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ABSTRACT

The paper addresses the convergence of a decentralized
Robbins-Monro algorithm proposed by [7] for networks of
agents. This algorithm combines local stochastic approxima-
tion steps for finding the root of an objective function, and a
gossip step for consensus seeking between agents. We pro-
vide verifiable sufficient conditions on the stochastic approxi-
mation procedure and on the network so that the decentralized
Robbins-Monro algorithm converges to a consensus. We also
prove that the limit points of the algorithm correspond to the
roots of the objective function. We apply our results to Maxi-
mum Likelihood estimation in sensor networks.

1. INTRODUCTION

In many applications, one is interested in finding the roots of
a given equationh(θ) = 0. A traditional approach is to solve
this equation iteratively (seee.g.[6] for deterministic proce-
dures and [5] for stochastic ones). Whenh is unknown in
closed form but only a noisy stochastic versionH(θ,X) is
available, the Robbins-Monro algorithm finds roots ofh by a
stochastic approximation procedure [8]. In signal processing,
a typical application is given by Maximum Likelihood (ML)
estimators based on a gradient search. In this particular case,
the aim is to search for the stationary points of the Kullback-
Leibler divergence between the true distribution of the obser-
vations and a distribution in a parametric family. In this ex-
ample,H(θ,X) is the gradient w.r.t.θ of the log-likelihood
function associated with a given observationX.

In this paper, we investigate decentralized Robbins-Monro
algorithms, as introduced in [7,11]. Consider a network com-
posed ofN nodes. At timen, each nodei ∈ {1, . . . , N}
has its own local iterateθn,i. Each node observes a local ran-
dom variableXn+1,i and uses this observation to update its
local iterate based on a Robbins-Monro dynamic. In addi-
tion, nodes are able to communicate with some neighbours at
certain (possibly random) moments. When such a commu-
nication occurs, the agents find an agreement on the value of
the iterate, and substitute the value of their current iterate with
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this agreement. We thus address the convergence of an algo-
rithm which combines a stochastic approximation step (see
e.g. [5]) and a gossip step (see e.g. [1, 3]). Distributed con-
sensus have been the object of numerous works in the recent
signal processing literature [10]. Gossip algorithms for con-
sensus seeking are a class of iterative methods which compute
the average of a given deterministic vector in a distributed
fashion. More recently, several authors manage to cast the
classical stochastic approximation approach for finding roots
of an objective function into the framework of distributed con-
sensus [4,7,9,11].

The main contribution of this paper is to provide a complete
convergence analysis of decentralized Robbins-Monro algo-
rithms. This paper generalizes earlier works of [7]. First,our
result applies when the mean field which governs the stochas-
tic approximation step is not bounded. Second, it does not
require the introduction of a projection step which is known
to modify the set of the limit points of the algorithm. Fi-
nally, we provide sufficient conditions in the noise function
H which are fully explicit and easily verifiable.

The paper is organized as follows. Section 2 is devoted to
the description of the algorithm and to the statement of our as-
sumptions. Convergence results are stated in Section 3. Sec-
tion 4 provides an application of our results to ML estimation
in a distributed sensor network. Numerical results are given
in Section 5.

2. ALGORITHM DESCRIPTION
AND ASSUMPTIONS

2.1. Algorithm

Consider a network composed byN ≥ 1 nodes, and as-
sume that nodei ∈ {1, . . . , N} observes the random variable
Xn,i at timen. Each nodei generates a stochastic process
(θn,i)n≥1 in R

d using a two-steps iterative algorithm:
[Local step] Nodei generates at timen a temporary it-
erateθ̃n,i given by

θ̃n,i = θn−1,i + γn Hi(θn−1,i ;Xn,i) , (1)

where γn is a deterministic positive step size and
Hi(θn−1,i ;Xn,i) is some increment chosen as a function of



the previous iterate and the current observation.
[Gossip step] Nodei is able to observe the values̃θn,j
of some otherj’s and computes the weighted average:

θn,i =

N
∑

j=1

wn(i, j) θ̃n,j

whereWn := [wn(i, j)]
N
i,j=1 is a stochastic matrix.

