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SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 11. Introdu
tionThis paper is devoted to the study of sub-geometri
 f -ergodi
ity of a strong Markov semi-group (P t)t�0. That is, for a sub-geometri
ally in
reasing rate fun
tion r := (r(t))t�0, and aBorel fun
tion f � 1, we propose suÆ
ient 
onditions implying the limitlimt!+1 r(t)kP t(x; �)� �(�)kf = 0;for �-almost all (a.a.) x where � is the unique invariant probability measure. Our main 
onditionis 
ou
hed in terms of modulated moments of return-times to a \test-set". In this form, this 
on-dition extends earlier 
riteria implying di�erent notions of stability (su
h as Harris-re
urren
e,positive Harris-re
urren
e, ergodi
ity, f -ergodi
ity), for 
ontinuous-time Markov pro
esses. This
ondition is also analogous to the 
riterion for sub-geometri
 f -ergodi
ity of dis
rete time Markov
hains. We also derive a 
ondition for polynomial ergodi
ity whi
h is easy to 
he
k in manyappli
ations. This 
ondition is expressed in terms of inequality on the semi-group generator,and is analogous to the so-
alled drift inequality in the dis
rete-time 
ase.We apply our results to the study of strongly Markovian pro
esses, giving three non-trivialexamples, two of whi
h are of 
onsiderable applied probabilisti
 interest. We �rst 
onsider asimple jump pro
ess as a toy example, demonstrating that f -ergodi
ity at a logarithmi
 (resp.polynomial or sub-exponential) rate is narrowly related to the existen
e of a logarithmi
 (resp.polynomial or sub-exponential) moment of the mean-time spent in ea
h state, with respe
t tothe jump distribution. We then 
onsider Langevin tempered di�usions on Rn whi
h are relevantto Markov 
hain Monte Carlo (MCMC) te
hniques sin
e they 
onstru
t a di�usion pro
ess withgiven stationary distribution � (whi
h only needs to be available up to an unknown normalization
onstant). When the stationary distribution is polynomial in the tails, the (simple) Langevindi�usion 
an not be ergodi
 at a geometri
 rate and we show that it is polynomially ergodi
.We also 
onsider Langevin tempered di�usion in whi
h the di�usion matrix is a s
alar matrixwith 
oeÆ
ient ��2d, d > 0, and prove that even when the target distribution is polynomial inthe tails, a 
onvenient 
hoi
e of the temperature d involves geometri
 ergodi
ity of the pro
ess.Finally, we study a 
ompound Poisson-pro
ess driven Ornstein-Uhlenbe
k pro
ess whi
h is usedin storage models and more re
ently in �nan
ial e
onometri
s. It is known that when thedistribution of the jump F has suÆ
iently light tails, the pro
ess is geometri
ally ergodi
. Weinvestigate the 
ase where F is heavy tailed and establish the sub-geometri
 ergodi
ity of thepro
ess under appropriate 
onditions in this 
ase.



2 G. FORT AND G.O. ROBERTSThe paper is organised as follows. We �rst re
all basi
 de�nitions on Markov pro
ess, aswell as reviewing existing results on ergodi
ity of strongly Markovian pro
ess. The new 
riteriafor sub-geometri
 ergodi
ity are given in Se
tion 2, and the proofs are postponed in Se
tion 4.Se
tion 3 is devoted to the three examples mentioned above.1.1. Basi
 de�nitions on Markov pro
ess. Let X be a lo
ally 
ompa
t and separable metri
spa
e endowed with the Borel �-�eld B(X ). X = (
;A; (Ft)t�0; (Xt)t�0;Px), is a X -valued Borelright pro
ess so that it is a temporally homogeneous Markov pro
ess, strongly Markovian withright-
ontinuous sample paths (see e.g. Sharpe (1988)). Px (resp. Ex) denotes the 
anoni
alprobability (resp. expe
tation) asso
iated to the Markov pro
ess with initial distribution Æx, theDira
 distribution at point x. Let (P t)t�0 be the asso
iated Markov semi-group.We re
all basi
 de�nitions and properties on Markov pro
ess that will be used throughout thispaper. The pro
ess X is �-irredu
ible for some �-�nite measure � on B(X ) if�(A) > 0 =) Ex �Z 10 1IA(Xs)ds� > 0; 8x 2 X :If the pro
ess is �-irredu
ible, there exists a maximal irredu
ibility measure  that dominatesany irredu
ibility measure (Nummelin (1984)). In fa
t, if � is an invariant measure i.e. �P t = P tfor all t � 0, then � is a maximal irredu
ibility measure. Any measurable set whi
h is of positive -measure is said to be a

essible. A set C 2 B(X ) is �b-petite for the pro
ess (or simply petite)if there exist a probability measure b (resp. non-trivial �-�nite measure �b) on the Borel �-�eldof R+ (resp. on B(X )) su
h thatZ 10 P t(x; �)b(dt)� �b(�); for all x 2 C:A �-irredu
ible pro
ess always possesses an a

essible 
losed petite set (Meyn and Tweedie,1993a, Proposition 3.2.). A pro
ess is Harris-re
urrent if there exists a �-�nite measure � su
hthat �(A) > 0 =) Px�Z 10 1A(Xs)ds = +1� = 1; x 2 X ;or, equivalently, if there exists a �-�nite measure � su
h that �(A) > 0 =) Px(�A <1) = 1 forall x 2 X . Harris-re
urren
e trivially implies �-irredu
ibility. A Harris re
urrent right pro
esspossesses an invariant measure (Getoor (1980)). In fa
t, when the invariant measure is �nite, Xis 
alled positive Harris-re
urrent. A �-irredu
ible pro
ess is aperiodi
 if there exist an a

essible�Æm-petite set C and t0 su
h that P t(x; C) > 0 for all x 2 C; t � t0. (Meyn and Tweedie, 1993
,Proposition 6.1) shows that a positive Harris re
urrent pro
ess is aperiodi
 if some skeleton
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hain Pm, m > 0, is irredu
ible i.e. if there exists a �-�nite measure � on B(X ) su
h that�(A) > 0 =) Ex hPn�0 1IA(Xnm)i > 0 for all x 2 X .For Borel fun
tions f � 1, g, de�ne the norm jgjf := supx jg(x)j=f(x) and the Bana
hspa
e Lf := fg; jgjf < 1g. For a signed measure �, the total variation norm is given byk�kTV := supA �(A) � infA �(A); and the f -norm (for some Borel fun
tion f � 1), k�kf :=supfg;jgjf=1g j�(g)j, so that the total variation norm is the 1I-norm where 1I denotes the 
onstantfun
tion 1I(t) = 1. The pro
ess is ergodi
 if8x 2 X ; limt!1 kP t(x; �)� �(�)kTV = 0;and f -ergodi
 if �(f) <1 and8x 2 X ; limt!1 kP t(x; �)� �(�)kf = 0: (1)Finally, X is geometri
ally (resp. sub-geometri
ally) f -ergodi
 if the limit (1) holds at a rater(t) := �t, for some � > 1 (resp. r := (r(t))t�0 for some sub-geometri
ally in
reasing rate). Asub-geometri
 rate is de�ned as follows (see e.g. Thorisson (1985)). Let �0 be the set of the mea-surable, bounded on bounded intervals and non-de
reasing fun
tions r : R+! [1;1), su
h thatlog r(t)=t # 0 as t! +1. Let � be the set of the rates �r := (�r(t))t�0 su
h that for some r 2 �0,0 < lim inf t �r(t)=r(t) � lim supt �r(t)=r(t) < 1. � is by de�nition, the set of the sub-geometri
rates. For example, � 
ontains rates su
h as �r(t) � log�(t+1), � � 0, �r(t) � (1_ t�) log�(t+1),� > 0, � 2 R, and sub-exponential rates �r(t) � exp(�t�), � > 0, 0 < � < 1.Throughout this paper, we will often make 
omparison with (dis
rete time) Markov 
hains;the unfamiliar reader 
an refer to Meyn and Tweedie (1993b).1.2. (f; r)-modulated moments and stability. De�ne the hitting-time on a measurable setC, delayed by Æ > 0, �C(Æ) := infft � Æ;Xt 2 Cg; (2)the moment �C(0) is denoted by �C . It is proved in the literature that modulated momentsof �C(Æ) for some 
losed petite set are related to Harris-re
urren
e, positive Harris-re
urren
e,f -ergodi
ity and geometri
 f -ergodi
ity. For a Borel fun
tion f � 1, an in
reasing non-negative



