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Abstract

In this paper, a distributed stochastic approximation algorithm is studied. Applications of such

algorithms include decentralized estimation, optimization, control or computing. The algorithm consists

in two steps: a local step, where each node in a network updates a local estimate using a stochastic

approximation algorithm with decreasing step size, and a gossip step, where a node computes a local

weighted average between its estimates and those of its neighbors. Convergence of the estimates toward

a consensus is established under weak assumptions. The approach relies on two main ingredients: the

existence of a Lyapunov function for the mean field in the agreement subspace, and a contraction

property of the random matrices of weights in the subspace orthogonal to the agreement subspace. A

second order analysis of the algorithm is also performed under the form of a Central Limit Theorem.

The Polyak-averaged version of the algorithm is also considered.

I. INTRODUCTION

Stochastic approximation has been a very active research area for the last sixty years (see

e.g. [1], [2]). The pattern for a stochastic approximation algorithm is provided by the recursion

θn = θn−1 + γnYn, where θn is typically a Rd-valued sequence of parameters, Yn is a sequence

of random observations, and γn is a deterministic sequence of step sizes. An archetypal example

of such algorithms is provided by stochastic gradient algorithms. These are characterized by the

fact that Yn = −∇g(θn−1) + ξn where ∇g is the gradient of a function g to be minimized, and

where (ξn)n≥0 is a noise sequence corrupting the observations.

In the traditional setting, sensing and processing capabilities needed for the implementation of
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a stochastic approximation algorithm are centralized on one machine. Alternatively, distributed

versions of these algorithms where the updates are done by a network of communicating nodes

(or agents) have recently aroused a great deal of interest. Applications include decentralized

estimation, control, optimization, and parallel computing.

In this paper, we consider a network composed by N nodes (sensors, robots, computing

units, ...). Node i generates a Rd-valued stochastic process (θn,i)n≥1 through a two-step iterative

algorithm: a local and a so called gossip step. At time n:

[Local step] Node i generates a temporary iterate θ̃n,i given by

θ̃n,i = θn−1,i + γn Yn,i , (1)

where γn is a deterministic positive step size and where the Rd-valued random process (Yn,i)n≥1

represents the observations made by agent i.

[Gossip step] Node i is able to observe the values θ̃n,j of some other j’s and computes

the weighted average:

θn,i =
N∑
j=1

wn(i, j) θ̃n,j , (2)

where the wn(i, j)’s are scalar non-negative random coefficients such that
∑N

j=1 wn(i, j) = 1

for any i. The sequence of random matrices Wn := [wn(i, j)]Ni,j=1 represents the time-varying

communication network between the nodes.

Contributions. This paper studies a distributed stochastic approximation algorithm in the

context of random row-stochastic gossip matrices Wn.

• Under the assumption that the algorithm is stable, we prove convergence of the algorithm

to the sought consensus. The unanimous convergence of the estimates is also established

in the case where the frequency of information exchange between the nodes converges to

zero at some controlled rate. In practice, this means that matrices Wn become more and

more likely to be equal to identity as n → ∞. The benefits of this possibility in terms of

power devoted to communications are obvious.

• We provide sufficient and verifiable conditions for stability.

• We establish a Central Limit Theorem (CLT) on the estimates in the case where the Wn

are doubly stochastic. We show in particular that the node estimates tend to fluctuate

synchronously for large n, i.e., the disagreement between the nodes is negligible at the
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CLT scale. Interestingly, the distributed algorithm under study has the same asymptotic

variance as its centralized analogue.

• We also consider a CLT on the sequences averaged over time as introduced in [3]. We show

that averaging always improves the rate of convergence and the asymptotic variance.

Motivations and examples. The algorithm under study is motivated by the emergence of

various decentralized network structures such as sensor networks, computer clouds or wireless

ad-hoc networks. One of the main application targets is distributed optimization. In this context,

one seeks to minimize a sum of some local objective differentiable functions fi of the agents:

Minimize

N∑
i=1

Fi(θ) . (3)

Function Fi is supposed to be unknown by any other agent j 6= i. In this context, the distributed

algorithm (1)-(2) would reduce to a distributed stochastic gradient algorithm by letting Yn,i =

−∇θFi(θn−1,i) + ξn,i where ∇θ is the gradient w.r.t. θ and ξn,i represents some possible random

perturbation ξn,i at time n.

In a machine learning context, Fi is typically the risk function of a classifier indexed by

θ and evaluated based on a local training set at agent i [4]. In a wireless ad-hoc network,

Fi represents some (negative) performance measure of a transmission such as the Shannon

capacity, and the aim is typically to search for a relevant resource allocation vector θ (see

[5] for more details). As a third example, an application framework to statistical estimation is

provided in Section V. In that case, it is assumed that node i receives some independent and

identically distributed (i.i.d.) time series (Xn,i)n with probability density function f∗(x). The

system designer considers that the density of (Xn,1, · · · , Xn,N) belongs to a parametric family

{f(θ,x)}θ where f(θ,x) =
∏n

i=1 fi(θ, xi). Then, a well-known contrast for the estimation of θ

is given by the Kullback-Leibler divergence D(f∗ ‖ f(θ, ·)) [6]. Finding a minimizer boils down

to the minimization of (3) by setting Fi(θ) = D(fi,∗ ‖ fi(θ, ·)) where fi,∗ is the ith marginal of

f∗. Then, algorithm (1)-(2) coincides with a distributed online maximum likelihood estimator

by setting Yn,i = −∇θ log fi(θn−1,i, Xn,i). Under some regularity conditions, it can be easily

checked that Yn,i = −∇θFi(θn−1,i) + ξn,i where ξn,i is a martingale increment sequence.

Position w.r.t. existing works. There is a rich literature on distributed estimation and opti-

mization algorithms, see [7],[8], [9], [10], [11], [12], [13] as a non exhaustive list. Among the
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first gossip algorithms are those considered in the treatise [14] and in [15], as well as in [16],

the latter reference dealing with the case of a constant step size. The case where the gossip

matrices are random and the observations are noiseless is considered in [17]. The authors of

[11] solve a constrained optimization by also using noiseless estimates. The contributions [10]

and [13] consider the framework of linear regression models.

In this paper, the random gossip matrices Wn are assumed to be row stochastic, i.e., Wn1 = 1

where 1 is the vector whose components equal one, and column stochastic in the mean, i.e.,

1TE[Wn] = 1T . Observe that the row stochasticity constraint Wn1 = 1 is local, since it simply

requires that each agent makes a weighted sum of the estimates of its neighbors with weights

summing to one. Alternatively, the column stochasticity constraint 1TWn = 1T which is assumed

in many contributions (see e.g. [18], [11], [19], [20]) requires a coordination at the network level

(nodes must coordinate their weights). This constraint is not satisfied by a large class of gossip

algorithms. As an example, the well known broadcast gossip matrices (see Section II-B) are only

column stochastic in the mean. As opposed to the aforementioned papers, it is worth noting that

some works such as [16], [12], [5] get rid of the column-stochasticity condition. As a matter of

fact, assumption 1TE[Wn] = 1T is even relaxed in [16]. Nevertheless, considering for instance

Problem (3), this comes at the price of losing the convergence to the sought minima.

In many contributions (see e.g. [16], [8], or [10]), the gossip step is performed before the

local step, contrary to what is done in this paper. The general techniques used in this paper to

establish the convergence towards a consensus, the stability and the fluctuations of the estimates

can be adapted without major difficulty to that situation.

In [19], projected stochastic (sub)gradient algorithms are considered in the case where matrices

(Wn)n are doubly stochastic. Such results have later been extended by [5] to the case of non

convex optimization, also relaxing the doubly-stochastic assumption. It is worth noting that

such works explicitly or implicitly rely on a projection step onto a compact convex set. In many

scenarios (such as unconstrained optimization for example), the estimate is not naturally supposed

to be confined into a known compact set. In that case, introducing an artificial projection step

is known to modify the limit points of the algorithm. On the opposite, this paper addresses the

issue of unprojected stochastic approximation algorithms. In this context, stability turns out to be

a crucial issue which is addressed in this paper. Note that the stability issues are not considered

in most of [16]. Finally, unlike previous works such as [19] or [5], we also address the issue of
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convergence rate and characterize the asymptotic fluctuations of the estimation error.

