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Abstract—This paper investigates the problem of distributed
stochastic approximation in multi-agent systems. The algorithm
under study consists of two steps: a local stochastic approxi-
mation step at each agent and a gossip step which drives the
network to a consensus. The gossip step uses row-stochastic
matrices to weight network exchanges. Gossip-matrices are often
also assumed column-stochastic in the literature. Unfortunately,
column-stochasticity implies significant restrictions on the com-
munication protocol and prevents from using simple broadcast
protocols. Under the assumption of decreasing step sizes, it is
proved that the network is driven to a consensus at overwhelming
speed and that the average estimate converges to the sought
consensus. When the gossip matrices are doubly stochastic, a
central limit theorem is established and it is proved that the
performance of the algorithm is identical to that of a centralized
algorithm. When the gossip matrices are non doubly stochastic,
an excess variance term is added to the limiting distribution.
In that case, a performance gap w.r.t. the centralized algorithm
exists and is characterized.

I. INTRODUCTION

Stochastic approximation (SA) has been a very active re-
search area for the last sixty years (see e.g. [1], [2]). The
pattern for a stochastic approximation algorithm is provided
by the recursion θn = θn−1+γnYn, where θn is a sequence of
parameters, Yn is a sequence of random variables, and γn is a
deterministic sequence of step sizes. An archetypal example of
such algorithms is provided by stochastic gradient algorithms.
These are characterized by the fact that Yn = −∇g(θn−1)+ξn
where g is a function to be minimized, and where (ξn)n≥0 is
a noise sequence corrupting the gradient.
In the traditional setting, sensing and processing capabilities
needed for the implementation of a stochastic approximation
algorithm are centralized on one machine. Alternatively, dis-
tributed versions of these algorithms where the updates are
done by a network of communicating nodes (or agents) have
recently aroused a great deal of interest. Applications include
decentralized estimation, control, optimization, and parallel
computing.

The literature contains at least two different cooperation
approaches for solving the distributed optimization problem. In
the so-called incremental approach (see for instance [3], [4]):
a message containing an estimate of the desired minimizer
iteratively travels all over the network. At any instant, the agent
which is in possession of the message updates its own estimate
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and adds its own contribution, based on its local observation.
Incremental algorithms generally require the message to go
through a Hamiltonian cycle in the network. Finding such
a path is known to be a NP complete problem and is not
particularly suitable to distributed computations. Relaxations
of the Hamiltonian cycle requirement have been proposed:
for instance, [4] only requires that an agent communicates
with another agent randomly selected in the network (not
necessarily in its neighborhood) according to the uniform
distribution. However, substantial routing is still needed. In [5],
distributed optimization is tackled using a different approach,
assuming that agents perfectly observe their utility functions
and know also the utility functions of their neighbors.

This paper focuses on another cooperation approach based
on average consensus techniques. In this context, each agent
maintains its own estimate. Agents separately run local gradi-
ent algorithms and simultaneously communicate in order to
eventually reach an agreement over the whole network on
the value of the minimizer. Communicating agents combine
their local estimates in a linear fashion: a receiver computes
a weighted average between its own estimate and the ones
which have been transmitted by its neighbors. Such combining
techniques are often referred to as gossip methods.

The idea beyond the algorithm of interest in this paper is
not new. Its roots can be found in [6], [7] where a network of
processors seeks to optimize some objective function known by
all agents (possibly up to some additive noise). More recently,
numerous works extended this kind of algorithm to more in-
volved multi-agent scenarios, see [8]–[10] as a non exhaustive
list. Multi-agent systems are indeed more difficult to deal with,
because individual agents ignore the global objective function
to be minimized. [11] addresses the problem of unconstrained
optimization, assuming convex but non necessarily differen-
tiable utility functions. Convergence to a global minimizer
is established assuming that utility functions have bounded
(sub)gradients. Let us also mention [10] which focuses on the
case of quadratic objective functions. Unconstrained optimiza-
tion is also investigated in [12] assuming differentiable but non
necessarily convex utility functions and relaxing boundedness
conditions on the gradients. Convergence to a critical point
of the objective function is proved and the asymptotic perfor-
mance is evaluated under the form of a central limit theorem.
In [8], the problem of constrained distributed optimization
is addressed. Convergence to an optimal consensus is proved



when each utility function fi is assumed convex and perfectly
known by agent i. These results are extended in [13] to the
stochastic descent case i.e., when the observation of utility
functions is perturbed by a random noise.