4 G. FORT AND G.O. ROBERTSrate fun
tion r = (r(t))t�0, Æ > 0, de�ne the (f; r)-modulated momentGC(x; f; r; Æ) := Ex "Z �C(Æ)0 r(s)f(Xs)ds# :R1 X is Harris-re
urrent if and only if there exists a petite set C su
h that for all x 2 XPx(�C <1) = 1 (Meyn and Tweedie, 1993a, Theorem 1.1).R2 If X is Harris-re
urrent with invariant measure �, then for f � 1, �(f) <1 if and onlyif supx2C GC(x; f; 1I; Æ) < 1 for some 
losed petite set C (Meyn and Tweedie, 1993a,Theorem 1.2.).R3 A positive Harris-re
urrent pro
ess is ergodi
 if and only if some skeleton 
hain Pm isirredu
ible (Meyn and Tweedie, 1993
, Theorem 6.1.).R4 A positive Harris-re
urrent pro
ess is f -ergodi
 if (a) some skeleton 
hain Pm is irre-du
ible, (b) supx2C GC(x; h; 1I; Æ) < 1 where h � sups�m P sf and C is a 
losed petiteset, and (
) for all x, GC(x; h; 1I; Æ) < 1 (Meyn and Tweedie, 1993a, Proposition 4.1.)and (Meyn and Tweedie, 1993
, Theorem 7.2.).R5 A positive Harris-re
urrent pro
ess is geometri
ally f -ergodi
 if (a) some skeleton 
hainPm is irredu
ible, (b) there exists a 
losed petite set C and � > 0 and GC(x; h; exp(�t); Æ)is �nite for all x, where h � 1 is a Borel fun
tion su
h that 
1f � R10 exp(�t)P th dt � 
2ffor some �nite positive 
onstants 
i, (
) supC GC(�; h; exp(�t); Æ)<1 (Down et al., 1995,Threorem 7.4.).In Se
tion 2 we give a 
riterion of the form R1-5 that implies sub-geometri
 f -ergodi
ity.To date, little is known about general 
hara
terisations for f -ergodi
ity at a sub-geometri
rate for Markov pro
esses. However we note some important spe
ial 
ases whi
h have beenstudied in the literature. The work by Ganidis et al. (1999) is restri
ted (a) to 
onvergen
ein total variation norm and (b) to di�usion pro
esses on Rd with di�usion matrix equals toidentity. Their proof is based on spe
tral properties of the transition semi-group seen as anoperator, and di�ers from the probabilisti
 approa
h adopted in the present paper. We will seein Se
tion 3.2 how to improve their 
on
lusions. Veretennikov (1999) and Malyshkin (2001) dealwith di�usion pro
esses and 
an be read as a spe
ial appli
ation of the present paper. The mostrelated work to the present one is the paper by Dai and Meyn (1995) that 
onsiders f -ergodi
ityat a polynomial rate of a Markovian state pro
ess, in order to study the stability of multi-
lass



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 5queuing networks. These results are parti
ularly related to our work and we will des
ribe theirresults in Se
tion 2.1.3. Drift 
ondition and generator. For a Borel fun
tion 0 � V < 1, denote by AV theBorel fun
tion - when exists - su
h that t 7! AV (Xt) is integrable Px-almost surely (a.s.), andthere exists an in
reasing sequen
e of stopping-time fTngn su
h that for any stopping time �Ex �V (X�^Tn)� V (X0)� Z �^Tn0 AV (Xs)ds� = 0; for all x 2 X ; n � 0:When AV exists, V is said to be in the domain of A. If there exists h su
h that t 7! h(Xt) isintegrable Px-a.s. and t 7! V (Xt)�V (X0)�R t0 h(Xs) ds is a right 
ontinuous Px-lo
al martingale(with respe
t to the �ltration Ft), then V is in the domain of A and AV = h (Davis (1993)).If V is in the domain of the weak in�nitesimal generator ~A then V is in the domain of A andAV = ~AV (Dynkin (1965)). If the fun
tions V and AV are right-
ontinuous, these two suÆ
ient
onditions are equivalent and ~AV = AV .When AV satis�es a drift 
ondition AV � �f+b1IC for some 
losed set C, and a non-negativefun
tion f su
h that t 7! f(Xt) is integrable Px-a.s., we have GC(x; f; 1I; Æ) � V (x) + Æb; thiswill be the basi
 tool to upper bound the (f; r)-modulated moments.Conditions on AV are analogous to 
onditions on the variation PmV � V for a dis
rete timeMarkov 
hain with transition kernel Pm. It is well-known that the 
ondition PmV � V � �foutside a \test set" for the skeleton Pm is related (a) to the f -ergodi
ity of the Markov 
hain(Xkm)k (Meyn and Tweedie (1993b)); (b) to the geometri
 V -ergodi
ity if f = �V for some0 < � < 1 (Meyn and Tweedie (1993b)); (
) to the polynomial V -ergodi
ity if f / V 1��for some 0 < � � 1 (Jarner and Roberts (2002); Fort and Moulines (2003)); (d) and moregenerally sub-geometri
 f -ergodi
ity is f / �(V ) for some 
on
ave fun
tion � (Dou
 et al.(2004)). Similar results hold for 
ontinuous Markov pro
ess. Meyn and Tweedie (1993d) provethat the 
ondition AV � �f outside a 
losed petite set is related (a) to the f -ergodi
ity of theMarkov pro
ess X ; and (b) to the geometri
 V -ergodi
ity if f / V (see also Down et al. (1995);Roberts and Rosenthal (1996); Roberts and Tweedie (2000)). In Se
tion 2, we establish thatthe 
ase f / V 1�� is related to polynomial f -ergodi
ity.



6 G. FORT AND G.O. ROBERTS2. Statements of the resultsIn Theorem 1, we establish that modulated moment on some delayed hitting-time on a 
losedpetite set C provides a 
riterion for sub-geometri
 f -ergodi
ity. We assume that there existÆ > 0, a Borel fun
tion f� � 1 and a rate fun
tion r� 2 � su
h thatsupC GC(�; f�; 1I; Æ) <1; supC GC(�; 1I; r�; Æ) <1: (3)We will establish that r� is the maximal rate of 
onvergen
e (that 
an be dedu
ed from theseassumptions) and it is asso
iated to 
onvergen
e in total variation norm i.e. in 1I-norm, whi
his the minimal one. On the other hand, we will show that f� is the largest norm in whi
h
onvergen
e o

urs and the asso
iated 
onvergen
e rate is the minimal one 1I.Using an interpolation te
hnique, we also derive a 
onvergen
e rate 1 � rf � r� in � asso
iatedto some f -norm, 1 � f � f� (see Dou
 et al. (2004) for a similar approa
h in the dis
retetime 
ase). The simplest interpolation te
hnique is given by H�older's inequality whi
h yields(from (3)) supC GC(�; fp� ; r1�p� ; Æ) < 1. By analogy to the dis
rete-time 
ase, one would expe
t
onvergen
e in fp� -norm at the rate r1�p� , and we will prove the 
ontinuous time version of thisresult.More generally, if there exists a pair of non-de
reasing positive fun
tions (	1;	2) satisfying	1(x) 	2(y) � x+ y; x; y � 1; (4)then supC GC(�;	2(f�);	1(r�); Æ) < 1. We will establish that if 	1(r�) 2 �, this 
onditionyields 
onvergen
e in 	2(f�)-norm at the rate 	1(r�). Young fun
tions are 
losely related tothese pairs of fun
tions (	1;	2), say. Spe
i�
ally, if (H1; H2) is a pair of Young fun
tion, then(H�11 ; H�12 ) satis�es (4) (see e.g. (Krasnosel'skii and Ruti
kii, 1961, Chapter 1)). Let I bethe set of pairs of inverse Young fun
tions, augmented with the pairs (Id; 1I) and, (1I; Id). As
ommented above, I 
ontains the pairs ((x=p)p; (y=(1� p))1�p), 0 < p < 1, and more generally,the pairs of fun
tions in
reasing at in�nity as (xp lnb x; y1�p ln�b y) for some 0 < p < 1 andb 2 R, p = 0 and b � 0, p = 1 and b � 0.Theorem 1. Let f� � 1 be a Borel fun
tion and r� 2 �. Assume that(i) X is Harris-re
urrent with invariant measure �, and some skeleton 
hain, say Pm, is -irredu
ible.(ii) there exist a 
losed petite set C and some Æ > 0, su
h that (3) holds.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 7(iii) there exists a �nite 
onstant 
 su
h that supt�m P tf� � 
f�.Then � is an invariant probability measure, �(f�) <1 and for any pair 	 := (	1;	2) 2 Ilimt!+1 f	1(r�(t)) _ 1g kP t(x; �)� �(�)k	2(f�)_1 = 0 for all x 2 S	;where S	, whi
h is of �-measure one, is de�ned byS	 := (x 2 X ; Ex "Z �C(Æ)0 	1(r�(s)) 	2(f�(Xs))ds# <1) :The proof of Theorem 1 is postponed in Se
tion 4.1. We �rst verify that 	1(r�(t)) _ 1 2�. Under (i-ii), C is a