From a methodological viewpoint, our analysis does not rely on convex optimization tools

such as in e.g. [18], [11], [19]) and does not rely on perturbed differential inclusions as in [5].

The almost sure convergence result is obtained following an approach inspired by [21] and [22]

(other works such as [16] consider weak convergence approaches). The stability result is obtained

by introducing a Lyapunov function and by jointly controlling the moments of this Lyapunov

function and the second order moments of the disagreements between local estimates. Finally,

the study of the asymptotic fluctuations of the estimate is based on recent results of [23] and is

partly inspired by the works of [24].

This paper is organized as follows. In Section II, we state and comment our basic assumptions.

The algorithm convergence is studied in Section III. The second order behavior of the algorithm

is described in Section IV. An application relative to distributed estimation is described in Section

V, along with some numerical simulations. The appendix is devoted to the proofs.

II. THE MODEL AND THE BASIC ASSUMPTIONS

Let us start by writing the distributed algorithm described in the previous section in a more

compact form. Define the RdN -valued random vectors θn and Y n by θn := (θTn,1, . . . , θ
T
n,N)T

and Y n := (Y T
n,1, . . . , Y

T
n,N)T where AT denotes the transpose of the matrix A. The algorithm

reduces to:

θn = (Wn ⊗ Id) (θn−1 + γnY n) , (4)

where ⊗ denotes the Kronecker product and Id is the d× d identity matrix.

Note that we always assume E|θ0|2 < ∞ throughout the paper, where | . | represents the

Euclidean norm.

Remark 1: Following [3], we also consider the averaged sequence (θ̄n)n≥1, where θ̄n :=

(θ̄Tn,1, . . . , θ̄
T
n,N)T and the components are given by

θ̄n,i =
1

n

n∑
k=1

θk,i (5)

at any instant n for node i. We will show in Section IV-B that this averaging technique improves

the convergence rate of the distributed stochastic approximation algorithm. In this paper, we

analyze the asymptotic behavior of both sequences θ̄n and θn as n→∞.
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A. Observation and Network Models

Let (µθ)θ∈RdN be a family of probability measures on RdN endowed with its Borel σ-field

B(RdN) such that for any A ∈ B(RdN), θ 7→ µθ(A) is measurable from B(RdN) to B([0, 1])

where B([0, 1]) denotes the Borel σ-field on [0, 1].

We consider the case when the random process (Y n,Wn)n≥1 is adapted to a filtered probability

space (Ω,A,P, (Fn)n≥0) and satisfy

Assumption 1: a) (Wn)n≥1 is a sequence of N × N random matrices with non-negative

elements such that:

• Wn is row stochastic: Wn1 = 1,

• E(Wn) is column stochastic: 1TE(Wn) = 1T ,

b) For any positive measurable functions f, g and any n ≥ 0,

E[f(Wn+1)g(Y n+1)|Fn] = E[f(Wn+1)]

∫
g(y)µθn(dy) . (6)

c) The sequence (Wn)n≥1 is identically distributed and the spectral norm ρ of matrix E(W T
1 (IN−

11T/N)W1) satisfies ρ < 1.

Assumptions 1a) and 1c) capture the properties of the gossiping scheme within the network.

Following the work of [17], random gossip is assumed in this paper. Assumption 1a) has been

commented in the introduction. The assumption on the spectral norm in Assumption 1c) is

a connectivity condition of the underlying network graph which will be discussed in more

details in Section II-B. Assumption 1b) implies that (i) the random variables (r.v.) Wn and Y n

are independent conditionally to the past, (ii) the r.v. (Wn)n≥1 are independent and (iii) the

conditional distribution of Y n+1 given the past is µθn . This assumption is quite usual in the

framework of stochastic approximation and is sometimes refer to as a Robbins-Monro setting.

As a particular case, this assumption holds if Y n+1 has the form Y n+1 = g(θn) + ξn+1 where

ξn+1 is an i.i.d. process.

It is also assumed that the step-size sequence (γn)n≥1 in the stochastic approximation scheme

(1) satisfies the following conditions which are rather usual in the framework of stochastic

approximation algorithms [2]:

Assumption 2: The deterministic sequence (γn)n≥1 is positive and such that
∑

n γn =∞ and∑
n γ

2
n <∞.
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B. Illustration: Some Examples of Gossip Schemes

We describe three standard gossip schemes so called pairwise, broadcast and dropout schemes.

The reader may refer to [25] for a more complete picture and for more general gossip strategies.

The network of agents is represented as a non-directed graph (E,V) where E is the set of edges

and V is the set of N vertices.

1) Pairwise Gossip: This example can be found in [17] on average consensus (see also [5]).

At time n, two connected nodes – say i and j – wake up, independently from the past.

Nodes i and j compute the weighted average θn,i = θn,j = 0.5θ̃n,i + 0.5θ̃n,j; and for k /∈ {i, j},
the nodes do not gossip: θn,k = θ̃n,k. In this example, given the edge {i, j} wakes up, Wn is

equal to IN − (ei − ej)(ei − ej)T/2 where ej denotes the ith vector of the canonical basis in

RN ; and the matrices (Wn)n≥0 are i.i.d. and doubly stochastic. Assumption 1a) is obviously

satisfied. Conditions for Assumption 1c) can be found in [17]: the spectral norm ρ of the matrix

E(Wn(IN − 11T/N)W T
n ) is in [0, 1) if and only if the weighted graph (E,V,W) is connected,

where the wedge {i, j} is weighted by the probability that the nodes i, j communicate.

2) Broadcast Gossip: This example is adapted from the broadcast scheme in [26]. At time n,

a node i wakes up at random with uniform probability and broadcasts its temporary update θ̃n,i

to all its neighbors Ni. Any neighbor j computes the weighted average θn,j = βθ̃n,i+(1−β)θ̃n,j .

On the other hand, the nodes k which do not belong to the neighborhood of i (including i itself)

sets θn,k = θ̃n,k. Note that, as opposed to the pairwise scheme, the transmitter node i does not

expect any feedback from its neighbors. Then, given i wakes up, the (k, `)th component of Wn

is given by:

wn(k, `) =


1 if k /∈ Ni and k = ` ,

β if k ∈ Ni and ` = i ,

1− β if k ∈ Ni and k = ` ,

0 otherwise.

This matrix Wn is not doubly stochastic but 1TE(Wn) = 1T (see for instance [26]). Thus, the

matrices (Wn)n≥1 are i.i.d. and satisfy the assumption 1a). Here again, it can be shown that the

spectral norm ρ of E(Wn(IN − 11T/N)W T
n ) is in [0, 1) if and only if (E,V) is a connected

graph (see [26]).

3) Network dropouts: In this simple example, the network is subjected from time to time to

a dropout: consider any sequence of gossip matrices Wn satisfying Assumptions 1-a) and 1-c),
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and put W ′
n = BnWn + (1−Bn)IN where Bn is a sequence of i.i.d. Bernoulli random variables

independent of the Wn. The network whose gossip matrices are the W ′
n incurs a dropout at the

moments where Bn = 0. At these moments, the nodes locally update their estimates and skip

the gossip step. It is easy to show that the sequence W ′
n satisfies Assumptions 1-a) and 1-c).