It is convenient to cast this algorithm into a vector form.
Assume that for anyn ≥ 1, Xn,i ∈ R

mi . Define the function
H : RdN × R

∑
mi → R

dN as

H(θ;x) :=
(

H1(θ1;x1)
T , · · · , HN (θN ;xN )T

)T
.

where T denotes transposition,x = (xT
1 , . . . , x

T
N )T and

θ = (θT1 , . . . , θ
T
N )T . Define the random vectorsθn andXn

asθn := (θTn,1, . . . , θ
T
n,N )T andXn = (XT

n,1, . . . , X
T
n,N )T .

The algorithm reduces to:

θn = (Wn ⊗ Id)(θn−1 + γnH(θn−1;Xn)) , (2)

where⊗ denotes the Kroenecker product andId is thed × d
identity matrix.

2.2. Model Assumptions

The time varying communication network between the nodes
is represented by the sequence of random matrices(Wn)n≥1.
Denote by1N theN × 1 vector whose components are all
equal to one. It is assumed that:

A1 a) MatrixWn is doubly stochastic:Wn1 = WT
n 1 = 1.

b) Matrices(Wn)n≥1 are i.i.d. and the spectral radius of
E(W1)− 11T /N is strictly less than one.
c) For any functionsf, g,

E[f(Wn+1)g(Xn+1)|θ0, X1:n,W1:n]

= E[f(W1)]E[g(Xn+1)|θn] (3)

ConditionA1a) is satisfied provided that the nodes coordinate
their weights. Coordination schemes are discussed in [3, 7].
The condition also holds in case of asynchronous networks
(see [1,3] for details and see Section 4 for a brief discussion).
ConditionA1b) can be interpreted as follows. The intuitive
idea behind gossip algorithms is thatE(Wn) should be close
enough to the projector11T /N on the line{t1 : t ∈ R} so
that the algorithm (2) reaches an average consensus. Condi-
tion A1b) on the spectral radius ensures that the amount of
information exchanged in the network remains sufficient in
order to reach a consensus. The hypothesis that matricesWn

are identically distributed can be weakened in order to cover
the case where the average number of communications be-
tween nodes is likely to vary in time and, possibly, to vanish
asn increases. In that case, the condition on the spectral ra-
dius must be somewhat reinforced (see [2]). ConditionA1c)

implies that r.v.Wn+1 andXn+1 are independent condition-
ally to the past. In addition, the conditional distributionof
Xn+1 depends on the past only throughθn.

Hereafter, we use notationEθn
for E[ . |θn].

3. CONVERGENCE ANALYSIS

The convergence analysis relies on the existence of a Lya-
punov functionV for the functionh i.e. a function such that
∇V T h ≤ 0. In this framework, the classical approach to
prove the convergence of a stochastic approximation proce-
dure to the roots ofh is to prove(a) that, with probability one
(w.p.1), the path remains in a compact set and(b) that the se-
quence converges to the setL := {∇V T h = 0}. To that
goal, regularity conditions on the functionsH andV , and on
the set of the limit pointsL are required.

3.1. Notations

We denote byJ := (11T /N) ⊗ Id the projector onto the
consensus subspace

{

1⊗ θ : θ ∈ R
d
}

and byJ⊥ := IdN−J
the projector onto the orthogonal subspace. For any vector
θ ∈ R

dN , remark thatθ = 1⊗ 〈θ〉+ J⊥
θ where

〈θ〉 :=
1

N
(1T ⊗ Id)θ (4)

is a vector ofRd. Equation (4) simply means that〈θ〉 =
(θ1 + · · · + θN )/N in case we writeθ = (θT1 , . . . , θ

T
N )T

for someθ1, . . . , θN in R
d. We introduce themean fieldof

the decentralized Robbins-Monro algorithm as the function
h : Rd → R

d given by:

h(θ) := E1⊗θ [〈H(1⊗ θ;X)〉] , (5)

where we recall that〈H(θ;x)〉 = 1

N (1T ⊗ Id)H(θ;x) is the
average ofH(θ;x) (see Eq.(4)).

3.2. Convergence result

Denote by|x| the Euclidean norm of a vectorx ∈ R
l, and by

∇ the gradient operator. It is assumed that

A2 The deterministic sequence(γn)n≥1 is positive and such
that

∑

n γ
2
n < ∞,

∑

n γn = ∞.