essible and the following lemma holds (Meyn and Tweedie, 1993
,Proposition 6.1.).Lemma 2. Suppose that X is positive Harris re
urrent with invariant distribution � and someskeleton 
hain Pm is irredu
ible. For any a

essible petite set C, there exist t0 > 0 and anirredu
ibility measure � for the pro
ess su
h that �(C) > 0 and infx2C inf t�t0 P t(x; �) � �(�).Based on this lemma and on 
ondition (ii), the se
ond step 
onsists in proving that theskeleton Pm is irredu
ible, aperiodi
 and possesses a petite set A su
h thatsupx2AG(m)A (x;	2(f�);	1(r�)) <1; with G(m)A (x; f; r) = Ex [Tm;AXk=0 r(k) f(Xkm)℄; (5)where Tm;A � 1 is the return-time to A for the skeleton 
hain PmTm;A := inffk � 1; Xkm 2 Ag: (6)By appli
ation of Tuominen and Tweedie (1994), Theorem 2.1, this proves that for �-a.a. x,limk!+1 	1(r�(k)) kP km(x; �)��(�)k	2(f�) = 0. Using (iii), the limit still holds repla
ing r�(k)(resp. P km) by r�(t) (resp. P t). We �nally establish that the limit holds for all the pointsx 2 S	 and �(S	) = 1.Remark 3. Theorem 1 remains valid by substituting 
ondition (i) for the 
ondition : there exista  -irredu
ible, aperiodi
 and positive re
urrent transition kernel Pm.Theorem 1 remains valid by substituting (ii-iii) for the 
ondition : there exist a 
losed petiteset C and some Æ > 0 su
h that supC GC(�; h; 1I; Æ) < 1 and supC GC(�; 1I; r�; Æ) < 1 whereh � supt�m P tf�.Condition (iii) implies that the semi-group (P t)t�0 and the resolvent kernel R = R10 exp(�t) P t dtare bounded on Lf� .



8 G. FORT AND G.O. ROBERTSRemark 4. By (4), it is readily seen that fx; GC(x; f�; 1I; Æ) + GC(x; 1I; r�; Æ) < 1g � S	. Itmay be read from the proof thatlimt!+1 f	1(r�(t)) _ 1g k�P t(�)� �(�)k	2(f�)_1 = 0; (7)for all probability measure � su
h that GC(x;	2(f�) _ 1;	1(r�) _ 1; Æ) is �-integrable. Ap-plying again (4), (7) holds for all distribution � su
h that fGC(x; f�; 1I; Æ) + GC(x; 1I; r�; Æ)g is�-integrable.Remark 5. For any pair (	1;	2) 2 I, if 	1 strongly in
reases at in�nity (for example, 	1(x) /xp for some p < 1 
lose to one), then 	2 slowly in
reases (	2(x) / x1�p for some 1 � p 
loseto zero) (Krasnosel'skii and Ruti
kii, 1961, Theorem 2.1. Chapter 1). Hen
e, the stronger thenorm, the weaker the rate (and 
onversely). This 
ompromise between the rate fun
tion and thenorm of 
onvergen
e is well-known for dis
rete parameter Markov 
hain (Tuominen and Tweedie(1994); see also Jarner and Roberts (2002), Fort and Moulines (2003), Dou
 et al. (2004)). Asexpe
ted, this property remains valid for 
ontinuous-time Markov pro
ess.Corollary 6 provides a 
ondition based on A, well-adapted to prove polynomial ergodi
ity.Corollary 6. Let 1 � V <1 be a Borel fun
tion and 0 < � � 1. Assume that(i) some skeleton 
hain Pm is irredu
ible.(ii) there exists a 
losed petite set C su
h that supC V < 1 and for all � � � � 1, t 7!V ���(Xt) is integrable Px-a.s. andAV � � �
�V ��� + b1IC ; 0 � b <1; 0 < 
� <1: (8)Then there exists an unique invariant distribution �, �(V 1��) < 1 and for all 0 < p < 1 andb 2 R or p = 1 and b � 0 or p = 0 and b � 0,limt!+1 (1 + t)(1�p)(1��)=� (log t)b kP t(x; �)� �(�)kV (1��)p (lnV )�b _1 = 0 x 2 X :The proof is given in Se
tion 4.2. From (ii), we obtain GC(x; V 1��; 1I; Æ) + GC(x; 1I; (1 +t)1=��1; Æ) � 
V (x); and then we apply Theorem 1.By 
hoosing b = 0 and p = (1� ��)=(1� �) for some 1 � � � 1=�, Corollary 6 yields8x 2 X ; limt!1 (t+ 1)��1 kP t(x; �)� �(�)kV 1��� = 0: (9)If (9) holds for some V fun
tion, we shall say that the Markov 
hain is polynomially ergodi
 withrate (1 + t)(1��)=�.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 9Remark 7. Corollary 6 
an be 
ompared to the paper by Jarner and Roberts (2002) for thedis
rete parameter 
ase. They start with proving that if there exist a Borel fun
tion 1 � V <1,0 < � � 1, a set C su
h that for all � � � � 1PmV � � V � � �
�V ��� + b1IC 0 � b <1; 0 < 
� <1; (10)there exists 
 < 1 su
h that G(m)C (�; V 1��; 1I) + G(m)C (�; 1I; (1 + t)1=��1) � 
V , where G(m)C isgiven by (5). The drift 
ondition (10) is analogous to (8) and the 
ontrols of the moments G(m)Cand GC are similar. If in addition Pm is irredu
ible, aperiodi
 and C is petite for the skeleton,Pm is positive with invariant distribution � su
h that �(V 1��) < 1 and for all 1 � � � 1=�,the skeleton is V 1���-ergodi
 with rate (n + 1)��1. These rates 
oin
ide with those in (9).Remark 8. From the proof of Corollary 6, it may be read than only a �nite number of nested drift
onditions is required; nevertheless, in pra
ti
e, it is not more restri
ting to verify a 
ontinuumof drift 
onditions than to verify a �nite number of drift 
onditions. More pre
isely, assumption(ii) 
an be substituted for the 
onditions : (iii) there exist a 
losed petite set and fun
tions1 � Vq�1 � 
fq, su
h that for all integers 1 � q � p, AVq � �fq + b1IC , t 7! fq(Xt) is integrablePx-a.s., and supC Vp < 1; (iv) there exists � > 0 su
h that Ex [��C ℄ � f1(x). If su
h, followingthe same lines as in the proof of Proposition 26, it may be proved that GC(�; 1I; (t+1)p�1+�; Æ)+GC(�; fp; 1I; Æ) � 
Vp for some Æ > 0. Together with 
ondition (i), this yields f1��� -ergodi
ity ata rate (t + 1)(p�1+�)� for all 0 � � � 1, where f� is any fun
tion satisfying supt�m P tf� � fp.Dai and Meyn (1995) (hereafter DM) are, to our best knowledge, the �rst to exhibit this kindof nested drift 
onditions and hen
e, the �rst to address ergodi
ity at a polynomial rate; theyproved this yields f1-ergodi
ity at a rate (t + 1)p�1 (Theorem 6.3, DM). We are able to obtainthe same result : to that goal, we observe that 
onditions (iii-iv) are veri�ed with fun
tionsfk � fk=pp , � = 1 (as a 
onsequen
e of Proposition 5.3 and Eq. (6.1), in DM) and f� / fp.We proved that nested drift 
onditions on the generator A provide a 
ontrol of moments GCwith a polynomially in
reasing rate fun
tion. The 
onverse seems to be an open question. Wenevertheless make mention of Propositions 5.4 and 6.1 in Dai and Meyn (1995), that provide a(partial) 
onverse 
ondition : from the 
ondition supC GC(x; f; 1I; Æ) < 1, they dedu
e a drift
ondition onA (we point out that this single 
ondition implies a 
ontinuum of 
onditions by usingthe same 
onvexity argument as in (Jarner and Roberts, 2002, Lemma 3.5)). Unfortunately, thisdrift 
ondition in turn implies only a 
ontrol of the moment GC(x;Rf; 1I; Æ) where Rf(x) is afun
tion, whi
h is, in general diÆ
ult to 
ompare with f .