III. CONVERGENCE RESULTS

In this section, we address the asymptotic behavior when n → ∞ of the algorithm (4) and

of its averaged version (5). To that goal, we write θn as the sum of a vector in the consensus

space and a disagreement vector. Let

J := (11T/N)⊗ Id , J⊥ := IdN − J , (7)

be resp. the projector onto the consensus subspace
{
1⊗ θ : θ ∈ Rd

}
and the projector onto the

orthogonal subspace. For any vector x ∈ RdN , define the vector of Rd

〈x〉 :=
1

N
(1T ⊗ Id)x , (8)

so that Jx = 1⊗〈x〉. Note that 〈x〉 = (x1 + · · ·+xN)/N in case we write x = (xT1 , . . . , x
T
N)T ,

xi in Rd. Set

x⊥ := J⊥x (9)

so that x = 1⊗ 〈x〉+ x⊥. We will refer to θ⊥,n := J⊥θn as the disagreement vector.

The convergence results rely on the following equations: under Assumption 1a), it holds

〈θn〉 = 〈θn−1〉+ γn〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 , (10)

γ−1
n+1θ⊥,n =

γn
γn+1

J⊥(Wn ⊗ Id)
(
γ−1
n θ⊥,n−1 + J⊥Y n

)
. (11)

We then first address the almost-sure convergence of the sequence (θn)n≥1 (i) by showing that

the non-homogeneous controlled Markov chain (γ−1
n−1θ⊥,n)n is stable enough so that (θ⊥,n)n

converges almost-surely to zero and, (ii) by applying results on the convergence of stochastic

approximation algorithms with state-dependent noise in order to identify the limiting points of

the sequence (〈θn〉)n≥1. These results are stated in Theorem 1 (and Theorem 2 in the case of

vanishing communication rate); we prove that all agents eventually reach an agreement on the

value of their estimate: the limit points of (θn)n≥1 (resp. (θ̄n)n≥1) given by (4) (resp. (5)) are

of the form 1⊗ θ?.
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It is known that convergence of stochastic approximation algorithms to an attractive set is

established provided that the sequence remains in a compact set with probability one and is,

with probability one, infinitely often in the domain of attraction of this attractive set. Our

convergence result is stated under assumptions implying the recurrence property provided the

sequence remains almost-surely in a compact set. Therefore, our convergence results are derived

under a boundedness assumption, and we then provide in Theorem 3 sufficient conditions for

this boundedness condition to be satisfied.

All these convergence results are obtained under conditions on the state-dependent noise

sequence in the stochastic approximation scheme (10). These conditions roughly speaking assume

(i) that there exist a Lyapunov function and an attractive set associated to the mean field of the

noisy Ordinary Differential Equation (10), (ii) regularity-in-θ of the probability distributions

(µθ)θ∈RdN . The exact assumptions are stated herein.

A. Assumptions on the distributions µθ

Define the function h : Rd → Rd by:

h(θ) :=

∫
〈y〉µ1⊗θ(dy) . (12)

We shall refer to h as the mean field. The key ingredient to prove the convergence of a stochastic

approximation procedure is the existence of a Lyapunov function V for the mean field h i.e., a

function V : Rd → R+ such that ∇V T h ≤ 0. Precisely, it is assumed:

Assumption 3: There exists a function V : Rd → R+ such that:

a) V is continuously differentiable.

b) For any θ ∈ Rd, ∇V (θ)Th(θ) ≤ 0, where h is given by (12).

c) For any M > 0, the level set {θ ∈ Rd : V (θ) ≤M} is compact.

d) The set L := {θ ∈ Rd : ∇V (θ)Th(θ) = 0} is non-empty and there exists M0 such that

L ⊆ {V ≤M0}.
e) The function h given by (12) is continuous on Rd.

f) V (L) := {V (θ) : θ ∈ L} has an empty interior.

Observe that Assumptions 3d) and 3f) are trivially satisfied when L is finite.

When h is a gradient field i.e. h = −∇g, a natural candidate for the Lyapunov function is

V = g. In this case, L = {∇g = 0}; when g is d-times differentiable, the Sard’s theorem implies

July 19, 2013 DRAFT



10

that g({∇g = 0}) has an empty interior. If g is strictly convex and it reaches its minimum at a

finite θ?, the function θ 7→ |θ − θ?|2 is also a Lyapunov function. In this case, L = {θ?}.
Assumption 4: For any M > 0,

a) sup|θ|≤M
∫
|y|2 µθ(dy) <∞.

b) there exists a constant CM such that for any |θ| ≤M ,∣∣∣∣∫ 〈y〉µθ(dy)−
∫
〈y〉µ1⊗〈θ〉(dy)

∣∣∣∣ ≤ CM |θ⊥| . (13)

The condition (13) is a regularity condition on the distribution of 〈Y n+1〉 given the past.

B. Almost sure convergence of the distributed algorithm

Define d(θ, A) := inf{|θ − ϕ| : ϕ ∈ A} for any θ ∈ Rd and A ⊂ Rd.

Theorem 1: Suppose Assumptions 1, 2, 3, 4. Assume in addition that limn γn/γn−1 = 1 and

P
{

lim sup
n
|θn| <∞

}
= 1 . (14)

Then, with probability one,

lim
n→∞

d(〈θn〉,L) = 0 , lim
n
θ⊥,n = 0 , (15)

where L is given by Assumption 3. Moreover, with probability one, (〈θn〉)n≥1 converges to a

connected component of L.

Theorem 1 is proved in Appendix B. Theorem 1 shows that when the stability condition (14)

holds true, the vector of iterates θn given by (4) converges almost surely to the consensus space

as n → ∞ so that the network asymptotically achieves consensus. Moreover, this consensus

belongs to the attractive set of the Lyapunov function.

Since V is continuous, Theorem 1 implies that with probability one (w.p.1), the sequence

{V (〈θn〉)}n≥0 converges to a (random) point υ? ∈ V (L). This can be used to show that (〈θn〉)n≥0

converges to a connected component of {θ ∈ L : V (θ) = υ?}. In general, this does not imply

that (〈θn〉)n≥0 converges w.p.1 to some (random point) θ? ∈ L. Note nevertheless that this holds

true w.p.1 when L is finite.

Along any sequence (θn)n≥0 converging to 1 ⊗ θ? for some θ? ∈ L, the Cesaro’s lemma

implies that the averaged sequence (θ̄n)n≥0 converges w.p.1 to 1⊗ θ?. Therefore, the averaged

sequence (5) and the original sequence (4) have the same limiting value, if any.
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C. Case of a vanishing communication rate

Theorems 1 still holds true when the r.v. (Wn)n≥1 are not identically distributed. An interesting

example is when P {Wn = IN} → 1 as n → ∞. From a communication point of view, this

means that the exchange of information between agents becomes rare as n→∞. This context

is especially interesting in case of wireless networks, where it is often required to limit as much

as possible the amount of communication between the nodes.

In such cases, Assumption 1c) does no longer hold true. We prove a convergence result for

the algorithms (4) and (5) when the spectral norm of the matrix E(W T
n (IN − 11T/N)Wn) and

the step size sequence (γn)n≥1 satisfy the following assumption:

Assumption 5:
∑

n γn =∞ and there exists α > 1/2 such that:

lim
n→∞

nαγn = 0 , lim
n→∞

n1+αγn = +∞ , (16)

lim inf
n→∞

1− ρn
nαγn

> 0 , (17)

where ρn is the spectral norm of the matrix E(W T
n (IN − 11T/N)Wn).

Note that under Assumption 5, limn n(1−ρn) = +∞. A typical framework where this assumption

is useful is the following. Let (Bn)n be a Bernoulli sequence of independent r.v. with P(Bn =

1) = pn and the probabilities pn decrease in such a way that lim infn pn/(n
αγn) > 0: replace

the matrices Wn described by Assumption 1 with BnWn + (1−Bn)IN . Here pn represents the

probability that a communication between the nodes takes place at time n.

We also have
∑

n γ
2
n < ∞ so that the step-size sequence (γn)n≥1 satisfies the standard

conditions for stochastic approximation scheme to converge.

An example of sequences (γn)n≥1, (ρn)n≥1 satisfying Assumption 5 is given by 1−ρn = a/nη

and γn = γ0/n
ξ with η, ξ such that 0 ≤ η < ξ − 1/2 ≤ 1/2. In particular, ξ ∈ (1/2, 1] and

η ∈ [0, 1/2).