In each of these works, the gossip communication scheme
can be represented by a sequence of matrices (Wn)n≥1 of size
N×N , where the (i, j)th component of Wn is the weight given
by agent i to the message received from j at time n, and is
equal to zero in case agent i receives no message from j. In
most works (see for instance [8], [11]–[13]), matrices Wn are
assumed doubly stochastic, meaning that WT

n 1 = Wn1 = 1
where 1 is the N × 1 vector whose components are all equal
to one and where T denotes transposition. Although row-
stochasticity (Wn1 = 1) is rather easy to ensure in practice,
column-stochasticity (WT

n 1 = 1) implies more stringent re-
strictions on the communication protocol. For instance, in [14],
each one-way transmission from an agent i to another agent j
requires at the same time a feedback link from j to i. Double
stochasticity prevents from using natural broadcast schemes,
in which a given agent may transmit its local estimate to all
its neighbors without expecting any immediate feedback [15].
Very recently, [12], [16], [17] get rid the column stochasticity
condition and prove that convergence to the sought consensus
can indeed be achieved using rather simple communication
protocols of broadcast nature.

II. DISTRIBUTED STOCHASTIC APPROXIMATION

A. The Algorithm

In this paper, we consider a network composed by N nodes
(sensors, robots, computing units, ...). Node i generates a
stochastic process (θn,i)n≥1, assumed to be real valued for
simplicity: the vector-case will be addressed in an extended
version of this paper. At time n, the algorithm under study
both involves a local step and a gossip step:
[Local step] Node i generates a temporary iterate θ̃n,i
given by

θ̃n,i = θn−1,i + γn Yn,i , (1)

where γn is a deterministic positive step size and where the R-
valued random process (Yn,i)n≥1 represents the observations
made by agent i.
[Gossip step] Node i is able to observe the values θ̃n,j
of some other j’s and computes the weighted average:

θn,i =
N∑
j=1

wn(i, j) θ̃n,j , (2)

where the wn(i, j)’s are scalar non-negative random coeffi-
cients such that

∑N
j=1 wn(i, j) = 1 for any i. The sequence

of random matrices Wn := [wn(i, j)]Ni,j=1 represents the time-
varying communication network between the nodes. These
matrices are called row-stochastic, since they have non nega-
tive elements and satisfy Wn1 = 1.

We refer to (1)-(2) as the distributed stochastic approxima-
tion algorithm (DSAA). Define the random vectors θn and Yn

as θn := (θn,1, . . . , θn,N )T and Yn = (Yn,1, . . . , Yn,N )T . The
DSAA reduces to:

θn = Wn (θn−1 + γnYn) . (3)

B. Observation and Network Models

The random process (Zn)n≥1 := ((Yn,Wn))n≥1 is defined
on a measurable space equipped with a probability P; E
denotes the associated expectation. For any n ≥ 1, we
introduce the σ-field Fn = σ(θ0, Z1:n).

Assumption 1. There exists a collection of distributions
(µθ)θ∈RN on RN such that for any Borel set A:

P (Yn+1 ∈ A |Fn) = µθn(A) almost-surely.

Moreover, Yn+1 and Wn+1 are independent conditionally
to Fn.

The following function h : R→ RN will be revealed crucial
in our analysis:

h(θ) :=
∫
y µθ1 (dy) .