10 G. FORT AND G.O. ROBERTS3. ExamplesIn this se
tion, h�; �i and j � j denote respe
tively the s
alar produ
t and the Eu
lidean normin Rn. If u is a twi
e 
ontinuously di�erentiable real valued fun
tion on Rn, ru (resp. r2u)denotes its gradient (resp. its Hessian matrix); and �u=�xi its partial derivative with respe
t tothe i-th variable. For a matrix u, Tr (u) stands for the matrix tra
e and u0 the matrix transpose.For r 2 �, de�ne the sequen
e r0 by r0(t) = R t0 r(s)ds. Finally, we largely make use of theinequality r(s+ t) � r(s)r(t), s; t � 0, whi
h holds for any rate r 2 � (Thorisson, 1985, Lemma1).3.1. Toy example: Jump pro
ess. Consider the jump pro
ess on Z+ su
h that given thatXt = i, the waiting-time to the next jump has an exponential distribution with expe
tation ��1iand is independent of the past history. We assume that for all i � 0, �i > 0, and supi�0 �i <1.The probability that the jump leads to state j is given by the matrix entry Q(i; j). We 
onsiderthe 
ase when Q(0; i) = pi and Q(i; 0) = 1 for all i � 1, for some positive sequen
e (pi)i�1 su
hthatPi�1 pi = 1. We assume in addition thatlim infi �i = 0 and Xi�0 pi��1i <1: (11)Sin
e supi�0 �i <1, there exists aZ+-valued right-
ontinuous strong Markov pro
ess satisfyingthe heuristi
 des
ription above and su
h that for all (i; j) 2Z2+, the limit existslimt!0 P t(i; j)� Æi(j)t =: A(i; j) <1 (12)where Æi is the Dira
-mass at point i, and for all i � 1A(0; 0) = ��0; A(0; i) = �0pi; A(i; 0) = �A(i; i) = �i; (13)and A(i; j) = 0 otherwise (see e.g. (Feller, 1971, p.330)).Lemma 9. The pro
ess is Harris-re
urrent, reversible with invariant distribution � given by�(0) = f1+Pj�1 pj��1j g�1 and �(i) = pi��1i �(0), i � 1. Any skeleton 
hain Pm is irredu
ible.Proof. We have Ei [�0℄ = (1 � 1I0(i))��1i and for all i � 0, j 6= i, Æ > 0, P Æ(i; j) � pj . Then,Ei [�0(Æ)℄ = Æ+Pj�1 P Æ(i; j)Ej [�0℄ � Æ+2Pj�1 pj��1j . Hen
e, for all i 2Z+, Pi(�0(Æ) <1) = 1and as f0g is a 
losed petite set, the pro
ess is Harris-re
urrent. � is the unique invariant



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 11probability measure (as unique solution to �A = 0), and sin
e X obeys the detailed balan
e i.e.�(i)A(i; j) = �(j)A(j; i) for all i; j the pro
ess is reversible. Finally, for all m > 0, and i; j > 0Pm(i; j)� pj�0�i�j Z m0 ds exp(��is) Z m�s0 dt exp(��0t) Z m�(t+s)0 du exp(��ju) > 0;where the inequality says that Pm(i; j) is greater than the probability of a single visit to 0 beforea jump to j. Similarly, it is easy to prove that Pm(0; j) > 0 and Pm(j; 0) > 0 for any j 2 Z+.This proves the irredu
ibility of any skeleton. �We dedu
e from R3 that the pro
ess is ergodi
. Nevertheless, this 
onvergen
e fails to o

urat a geometri
 rate as shown in lemma 10, the proof of whi
h relies on the notion of 
ondu
tan
e.Lemma 10. X fails to be geometri
ally ergodi
.Proof. As X is reversible, any Markov kernel Pm is reversible. It is proved in Lawler and Sokal(1988) that for a reversible Markov kernel Pm, the 
ondu
tan
e �m given by �m := infA 
m(A)where 
m(A) := f�(A)�(A
)g�1 RA Pm(x;A
)�(dx), is positive if and only if Pm is geometri
allyergodi
. We verify that for any skeleton Pm, the 
ondu
tan
e is zero whi
h will involve thatthe skeleton fails to be geometri
ally ergodi
. Consider the set of states i su
h that �(i) � 1=2.Then 
m(i) � 2(1� Pm(i; i)) � 2(1� exp(��im)) upon noting that Pm(i; i) is lower boundedby the probability that the waiting-time in state i is greater than m. Sin
e lim inf i!+1 �i = 0,for all � > 0, there exists a state i su
h that 
m(i) � �, whi
h involves �m = 0. �We now identify fun
tions V that are in the domain of A.Lemma 11. Let 0 � V <1 be a Borel fun
tion su
h that Pi�1 piV (i) <1. Then V is in thedomain of A and AV = AV .Proof. For a fun
tion f � 0 su
h thatPj pjf(j) <1, the monotone 
onvergen
e theorem yieldsXj�1 limt#0 P t(i; j)� Æi(j)t f(j) = limJ"+1 JXj=0 limt#0 P t(i; j)� Æi(j)t f(j) = Af(i);in addition, supZ+ f�1jAf j <1. This proves that V is in the domain of the weak in�nitesimalgenerator A, and thus in the domain of A. �The expression of the generator suggests that fun
tion V on the form ���i is a 
andidate tosolve the drift inequality (8). This yields f -ergodi
ity at a log-polynomial rate.



12 G. FORT AND G.O. ROBERTSProposition 12. Assume that there exists � � 1 su
h that Pi�1 pi���i < 1. Then for alli 2Z+, 0 < � < � � 1 and b 2 R or � = 0 and b � 0, or � = � � 1 and b � 0,limt!1 (1 + t)��1�� [ln(1 + t)℄b kP t(i; �)� �(�)k1+���x [ln(1+��1x )℄�b = 0:Proof. We apply Corollary 6 : we 
hoose V � 1 su
h that for all i � 1, V (i) = 
�1V (0)���i forsome 
 > V (0). Then (8) is veri�ed with � = ��1 and the 
losed petite set C = f0g. �When � = 1 (i.e. with nothing more than the 
ondition (11)), this establishes the 
onver-gen
e in total variation norm at the rate 1I, whi
h 
orroborates the ergodi
ity of the pro
essproved above. Nevertheless, if for some � > 0, the sum Pi�1 pi �1 _ ��1i � �log(1 _ ��1i )��exists, Corollary 6 does not yield a stronger 
onvergen
e result than the ergodi
 one. We proveby appli
ation of Theorem 1, that 
overs more general rates than the polynomial ones, that
onvergen
e in total variation norm o

urs at the rate r�(t) � [log(t)℄�, and 
onvergen
e innorm f�(x) = [log(1 _ ��1x ) + 1℄� o