When the r.v. (Wn)n≥1 are i.i.d., the spectral norm ρn is equal to ρ for any n, and (17) implies

ρ < 1: one is back to Assumption 1c). From this point of view, Assumption 5 is weaker than

Assumption 1c). Nevertheless, stronger constraints than Assumption 1c) are needed on the step

size (γn)n≥1.

When substituting Assumption 1c) by Assumption 5, we have

Theorem 2: The statement of Theorem 1 remains valid under Assumptions 1a-b), 2, 3, 4, 5

and Eq. (14).
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Theorem 2 is proved in Appendix B.

D. Stability

In this section, we provide sufficient conditions implying (14). These conditions are stated in

the case of a vanishing communication rate but remain valid when Assumption 5 is replaced

with Assumption 1c). The proof of Theorem 3 is given in Appendix C.

Theorem 3: Suppose Assumptions 1a-b), 2, 3a-e) and 5. Assume in addition that

STAB1. ∇V is Lipschitz on Rd.

STAB2. there exists a constant C such that for any θ ∈ RdN ,∫
|y|2 µθ(dy) ≤ C

(
1 + V (〈θ〉) + |θ⊥|2

)
,∣∣∣∣∫ 〈y〉µθ(dy)−

∫
〈y〉µ1⊗〈θ〉(dy)

∣∣∣∣ ≤ C|θ⊥| .

Then P {lim supn |θn| <∞} = 1.

It is proved in Appendix C that under the assumptions of Theorem 3, a stronger result holds

(see Lemma 5): the sequence (θ⊥,n)n≥1 converges to zero with probability one and (〈θn〉)n≥1

is stable in the sense that supn V (〈θn〉) <∞.

Note that the Lipschitz assumption on the gradient ∇V combined with Assumption STAB2

implies that h is at most linearly increasing when |θ| → ∞.

The stability condition (14) could also be satisfied by modifying the algorithm (4) with a

truncation step. Truncation on a fixed compact set of RdN is easy to implement and natural

when constraints on the system are available a priori; nevertheless it becomes impractical and

questionable in many situations of interest when a compact set containing the limiting set L is not

known a priori. Another stability strategy consists in truncations on randomly varying compact

sets [27]; derivation of conditions implying the stability of Algorithm (4) without modifying its

limiting set under such an approach is out of the scope of this paper and left to the interested

reader.

IV. CONVERGENCE RATES

In this section, we derive the convergence rate in L2 of the disagreement sequence (θ⊥,n)n

defined θ⊥,n := J⊥θn (see (7) and (9)). We also derive Central Limit Theorems for the

sequences (θn)n and (θ̄n)n: we show that averaging always improves the convergence rate and

the asymptotic variance.
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A. Convergence rate of the disagreement vector θ⊥,n

Whereas Theorem 1 states that limn θ⊥,n = 0 almost surely, Theorem 4 provides an in-

formation on the convergence rate: θ⊥,n tends to zero in L2 at rate 1/γn. For a positive

deterministic sequence (an)n≥1, O(an) stands for a deterministic R`-valued sequence (xn)n≥1

such that supn a
−1
n |xn| <∞. The proof of Theorem 4 is given in Appendix D.

Theorem 4: Suppose Assumptions 1, 2 and 4a). For any M > 0,

γ−2
n E

(
|θ⊥,n|21supk≤n−1 |θk|≤M

)
≤ ρ C

(1−√ρ)2
+O

(
ρnγ−2

n

)
(18)

where ρ is given by Assumption 1c) and C := lim supn→∞ E(|Y⊥,n|21supk≤n−1 |θk|≤M) is finite.

B. Central Limit Theorems

We derive Central Limit Theorems for sequences (θn)n and (θ̄n)n converging to a point 1⊗θ?
for some θ? ∈ L. To that goal, we restrict our attention to the case when the matrix (Wn)n are

doubly stochastic i.e. 1TWn = 1T . The general case is far more technical and out of the scope

of this paper. We also assume that the point θ? and the r.v. Y satisfy

Assumption 6: a) θ? ∈ L.

b) The mean field h : Rd → Rd given by (12) is twice continuously differentiable in a

neighborhood of θ?.

c) ∇h(θ?) is a Hurwitz matrix i.e. the largest real part of its eigenvalues is −L for some L > 0.

Assumption 7: a) There exist δ > 0 and τ > 0 such that sup|θ−1⊗θ?|≤δ
∫
|〈y〉|2+τµθ(dy) <∞.

b) The functions θ 7→
∫
〈y〉〈y〉Tµθ(dy) and θ 7→

∫
〈y〉µθ(dy) are continuous in a neighborhood

of 1⊗ θ?.
We finally strengthen the assumptions on the step-size sequence (γn)n≥0. In the sequel, notations

xn = o(yn) and xn ∼ yn stand for xn/yn → 0 and xn/yn → 1 respectively.

Assumption 8: a) (γn)n is a positive deterministic sequence such that either log(γk/γk+1) =

o(γk), or log(γk/γk+1) ∼ γk/γ? for some γ? > 1/(2L).

b)
∑

n γn =∞ and
∑

n γ
2
n <∞.

c) limn nγn = +∞ and

lim
n

1√
n

n∑
k=1

γ
−1/2
k

∣∣∣∣1− γk
γk+1

∣∣∣∣ = 0 , lim
n

1√
n

n∑
k=1

γk = 0 .
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The step size γn ∼ γ?/n
ξ satisfies Assumptions 8a-b) for any 1/2 < ξ ≤ 1 since log(γk/γk+1) ∼

ξ/k. Similarly, if γn ∼ γ?/n, Assumption 8a) holds provided that γ? > (1/2L). Observe that

when the sequence (γn)n is ultimately non-increasing, then the condition limn nγn = +∞ implies

limn

√
n
−1∑n

k=1 γ
−1/2
k |1− (γk/γk+1)| = 0 (see e.g. [21, Theorem 26, Chapter 4]).

Set

Υ :=

∫
〈y〉〈y〉T µ1⊗θ?(dy)−

(∫
〈y〉 µ1⊗θ?(dy)

)(∫
〈y〉 µ1⊗θ?(dy)

)T
.

Theorem 5: Suppose Assumptions 1, 4, 6, 7, 8a-b). Assume in addition that 1TWn = 1T

w.p.1. Then under the conditional probability P(·| limk θk = 1 ⊗ θ?), the sequence of r.v.

(γ
−1/2
n (θn − 1 ⊗ θ?))n≥0 converges in distribution to 1 ⊗ Z where Z is a centered Gaussian

distribution with covariance matrix Σ solution of the Lyapunov equation: ∇h(θ?)Σ + Σ∇h(θ?)
T = −Υ if log(γk/γk+1) = o(γk) ,

(I + 2γ?∇h(θ?)) Σ + Σ
(
I + 2γ?∇h(θ?)

T
)

= −Υ if log(γk/γk+1) ∼ γk/γ? .

The proof of Theorem 5 is postponed to Appendix E. The asymptotic variance can be compared

to the asymptotic variance in a centralized algorithm: formally, such an algorithm is obtained

by setting Wn = 11T/N ⊗ Id. Interestingly, the distributed algorithm under study has the same

asymptotic variance as its centralized analogue.

Theorem 5 shows that when γn ∼ γ?/n
α for some α ∈ (1/2, 1], then the rate in the CLT is

O(1/nα/2). Therefore, the maximal rate of convergence is achieved with γn ∼ γ?/n and in this

case, the rate is O(1/
√
n). Unfortunately, the use of such a rate necessitates to choose γ? as a

function of ∇h(θ?) (through the upper bound L, see Assumption 8a)), and in practice ∇h(θ?)

is unknown. We will show in Theorem 6 that the optimal rate O(1/
√
n) can be reached by

applying the averaged procedure (5) with γn ∼ γ?/n
α whatever α ∈ (1/2, 1).

