logf�(x)�2(x)g� = 1� 2d2 ��2d(x) r log �(x): (16)Under A1, the oeÆients b and � are loally Lipshitz-ontinuous, whih implies that forany ompat set K, supx2Kfjb(x)j+ j�(x)jg(1 + jxj)�1 < 1. These loal onditions allow theonstrution of a ontinuous proess satisfying the stohasti integral equation (15) up to theexplosion time � := limn!1 �n, where �n := infft � 0; jXtj � ng. We thus formulate thefollowing assumptionA2 The proess is regular i.e. � = +1 a.s.Under A1, a suÆient ondition for regularity is the existene of a twie ontinuously dif-ferentiable non-negative funtion V and a onstant  � 0 suh that LV � V on Rn andlimn!1 inf jxj�n V (x) = +1 (Has'minskii, 1980, Theorem 3.4.1.) where L is the ellipti opera-torLV (x) = hb(x);rV (x)i+ Tr �r2V (x) a(x)�2= ��2d(x)2  (1� 2d)hr log�(x);rV (x)i+ nXi=1 �2V (x)�x2i ! :In the one dimensional ase, (Has'minskii, 1980, Remark 2, p.105) establishes that the proessis regular if d is hosen suh that ZR�2d�1(x)dx = +1; (17)



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 15sine the funtion V (x) := sign(x) R x0 Q(y)dy where lnQ(x) = �2 R x0 b(t)��2(t)dt = (2d �1)(ln �(x)� ln �(0)) is �nite and satis�es LV = 0 on R. To over the multi-dimensional ase, weadapt this ondition and laim that the proess is regular if d is hosen suh thatZ 1r t1�n exp �(1� 2d) Z tr s�1 supfx;jxj=sghr log�(x); xids!dt = +1: (18)Indeed, the funtion V (x) := U(jxj) where for all u � 0,U(u) := Z ur exp � Z tr supfx;jxj=sg�h 2b(x)�2(x) ; xjxji+ n � 1jxj � ds! dt;is �nite and satis�es LV = 0 on Rn.In the one-dimensional ase, ondition (17) is neessary for the existene of an invariant prob-ability measure (Has'minskii, 1980, Remark 2, p.105); thus, for the objetive of this paper, dhas to be hosen in the set D1 of the positive real numbers suh that (17) hold. Observe thatD1 is non-empty and ontains f0; 1=2g. In the multi-dimensional ase, a neessary onditionfor (positive) reurrene is that d heks a ondition on the form (18) where the supremum isreplaed by the in�mum (Has'minskii, 1960, Theorem II p.194). This involves the de�nition ofan interval Dn limiting the range of the possible temperature d.Under A1-2, there exists a solution (
;F ; (Ft); (Wt); (Xt);P) where (
;F ; (Ft); (Wt);P) is n-dimensional Brownian motion, (Xt)t is a Ft-adapted homogeneous and ontinuous Markov pro-ess with Feller transition probability, satisfying (15) P-a.s. and suh that both the integral existi.e. for all t > 0, P�Z t0 b(Xs)ds+ Z t0 �2(Xs)ds <1� = 1: (19)A transition semi-group (P t)t�0 has the Feller property if for any ontinuous bounded real-valued funtion f , x 7! P tf(x) is ontinuous. (Xt) is thus a strongly Markovian proess as a(right)-ontinuous proess with Feller transition probability (Dynkin (1965)).Let 0 � V < 1 be a twie ontinuously di�erentiable funtion suh that there exists a non-negative Borel funtion �, bounded on ompat sets, a onstant b < 1 and a ompat setC suh that LV � ��1IC + b1IC . From (19) and the ontinuity of t 7! rV (Xt), the proesst 7! R t0 �(Xs)frV (Xs)g0dWs is a loal martingale. Appliation of the Itô's rule yields LV = AV .A3 For all 1 � i; j � n, �2�2(x)=�xi�xj and �2 log �(x)=�xi�xj are loally uniformly H�olderontinuous.