urs at rate 1I. We also derive suÆ
ient 
onditions forsub-exponential ergodi
ity.Lemma 13. Let f� :Z+! [1;1) and r� 2 � su
h thatXj�1 pj �1 _ ��1j � f�(j) <1 and Xj�1 pj ��1j Z +10 r�(s)�j exp(��js)ds <1: (14)Then there exists a �nite 
onstant 
 su
h that for all m > 0, supt�m P tf� � 
f�. For all Æ > 0,there exists a �nite 
onstant 
 su
h thatG0(x; f�; 1I; Æ) � 
 �1 _ ��1x � f�(x) G0(x; 1I; r�; Æ) � 
 Z +10 r�(s) exp(��xs)ds:Proof. Sin
e P t(x; j) � pj for all x 6= j, it is trivial to prove that supt>0 supi2Z+ f�1� P tf� < 1.For f � 1 and r 2 �,G0(x; f; r; Æ)� Z Æ0 r(s)P sf(x)ds+ r(Æ) Xj�1 P Æ(x; j)f(j)Ej [r0(�0)℄:To 
on
lude the proof, observe Ej [r0(�0)℄ = �j R r0(t) exp(��js)ds = R r(t) exp(��js)ds. �Proposition 14. (i) Assume that Pi�1 pi �1 _ ��1i � �log(1 _ ��1i )�� < 1, for some � � 0.For all 0 � � � �, i 2Z+, limt!+1 [log(t+ 1)℄��� kP t(i; �)� �(�)k[1+log(1_��1i )℄� = 0.(ii) Assume thatPi�1 pi �1 _ ��1i ���1=2i exp �z2��1i � <1, for some z > 0. For all 0 � p � 1,i 2Z+, limt!+1 exp(2z(1� p)t1=2) kP t(i; �)� �(�)k[1+��1=2i exp(z2��1i )℄p = 0.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 13Proof. In both 
ases, apply Theorem 1; for 
ase (i), set r�(t) = flog(exp(� � 1) + tg� andf�(i) = 1+ log(1_ ��1i )� ; and for 
ase (ii), set r�(t) = exp(2zt1=2), f�(i) = 1+��1=2i exp(z2��1i )ans observe that R exp(2zs1=2)� exp(��s)ds � 1 + 2p�z��1=2 exp(z2��1). �3.2. Langevin Tempered di�usions on Rn. Let us 
onsider a sto
hasti
 integral equationXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dWs; (15)where Wt is a n-dimensional Brownian motion, the drift 
oeÆ
ient b = (b1; � � � ; bn)0 is on theform, 1 � i � n, bi(x) = 12 nXj=1 ai;j(x) ��xj log �(x) + 12 nXj=1 ��xj ai;j(x);where a = ��0 is the n� n symmetri
 positive de�nite matrix. Su
h a di�usion is the so-
alledLangevin di�usion and is de�ned in su
h a way that � is, up to a multipli
ative 
onstant, thedensity of the unique invariant probability distribution (with respe
t to Lebesgue measure onRn). This property motivates re
ent interests in Langevin di�usion for their use as MCMCmethods, where the s
ope of these te
hniques is to draw samples from a Markov 
hain withgiven stationary density �. The eÆ
ien
y of these algorithms is linked to the rate at whi
h f -moments Ex [f(Xt)℄ 
onverge to the 
onstant �(f). This motivates the study of the f -ergodi
ity.In pra
ti
e, dis
retizations of the 
ontinuous-time pro
ess are used to solve the MCMC simula-tion problem and re
ent works proved that it is possible to �nd methods of dis
retizing whi
hinherit the 
onvergen
e rates of the 
ontinuous-time di�usion (see Roberts and Tweedie (1996);Stramer and Tweedie (1999a,b); Roberts and Stramer (2003); Roberts and Tweedie (2002) formethods of dis
retizing and their use in MCMC te
hniques). Roberts and Tweedie proved that,on the real line, when the target density � is heavy tailed, the Langevin di�usion with a := 1
an not be geometri
ally ergodi
. We 
omplement this assertion when � is polynomial in thetails, and prove that the Langevin di�usion in the one-dimensional 
ase as well as in the multi-dimensional one is f -ergodi
 at a polynomial rate. For su
h polynomial target density on thereal line, it was observed in Jarner and Roberts (2001) that the polynomial rate of 
onvergen
eof the Metropolis-Hastings algorithm 
ould be improved by 
hoosing a heavy-tailed proposaldistribution. This idea, when adapted to the di�usion on the real line, suggests the 
hoi
e of aspeed measure i.e. of the 
oeÆ
ient � su
h that � is small when the pro
ess is 
lose to the modesof � and big when far from the modes (Stramer and Tweedie (1999a)). In the multi-dimensional
ase, this suggests a(x) on the form ��2d(x)In, where In is the identity matrix on Rn, d > 0. Inthat 
ase (d > 0) we 
all these pro
esses Langevin tempered di�usion (see Roberts and Stramer
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ation of these heated di�usions). It was observed in the literature thatby 
hoosing d large enough, a di�usion on the real line with target density polynomial in thetails is geometri
ally ergodi
. We investigate the behavior of this Langevin tempered di�usionsin the multi-dimensional 
ase, 
ontrarily to most of the mentioned 
ontributions that 
over theone-dimensional 
ase. In Theorem 16, it is proved that up to some 
riti
al temperature d� thedi�usion is polynomially ergodi
 and the larger d, the better the rate. When d � d�, the di�u-sion is geometri
ally ergodi
. We hen
eforth 
onsider a di�usion matrix a(x) = �2(x)In where�(x) := ��d(x) for some d � 0. Assume thatA1 � is, up to a multipli
ative 
onstant, a positive and twi
e 
ontinuously di�erentiabledensity on Rn (with respe
t to Lebesgue measure).De�ne the drift ve
torb(x) := 12�2(x) �r logf�(x)�2(x)g� = 1� 2d2 ��2d(x) r log �(x): (16)Under A1, the 
oeÆ
ients b and � are lo
ally Lips
hitz-
ontinuous, whi
h implies that forany 
ompa
t set K, supx2Kfjb(x)j+ j�(x)jg(1 + jxj)�1 < 1. These lo
al 
onditions allow the
onstru
tion of a 
ontinuous pro
ess satisfying the sto
hasti
 integral equation (15) up to theexplosion time � := limn!1 �n, where �n := infft � 0; jXtj � ng. We thus formulate thefollowing assumptionA2 The pro
ess is regular i.e. � = +1 a.s.Under A1, a suÆ
ient 
ondition for regularity is the existen
e of a twi
e 
ontinuously dif-ferentiable non-negative fun
tion V and a 
onstant 
 � 0 su
h that LV � 
V on Rn andlimn!1 inf jxj�n V (x) = +1 (Has'minskii, 1980, Theorem 3.4.1.) where L is the ellipti
 opera-torLV (x) = hb(x);rV (x)i+ Tr �r2V (x) a(x)�2= ��2d(x)2  (1� 2d)hr log�(x);rV (x)i+ nXi=1 �2V (x)�x2i ! :In the one dimensional 
ase, (Has'minskii, 1980, Remark 2, p.105) establishes that the pro
essis regular if d is 
hosen su
h that ZR�2d�1(x)dx = +1; (17)
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e the fun
tion V (x) := sign(x) R x0 Q(y)dy where lnQ(x) = �2 R x0 b(t)��2(t)dt = (2d �1)(ln �(x)� ln �(0)) is �nite and satis�es LV = 0 on R. To 
over the multi-dimensional 
ase, weadapt this 
ondition and 
laim that the pro
ess is regular if d is 
hosen su
h thatZ 1r t1�n exp �(1� 2d) Z tr s�1 supfx;jxj=sghr log�(x); xids!dt = +1: (18)Indeed, the fun
tion V (x) := U(jxj) where for all u � 0,U(u) := Z ur exp � Z tr supfx;jxj=sg�h 2b(x)�2(x) ; xjxji+ n � 1jxj � ds! dt;is �nite and satis�es LV = 0 on Rn.In the one-dimensional 
ase, 
ondition (17) is ne
essary for the existen
e of an invariant prob-ability measure (Has'minskii, 1980, Remark 2, p.105); thus, for the obje
tive of this paper, dhas to be 
hosen in the set D1 of the positive real numbers su
h that (17) hold. Observe thatD1 is non-empty and 
ontains f0; 1=2g. In the multi-dimensional 
ase, a ne
essary 
onditionfor (positive) re
urren
e is that d 
he
ks a 
ondition on the form (18) where the supremum isrepla
ed by the in�mum (Has'minskii, 1960, Theorem II p.194). This involves the de�nition ofan interval Dn limiting the range of the possible temperature d.Under A1-2, there exists a solution (
;F ; (Ft); (Wt); (Xt);P) where (
;F ; (Ft); (Wt);P) is n-dimensional Brownian motion, (Xt)t is a Ft-adapted homogeneous and 
ontinuous Markov pro-
ess with Feller transition probability, satisfying (15) P-a.s. and su
h that both the integral existi.e. for all t > 0, P�Z t0 b(Xs)ds+ Z t0 �2(Xs)ds <1� = 1: (19)A transition semi-group (P t)t�0 has the Feller property if for any 
ontinuous bounded real-valued fun
tion f , x 7! P tf(x) is 
ontinuous. (Xt) is thus a strongly Markovian pro
ess as a(right)-
ontinuous pro
ess with Feller transition probability (Dynkin (1965)).Let 0 � V < 1 be a twi
e 
ontinuously di�erentiable fun
tion su
h that there exists a non-negative Borel fun
tion �, bounded on 
ompa
t sets, a 
onstant b < 1 and a 
ompa
t setC su
h that LV � ��1IC
 + b1IC . From (19) and the 
ontinuity of t 7! rV (Xt), the pro
esst 7! R t0 �(Xs)frV (Xs)g0dWs is a lo
al martingale. Appli
ation of the Itô's rule yields LV = AV .A3 For all 1 � i; j � n, �2�2(x)=�xi�xj and �2 log �(x)=�xi�xj are lo
ally uniformly H�older
ontinuous.