A second question is the scaling of the observations in the local step. Observe that during

each local step of the algorithm (see (1)), each agent can use a common invertible matrix gain

Γ and update the temporary iterate θ̃n,i as

θ̃n,i = θn−1,i + γn ΓYn,i . (19)

It is readily seen that the new mean field h̃ : θ 7→
∫
〈(Γ ⊗ IN)y〉µ1⊗θ(dy) is equal to Γh and

Assumptions 3 and 4 remain valid with (Y , h, V ) replaced by ((Γ⊗IN)Y ,Γh,Γ−1V ). Therefore,

introducing a gain matrix Γ does not change the limiting points of the algorithm (4) (and thus
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(5)) but changes the asymptotic variance. In the case of the optimal rate in Theorem 5 (i.e. the

case γn ∼ γ?/n for some γ? > 1/(2L)), it can be proved following the same lines as in [23]

(see also [1, Proposition 4, Chapter 3, Part I]), that the optimal choice of the gain matrix is

Γ? = −γ−1
? ∇h(θ?)

−1. By optimal, we mean that, when weighting the observations by Γ? as

in (19), the asymptotic covariance matrix Σ? obtained through Theorem 5 is smaller than the

limiting covariance ΣΓ associated with any other gain matrix Γ i.e., ΣΓ − Σ? is nonnegative.

Moreover, Σ? is equal to:

γ−1
? ∇h(θ?)

−1Υ∇h(θ?)
−T .

Otherwise stated, (
√
n (〈θn〉− θ?))n≥0 converges to a centered Gaussian vector with covariance

matrix ∇h(θ?)
−1Υ∇h(θ?)

−T .

In practice, ∇h(θ?) is unknown and such a choice of gain matrix cannot be plugged in

the algorithm (4). Fortunately, Theorem 6 shows that this optimal variance can be reached by

averaging the sequence (θ̄n)n.

Note that these two major features of averaging algorithms for stochastic approximation

(optimal convergence rate and optimal limiting covariance matrix) has been pointed out by

[3] (see also [28]) in case of centralized algorithms.

Theorem 6: Let (γn)n be a deterministic positive sequence such that log(γk/γk+1) = o(γk).

Suppose Assumptions 1, 4, 6, 7, 8b-c). Assume in addition that 1TWn = 1T w.p.1. Then under

the conditional probability P(·| limk θk = 1 ⊗ θ?), the sequence of r.v. (
√
n (θ̄n − 1 ⊗ θ?))n≥0

converges in distribution to 1⊗ Z̄ where Z̄ is a centered Gaussian distribution with covariance

matrix

∇h(θ?)
−1 Υ∇h(θ?)

−T .

The proof of Theorem 6 is postponed to Appendix F.

V. AN APPLICATION FRAMEWORK

A. Distributed estimation

To illustrate the results, we describe in this section a distributed parameter estimation algorithm

which converges to a limit point of the centralized Maximum Likelihood (ML) estimator. Assume

that node i receives at time n the Rmi-valued component Xn,i of the i.i.d. random process

Xn = (XT
n,1, . . . X

T
n,N)T ∈ R

∑
mi , where X1 has the unknown density f∗(x) with respect to the
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Lebesgue measure. The system designer considers that the density of X1 belongs to a family

{f(θ,x)}θ∈Rd . When f(θ,x) satisfies some regularity and smoothness conditions, the limit points

of the sequences θ̂n that maximize the log-likelihood function Ln(θ) =
∑n

k=1 log f(θ,Xk)

are minimizers of the Kullback-Leibler divergence D(f∗ ‖ f(θ, ·)) [6]. Our aim is to design

a distributed and iterative algorithm that exhibits the same asymptotic behavior in the case

where f(θ,x) is of the form f(θ,x) =
∏N

i=1 fi(θ, xi) where x = (xT1 , . . . , x
T
N)T is parti-

tioned similarly to X1. To that purpose, Algorithm (4) is implemented with the increments

Yn+1,i = ∇θ log fi (θn,i, Xn+1,i) where ∇θ is the gradient with respect to θ. In some sense,

log fi(θn,i, Xn+1,i) is a local log-likelihood function that is updated by node i at time n+ 1 by

a gradient approach. Writing θ = (θT1 , . . . , θ
T
N)T , the distribution µθ introduced in Section II-A

is defined by the identity∫
g(y)µθ(dy) =

∫
g
(
(∇θ log f1(θ1, x1)T , . . . ,∇θ log fN(θN , xN)T )T

)
f∗(x) dx

for every measurable function g : RNd → R+. The associated mean field given by Equation (12)

will be

h(θ) =
1

N

∫
∇θ log f(θ,x) f∗(x) dx.

Since h(θ) = −N−1∇θD(f∗ ‖ f(θ, ·)) (assuming ∇θ and
∫

can be interchanged), our algorithm

is of a gradient type with V (θ) = D(f∗ ‖ f(θ, ·)) as the natural Lyapunov function. Under

the assumptions of Theorem 1 or Theorem 2, we know that the θn,i, i = 1, . . . , N converge

unanimously to L = {θ : ∇V (θ) = 0}. Here, we note that under some weak extra assumptions

on the “noise” of the algorithm, it is possible to show that unstable points such as local maxima

or saddle points of V (θ) are avoided (see for instance [29], [30], [31]). Consequently, the first

order behavior of the distributed algorithm is identical to that of the centralized ML algorithm.

We now consider the second order behavior of these algorithms, restricting ourselves to the case

where f∗(x) =
∏N

i=1 fi(θ?, xi) for some θ? ∈ Rd. With some conditions on f∗, it is well known

that any consistent sequence θ̂n of estimates provided by the centralized ML algorithm satisfies
√
n(θ̂n− θ?) D−→ N (0, F (θ?)

−1) where D−→ stands for the convergence in distribution, N (0,Σ)

represents the centered Gaussian distribution with covariance Σ and

F (θ?) =
N∑
i=1

∫
∇θ log fi(θ?, xi)∇θ log fi(θ?, xi)

T fi(θ?, xi) dxi
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is the Fisher information matrix of f(θ?, ·) [6, Chap. 6]. We now turn to the distributed algorithm

and to that end, we apply Theorems 5 and 6. Matrices ∇h(θ?) and Υ found in the statements

of these theorems coincide in our case with −N−1F (θ?) and N−2F (θ?) respectively (same

value of Υ for both theorems). Starting with the averaged case, Theorem 6 shows that on the

set {limn θn = 1 ⊗ θ?}, the averaged sequence θ̄n satisfies
√
n(θ̄n − 1 ⊗ θ?)

D−→ 1 ⊗ Z

where Z ∼ N (0, F (θ?)
−1). This implies that the averaged algorithm is asymptotically efficient,

similarly to the centralized ML algorithm. Let us consider the non averaged algorithm. In order

to make a fair comparison with the centralized ML algorithm, we restrict the use of Theorem

5 to the case where γn has the form γn = γ?/n. In that case, Assumption 8 is verified when

γ? > N/(2λmin(F (θ?))) where λmin(F (θ?)) is the smallest eigenvalue of F (θ?). Theorem 5

shows that on the set {limn θn = 1 ⊗ θ?}, the sequence of estimates θn satisfies
√
n(θn −

1 ⊗ θ?) D−→ 1 ⊗ Z where Z ∼ N (0,Σ), and where Σ is the solution of the matrix equation

Σ(2N−1γ?F (θ?)−Id)+(2N−1γ?F (θ?)−Id)Σ = 2γ2
?N
−2F (θ?). Solving this equation, we obtain

Σ = γ2
?N
−2F (θ?)(2γ?N

−1F (θ?)− Id)−1. Notice that Σ− F (θ?)
−1 = F (θ?)

−1(2γ?N
−1F (θ?)−

Id)
−1(γ?N

−1F (θ?)− Id)2 > 0, which quantifies the departure from asymptotic efficiency of the

non averaged algorithm.