The ith component of h(θ) represents the expectation of the
ith agent’s observation conditionally to the event that all the
agents have the same estimate θ. In particular, we shall see that
under some technical conditions, the DSAA drives all agents
estimates to a root θ? of the average function h : R→ R

h(θ) := 1Th(θ)/N .

We shall refer to h as the mean field of the DSAA. We define
J := 11T /N as the orthogonal projector onto the linear span
of 1 and J⊥ := IN − J where IN is the identity matrix of
size N . We set:

W⊥n := J⊥Wn .

We denote by ρ(M) the spectral radius of any square ma-
trix M .

Assumption 2. The following conditions hold:
a) (Wn)n≥1 is an i.i.d. sequence of row-stochastic matrix-

valued random variables with non-negative components:

∀n, Wn1 = 1 .

b) Matrix E(W1) is column-stochastic:

E(W1)T1 = 1 .

c)
ρ
(
E
(
W⊥,T1 W⊥1

))
< 1 . (4)

The assumption that Wn is row-stochastic for any n is
a rather mild condition. It implies that each agent i in (2)
computes a weighted average in the sense that∑

j

wn(i, j) = 1 .

In previous works, it is usually also assumed that∑
i wn(i, j) = 1 for any j i.e., matrix Wn is column-

stochastic. In this paper, we do not use this assumption. As



a consequence, we are able to use more general gossip pro-
tocols that are usually less demanding in terms of scheduling
and overall network coordination. This point will be further
discussed in the next paragraph. Here, we only require that Wn

is column-stochastic in average. Finally, Assumption 2c) can
be seen as a contraction condition which is needed in order
to drive the network to a consensus.

Assumption 3. The deterministic step size sequence (γn)n≥1

satisfies γn > 0,
∑
n γn = +∞,

∑
n γ

2
n < ∞ and

limn γn+1/γn = 1.

C. Illustration: Some Examples of Gossip Schemes

Before proceeding with the convergence analysis of algo-
rithm (3), it is worth discussing how the inter-agent communi-
cation scheme affects matrices Wn. We describe two standard
gossip schemes so called pairwise and broadcast schemes.
The reader can refer to [18] for a more complete picture and
for more general gossip strategies. The network of agents is
represented as a non-directed graph (E,V) where E is the set
of edges and V is the set of N vertices.

1) Pairwise Gossip: This example can be found in [14] on
average consensus. At time n, two connected nodes – say i
and j – wake up, independently from the past. Nodes i and j
compute the weighted average θn,i = θn,j = 0.5θ̃n,i+0.5θ̃n,j ;
and for k /∈ {i, j}, the nodes do not exchange information:
θn,k = θ̃n,k. In this example, given the edge {i, j} wakes up,
Wn is equal to IN−(ei−ej)(ei−ej)T /2 where ej denotes the
ith vector of the canonical basis in RN . In particular, matrices
(Wn)n≥1 are i.i.d. and doubly stochastic:

Wn1 = 1 , WT
n 1 = 1 .

It is shown in [14] that (4) holds if and only if the weighted
graph (E,V,W) is connected, where the edge {i, j} is
weighted by the probability that the nodes i, j communicate
at time n.

2) Broadcast Gossip: This example is adapted from the
broadcast scheme in [15]. At time n, a node i wakes up at
random with uniform probability and broadcasts its temporary
update θ̃n,i to all its neighbors Ni. Any neighbor j computes
the weighted average θn,j = βθ̃n,i+(1−β)θ̃n,j . On the other
hand, any node k which does not belong to the neighborhood
of i (including i itself) sets θn,k = θ̃n,k. Note that, as opposed
to the pairwise scheme, the transmitter node i does not expect
any feedback from its neighbors. Then, given i wakes up, the
(k, `)th component of Wn is given by:

wn(k, `) =


1 if k /∈ Ni and k = ` ,
β if k ∈ Ni and ` = i ,
1− β if k ∈ Ni and k = ` ,
0 otherwise.