16 G. FORT AND G.O. ROBERTSProposition 15. Under A1-3, the pro
ess is reversible and � is, up to a multipli
ative 
onstant,the density of an invariant probability measure. Any skeleton 
hain is irredu
ible, and 
ompa
tsets are 
losed petite sets.Proof. There exists a 
ontinuous fun
tion p : (t; x; y) 7! p(t; x; y) su
h that P t(x; dy) = p(t; x; y)dy(Kent, 1978, Theorem 1.1.). Sin
e the pro
ess is regular (or 
onservative, in the terminologyof Kent) and � is Lebesgue integrable, (Kent, 1978, Theorems 4.1. and 6.2.) imply that thepro
ess is time-reversible andlimt!1 ZA p(t; x; y)dy = �Z �(x)dx��1 ZA �(x)dx: (20)Hen
e, �(dx) is invariant. Irredu
ibility of skeletons results from the (20), and petiteness of
ompa
t sets from the 
ontinuity of p(t; �; �). �Finally, we restri
t our attention to densities � that are polynomially de
reasing in the tails.A4 � satis�es A1 and A3 and there exists some 0 < � < 1=n,0 < lim infjxj!+1 jr log�(x)j��(x) � lim supjxj!+1 jr log�(x)j��(x) <1;2� � 1 < lim infjxj!+1 Tr(r2 log �(x))jr log�(x)j2 � lim supjxj!+1 Tr(r2 log �(x))jr log�(x)j2 <1:Set 
 = lim inf jxj!+1 Tr(r2 log �(x)) jr log �(x)j�2.This 
lass is non empty and 
ontains the densities that are polynomially de
reasing in the tails�(x) = 
jxj�1=� for large jxj, where 0 < � < 1=n; in that 
ase, 
 = �(2� n) > 2� � 1. For thisfamily, the regularity 
riterion (17) or (18) says that the temperature d has to be 
hosen in Dn =[0; (1+�(2�n))=2℄. For any density in the 
lass A4, 0 < lim inf jxj jxj��(x) � lim supjxj jxj��(x) <1. Hen
e D1 = [0; (1 + �)=2℄ and for n � 3, 1=2 =2 Dn. If sups�r supfx;jxj=sghr log�(x); xi =:�%�1 < 0 exists, then [0; 1=2+ %(1� n=2)℄ � Dn.It is readily seen that setting, V = 1+sign(�)��� outside a 
ompa
t set, and V = 1 otherwise,LV = �j�j2 V ���1 + ��� �2(��d) � jr log�j�� �2 �1� �� 2d+ Tr(r2 log �)jr log �j2 � ; (21)for large jxj. As established in (Stramer and Tweedie, 1999a, Theorem 3.1.), the di�usion 
annot be geometri
ally ergodi
 when 0 � d < �: by 
hoosing f := �d�� and applying Itô's formula,
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1���d(Xt)dt+ 
2dWt for some 
onstants 
i; and the drift 
oeÆ
ient tends to zero forlarge value of the pro
ess. The pro
ess (f(Xt))t fails to be geometri
ally ergodi
, and hen
eforth,(Xt)t itself.From (21), for large jxj,LV � �
V 1�� where � := 2��1(� � d); and 
 > 0() 1 + 
 � �� 2d > 0:In any 
ases, one has to 
hoose � su
h that 
 > 0. If � � 0 and � > 0, then the pro
ess isgeometri
ally V -ergodi
 (Meyn and Tweedie, 1993d, Theorem 6.1.). If 0 < � � 1 and � > 0,the di�usion is polynomially ergodi
 as dis
ussed in Se
tion 2. If � � 1 and � 
an be setnegative, the pro
ess is uniformly ergodi
 i.e. there exist � > 1 and a 
onstant 
 su
h that forall x, limt!1 �t kP t(x; �)� �(�)kTV � 
 and the 
onvergen
e does not depend on the startingpoint. This yields Theorem 16 : the �rst assertion results from Roberts and Tweedie (1996)and Corollary 6 of the present paper. The se
ond and third assertions result from (Meyn andTweedie, 1993d, Theorem 6.1.).Theorem 16. Consider the Langevin tempered di�usion on Rn where the target density � isfrom the 
lass A4 and � := ��d for some d satisfying (17) if n = 1 or (18) if n � 2.(i) If 0 � d < �, the pro
ess fails to be geometri
ally ergodi
. For all 0 � � < 1 + 
 � 2�,limt!+1(t+ 1)� kP t(x; �)� �(�)k1+��� = 0 � < 1 + 
 � 2� � �2(� � d) : (22)(ii) If � � d < (1 + 
)=2, then for all 0 < � < 1 + 
 � 2d, the di�usion is geometri
allyV -ergodi
 with V := 1 + ���.(iii) If � < d, the di�usion is uniformly ergodi
.Theorem 16 extends earlier results to the multi-dimensional 
ase and provides polynomialrates of 
onvergen
e of the \
old" Langevin tempered di�usions for a wide family of norms.In the one-dimensional 
ase, when d = 0, (Ganidis et al., 1999, Result R3, p.245) only 
laimthat the 
onvergen
e in total variation norm is polynomial, with no expli
it value of the rate of
onvergen
e. We establish that for a given ���-norm, the minimal rate of 
onvergen
e is a
hievedwith d = 0 and in that 
ase 
oin
ides with the rate of 
onvergen
e of the symmetri
 random walkHastings-Metropolis algorithm with light proposal distribution (Jarner and Roberts (2001)). By
hoosing a di�usion matrix whi
h is heavy where the target distribution is light, and 
onversely,improves the rate of 
onvergen
e as eviden
ed by (22). The 
riti
 temperature is d = �. Ford � �, the di�usion is no more polynomially ergodi
 and geometri
 rates 
an be rea
hed. This
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riti
 temperature 
oin
ides with the 
riti
 one given in (Stramer and Tweedie, 1999a, Theorem3.1.) for the real-valued di�usion.Remark: General di�usions on Rn. The te
hniques above 
an be adapted for the analyzesof di�usions satisfying (15). Under 
onditions implying (a) the existen
e of a solution, (b)the 
ondition (i) of Corollary 6 and (
) the petiteness property of the 
ompa
t sets, (see e.g.Has'minskii (1980); Veretennikov (1999); Malyshkin (2001)), we are able to prove that whenthere exist M;�; 
 > 0 and l < 2 su
h thatsupfx;jxj�Mg jxj�(2+l) hx; a(x)xi=: �; supfx;jxj�Mg jxj�lTr (a(x)) =: 
supfx;jxj�Mg jxj�l < b(x); x >=: �r for some r > (
 � �l)=2;then the di�usion is polynomially ergodi
 and for all x, for all 0 � � < l + ��1(2r � 
)limt!1 (1 + t)� kP t(x; �)� �(�)k1+jxj� = 0; � < 2(r+ �)� 
�(2� l) � 1� �2� l :3.3. Compound Poisson-Pro
ess driven Ornstein-Uhlenbe
k pro
esses. Let X be anOrnstein-Uhlenbe
k pro
ess driven by a �nite rate subordinator:dXt = ��Xtdt+ dZt;where Zt := PNti=1Wi, fWigi�1 is an independent and identi
ally distributed 
olle
tion of ran-dom variables from probability measure F and fNtgt�0 is a Poisson-Pro
ess of �nite rate �,independent of the 
olle
tion fWigi�1. Su
h pro
esses are used as storage models (see for ex-ample Lund et al. (1996)) and have re
ently been used in �nan
ial e
onometri
s as models forsto
hasti
 volatility (see Barndor�-Nielsen and Shephard (2001)).The exponential de
ay of X ex
ept at jump points leads to geometri
 ergodi
ity of X whenthe tails of F (�) are suÆ
iently light. Here we shall explore the 
ase where F (�) is extremelyheavy-tailed. First we make this 
on
ept pre
ise: we say a probability measure is heavy-tailedif, under that probability measure, for all � > 0, E[e�X ℄ =1. Now let G denote the law of thelog jump sizes, that is G(A) = F (eA). We have the following negative result showing that forsuÆ
iently heavy-tailed jumps, geometri
 ergodi
ity, and even ergodi
ity 
an fail. As usual, welet � denote the invariant probability measure (should it exist).Lemma 17. (i) Suppose R xG(dx) =1, then X fails to be positive re
urrent.(ii) Suppose G is heavy-tailed, then X fails to be geometri
ally ergodi
.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 19Proof. Suppose X0 = 2 and 
onsider the petite set C = [0; 1℄. ThenP(�C > t) � P[jump of size � e�t o