16 G. FORT AND G.O. ROBERTSProposition 15. Under A1-3, the proess is reversible and � is, up to a multipliative onstant,the density of an invariant probability measure. Any skeleton hain is irreduible, and ompatsets are losed petite sets.Proof. There exists a ontinuous funtion p : (t; x; y) 7! p(t; x; y) suh that P t(x; dy) = p(t; x; y)dy(Kent, 1978, Theorem 1.1.). Sine the proess is regular (or onservative, in the terminologyof Kent) and � is Lebesgue integrable, (Kent, 1978, Theorems 4.1. and 6.2.) imply that theproess is time-reversible andlimt!1 ZA p(t; x; y)dy = �Z �(x)dx��1 ZA �(x)dx: (20)Hene, �(dx) is invariant. Irreduibility of skeletons results from the (20), and petiteness ofompat sets from the ontinuity of p(t; �; �). �Finally, we restrit our attention to densities � that are polynomially dereasing in the tails.A4 � satis�es A1 and A3 and there exists some 0 < � < 1=n,0 < lim infjxj!+1 jr log�(x)j��(x) � lim supjxj!+1 jr log�(x)j��(x) <1;2� � 1 < lim infjxj!+1 Tr(r2 log �(x))jr log�(x)j2 � lim supjxj!+1 Tr(r2 log �(x))jr log�(x)j2 <1:Set  = lim inf jxj!+1 Tr(r2 log �(x)) jr log �(x)j�2.This lass is non empty and ontains the densities that are polynomially dereasing in the tails�(x) = jxj�1=� for large jxj, where 0 < � < 1=n; in that ase,  = �(2� n) > 2� � 1. For thisfamily, the regularity riterion (17) or (18) says that the temperature d has to be hosen in Dn =[0; (1+�(2�n))=2℄. For any density in the lass A4, 0 < lim inf jxj jxj��(x) � lim supjxj jxj��(x) <1. Hene D1 = [0; (1 + �)=2℄ and for n � 3, 1=2 =2 Dn. If sups�r supfx;jxj=sghr log�(x); xi =:�%�1 < 0 exists, then [0; 1=2+ %(1� n=2)℄ � Dn.It is readily seen that setting, V = 1+sign(�)��� outside a ompat set, and V = 1 otherwise,LV = �j�j2 V ���1 + ��� �2(��d) � jr log�j�� �2 �1� �� 2d+ Tr(r2 log �)jr log �j2 � ; (21)for large jxj. As established in (Stramer and Tweedie, 1999a, Theorem 3.1.), the di�usion annot be geometrially ergodi when 0 � d < �: by hoosing f := �d�� and applying Itô's formula,



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 17df(Xt) � 1���d(Xt)dt+ 2dWt for some onstants i; and the drift oeÆient tends to zero forlarge value of the proess. The proess (f(Xt))t fails to be geometrially ergodi, and heneforth,(Xt)t itself.From (21), for large jxj,LV � �V 1�� where � := 2��1(� � d); and  > 0() 1 +  � �� 2d > 0:In any ases, one has to hoose � suh that  > 0. If � � 0 and � > 0, then the proess isgeometrially V -ergodi (Meyn and Tweedie, 1993d, Theorem 6.1.). If 0 < � � 1 and � > 0,the di�usion is polynomially ergodi as disussed in Setion 2. If � � 1 and � an be setnegative, the proess is uniformly ergodi i.e. there exist � > 1 and a onstant  suh that forall x, limt!1 �t kP t(x; �)� �(�)kTV �  and the onvergene does not depend on the startingpoint. This yields Theorem 16 : the �rst assertion results from Roberts and Tweedie (1996)and Corollary 6 of the present paper. The seond and third assertions result from (Meyn andTweedie, 1993d, Theorem 6.1.).Theorem 16. Consider the Langevin tempered di�usion on Rn where the target density � isfrom the lass A4 and � := ��d for some d satisfying (17) if n = 1 or (18) if n � 2.