B. Application to source localization

The distributed algorithm described above is used here to localize a source by a collection of

N = 40 sensors. The unknown location of the source in the plane is represented by a parameter

θ? ∈ R2. The sensors are located in the square [0, 50] × [0, 50] as shown by Figure 1, and

they receive scalar-valued signals from the source (mi = 1 for all i). It is assumed that the

density of X1 ∈ RN is f?(x) =
∏N

i=1 fi(θ?, xi) where fi(θ?, ·) = N (1000/|θ? − ri|2, 10−2)

where ri ∈ R2 is the location of Node i. The fitted model is f(θ,x) =
∏N

i=1 fi(θ, xi) with

fi(θ, ·) = N (1000/|θ− ri|2, 10−2) (see [32] for a similar model). The model for matrices Wn is

the pairwise gossip model described in Section II-B. The step sequence γn is set to 10−3/n0.7.

Note that in practice, setting adequately the step size in order to find the sought tradeoff between

a short transient phase and a good asymptotic accuracy is known to be sensitive to the statistical

model of interest. Finally, the initial value θ0 ∈ R2N is chosen at random under the uniform

distribution on the square [0, 50]× [0, 50].

The convergence of the distributed algorithm to the consensus subspace is illustrated in
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Figures 2. Figure 3 represents the empirical distribution of the normalized estimation error

γ
−1/2
n (〈θn〉 − θ?) after n = 50 000 iterations, based on 180 Monte-Carlo runs of the trajectory

θ̄n initialized in the vincinity of θ?. The empirical distribution is coherent with the asymptotic

Gaussian distribution given by Theorem 5.

APPENDIX

A. Notations

For a positive deterministic sequence (an)n≥1, the notation xn = o(an) refers to a deterministic

R`-valued sequence (xn)n≥1 such that limn→∞ a
−1
n |xn| = 0. For p > 0, we denote the Lp-norm

of a random vector X by ‖X‖p := E(|X|p)1/p. The notation Xn = oLp(an) refers to a R`-valued

r.v. (Xn)n≥1 such that limn→∞ a
−1
n ‖Xn‖p = 0, while Xn = OLp(an) refers to a R`-valued r.v.

(Xn)n≥1 such that lim supn a
−1
n ‖Xn‖p <∞. Finally, Xn = Ow.p.1.(an) stands for any R`-valued

r.v. (Xn)n≥1 such that lim supn a
−1
n |Xn| is finite almost-surely.

B. Proof of Theorems 1 and 2

We give the proof of Theorem 2; the proof of Theorem 1 is on the same lines and details

are omitted. We first prove the almost-sure convergence to zero of (θ⊥,n)n≥1. The assumption

P {lim supn |θn| <∞} = 1 implies P
{⋃

M∈Z+
{supn |θn| ≤M}

}
= 1 and we only have to

prove that for any M > 0, with probability one, limn θ⊥,n1supn |θn|≤M = 0. To that goal, we

write for any δ > 0, m ≥ 1,

P
{

sup
n≥m
|θ⊥,n|1supn |θn|≤M ≥ δ

}
≤ 1

δ2
E
(

sup
n≥m
|θ⊥,n|21supn |θn|≤M

)
≤ 1

δ2

∑
n≥m

n−2α sup
n

E
(
n2α|θ⊥,n|21supk≤n−1 |θk|≤M

)
.

Lemma 1 and Assumption 5 imply that (θ⊥,n)n≥1 converges to zero w.p.1. on the set {supn |θn| ≤
M}.

Lemma 1: Suppose Assumptions 1a-b), 2, 4a) and 5. Then for any M > 0,

sup
n
n2αE

(
|θ⊥,n|2 1supk≤n−1 |θk|≤M

)
<∞ .

Proof: Fix M > 0. Recalling that (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD), let Wn = (W T
n ⊗

Id)J⊥(Wn ⊗ Id) = (W T
n (I − N−111T )Wn) ⊗ Id. Since θ⊥,n = J⊥(Wn ⊗ Id)(θ⊥,n−1 + γnY n),
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we have by Assumptions 1a-b)

E
[
|θ⊥,n|2|Fn−1

]
= E

[
(θ⊥,n−1 + γnJ⊥Y n)TWn(θ⊥,n−1 + γnY n) |Fn−1

]
≤ ρnE

[
|θ⊥,n−1 + γnY n|2 |Fn−1

]
≤ ρn

(
|θ⊥,n−1|2 + γ2

n

∫
|y|2µθn−1(dy) + 2γn|θ⊥,n−1|

(∫
|y|2µθn−1(dy)

)1/2
)

By Assumption 4a),

sup
n

∫
|y|2µθn−1(dy)1supk≤n |θk|≤M <∞ .

This implies that there exists a constant C > 0 such that

E
[
|θ⊥,n|2|Fn−1

]
≤ ρn|θ⊥,n−1|2 + γ2

nC + 2γn|θ⊥,n−1|
√
C .

Therefore,

E
[
|θ⊥,n|21supk≤n−1 |θk|≤M

]
≤ ρnE

[
|θ⊥,n−1|21supk≤n−2 |θk|≤M

]
+ γ2

nC

+ 2γn

(
C E

[
|θ⊥,n−1|21supk≤n−2 |θk|≤M

])1/2

.

The proof now follows the same lines as in the proof of [33, Lemma 1 (see Eq. (17))] (see also

Lemma 3 below, Eq. (22))

Remark 2: When Assumption 5 is replaced with Assumption 1c) and the condition limn γn/γn−1 =

1, then for any ρ̄ ∈ (ρ, 1) there exists a constant C such that

E
[
γ−2
n |θ⊥,n|21supk≤n−1 |θk|≤M

]
≤ ρ̄E

[
γ−2
n−1|θ⊥,n−1|21supk≤n−2 |θk|≤M

]
+ C .

Therefore, Lemma 1 gets into

sup
n
γ−2
n E

(
|θ⊥,n|2 1supk≤n−1 |θk|≤M

)
<∞ ;

(see also Theorem 4 for a proof of this bound).

Now, the study of the whole vector θn is reduced to the analysis of its projection Jθn = 1⊗〈θn〉
onto the consensus space. We now focus on the average 〈θn〉. The convergence of the sequence

(〈θn〉)n≥1 is a direct consequence of Lemma 2 along with [22, Theorems 2.2. and 2.3.].

Lemma 2: Under Assumptions 1a-b), 2, 4, 5 and Eq. (14) it holds:

〈θn〉 = 〈θn−1〉+ γnh(〈θn−1〉) + γnζn
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with supn |
∑n

k=1 γkζk| < ∞ with probability one. Then limn d(〈θn〉,L) = 0 with probability

one.

Proof: Eqs. (4) and (8) along with assumption 1a) yield:

〈θn〉 = 〈θn−1〉+ γn〈Zn〉 , where Zn := (Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1) (20)

upon noting that under Assumption 1a), (Wn⊗ Id)J = J . We write 〈Zn〉 = h(〈θn−1〉) + en+ ξn

where

en := 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 −

∫
〈y〉µθn−1(dy)

ξn :=

∫
〈y〉µθn−1(dy)−

∫
〈y〉µ1⊗〈θn−1〉(dy) .

By Assumption 4b) and the inequality 2ab ≤ a2 + b2, for any M > 0 there exists a constant C

such that

E

∣∣∣∣∣1supn |θn|≤M
∑
n≥1

γnξn

∣∣∣∣∣ ≤ C

(∑
n≥1

γ2
n +

∑
n≥1

E
(
|θ⊥,n−1|2 1supn |θn|≤M

))
. (21)

Therefore, the RHS in (21) is finite under the condition 2 and Lemma 1, thus implying that∑
n≥1 γnξn converges w.p.1. on the set {supn |θn| ≤ M} for any M > 0 and therefore w.p.1.

since P {supn |θn| <∞} = 1.