This matrix Wn is not doubly stochastic but 1TE(Wn) = 1T

(see for instance [15]). Thus, the matrices (Wn)n≥1 are i.i.d.
and satisfy the assumption 2. Here again, it can be shown that
the spectral norm ρ of E(W⊥,T1 W⊥1 ) is in [0, 1) if and only
if (E,V) is a connected graph (see [15]).

III. ALMOST-SURE CONVERGENCE OF DSAA

For the sake of completeness, this section recalls conver-
gence results previously stated in [12]. For any vector x ∈ RN ,
set x := N−1

∑N
i=1 xi and x⊥ := J⊥x. Any vector x can be

decomposed as the direct sum x1 + x⊥ where the first and
second terms are respectively the orthogonal projections of x
onto the linear span of 1 and the orthogonal hyperplane.

We need further assumptions on the mean-field h̄.

Assumption 4. There exists V : R→ R+ such that:
a) V is continuously differentiable, and its first derivative

is denoted by V ′.
b) For any θ ∈ R, V ′(θ)h(θ) ≤ 0.
c) For any M > 0, the level set {θ ∈ R : V (θ) ≤ M} is

compact.
d) The set L := {θ ∈ R : V ′(θ)h(θ) = 0} is such that

V (L) has an empty interior.

This assumption says that the dynamical system θ̇ = h(θ) is
dissipative: if we think of V (θ) as an energy associated to θ,
then, V (θ) is decreasing along a trajectory (assumption 4.2).
Moreover lim|θ|→∞ V (θ) = ∞ (assumption 4.3) says that it
is not possible to keep finite energy while going to infinity.
Such a function V is called a Lyapunov function.

Assumption 5. a) There exists C > 0 such that for any
θ ∈ RN : ∣∣∣∣∫ ȳµθ(dy)−

∫
ȳµθ̄1(dy)

∣∣∣∣ ≤ C|θ⊥|
b) supn E

[
|Yn|2

]
<∞ .

The first part of the assumption claims that for θ close
to consensus (that is θ⊥ is close to zero), the conditional
distribution of Y given the past µθn

behaves as µθ̄n1. The
second part is a stability-like condition. Of course, checking
Assumption 5b) is not always an easy task. Here, as the
paper focuses on convergence rates rather than stability, this
Assumption is taken for granted: we refer to [12] for sufficient
conditions implying Assumption 5b).

Theorem 1 ([12]). Assume Assumptions 1 to 5. Then (θn)n≥0

converges almost-surely to the set

{θ1 : θ ∈ L} .

Theorem 1 implies that under the stated assumptions, an
agreement is achieved: the estimates θn,i eventually agree for
all i in the sense that θn,i − θn tends to zero, where θn
represents the average estimate at time n w.r.t. all agents.
Moreover (θn)n≥0 converges to the set L. In case L is reduced
to a singleton {θ?}, Theorem 1 can be restated as: almost-
surely,

∀i, lim
n
θn,i = θ? . (5)

IV. CONVERGENCE RATES

In order to lighten the presentation and avoid tedious
conditioning, we assume from now on that L = {θ?} for



some θ? ∈ R. A generalization will be provided in an extended
version of this paper.

In order to analyze the asymptotic behavior of θn, it turns
out convenient to separately study θn and θ⊥n . Here, θn
represents the average estimate of the network and θ⊥n is the
so-called disagreement vector whose ith component coincides
with θn,i − θn.

Assumption 6. a) There exist δ > 0, τ > 0 such that:

sup
|θ−θ?1|≤δ

∫
µθ(dy) |y|2+τ

<∞ .

b) For any bounded continuous f , the function defined on
RN by θ 7→

∫
fdµθ is continuous at θ?1.

c) The function Q : RN → R defined by:

Q(θ) :=
∫
y · yTµθ(dy)

is continuous at θ?1.