A3 There exists a functionV : Rd → R
+ such that:

a)V is differentiable and∇V is a Lipschitz function.
b) For anyθ ∈ R

d, ∇V (θ)Th(θ) ≤ 0.
c) There exists a constantC1, such that for anyθ ∈ R

d,
|∇V (θ)|2 ≤ C1(1 + V (θ)).
d) For anyM > 0, the level set{θ ∈ R

d : V (θ) ≤ M}
is compact.
e) The setL := {θ ∈ R

d : ∇V (θ)Th(θ) = 0} is
bounded.
f) V (L) has an empty interior.



AssumptionA2 is classical in stochastic approximation and
is satisfied for example withγn ∝ n−a for a ∈ (1/2, 1].
AssumptionA3b) means thatV is a Lyapunov function for
the mean fieldh. When h is known (and continuous),
A3 combined with the condition

∑

n γn = +∞ allows to
prove the convergence of the deterministic sequencetn+1 =
tn + γn+1h(tn) to the setL. Whenh is unknown and re-
placed by a stochastic approximationH, the limiting behav-
ior of the noisy algorithm is the same providedH satisfies
some regularity conditions and the step-size sequence satis-
fies

∑

n γ
2
n < ∞. We assume:

A4 a) There exists a constantC2 such that for anyθ ∈ R
dN ,

Eθ

[

|H(θ;X)|2
]

≤ C2

(

1 + V (〈θ〉) + |J⊥
θ|2

)

Eθ |〈H(θ;X)〉 − 〈H(Jθ;X)〉| ≤ C3|J
⊥
θ|

|Eθ〈H(θ;X)〉 − EJθ〈H(Jθ;X)〉| ≤ C4|J
⊥
θ| .

b) Functionh is continuous onRd.

Under A1, A3a-c) andA4, we prove that the sequence
(θn − 1 ⊗ 〈θn〉)n≥1 converges almost-surely (and inL2) to
zero, and the sequence(〈θn〉)n≥1 enters infinitely often some
level set{V ≤ M}. ConditionsA3b-e), A4 andA2 imply
that, almost-surely,(a) the sequence(〈θn〉)n≥1 remains in a
neighborhood ofL thus implying that the sequence remains
in a compact set ofRd and (b) the sequence(V (〈θn〉))n≥1

converges to a connected component ofV (L). Finally, A3f)
implies the convergence of(〈θn〉)n≥1 to a connected compo-
nent ofV (L). The proof of Theorem 1 is omitted due to lack
of space and will be provided in an extended version of this
paper (see [2]).

Define the distanced(θ,A) between a pointθ ∈ R
d and a

subsetA ⊂ R
d by d(θ,A) = inf{|θ − ϕ| : ϕ ∈ A}.

Theorem 1 AssumeA1, A2, A3 and A4 and consider the
algorithm (2). Then, w.p.1,

lim
n→∞

|θn − 1⊗ 〈θn〉| = 0 , lim
n→∞

d(〈θn〉,L) = 0 .

Moreover, w.p.1, (〈θn〉)n≥1 converges to a connected compo-
nent ofL.

Theorem 1 states that, almost surely, the vector of iteratesθn

converges to the consensus space asn → ∞. Moreover, the
average iterate of the network converge to some connected
component ofL. WhenL is finite, Theorem 1 implies that,
almost surely,〈θn〉 converges to some point inL.

4. APPLICATION TO MAXIMUM LIKELIHOOD
ESTIMATION

We assume that the local observationsXn,i ∈ R
mi (i =

1, . . . , N ) are block-components ofXn ∈ R
∑

mi . Fur-
thermore, process(Xn)n≥1 is i.i.d. with unknown p.d.f.

f⋆. The aim is to use the previous algorithm in order to
fit f⋆ with a probability distributionf( . ; θ) chosen among
a parametric family indexed byθ ∈ R

d of the form
∏N

i=1
fi(xi ; θ) wherex = (xT

1 , . . . , x
T
N )T . To that end,

we use a decentralized stochastic gradient maximum like-
lihood approach: we define for eachi, Hi(θ;Xn,i) :=
∇θ log fi(Xn,i ; θ) so that the mean fieldh is given byh(θ) =
(1/N)

∑

i E[∇θ log fi(Xn,i ; θ)]. By Theorem 1, the algo-
rithm (2) searches for the roots ofh. These roots are the
stationary points of the Kullback-Leibler (KL) divergence:

V (θ) :=

∫

f⋆(x) log
f⋆(x)

f(x; θ)
dx . (6)

Under regularity conditions on the densitiesfi, h =
−(1/N)∇V so thatV is a natural Lyapunov function. In this
situation, the setL is equal to the set of stationary points of
the KL divergenceL = {θ ∈ R

d : ∇V (θ) = 0}. Moreover,
by Sard’s theorem,V (L) has an empty interior as soon asV
is d times continuously differentiable.