urs before time log 2=�℄ = (1�2��=�) Z 1�t G(x)dx: (23)For positive re
urren
e, we require that E(�C) to be �nite, that is that P[�C > t℄ be integrable.However the integrated right hand side of (23) is justZ 10 dt Z 1�t G(x)dx = Z 10 ��1xG(x)dx =1by hypothesis, so thatE(�C) =1 too, so that positive re
urren
e must fail, proving (i). For (ii),we re
all that for geometri
 ergodi
ity, we require that for some � > 0, E[e��C ℄ <1. (Althoughnot ne
essary, we shall again assume that X0 = 2 and C = [0; 1℄.) Thus from (23) we requirethat Z 10 e�tdt Z 1�t G(x)dx = ���1 Z 10 (e�x � 1)G(�x)dx <1: (24)However this is pre
luded by the heavy-tailed nature of G, thus proving (ii). �Examples of jump distributions for whi
h geometri
 ergodi
ity fails (
ase 2 above), thoughwe will see that X is positive Harris re
urrent, in
lude the following:F (dx) = dxx(log x)k at least for k > 1; F (dx) = e�(logx)�dxx for some � � 1:Lemma 18. Suppose that for some r > 1, mr := R10 [log(1 + u)℄rF (du) < 1. Then, X ispolynomially ergodi
 with rate (1 + t)(r�1).Proof. For di�erentiable fun
tions V in the domain of A,AV = Z 10 (V (x+ u)� V (x))�F (du)� �xV 0(x) :Now set V (x) = (log x)r, then by dire
t 
al
ulation,AV � = Z 10 ((log(x+ u))r� � (log x)r�)� F (du)� �xr�(logx)�r�1x : (25)Now the �niteness of mr merely ensures the �niteness of the �rst term on the right hand sideof (25). So, noting that (log x)r� is 
on
ave beyond x = er�1 for all 0 < � � 1, we �nd that infa
t the �rst term on the right hand side of (25) is bounded as a fun
tion of x, so that for somepositive 
onstant 
, AV � � Z 10 ur(log x)�r�1x �F (du)
� r�(log x)�r�1:



20 G. FORT AND G.O. ROBERTSIt is easy to 
he
k that all bounded sets are petite in this example, and therefore the 
onditionsfor the appli
ation of Corollary 6 with � = r�1.4. Proofs of Se
tion 2When not expli
itly de�ned, 
 denotes a generi
 �nite positive 
onstant. � is the usual shiftoperator on the 
anoni
al probability spa
e of the strong Markov pro
ess.Lemma 19. If 	�1 is a Young fun
tion and r 2 �0 (resp. �), [	(r) _ 1℄ 2 �0 (resp. �).Proof. Let r 2 �0. 	�1 is a 
ontinuous, in
reasing and 
onvex fun
tion, so 	 is measur-able and bounded on bounded sets ((Krasnosel'skii and Ruti
kii, 1961, Chapter 1)). Fur-thermore, there exists a right-
ontinuous non de
reasing fun
tion � su
h that ln 	(r(t)) =ln r(t) + lnfr(t)�1 R r(t)0 �(s)dsg; thus proving that ln	(r(t))=t # 0 as t ! 1. This yields	 2 �0. The se
ond assertion dedu
es easily from the de�nition of � and the upper boundsupt�1	(at)=	(t) <1 for all a > 0 (Krasnosel'skii and Ruti
kii, 1961, Chapter 1, p.7-8). �While Theorem 1 and Corollary 6 are 
laimed for a rate fun
tion r 2 �, Lemma 19 showsthat they 
an be established for a rate r 2 �0, and we will do so.4.1. Proof of Theorem 1. Without loss of generality, we assume 	1(r�) � 1I and 	2(f�) � 1.Lemma 20. Let r 2 �0 and f � 1 be a Borel fun
tion. For any 
losed set C su
h thatsupC GC(�; f; r; Æ) < 1, there exists a 
onstant M < 1 su
h that for all x 2 X and t � Æ,GC(x; f; r; t) �M bt=Æ
GC(x; f; r; Æ).Proof. The proof is on the same lines than the proof of Lemma 4.1. Meyn and Tweedie (1993a)that adresses the 
ase r = 1I, and the details are omitted. Using the property r(s + t) �r(s)r(t) (Thorisson, 1985, Lemma 1(d)), we obtainM = 1+supt�Æ �r(t)=r0(t)� supC GC(�; f; r; Æ)whi
h is �nite sin
e limt r(t)=r0(t) = 0 (this is a 
onsequen
e of (Thorisson, 1985, Lemma 1)). �Proposition 21. Let r 2 �0 and f � 1 be a Borel fun
tion. Assume that X is �-irredu
ibleand supC GC(�; f; r; Æ) < 1 for some 
losed petite set C and Æ > 0. x 7! GC(x; f; r; Æ) is �nite -almost surely for some (and then any) maximal irredu
ibility measure  , and C is a

essible.



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 21Proof. By (Meyn and Tweedie, 1993a, Proposition 3.2.(ii)), for all � > 0, there exist a positiveinteger m and a maximal irredu
ibility measure  su
h that  (�) � infx2C Rm� (x; �), where R�is the resolvent kernel R�(x; �) = R � exp(��t)P t(x; �)dt. By Lemma 20, R�GC(�; f; r; Æ)(x) �
GC(x; f; r; Æ) where 
 is �nite for some 
onvenient �. Hen
e,  GC(�; f; r; Æ) < 1, proving the�rst statement. This implies that there exists an a

essible set B su
h that supx2B Ex [�C(Æ)℄ �supx2B GC(x; f; r; Æ) < 1. Then for q large enough, infx2B Px(�C(Æ) � q) > 0 and, for any x,Ex [�C ℄ � Pn(x;B) infx2BPx(�C(Æ) � q) > 0 for some n depending upon (x;B). Hen
e C isa

essible. �Proposition 22. Suppose Assumptions (i-ii) of Theorem 1. Then(i) There exist t0 and a measure � su
h that inf t�t0 infx2C P t(x; �)� �(�), and �(C) > 0.(ii) For any set B su
h that �(B) > 0, Ex [r0(Tm;B)℄ � RB Ex [r0(�C(Æ))℄ for some �nite
onstant Rt;B.(iii) For any t � 0 and any a

essible set B, Ex [r0(�B(t))℄ � Rt;B Ex [r0(�C(Æ))℄ for some �nite
onstant Rt;B.Proof. (i) results from R2, Proposition 21 and Lemma 2. (ii) Let t0 and � be given by (i). Set� = �C(t0+m); and de�ne the sequen
e of iterates �1 = � and for n � 2, �n = �n�1 + � Æ ��n�1 .Finally, let (un)n�2, be a f0; 1g-valued pro
ess given by un = 1 if Xd(�n�1+t0)=mem 2 B and 0otherwise. dte denotes the upper integer part of t. Then un 2 Hn with Hn = �(Xt; t � �n),and by the strong Markov property Px(un = 1jHn�1) � �(C) > 0 for n � 2. Finally, set� = inffn � 2; un = 1g, so that Ex [r0(Tm;B)℄ � Ex [r0(��)℄. Using again the strong Markovproperty and the inequality r0(t1 + t2) � r0(t1) + r(t1)r0(t2) (Thorisson (1985)),Ex �r0(��)� �Xn�2 Ex �r0(�n)1I��n� =Xn�2fax(n) + supx2C Ex �r0(�)� bx(n)g; (26)for all n � 2, where ax(n) = Ex [r0(�n�1)1I��n℄ and bx(n) = Ex [r(�n�1)1I��n℄: Sin
e, byLemma 20, supC Ex [r0(�)℄ <1, there exists 0 < � < 1 and a �nite 
onstant 
 su
h thatbx(n) � �bx(n�1)+
(1��(C))n�1; ax(n) � (1��(C))ax(n�1)+bx(n�1) supx2C Ex �r0(�)� ;and bx(2) = Ex [r(�)℄, ax(2) = Ex [r0(�)℄. The proof is on the same lines than the proof of(Nummelin and Tuominen, 1983, Lemma 3.1.) and is omitted for brevity. Hen
e, Ex [r0(Tm;B)℄ �
 �Ex [r0(�)℄ + Ex [r(�)℄� for some 
 <1. The proof is 
on
luded, applying again Lemma 20 andthe bound supt�a r(t)=r0(t) <1 for all a > 0 (see the proof of Lemma 19).