A. Normalized Disagreement Vector

We first analyze the normalized disagreement vector
θ⊥n /γn+1. We set h? := h(θ?) and Q?,⊥ := J⊥Q(θ?1)J⊥.
Multiplying each side of (3) by J⊥ and dividing by γn+1, we
obtain:

θ⊥n
γn+1

= αn+1W
⊥
n

(
θ⊥n−1

γn
+ Yn+1

)
(6)

where αn+1 := γn+1/γn and where, by row-stochasticity of
Wn, we used W⊥n θn = W⊥n θ

⊥
n . Assumption 6b) ensures that

Yn+1 given Fn is nearly distributed as µθ?1 for large n, in
the sense that E[f(Yn+1)|Fn] converges to

∫
fµθ?1 for any

bounded continuous f . Recall also that by Assumption 3,
limn αn = 1. Loosely speaking, the update equation (6) is
nearly a Markov chain with transition kernel P ? given by

P ?(x, f) =
∫

E
[
f(W⊥1 (x+ y))

]
dµθ?1(y) ,

which represents the transition kernel of some homogeneous
Markov chain Xn+1 = W⊥n+1 (Xn + ξn+1) where (ξn) is an
i.i.d. process with distribution µθ?1, (Wn)n is i.i.d. and Wn+1

is independent from (Xn, ξn+1). Rigorous arguments will be
given in an extended version of the paper; they rely on results
for generalized autoregressive model [19].

Theorem 2. Suppose Assumptions 1 to 6 and L = {θ?}.
Then, P ? possesses an unique invariant measure π? and
almost surely, for any bounded continuous function f ,
limn n

−1
∑n
k=1 f(θ⊥k /γk+1) converges to π?(f). Moreover,

lim
n→∞

γ−1
n E(θ⊥n ) = R · h? (7)

lim
n→∞

γ−2
n vec E(θ⊥n θ

⊥,T
n ) = S · vec (T ) , (8)

where matrices R,S, T are given by:

R := (IN − E
(
W⊥1

)
)−1E

(
W⊥1

)
S := (IN2 − E

(
W⊥1 ⊗W⊥1

)
)−1E

(
W⊥1 ⊗W⊥1

)
T := Q?,⊥ +Rh? · h?,T + h? · h?,TRT .

The first important point in Theorem 2 above lies in the
convergence rate of the estimate. Sequence θ⊥n converges to
zero at rate γn that is, faster than the standard convergence rate
of standard SA algorithms. In practice, it means that agreement
is achieved at overwhelming rate. Loosely speaking, the major
part of the fluctuations of the estimation error θn − θ?1
is contained in the consensus subspace (i.e. the linear span
of 1) rather than the disagreement subspace. Theorem 2 also
provides finer information about the asymptotic behavior of the
normalized disagreement vector. The latter is asymptotically
biased in the sense that it does not converge to zero in
expectation. Our results allow to quantify the way individual
estimates deviate from the average value, as a function of
the gossip protocol and the local components hi of the mean
field h.

B. Average estimate

We need a last assumption on the mean field h.

Assumption 7. a) The mean field h is twice continuously
differentiable in a neighborhood of θ?.

b) The derivative H? := −h′(θ?) is strictly positive.
c) The step sizes satisfy log(γn−1/γn) = o(γn).

Note that the hypothesis H? > 0 is rather standard in the
framework of SA when deriving second order results. When h
is the gradient of an objective function f to be maximized, it is
equivalent to the well-known second order sufficient condition
which ensures that θ? is not only a critical point of f , but is
also a local maximum. Assumption 7c) is for instance satisfied
if γn ∼ γ0/n

a when n→∞, with a ∈ (0.5, 1). Our result also
extends to the case a = 1, but this generalization is postponed
to an extended version of this paper in order to lighten the
presentation.

Theorem 3. Suppose Assumptions 1 to 7 and L = {θ?}. Then,
the normalized average estimation error

√
γn
−1
(
θn − θ?