Examples of densitiesfi such thatH and V satisfy A3
andA4 are given in the next section. By direct application
of Theorem 1, sequence(θn)n≥1 converges to the consensus
subspace and the average estimate sequence(〈θn〉)n≥1 con-
verges toL. In particular, the decentralized ML estimator and
the centralized one have the same limit points.

Comments on the Network Model. The network is de-
scribed by a nondirected graph(V, E) whose verticesV cor-
respond to the nodes{1 . . . N} and whose edges are formed
by the pairs of nodes{i, j} which are likely to communicate.
Consider for instance the framework of asynchronous com-
munications, which matches to the distributed nature of sen-
sor networks. An example of asynchronous network model
for matrices(Wn)n≥1 can be found for instance in [3]. This
model can be described as follows. At each timen, assume
that one nodei wakes up and initiates a bidirectional commu-
nication with one of its neighbourj. This event occurs with
probabilityPij , wherePij > 0 if and only if i andj are con-
nected. Nodesi andj replace their local temporary estimates
θ̃n,i and θ̃n,j respectively with the average of these two val-
ues. As a consequenceWn = IN − 1

2
(ci − cj)(ci − cj)

T

whereci denotes theith column-vector of the canonical basis
onR

N (this matrix has all its diagonal coefficients equal to 1
and all its nondiagonal coefficients equal to zero, except for
the coefficients(i, i), (i, j), (j, i), (j, j) which are equal to
1/2). It is straightforward to prove that AssumptionsA1a-b)
are satisfied under the above network model as soon as the
graph(V, E) is connected. More involved network models
are developed in [2].

5. NUMERICAL RESULTS

Consider a network formed byN fixed sensors in the unit
square[0, 1]2. Assume that the aim of the network is to es-



timate the geographic coordinates ofD sources inR2. De-
note byθ⋆ theD × 1 complex valued vector which contains
the complex locations of theD sources. At each iterationn,
each sensori = 1 . . . N observes a noisy versionYn,i of θ⋆.
We assume thatYn,i ∼ CN (θ⋆,Diag

(

σ2
i,1 . . . σ

2
i,D

)

) where
variancesσ2

i,1 . . . σ
2
i,D are assumed to be perfectly known at

nodei (and at nodei only). In our simulations, we gener-
ateσ2

i,k for each sourcek = 1 . . . D located inθ⋆k ∈ C and
each nodei located inzi ∈ C, asσ2

i,k = α|θ⋆k − zi|s + δ0
wheres > 0 represents a path loss exponent,α is a con-
stant, andδ0 is a fixed error variance. The network follows a
random geographical graph model. Both sources and nodes
locations are drawn independently according to the uniform
distribution in the unit square. Two nodesi and j are con-
nected iff |i − j| < r for some radiusr. We setN = 20,
D = 4, r = 0.2, s = 2, α = 10, δ0 = 0.1. The step
size is chosen asγn = 0.1/n. Figure 1 provides a realiza-
tion of the simulation scenario described above. Locations
of sources and nodes are represented in the unit square. At

Fig. 1. One realization of the network graph and sources’
locations.

iteration n, denote byθk,i(n) the complex estimate of the
kth source position at theith node. Define the average esti-
mate of thekth source position as̄θk(n) = 1

N

∑N
i=1

θk,i(n).
Define the disagreement between nodes on thekth source as
∆k(n) = ( 1

N

∑N
i=1

|θk,i(n) − θ̄k(n)|
2)1/2. Finally, define

the average error asǫk(n) = |θ̄k(n) − θ⋆k|. Figure 2 and 3
respectively represent the disagreement and the average error
as a function of the number of iterations. As expected, both
error converge to zero asn tends to infinity.
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