(i) If 0 � d < �, the proess fails to be geometrially ergodi. For all 0 � � < 1 +  � 2�,limt!+1(t+ 1)� kP t(x; �)� �(�)k1+��� = 0 � < 1 +  � 2� � �2(� � d) : (22)(ii) If � � d < (1 + )=2, then for all 0 < � < 1 +  � 2d, the di�usion is geometriallyV -ergodi with V := 1 + ���.(iii) If � < d, the di�usion is uniformly ergodi.Theorem 16 extends earlier results to the multi-dimensional ase and provides polynomialrates of onvergene of the \old" Langevin tempered di�usions for a wide family of norms.In the one-dimensional ase, when d = 0, (Ganidis et al., 1999, Result R3, p.245) only laimthat the onvergene in total variation norm is polynomial, with no expliit value of the rate ofonvergene. We establish that for a given ���-norm, the minimal rate of onvergene is ahievedwith d = 0 and in that ase oinides with the rate of onvergene of the symmetri random walkHastings-Metropolis algorithm with light proposal distribution (Jarner and Roberts (2001)). Byhoosing a di�usion matrix whih is heavy where the target distribution is light, and onversely,improves the rate of onvergene as evidened by (22). The riti temperature is d = �. Ford � �, the di�usion is no more polynomially ergodi and geometri rates an be reahed. This



18 G. FORT AND G.O. ROBERTSriti temperature oinides with the riti one given in (Stramer and Tweedie, 1999a, Theorem3.1.) for the real-valued di�usion.Remark: General di�usions on Rn. The tehniques above an be adapted for the analyzesof di�usions satisfying (15). Under onditions implying (a) the existene of a solution, (b)the ondition (i) of Corollary 6 and () the petiteness property of the ompat sets, (see e.g.Has'minskii (1980); Veretennikov (1999); Malyshkin (2001)), we are able to prove that whenthere exist M;�;  > 0 and l < 2 suh thatsupfx;jxj�Mg jxj�(2+l) hx; a(x)xi=: �; supfx;jxj�Mg jxj�lTr (a(x)) =: supfx;jxj�Mg jxj�l < b(x); x >=: �r for some r > ( � �l)=2;then the di�usion is polynomially ergodi and for all x, for all 0 � � < l + ��1(2r � )limt!1 (1 + t)� kP t(x; �)� �(�)k1+jxj� = 0; � < 2(r+ �)� �(2� l) � 1� �2� l :3.3. Compound Poisson-Proess driven Ornstein-Uhlenbek proesses. Let X be anOrnstein-Uhlenbek proess driven by a �nite rate subordinator:dXt = ��Xtdt+ dZt;where Zt := PNti=1Wi, fWigi�1 is an independent and identially distributed olletion of ran-dom variables from probability measure F and fNtgt�0 is a Poisson-Proess of �nite rate �,independent of the olletion fWigi�1. Suh proesses are used as storage models (see for ex-ample Lund et al. (1996)) and have reently been used in �nanial eonometris as models forstohasti volatility (see Barndor�-Nielsen and Shephard (2001)).The exponential deay of X exept at jump points leads to geometri ergodiity of X whenthe tails of F (�) are suÆiently light. Here we shall explore the ase where F (�) is extremelyheavy-tailed. First we make this onept preise: we say a probability measure is heavy-tailedif, under that probability measure, for all � > 0, E[e�X ℄ =1. Now let G denote the law of thelog jump sizes, that is G(A) = F (eA). We have the following negative result showing that forsuÆiently heavy-tailed jumps, geometri ergodiity, and even ergodiity an fail. As usual, welet � denote the invariant probability measure (should it exist).Lemma 17. (i) Suppose R xG(dx) =1, then X fails to be positive reurrent.