)
converges in distribution to

N
(
0, σ2

opt + σ2
com

)
where

σ2
opt =

1
2H?

∫
y 2 µθ?1(dy)

σ2
com =

1
2N2H?

∫
π?(dx)µθ?1(dy) (x+ y)T · · ·

× Cov(W⊥,T1 1) (x+ y) .

The proof is omitted due to the lack of space. It is mainly
based on the results of [20], [21].

C. Discussion: The Impact of Non Double-Stochasticity

First, Theorem 3 states that the average estimation error con-
verges to zero at rate

√
γn. This result was actually expected,

as
√
γn is the well-known convergence rate of standard SA

algorithms. Second, Theorem 3 establishes that the variance
of the asymptotic distribution of the normalized error is a sum



of two terms. The first term σ2
opt is equal to the variance that

would have been obtained in a fully centralized setting i.e.,
in a scenario where all observations would be collected by a
central processor running a SA algorithm. The second term
σ2

com characterizes the excess mean square error inherent to
our distributed scenario. Now, note that W⊥,Tn 1 = 1 in the
case where the gossip matrix Wn is column stochastic. In
that case, Cov(W⊥,T1 1) is zero which implies that the excess
variance σ2

com is zero. Otherwise stated, the DSAA performs as
well as a centralized algorithm whenever a doubly-stochastic
gossip protocol is used. Reciprocally, σ2

com > 0 whenever a
non doubly-stochastic protocol is used, such as the simple
broadcast scheme of Section II-C2.

V. SIMULATIONS

To show some simulation results, we consider the case of
a complete graph with N = 5 nodes. The aim is to find the
global minimum θ? of function 1/N

∑N
i=1 fi(θ), which is the

average of agents’ functions fi. In our case, let us consider
the following quadratic functions: fi(θ) = ai/2(θ − ci)2,
where parameters ai and ci are associated to agent i. Pa-
rameter are chosen so that c = (−4,−3,−1, 2, 6)T and
a = 1. In such a simple case the minimum corresponds
to θ? = c

a = 0. We simulate a a broadcast scheme with
β = 1/2 and run R = 1000 independent realizations of the
algorithm described in Section II-C using the decreasing step
sequence (1/n0.7)n≥1. A Gaussian noise sequence (ξn)n≥1

with zero mean and variance σ2 is added to give noisy
observations Yn,i = −θn−1,i + ci + ξn,i. The case σ2 = 0
(absence of noise) is also considered. Figure 1 shows the
histogram of the first component of (θ⊥n /γn) for n large
enough n = 30 000 in our case. As far as consensus is
concerned, even without noise, pairwise scheme (with matrix
WP
n ) has a worse behavior than broadcast. It can be quanti-

tatively confirmed by our results (see Theorem 2). Indeed, in
the broadcast case (with matrix WB

n ), the asymptotic variance
of the sequence is zero thanks to the choice of β = 1/2
(in each trajectory limn→∞ θ⊥n /γn = c). However, from
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Figure 1. Histogram of the first component of the vector θ⊥n /γn for n =
30 000 from 1000 independent runs for both protocols Pairwise/Broadcast
under various noise condition.

the bias viewpoint, the situation is opposite. Figure 2 shows
the histogram of the rescaled bias γ

−1/2
n

(
θn − θ?

)
for a

large n (n = 30 000 in our experiments). As the asymptotic
variance of the sequence depends on the covariance matrix
E
[
WT

1 11TWT
1

]
− E

[
WT

1 1
]
E
[
WT

1 1
]T

(see Theorem 3), it
is zero for the pairwise scheme and non-zero for the broadcast
(which is Nβ2J⊥) .
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Figure 2. Histogram of the rescaled bias γ−1/2
n (θn − θ?) for n = 30 000

from 1000 independent runs for both protocols under various noise condition.
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