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ABSTRACT

The paper addresses the convergence of a decentraliz
Robbins-Monro algorithm proposed by [7] for networks of
agents. This algorithm combines local stochastic appraxim
tion steps for finding the root of an objective function, and

vide verifiable sufficient conditions on the stochastic appr

this agreement. We thus address the convergence of an algo-
rithm which combines a stochastic approximation step (see
&Y. [5]) and a gossip step (see e.g. [1, 3]). Distributed con
sensus have been the object of numerous works in the recent
signal processing literature [10]. Gossip algorithms fonc

. . &ensus seeking are a class of iterative methods which cemput
gossip step for consensus seeking between agents. We pig

e average of a given deterministic vector in a distributed
fashion. More recently, several authors manage to cast the

mation procedure and on the network so that the decenmal'zeclassical stochastic approximation approach for findingso

Robbins-Monro algorithm converges to a consensus. We al
prove that the limit points of the algorithm correspond te th
roots of the objective function. We apply our results to Maxi
mum Likelihood estimation in sensor networks.

1. INTRODUCTION
In many applications, one is interested in finding the rodts o
a given equatioth(6) = 0. A traditional approach is to solve
this equation iteratively (seeg.[6] for deterministic proce-
dures and [5] for stochastic ones). Whkns unknown in
closed form but only a noisy stochastic versidid, X) is
available, the Robbins-Monro algorithm finds rootsidiy a
stochastic approximation procedure [8]. In signal process
a typical application is given by Maximum Likelihood (ML)
estimators based on a gradient search. In this particuta, ca
the aim is to search for the stationary points of the Kullback
Leibler divergence between the true distribution of theaobs
vations and a distribution in a parametric family. In this ex
ample,H (0, X) is the gradient w.r.t9 of the log-likelihood
function associated with a given observati®n

In this paper, we investigate decentralized Robbins-Monrg

algorithms, as introduced in [7,11]. Consider a network-€om
posed of N nodes. At timen, each node < {1,..., N}
has its own local iterat, ;. Each node observes a local ran-

%5 an objective function into the framework of distributezhe

sensus [4,7,9,11].

The main contribution of this paper is to provide a complete
convergence analysis of decentralized Robbins-Monro-algo
rithms. This paper generalizes earlier works of [7]. Fiost
result applies when the mean field which governs the stochas-
tic approximation step is not bounded. Second, it does not
require the introduction of a projection step which is known
to modify the set of the limit points of the algorithm. Fi-
nally, we provide sufficient conditions in the noise funotio
H which are fully explicit and easily verifiable.

The paper is organized as follows. Section 2 is devoted to
the description of the algorithm and to the statement of sur a
sumptions. Convergence results are stated in Section 3. Sec
tion 4 provides an application of our results to ML estimatio
in a distributed sensor network. Numerical results arergive

in Section 5.

2. ALGORITHM DESCRIPTION
AND ASSUMPTIONS

2.1. Algorithm

Consider a network composed By > 1 nodes, and as-
sume that nodé< {1,..., N} observes the random variable

dom variableX,,,1,; and uses this observation to update itsx, ; at imen. Each node generates a stochastic process

local iterate based on a Robbins-Monro dynamic. In addi
tion, nodes are able to communicate with some neighbours

{0n,i)n>1 0N R? using a two-steps iterative algorithm:
fllocal step] Nodei generates at time a temporary it-

certain (possibly random) moments. When such a commugrated,, ; given by

nication occurs, the agents find an agreement on the value
the iterate, and substitute the value of their currenttiégardth
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Oni =O0n—1,;+7 Hi(On_1:3;Xni), (1)

where ~, is a deterministic positive step size and
H;(0,,-1,;Xpn,) Is some increment chosen as a function of



the previous iterate and the current observation. ~
[ Gossi p step] Nodes is able to observe the valués ;
of some othey’s and computes the weighted average:

N
971,1' - Z ’U}n(l, ]) en,j
j=1

whereW,, := [w, (z’,j)]f"’j:1 is a stochastic matrix.

It is convenient to cast this algorithm into a vector form.

Assume that for any. > 1, X,, ; € R™:. Define the function
H :RIN x RX™i — RN gs

H(0;2) = (Hi(0;21)7, -, Hy(Ons28)7) "

where T denotes transpositiony = (27,...,2%)T and
0 = (0T,...,6%)T. Define the random vectos, and X,
as@, = (0} ,,...,00 y)" andX,, = (X[ ,,..., X7 )"

The algorithm reduces to:
0n = (Wn ® Id)(enfl + ’YnH(gnthn)) 3 (2)

where® denotes the Kroenecker product ahds thed x d
identity matrix.

2.2. Model Assumptions

implies that r.v.W,,., and X, are independent condition-
ally to the past. In addition, the conditional distributiof
X,+1 depends on the past only throu@h.

Hereafter, we use notatidgy, for E[.|0,].