(ii) Suppose G is heavy-tailed, then X fails to be geometrially ergodi.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 19Proof. Suppose X0 = 2 and onsider the petite set C = [0; 1℄. ThenP(�C > t) � P[jump of size � e�t ours before time log 2=�℄ = (1�2��=�) Z 1�t G(x)dx: (23)For positive reurrene, we require that E(�C) to be �nite, that is that P[�C > t℄ be integrable.However the integrated right hand side of (23) is justZ 10 dt Z 1�t G(x)dx = Z 10 ��1xG(x)dx =1by hypothesis, so thatE(�C) =1 too, so that positive reurrene must fail, proving (i). For (ii),we reall that for geometri ergodiity, we require that for some � > 0, E[e��C ℄ <1. (Althoughnot neessary, we shall again assume that X0 = 2 and C = [0; 1℄.) Thus from (23) we requirethat Z 10 e�tdt Z 1�t G(x)dx = ���1 Z 10 (e�x � 1)G(�x)dx <1: (24)However this is preluded by the heavy-tailed nature of G, thus proving (ii). �Examples of jump distributions for whih geometri ergodiity fails (ase 2 above), thoughwe will see that X is positive Harris reurrent, inlude the following:F (dx) = dxx(log x)k at least for k > 1; F (dx) = e�(logx)�dxx for some � � 1:Lemma 18. Suppose that for some r > 1, mr := R10 [log(1 + u)℄rF (du) < 1. Then, X ispolynomially ergodi with rate (1 + t)(r�1).Proof. For di�erentiable funtions V in the domain of A,AV = Z 10 (V (x+ u)� V (x))�F (du)� �xV 0(x) :Now set V (x) = (log x)r, then by diret alulation,AV � = Z 10 ((log(x+ u))r� � (log x)r�)� F (du)� �xr�(logx)�r�1x : (25)Now the �niteness of mr merely ensures the �niteness of the �rst term on the right hand sideof (25). So, noting that (log x)r� is onave beyond x = er�1 for all 0 < � � 1, we �nd that infat the �rst term on the right hand side of (25) is bounded as a funtion of x, so that for somepositive onstant , AV � � Z 10 ur(log x)�r�1x �F (du)� r�(log x)�r�1:



20 G. FORT AND G.O. ROBERTSIt is easy to hek that all bounded sets are petite in this example, and therefore the onditionsfor the appliation of Corollary 6 with � = r�1.4. Proofs of Setion 2When not expliitly de�ned,  denotes a generi �nite positive onstant. � is the usual shiftoperator on the anonial probability spae of the strong Markov proess.Lemma 19. If 	�1 is a Young funtion and r 2 �0 (resp. �), [	(r) _ 1℄ 2 �0 (resp. �).Proof. Let r 2 �0. 	�1 is a ontinuous, inreasing and onvex funtion, so 	 is measur-able and bounded on bounded sets ((Krasnosel'skii and Rutikii, 1961, Chapter 1)). Fur-thermore, there exists a right-ontinuous non dereasing funtion � suh that ln 	(r(t)) =ln r(t) + lnfr(t)�1 R r(t)0 �(s)dsg; thus proving that ln	(r(t))=t # 0 as t ! 