22 G. FORT AND G.O. ROBERTS(iii) B is a

essible and C petite so there exist t0 � 0 and 
 > 0 su
h that infx2C Px(�B � t0+t) �infx2C Px(�B � t0) � 
. Set � = �C(t + t0) and un = 1 if for some �n�1 � s � �n�1 + t + t0,Xs 2 B; and un = 0 otherwise. Following the same lines as in the proof of (ii), it may be provedthat there exists 
 < 1 su
h that Ex [r0(�B(t))℄ � 
 Ex [r0(�C(t + t0))℄. The proof is 
on
ludedby applying Lemma 20. �Proposition 23. Suppose Assumptions (i-ii) of Theorem 1. For any (	1;	2) 2 I, C is a(	2(f�);	1(r�))-regular set for the pro
ess i.e. supC GB(�;	2(f�);	1(r�); t) <1 for any t > 0and any a

essible set B. GB(x;	2(f�);	1(r�); t) <1 for all x 2 S	 and �(S	) = 1.Proof. (	2(f�);	1(r�))-regularity is a 
onsequen
e of the Young's inequality (4), the (f�; 1I)-regularity of C (Meyn and Tweedie, 1993a, Proposition 4.1.) and Proposition 22(iii). For these
ond statement, writeGB(x;	2(f�);	1(r�); t) � GC(x;	2(f�);	1(r�); t) + Ex "Z �BÆ��C (t)�C(t) 	1(r�(s)) 	2(f�(Xs))ds# :The result now follows from the strong Markov property, Lemma 20 and the inequality 	1(r�(s+t)) � 	1(r�(s))	1(r�(t)) whi
h holds sin
e 	1 Æ r� 2 �0. Finally, �(S	) = 1 by Proposition 21.�Proposition 24. Suppose Assumptions (i-ii) of Theorem 1. The skeleton 
hain Pm is  -irredu
ible and aperiodi
 and possesses an a

essible petite set A su
h that for all (	1;	2) 2 I,supx2A Ex 24Tm;A�1Xk=0 	1(r�(k)) 	2(f�(Xkm))35 <1: (27)Proof. For the de�nitions of a

essibility, smallness, petiteness, aperiodi
ity of a dis
rete-timeMarkov 
hains, see Meyn and Tweedie (1993b) (hereafter MT). From Proposition 22(i), C issmall for the skeleton Pm and the skeleton is aperiodi
 (Theorem 5.4.4 MT). In addition, byR2, the skeleton is positive and �(f�) < 1. Let Cn be a petite set (for the skeleton Pm) su
hthat A = C \ Cn is of positive �-measuresupx2Cn Ex 24Tm;B�1Xk=0 f�(Xkm)35 <1; (28)for any a

essible set B (for the skeleton); the existen
e of su
h a set is a 
onsequen
e of(Theorems 14.2.3 and 14.2.11, MT) and Proposition 22(ii). The set A is a

essible and petitefor the skeleton. (27) now results from the Young's inequality (4), (28) and Proposition 22(ii).



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 23�[Proof of Theorem 1℄. By Proposition 24 and (Tuominen and Tweedie, 1994, Theorem 2.1 andProposition 3.2), limn!1 	1(r�(n)) kPnm(x; �) � �(�)k	2(f�) = 0 for � a.a. x. By Jensen'sinequality, the upper bound supt�1	2(at)=	2(t) <1 for all a > 0, and assumption (iii), we havefor all t � m, P t	2(f�) � 
	2(f�). In addition, sin
e 	1(r�) 2 �, 	1(r�(n + t)) � 
	1(r�(n))for all t � m (Thorisson, 1985, Lemma 1). Hen
e,limt!1 	1(r�(t)) kP t(x; �)� �(�)k	2(f�) = 0; � a.a. x: (29)We now prove that this 
onvergen
e o

urs for all x 2 S	 whi
h is of �-measure one, byProposition 23. To that goal, we mimi
 the proof of (Meyn and Tweedie, 1993
, Theorem 7.2.).By Egorov's Theorem, there exists a set A, �(A) > 0, su
h that (29) holds uniformly for allx 2 A. For all Borel fun
tion g 2 L	2(f�), set �g := g � �(g). Sin
e 	1(r�) 2 �0,	1(r�(t)) jEx [�g(Xt)1I�A�t℄j � 	1(r�(t)) Z t0 supy2A jP t�s�gj(y) Px(�A 2 ds)�M fEx [	1(r�(�A))℄ + Ex �	1(r�(�A))1I�A�t=2�g;where M = supy2A sups�0 r�(s)jP s�gj(y). Let x 2 S	; from Proposition 23, Ex [	1(r�(�A))℄ <1and limt!1 Ex �	1(r�(�A))1I�A�t=2� = 0. Sin
e the limit (29) holds uniformly for all x 2 A, Mis �nite. Hen
e, limt!1	1(r�(t)) jEx [�g(Xt)1I�A�t℄j = 0 uniformly for all g 2 L	2(f�).Sin
e �(f�) <1, jEx [�g(Xt)1I�A�t℄j � 
 Ex [	2(f�(Xt))1I�A�t℄. Following the same lines as in theproof of (Meyn and Tweedie, 1993
, Theorem 7.2.), using again supu�m Puf� � 
f�, we obtain,	1(r�(t)) Ex [	2(f�(Xt))1I�A�t℄ � 
 	1(r�(m)) inf0�u�m 	1(r�(t� u)) Ex [	2(f�(Xt�u))1I�A�t�u℄ :By Proposition 23, GA(x;	2(f�);	1(r�); 0) <1, whi
h implies that the upper limit in the right-hand side is zero, proving that limt!1 	1(r�(t)) Ex [	2(f�(Xt))1I�A�t℄ = 0. Hen
e, uniformlyfor g 2 L	2(f�), limt!1 	1(r�(t)) jEx [�g(Xt)1I�A�t℄ j = 0. This 
on
ludes the proof.4.2. Proof of Corollary 6. Set f� := V 1�� and r�(t) := (t+ 1)1=��1.Lemma 25. Suppose Assumption (ii) of Corollary 6. For any � � � � 1, t � 0, and anyFt-stopping-time � ,
�Ex �Z �^t0 V ���(Xs)ds�+ Ex [V �(X�^t)℄ � V �(x) + bEx �Z �^t0 1IC(Xs)ds� :



24 G. FORT AND G.O. ROBERTSProof. By de�nition of AV ,
�Ex �Z �^t^Tn0 V ���(Xs)ds�+ Ex [V �(X�^t^Tn)℄ � V �(x) + bEx �Z �^t^Tn0 1IC(Xs)ds� :The right-hand side is upper bounded by V (x) + bt and by the monotone 
onvergen
e theorem,it 
onverges to V (x) + bEx hR �^t0 1IC(Xs)dsi as n ! 1. The Lemma now results from Fatou'sLemma. �Proposition 26. Suppose Assumption (ii) of Corollary 6. For all Æ > 0, there exists 
 < 1su
h that for all x 2 X , GC(x; 1I; r�; Æ) � 
V (x).Proof. Set q := b1=�
 where b�
 denotes the lower integer part. By Lemma 25, we have Ex [�C ℄ �
V �(x) and by Jensen's inequality, we obtain Ex [���1�qC ℄ � 
V 1�q�(x). We prove by indu
tionthat for all integer 1 � l � q, Ex [���1�lC ℄ � 
V 1�l�(x). The 
ase l = q holds; assume it is veri�edfor some 2 � l � q. The indu
tion hypothesis and Lemma 25 yieldEx h���1�l+1C i � 
 Ex �Z �C0 EXs h���1�lC i ds� � 
 Ex �Z �C0 V 1�l�(Xs)ds� � 
V 1�l�+�(x);whi
h 
on
ludes the indu
tion. For l = 1, this yields GC(x; 1I; r�; 0) � 
V (x). Finally, bystandard manipulations and Lemma 25, we have GC(x; 1I; r�; Æ) � 
(1 + P ÆV (x)) � 
V (x). �[Proof of Corollary 6℄. We 
he
k the 
onditions for the appli
ation of Theorem 1. Lemma 25and Proposition 26 imply GC(x; f�; 1I; Æ) � 
V (x) and GC(x; 1I; r�; Æ) � 
V (x), from whi
h wededu
e the 
ondition (ii) of Theorem 1, and by R1, 
ondition (i) of Theorem 1. Condition (iii)follows from Lemma 25. Finally, S	 = X .A
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