3. CONVERGENCE ANALYSIS

The convergence analysis relies on the existence of a Lya-
punov functionV for the functionf i.e. a function such that
VVT h < 0. In this framework, the classical approach to
prove the convergence of a stochastic approximation proce-
dure to the roots of is to prove(a) that, with probability one
(w.p.1), the path remains in a compact set §bythat the se-
quence converges to the sét:= {VVT h = 0}. To that
goal, regularity conditions on the functiofsandV’, and on

the set of the limit point& are required.

3.1. Notations

We denote byJ := (117/N) ® I, the projector onto the
consensus subspafe ® 6 : 6 € R?} and byJ+ := Iy —J

the projector onto the orthogonal subspace. For any vector
0 € RN remark that = 1 ® (0) + J-60 where

(6) = (17 ©1,)6 @

The time varying communication network between the nodes

is represented by the sequence of random mat(iégs,,> .

: bl A
Denote byl y the N x 1 vector whose components are all (1 + -+ + 0n)/NV in case we writed = (0 ,...,0y)

equal to one. Itis assumed that:

A1l a) Matrix W, is doubly stochastictV,, 1 = W11 = 1.

b) Matrices(W,,),,>1 are i.i.d. and the spectral radius of

E(W;) — 117 /N is strictly less than one.
c¢) For any function¢, g,

E[f(Wn+1)9(Xn+1)|90, X1, WLn]
= E[f(Wl)] E[Q(Xn+1)|6n] (3)

is a vector ofR?. Equation (4) simply means tha®) =
T

for someé,,...,0y in R%. We introduce thenean fieldof
the decentralized Robbins-Monro algorithm as the function
h : R? — R9 given by:

h(B) = Eago [(H(1 © 0; X))] , ®)

where we recall thatH (0; z)) =
average of{ (6; z) (see Eq.(4)).

(17 ® I;)H(6; z) is the

1
N

3.2. Convergence result

ConditionAla) is satisfied provided that the nodes coordinatebenote byjz| the Euclidean norm of a vectarc R, and by
their weights. Coordination schemes are discussed in [3, 77 the gradient operator. It is assumed that

The condition also holds in case of asynchronous networks

(see [1,3] for details and see Section 4 for a brief discmysio A2 The deterministic sequence, ), >1 is positive and such

ConditionAlb) can be interpreted as follows. The intuitive
idea behind gossip algorithms is tH&tiV,,) should be close
enough to the projectar1” /N on the line{t1 : t € R} so

that the algorithm (2) reaches an average consensus. Condi-
tion Alb) on the spectral radius ensures that the amount of
information exchanged in the network remains sufficient in
order to reach a consensus. The hypothesis that matfiges
are identically distributed can be weakened in order to cove
the case where the average number of communications be-
tween nodes is likely to vary in time and, possibly, to vanish
asn increases. In that case, the condition on the spectral ra-
dius must be somewhat reinforced (see [2]). Condifidic)

that}", 72 <00, >, Y = 0.

3 There exists a functiol’ : R? — R+ such that:

a) V is differentiable and/V is a Lipschitz function.
b) For anyd € R¢, VV (0)Th(6) < 0.

c) There exists a consta@y, such that for any € R¢,
IVV(0)]? < Ci(1+ V().

d) For anyM > 0, the level sef{d € R : V(0) < M}
is compact.

e) The setl = {# € R?
bounded.

f) V(£) has an empty interior.

L W (O)Th(B) = 0} is



AssumptionA2is classical in stochastic approximation and f*. The aim is to use the previous algorithm in order to
is satisfied for example with,, « n=* for a € (1/2,1].  fit f* with a probability distributionf(.;#) chosen among
AssumptionA3b) means that” is a Lyapunov function for a parametric family indexed by < R of the form
the mean fieldh. When h is known (and continuous), [, fi(zi;0) wherez = (27,...,2%)". To that end,
A3 combined with the conditior} } v, = +oo allows to  we use a decentralized stochastic gradient maximum like-
prove the convergence of the deterministic sequépge =  lihood approach: we define for each H;(0; X, ;) :=
tn + Yn+1h(t,) to the setl. Whenh is unknown and re-  Vplog f;(X,,,;0) so that the mean field is given byh(0) =
placed by a stochastic approximatiéh the limiting behav-  (1/N)>". E[Vylog fi(X,,:;0)]. By Theorem 1, the algo-
ior of the noisy algorithm is the same providéfl satisfies rithm (2) searches for the roots af These roots are the
some regularity conditions and the step-size sequence satstationary points of the Kullback-Leibler (KL) divergence
fies), 72 < co. We assume:

_ « [ ()
A4 a) There exists a constafiy such that for ang € R4, V() = /f () log en) dz . (6)
Eoq {|H(9;X)|2} <Co (1+V((0)+|J6%) Under regularity conditions on the densitigs, h =

—(1/N)VV so thatV is a natural Lyapunov function. In this

. _ . Apan
Ee [(H(6; X)) — (H(J0; X))| < C5]J~0) situation, the setL is equal to the set of stationary points of

|Eo(H(; X)) — B o(H(JO; X))| < Cy4|J0]. the KL divergencel = {§ € R? : VV/(§) = 0}. Moreover,
o . p by Sard’s theoreml/(£) has an empty interior as soon Bs
b) Function/. is continuous orR. is d times continuously differentiable.