1. This yields	 2 �0. The seond assertion dedues easily from the de�nition of � and the upper boundsupt�1	(at)=	(t) <1 for all a > 0 (Krasnosel'skii and Rutikii, 1961, Chapter 1, p.7-8). �While Theorem 1 and Corollary 6 are laimed for a rate funtion r 2 �, Lemma 19 showsthat they an be established for a rate r 2 �0, and we will do so.4.1. Proof of Theorem 1. Without loss of generality, we assume 	1(r�) � 1I and 	2(f�) � 1.Lemma 20. Let r 2 �0 and f � 1 be a Borel funtion. For any losed set C suh thatsupC GC(�; f; r; Æ) < 1, there exists a onstant M < 1 suh that for all x 2 X and t � Æ,GC(x; f; r; t) �M bt=ÆGC(x; f; r; Æ).Proof. The proof is on the same lines than the proof of Lemma 4.1. Meyn and Tweedie (1993a)that adresses the ase r = 1I, and the details are omitted. Using the property r(s + t) �r(s)r(t) (Thorisson, 1985, Lemma 1(d)), we obtainM = 1+supt�Æ �r(t)=r0(t)� supC GC(�; f; r; Æ)whih is �nite sine limt r(t)=r0(t) = 0 (this is a onsequene of (Thorisson, 1985, Lemma 1)). �Proposition 21. Let r 2 �0 and f � 1 be a Borel funtion. Assume that X is �-irreduibleand supC GC(�; f; r; Æ) < 1 for some losed petite set C and Æ > 0. x 7! GC(x; f; r; Æ) is �nite -almost surely for some (and then any) maximal irreduibility measure  , and C is aessible.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 21Proof. By (Meyn and Tweedie, 1993a, Proposition 3.2.(ii)), for all � > 0, there exist a positiveinteger m and a maximal irreduibility measure  suh that  (�) � infx2C Rm� (x; �), where R�is the resolvent kernel R�(x; �) = R � exp(��t)P t(x; �)dt. By Lemma 20, R�GC(�; f; r; Æ)(x) �GC(x; f; r; Æ) where  is �nite for some onvenient �. Hene,  GC(�; f; r; Æ) < 1, proving the�rst statement. This implies that there exists an aessible set B suh that supx2B Ex [�C(Æ)℄ �supx2B GC(x; f; r; Æ) < 1. Then for q large enough, infx2B Px(�C(Æ) � q) > 0 and, for any x,Ex [�C ℄ � Pn(x;B) infx2BPx(�C(Æ) � q) > 0 for some n depending upon (x;B). Hene C isaessible. �Proposition 22. Suppose Assumptions (i-ii) of Theorem 1. Then(i) There exist t0 and a measure � suh that inf t�t0 infx2C P t(x; �)� �(�), and �(C) > 0.(ii) For any set B suh that �(B) > 0, Ex [r0(Tm;B)℄ � RB Ex [r0(�C(Æ))℄ for some �niteonstant Rt;B.(iii) For any t � 0 and any aessible set B, Ex [r0(�B(t))℄ � Rt;B Ex [r0(�C(Æ))℄ for some �niteonstant Rt;B.Proof. (i) results from R2, Proposition 21 and Lemma 2. (ii) Let t0 and � be given by (i). Set� = �C(t0+m); and de�ne the sequene of iterates �1 = � and for n � 2, �n = �n�1 + � Æ ��n�1 .Finally, let (un)n�2, be a f0; 1g-valued proess given by un = 1 if Xd(�n�1+t0)=mem 2 B and 0otherwise. dte denotes the upper integer part of t. Then un 2 Hn with Hn = �(Xt; t � �n),and by the strong Markov property Px(un = 1jHn�1) � �(C) > 0 for n � 2. Finally, set� = inffn � 2; un = 1g, so that Ex [r0(Tm;B)℄ � Ex [r0(��)℄. Using again the strong Markovproperty and the inequality r0(t1 + t2) � r0(t1) + r(t1)r0(t2) (Thorisson (1985)),Ex �r0(��)� �Xn�2 Ex �r0(�n)1I��n� =Xn�2fax(n) + supx2C Ex �r0(�)� bx(n)g; (26)for all n � 2, where ax(n) = Ex [r0(�n�1)1I��n℄ and bx(n) = Ex [r(�n�1)1I��n℄: Sine, byLemma 20, supC Ex [r0(�)℄ <1, there exists 0 < � < 1 and a �nite onstant  suh thatbx(n) � �bx(n�1)+(1��(C))n�1; ax(n) � (1��(C))ax(n�1)+bx(n�1) supx2C Ex �r0(�)� ;and bx(2) = Ex [r(�)℄, ax(2) = Ex [r0(�)℄. The proof is on the same lines than the proof of(Nummelin and Tuominen, 1983, Lemma 3.1.) and is omitted for brevity. Hene, Ex [r0(Tm;B)℄ � �Ex [r0(�)℄ + Ex [r(�)℄� for some  <1. The proof is onluded, applying again Lemma 20 andthe bound supt�a r(t)=r0(t) <1 for all a > 0 (see the proof of Lemma 19).