Since E [en |Fn−1] = 0, the sequence
(
Sn :=

∑n
k=1 γkek1sup`≤k−1 |θ`|≤M

)
n≥1

is a martingale.

We prove that it converges almost surely by estimating its second order moment. For any k ≥ 1,

E
[
|Sk|2

]
≤

∑
n≥1

γ2
n E
[
|en|2 1sup`≤n−1 |θ`|≤M

]
≤

∑
n≥1

γ2
n E
[
(Y n + γ−1

n θ⊥,n−1)TPn(Y n + γ−1
n θ⊥,n−1)1sup`≤n−1 |θ`|≤M

]
where we set Pn := N−2W T

n 11
TWn ⊗ Id. Note that Pn is independent of Yn conditionally to

Fn−1. Since Wn is a stochastic matrix, its spectral norm is bounded uniformly in n. Therefore,

there exists a constant C > 0 such that:

E
[
|Sn|2

]
≤ C

∑
n≥1

γ2
n E
[∣∣Y n + γ−1

n θ⊥,n−1

∣∣2 1sup`≤n−1 |θ`|≤M

]
≤ 2C

∑
n≥1

γ2
n E
[
|Y n|21sup`≤n−1 |θ`|≤M

]
+ 2C

∑
n≥1

E
[
|θ⊥,n−1|21sup`≤n−1 |θ`|≤M

]
.

By Assumption 4a),

sup
n

E
[
|Y n|21sup`≤n−1 |θ`|≤M

]
<∞ .
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By Lemma 1 and Assumption 2 it follows that supn E [|Sn|2] is finite thus implying that the

martingale (Sn)n≥1 converges almost surely to a r.v. which is finite w.p.1. (see e.g. [34, Corollary

2.2.]).

We now consider the last term
∑

k γkek

(
1− 1sup`≤k−1 |θ`|≤M

)
. On the set {supn |θn| ≤M},

this sum is null. This concludes the proof since P {supn |θn| <∞} = 1.

C. Proof of Theorem 3

Our stability result relies on preliminary technical lemmas, Lemmas 3 and 4. Theorem 3 is a

consequence of Lemma 5: it is established that limn θ⊥,n = 0 with probability one, which implies

that P {lim supn |θ⊥,n| <∞} = 1. It is also established that P {lim supn |〈θn〉| <∞} = 1.

Lemma 3: Let (γn)n≥0, (ρn)n≥0 be respectively a positive and a [0, 1]-valued sequence such

that
∑

n γ
2
n <∞; and un, vn be two real sequences such that for n ≥ n0,

un ≤ ρnun−1 + γnM
√
un−1(1 + un−1 + vn−1)1/2 + γ2

nM (1 + un−1 + vn−1) , (22)

vn ≤ vn−1 +Mun−1 + γnM
√
un−1 (1 + un−1 + vn−1)1/2 + γ2

nM(1 + un−1 + vn−1) . (23)

Then: i) supn vn <∞, ii) lim supn φnun <∞ for any positive sequence (φn)n≥0 such that

lim sup
n

(
γn
√
φn +

φn−1

φn

)
<∞ , lim inf

n
(γn
√
φn)−1

(
φn−1

φn
− ρn

)
> 0 , (24)∑

n

φ−1
n <∞ . (25)

Proof: • Set γ̃n = (1 + M)γn. Define two sequences (an, bn)n≥n0 such that an0 = bn0 =

max(un0 , vn0) and for each n ≥ n0 + 1:

an = ρnan−1 + γ̃n
√
an−1 (1 + an−1 + bn−1)1/2 + γ̃2

n(1 + an−1 + bn−1) (26)

bn = bn−1 +Man−1 + γ̃n
√
an−1(1 + an−1 + bn−1)1/2 + γ̃2

n(1 + an−1 + bn−1) . (27)

It is straightforward to show by induction that un ≤ an and vn ≤ bn for any n ≥ n0. In addition,

bn = bn−1 + an + (M − ρn)an−1. Thus for n ≥ n0 + 1,

bn = an +
n−1∑
k=n0

(M + 1− ρk+1)ak .
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Define An := (M + 1)
∑n

k=n0
ak, n ≥ n0. The above equality implies that an ≤ bn ≤ An. As a

consequence, Eq. (26) implies:

an ≤ ρnan−1 + γ̃n
√
an−1 (1 + 2An−1)1/2 + γ̃2

n(1 + 2An−1) . (28)

As (An)n≥n0 is a positive increasing sequence, for any n ≥ n0 + 1,

an
An
≤ ρn

an−1

An−1

+ γ̃n

√
an−1

An−1

(
1

An0

+ 2

)1/2

+ γ̃2
n

(
1

An0

+ 2

)
. (29)

• Define L2 := 1/An0 + 2, and cn := φnan/An. By (29), for any n ≥ n0 + 1,

cn ≤ ρn
φn
φn−1

cn−1 + Lγ̃n
√
cn−1φn

√
φn
φn−1

+ L2 γ̃2
nφn, (30)

and under the assumption (24), there exist n1 ≥ n0 and a constant ξ > 0 such that for any

n ≥ n1, √
φn−1

φn
Lξ
{

1 + ξLγ̃n
√
φn−1

}
≤
(
φn−1

φn
− ρn

)(
γ̃n
√
φn

)−1

. (31)

Define

A := max

(
1

ξ
,

1

ξ2
, cn1

)
. (32)

We prove by induction on n that cn ≤ A for any n ≥ n1. The claim holds true for n = n1 by

definition of A. Assume that cn−1 ≤ A for some n−1 ≥ n1. Using (30) and (32), for n ≥ n1 +1,

cn
A
≤ ρn

φn
φn−1

+
L√
A
γ̃n
√
φn

√
φn
φn−1

+
L2

A
γ̃2
nφn,

By (31), the RHS is less than one so that cn ≤ A. This proves that (cn)n≥n0 is a bounded

sequence.

•We prove that (An)n≥n0 is a bounded sequence. Using the fact that supn≥n1
ρn ≤ 1, (An)n≥n0

is increasing and Eq. (28), it holds for n ≥ n1 + 1

An = An−1 + an ≤ An−1 + an−1 + γ̃n
√
an−1

√
An−1L

1/2 + γ̃2
nL

2An−1

≤
(

1 + cn−1φ
−1
n−1 + L1/2γ̃nφ

−1/2
n−1

√
cn−1 + γ̃2

nL
2
)
An−1.

Finally, since supn≥n1
cn ≤ A and (1 + t2) ≤ exp(t2), there exists C > 0 s.t. for any n ≥

n1 + 1, An ≤ exp
(
C{φ−1

n−1 + γ̃2
n}
)
An−1 (note that under (24), lim supn{γ̃n/

√
φn}φn <∞). By

assumptions,
∑

n{φ−1
n−1 + γ̃2

n} <∞, (An)n≥n0 is therefore bounded.

• The proof of the lemma is concluded upon noting that vn ≤ bn ≤ An and un ≤ an ≤ γ̃2
ncnAn.
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Remark 3: If the sequences (γn, ρn)n≥0 are such that

lim sup
n

(
γn
γn−1

+
1− ρn−1

1− ρn

)
<∞ , lim inf

n

1

1− ρn

(
(1− ρn−1)2

(1− ρn)2

γ2
n

γ2
n−1

− ρn
)
> 0 ,(33)∑

n

γ2
n(1− ρn)−2 <∞ , (34)

then the conditions (24) and (25) are satisfied with φn := (1− ρn)2/γ2
n. Examples of sequences

satisfying these conditions are ρn = 1− a/nη, γn = γ0/n
ξ with 0 ≤ η < 1 ∧ (ξ − 1/2).

Lemma 4: Let V : Rd → R+ be a differentiable function such that ∇V is Lipschitz on Rd.