Examples of densitieg; such thatH and V' satisfy A3
and A4 are given in the next section. By direct application
of Theorem 1, sequengé,,),,>1 converges to the consensus
subspace and the average estimate sequéfge),>1 con-
verges taC. In particular, the decentralized ML estimator and
the centralized one have the same limit points.

Under Al, A3a-c) andA4, we prove that the sequence
(0, — 1 ® (0,)),>1 converges almost-surely (and ir¥) to
zero, and the sequent@,,)),,>1 enters infinitely often some
level set{V < M}. ConditionsA3b-e), A4 andA2 imply
that, almost-surely@a) the sequencé&d,,)),>1 remains in a
neighborhood ofC thus implying that the sequence remains
in a compact set oR? and (b) the sequencéV ((0,,)))n>1 Comments on the Network Model. The network is de-
converges to a connected component¢f’). Finally, A3f)  scribed by a nondirected gragl, £) whose vertice$’ cor-
implies the convergence Q{97L>)n21 to a connected compo- respond to the nodefd ... N} and whose edges are formed
nent of V' (L£). The proof of Theorem 1 is omitted due to lack by the pairs of node§i, j} which are likely to communicate.
of space and will be provided in an extended version of thigconsider for instance the framework of asynchronous com-

paper (see [2]). munications, which matches to the distributed nature of sen
Define the distancd(f, A) between a poinf € R¢ and a  sor networks. An example of asynchronous network model
subsetd C R% by d(0, A) = inf{|0 — ¢| : p € A}. for matrices(W,,),>1 can be found for instance in [3]. This

. model can be described as follows. At each timessume
Theorem 1 AssumeAl, A2, A3 and A4 and consider the that one node wakes up and initiates a bidirectional commu-

algorithm (2). Then, w.p, nication with one of its neighbout. This event occurs with
_ B _ B probability P;;, whereP;; > 0 if and only if i and;j are con-
nh—>Holo [6n =1 (6n)] =0, ’I’L11—>H;o d((On), £) = 0. nected. Nodesandj replace their local temporary estimates

0,.; andd, _; respectively with the average of these two val-
ues. As a consequend®, = Iy — (c; — ¢;)(¢; — ¢;)7T
wherec; denotes théth column-vector of the canonical basis

Theorem 1 states that, almost surely, the vector of itefytes ON RY (this matrix has all its diagonal coefficients equal to 1
converges to the consensus space as co. Moreover, the and all its nondiagonal coefficients equal to zero, except fo
average iterate of the network converge to some connectd€ coefficients(i, ), (i, 7), (4,), (4,7) which are equal to

component of. When£ is finite, Theorem 1 implies that, 1/2)- Itis straightforward to prove that AssumptioAda-b)
almost surely(6,,) converges to some point ify are satisfied under the above network model as soon as the

graph(V, €) is connected. More involved network models
are developed in [2].

Moreover, w.pl, ((8,,)),>1 converges to a connected compo-
nent ofL.

4. APPLICATION TO MAXIMUM LIKELIHOOD
ESTIMATION
5. NUMERICAL RESULTS
We assume that the local observatiolis ; € R™ (i =
1,...,N) are block-components ok,, € RX™i, Fur- Consider a network formed by fixed sensors in the unit
thermore, proces$X,,),>1 is i.i.d. with unknown p.d.f. squaref0,1]2. Assume that the aim of the network is to es-



timate the geographic coordinates Bfsources inR?. De-

note by6* the D x 1 complex valued vector which contains
the complex locations of th® sources. At each iteratiom,

each sensor = 1... N observes a noisy versidr, ; of 6*.

We assume thal,, ; ~ CN(0*,Diag (o7, ...07 ) where
variancess; , ... o} p are assumed to be perfectly known at
node: (and at node only). In our simulations, we gener-
ateo?, for each sourcé = 1...D located ind; € C and
each node located inz; € C, aso?;, = al; — zi|* + do
wheres > 0 represents a path loss exponettjs a con-
stant, andy is a fixed error variance. The network follows a
random geographical graph model. Both sources and nodes
locations are drawn independently according to the uniform
distribution in the unit square. Two nodésndj are con-
nected iff|i — j| < r for some radiug.. We setN = 20,
D =4,r =02,s =2, a =10, §o = 0.1. The step
size is chosen as,, = 0.1/n. Figure 1 provides a realiza-
tion of the simulation scenario described above. Locations
of sources and nodes are represented in the unit square. At
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Fig. 2. Disagreemeni\(n) as a function of the number of
iterations(k = 1...4).
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Fig. 1. One realization of the network graph and sources’ [4]
locations.

iteration n, denote by, ;(n) the complex estimate of the
kth source position at thah node. Define the average esti-
mate of thekth source position &g, (n) = + vazl Or.i(n).
Define the disagreement between nodes orkthesource as
Ap(n) = (£ 350, 0k:(n) — G(n)[*)/2. Finally, define
the average error ag,(n) = |0x(n) — 65|. Figure 2 and 3
respectively represent the disagreement and the avenage er
as a function of the number of iterations. As expected, both(®!
error converge to zero astends to infinity.

(5]

(6]

(71
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