22 G. FORT AND G.O. ROBERTS(iii) B is aessible and C petite so there exist t0 � 0 and  > 0 suh that infx2C Px(�B � t0+t) �infx2C Px(�B � t0) � . Set � = �C(t + t0) and un = 1 if for some �n�1 � s � �n�1 + t + t0,Xs 2 B; and un = 0 otherwise. Following the same lines as in the proof of (ii), it may be provedthat there exists  < 1 suh that Ex [r0(�B(t))℄ �  Ex [r0(�C(t + t0))℄. The proof is onludedby applying Lemma 20. �Proposition 23. Suppose Assumptions (i-ii) of Theorem 1. For any (	1;	2) 2 I, C is a(	2(f�);	1(r�))-regular set for the proess i.e. supC GB(�;	2(f�);	1(r�); t) <1 for any t > 0and any aessible set B. GB(x;	2(f�);	1(r�); t) <1 for all x 2 S	 and �(S	) = 1.Proof. (	2(f�);	1(r�))-regularity is a onsequene of the Young's inequality (4), the (f�; 1I)-regularity of C (Meyn and Tweedie, 1993a, Proposition 4.1.) and Proposition 22(iii). For theseond statement, writeGB(x;	2(f�);	1(r�); t) � GC(x;	2(f�);	1(r�); t) + Ex "Z �BÆ��C (t)�C(t) 	1(r�(s)) 	2(f�(Xs))ds# :The result now follows from the strong Markov property, Lemma 20 and the inequality 	1(r�(s+t)) � 	1(r�(s))	1(r�(t)) whih holds sine 	1 Æ r� 2 �0. Finally, �(S	) = 1 by Proposition 21.�Proposition 24. Suppose Assumptions (i-ii) of Theorem 1. The skeleton hain Pm is  -irreduible and aperiodi and possesses an aessible petite set A suh that for all (	1;	2) 2 I,supx2A Ex 24Tm;A�1Xk=0 	1(r�(k)) 	2(f�(Xkm))35 <1: (27)Proof. For the de�nitions of aessibility, smallness, petiteness, aperiodiity of a disrete-timeMarkov hains, see Meyn and Tweedie (1993b) (hereafter MT). From Proposition 22(i), C issmall for the skeleton Pm and the skeleton is aperiodi (Theorem 5.4.4 MT). In addition, byR2, the skeleton is positive and �(f�) < 1. Let Cn be a petite set (for the skeleton Pm) suhthat A = C \ Cn is of positive �-measuresupx2Cn Ex 24Tm;B�1Xk=0 f�(Xkm)35 <1; (28)for any aessible set B (for the skeleton); the existene of suh a set is a onsequene of(Theorems 14.2.3 and 14.2.11, MT) and Proposition 22(ii). The set A is aessible and petitefor the skeleton. (27) now results from the Young's inequality (4), (28) and Proposition 22(ii).



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 23�[Proof of Theorem 1℄. By Proposition 24 and (Tuominen and Tweedie, 1994, Theorem 2.1 andProposition 3.2), limn!1 	1(r�(n)) kPnm(x; �) � �(�)k	2(f�) = 0 for � a.a. x. By Jensen'sinequality, the upper bound supt�1	2(at)=	2(t) <1 for all a > 0, and assumption (iii), we havefor all t � m, P t	2(f�) � 	2(f�). In addition, sine 	1(r�) 2 �, 	1(r�(n + t)) � 	1(r�(n))for all t � m (Thorisson, 1985, Lemma 1). Hene,limt!1 	1(r�(t)) kP t(x; �)� �(�)k	2(f�) = 0; � a.a. x: (29)We now prove that this onvergene ours for all x 2 S	 whih is of �-measure one, byProposition 23. To that goal, we mimi the proof of (Meyn and Tweedie, 1993, Theorem 7.2.).By Egorov's Theorem, there exists a set A, �(A) > 0, suh that (29) holds uniformly for allx 2 A. For all Borel funtion g 2 L	2(f�), set �g := g � �(g). Sine 	1(r�) 2 �0,	1(r�(t)) jEx [�g(Xt)1I�A�t℄j � 	1(r�(t)) Z t0 supy2A jP t�s�gj(y) Px(�A 2 ds)�M fEx [	1(r�(�A))℄ + Ex �	1(r�(�A))1I�A�t=2�g;where M = supy2A sups�0 r�(s)jP s�gj(y). Let x 2 S	; from Proposition 23, Ex [	1(r�(�A))℄ <1and limt!1 Ex �	1(r�(�A))1I�A�t=2� = 0. Sine the limit (29) holds uniformly for all x 2 A, Mis �nite. Hene, limt!1	1(r�(t)) jEx [�g(Xt)1I�A�t℄j = 0 uniformly for all g 2 L	2(f�).Sine �(f�) <1, jEx [�g(Xt)1I�A�t℄j �  Ex [	2(f�(Xt))1I�A�t℄. Following the same lines as in theproof of (Meyn and Tweedie, 1993, Theorem 7.2.), using again supu�m Puf� � f�, we obtain,	1(r�(t)) Ex [	2(f�(Xt))1I�A�t℄ �  	1(r�(m)) inf0�u�m 	1(r�(t� u)) Ex [	2(f�(Xt�u))1I�A�t�u℄ :By Proposition 23, GA(x;	2(f�);	1(r�); 0) <1, whih implies that the upper limit in the right-hand side is zero, proving that limt!1 	1(r�(t)) Ex [	2(f�(Xt))1I�A�t℄ = 0. Hene, uniformlyfor g 2 L	2(f�), limt!1 	1(r�(t)) jEx [�g(Xt)1I�A�t℄ j = 0. This onludes the proof.4.2. Proof of Corollary 6. Set f� := V 1�� and r�(t) := (t+ 1)1=��1.Lemma 25. Suppose Assumption (ii) of Corollary 6. For any � � � � 1, t � 0, and anyFt-stopping-time � ,�Ex �Z �^t0 V ���(Xs)ds�+ Ex [V �(X�^t)℄ � V �(x) + bEx �Z �^t0 1IC(Xs)ds� :



24 G. FORT AND G.O. ROBERTSProof. By de�nition of AV ,�Ex �Z �^t^Tn0 V ���(Xs)ds�+ Ex [V �(X�^t^Tn)℄ � V �(x) + bEx �Z �^t^Tn0 1IC(Xs)ds� :The right-hand side is upper bounded by V (x) + bt and by the monotone onvergene theorem,it onverges to V (x) + bEx hR �^t0 1IC(Xs)dsi as n ! 1. The Lemma now results from Fatou'sLemma. �Proposition 26. Suppose Assumption (ii) of Corollary 6. For all Æ > 0, there exists  < 1suh that for all x 2 X , GC(x; 1I; r�; Æ) � V (x).Proof. Set q := b1=� where b� denotes the lower integer part. By Lemma 25, we have Ex [�C ℄ �V �(x) and by Jensen's inequality, we obtain Ex [���1�qC ℄ � V 1�q�(x). We prove by indutionthat for all integer 1 � l � q, Ex [���1�lC ℄ � V 1�l�(x). The ase l = q holds; assume it is veri�edfor some 2 � l � q. The indution hypothesis and Lemma 25 yieldEx h���1�l+1C i �  Ex �Z �C0 EXs h���1�lC i ds� �  Ex �Z �C0 V 1�l�(Xs)ds� � V 1�l�+�(x);whih onludes the indution. For l = 1, this yields GC(x; 1I; r�; 0) � V (x). Finally, bystandard manipulations and Lemma 25, we have GC(x; 1I; r�; Æ) � (1 + P ÆV (x)) � V (x). �[Proof of Corollary 6℄. We hek the onditions for the appliation of Theorem 1. Lemma 25and Proposition 26 imply GC(x; f�; 1I; Æ) � V (x) and GC(x; 1I; r�; Æ) � V (x), from whih wededue the ondition (ii) of Theorem 1, and by R1, ondition (i) of Theorem 1. Condition (iii)follows from Lemma 25. Finally, S	 = X .AknowledgementsWe are grateful to the referee for his omments, and in partiular for bringing Dai and Meyn(1995) to our attention. ReferenesBarndorff-Nielsen, O. and Shephard, N. (2001). Non-gaussian Ornstein-Uhlenbek-basedmodels and some of their uses in �nanial eonomis. J. Roy. Stat. So., B 63 167{241.
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