There exist constants C,C ′ such that for any θ ∈ Rd, |∇V (θ)|2 ≤ CV (θ), and for any θ, θ′ ∈ Rd,

V (θ′) ≤ V (θ) +∇V (θ)T (θ′ − θ) + C ′|θ′ − θ|2 (35)

Proof: Given any θ, θ′ ∈ Rd, we have

V (θ′) = V (θ) +∇V (θ)T (θ′ − θ) +

∫ 1

0

(∇V (θ + t(θ′ − θ))−∇V (θ))
T

(θ′ − θ) dt.

This implies (35) since ∇V is Lipschitz. Then, Applying (35) with θ′ = θ − µ∇V (θ) where

µ > 0 and recalling that V is nonnegative, we also have 0 ≤ V (θ) − µ(1 − µC ′)|∇V (θ)|2.

Choosing µ small enough, we thus get the result.

Lemma 5 (Agreement and Stability): Suppose Assumptions 1a-b), 2, 3a-b) and 5. Assume in

addition STAB 1-2). Then,

a)
∑

n≥1 E |θ⊥,n|
2 <∞ and (θ⊥,n)n≥1 converges to zero w.p.1.

b) supn≥1 EV (〈θn〉) <∞ and supn E [|Y n|2] <∞,

where 〈x〉 and x⊥ are given by (8) and (9).

Proof: Define un := E [|θ⊥,n|2] and vn := E [V (〈θn〉)] . We prove that there exists

a constant M > 0 and an integer n0 such that for any n ≥ n0, inequalities (22) and (23)

are satisfied. The proof is then concluded by application of Lemma 3 upon noting that under

assumption 2, the rate φn = n2α satisfies the conditions (24) and (25).

Proof of (22). As Wn1 = 1, we have J⊥(Wn ⊗ Id) = J⊥(Wn ⊗ Id)J⊥. As a consequence,

θ⊥,n = J⊥(Wn⊗Id)(θ⊥,n−1 +γnY n). We expand the square Euclidean norm of the latter vector:

|θ⊥,n|2 = (θ⊥,n−1 + γnY n)T ({W T
n (IN − 11T/N)Wn} ⊗ Id)(θ⊥,n−1 + γnY n) .

Integrate both sides of the above equation w.r.t. the r.v. Wn; by assumption 1b)

E[|θ⊥,n|2 |Fn−1,Y n] ≤ ρn|θ⊥,n−1 + γnY n|2 .
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Under Assumption 5, limn n(1 − ρn) = +∞: then, there exists n0 such that ρn < 1 for any

n ≥ n0. We obtain:

E[|θ⊥,n|2] ≤ ρnE[|θ⊥,n−1|2] + 2γnE[|θ⊥,n−1| |Y n|] + γ2
nE[|Y n|2] ,

for any n ≥ n0. From Cauchy-Schwartz inequality, E[|θ⊥,n−1| |Y n|] ≤ √un−1(E[|Y n|2])1/2.

Thus,

un ≤ ρnun−1 + 2γn
√
un−1(E[|Y n|2])1/2 + γ2

nE[|Y n|2] .

By assumption STAB2), we have the following estimate E[|Y n|2] ≤ C1 (1 + vn−1 + un−1). This

completes the proof of (22), for any constant M larger than 1 + C1.

Proof of (23). Lemma 4 is applied with θ ← 〈θn〉 and θ′ ← 〈θn−1〉. We have to evaluate the

difference 〈θn〉 − 〈θn−1〉. By (4),

〈θn〉 = (
1TWn

N
⊗ Id) (θn−1 + γnY n) .

Therefore,

〈θn〉 − 〈θn−1〉 =

(
1TWn − 1T

N
⊗ Id

)
θn−1 +

(
1TWn

N
⊗ Id

)
γnY n

=

(
1TWn − 1T

N
⊗ Id

)
θ⊥,n−1 +

(
1TWn

N
⊗ Id

)
γnY n , (36)

where the second equality is due to the fact that Wn is row-stochastic. Under Assumption 1a),

E(Wn) is doubly stochastic. Thus, using the assumption 1b):

E[〈θn〉 − 〈θn−1〉|Fn−1] = γn

∫
〈y〉 µθn−1(dy). (37)

Plugging (37) into (35), there exists C ′ such that for any n,

E[V (〈θn〉)|Fn−1] ≤ V (〈θn−1〉)+γn∇V (〈θn−1〉)T
∫
〈y〉 µθn−1(dy)+C ′E[|〈θn〉−〈θn−1〉|2|Fn−1] .

By the condition 3b), the quantity −∇V (〈θn−1〉)Th(〈θn−1〉) is positive; therefore,

E[V (〈θn〉)|Fn−1] ≤ V (〈θn−1〉) + γn∇V (〈θn−1〉)T
(∫
〈y〉 µθn−1(dy)− h(〈θn−1〉)

)
+ C ′E[|〈θn〉 − 〈θn−1〉|2|Fn−1] .

Using successively the conditions STAB 2) and Lemma 4, we have the estimate

∇V (〈θn−1〉)T
(∫
〈y〉 µθn−1(dy)− h(〈θn−1〉)

)
≤ |∇V (〈θn−1〉)|C2|θ⊥,n−1|

≤
√
CC2

√
V (〈θn−1〉) |θ⊥,n−1| .
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Using Cauchy-Schwartz inequality, the expectation of the above quantity is no larger than
√
CC2
√
un−1vn−1. We obtain:

vn ≤ vn−1 + γn
√
CC2

√
un−1(1 + un−1 + vn−1) + C ′E[|〈θn〉 − 〈θn−1〉|2] , (38)

where we used the fact that un−1 ≥ 0. We now need to find an estimate for E[|〈θn〉− 〈θn−1〉|2].

Using Minkowski’s inequality on (36),

E[|〈θn〉−〈θn−1〉|2]1/2 ≤ E

[∣∣∣∣(1TWn − 1T

N
⊗ Id

)
θ⊥,n−1

∣∣∣∣2
]1/2

+E

[∣∣∣∣(1TWn

N
⊗ Id

)
γnY n

∣∣∣∣2
]1/2

(39)

Focus on the first term of the RHS of the above inequality. Remark that

E[(W T
n 1− 1)(1TWn − 1T )|Fn−1] = E[W T

n 11
TWn]− 11T ,

where we used the assumption 1b) along with the fact that E(Wn) is doubly stochastic (see

the condition 1a)). Upon noting that the entries of Wn are in [0, 1] (as a consequence of

assumption 1a)), the spectral norm of E[W T
n 11

TWn] − 11T is bounded. Thus, there exists a

constant C ′ such that:

E

[∣∣∣∣(1TWn − 1T

N
⊗ Id

)
θ⊥,n−1

∣∣∣∣2
]
≤ C ′un−1 .

By similar arguments, there exists a constant C ′′ such that

E

[∣∣∣∣(1TWn

N
⊗ Id

)
γnY n

∣∣∣∣2
]
≤ C ′′γ2

n E|Y n|2

≤ C2C
′′γ2

n (1 + un−1 + vn−1)

where we used assumption STAB2). Putting this together with (39),

E[|〈θn〉 − 〈θn−1〉|2] ≤ (
√
C ′
√
un−1 + γn

√
C2C ′′

√
1 + un−1 + vn−1)2

≤ C(un−1 + γ2
n (1 + un−1 + vn−1) + γn

√
un−1(1 + un−1 + vn−1)) .

where C > 0 is some constant chosen large enough. Plugging the above inequality into (38),

vn ≤ vn−1 + (C ′C)un−1 + (
√
CC2 + C ′C)γn

√
un−1(1 + un−1 + vn−1)

+ C ′Cγ2
n (1 + un−1 + vn−1) .

This proves that (23) holds for any M chosen large enough.
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Proof of supn E [|Y n|2] <∞. By Assumptions 1b) and STAB2):

E
[
|Y n|2

]
= E

[
Eθn−1

[
|Y |2

]]
≤ C2

(
1 + E [V (〈θn−1〉)] + E

[
|θ⊥,n−1|2

])
. (40)

The proof follows since supn E [V (〈θn〉)] <∞ and E
[
|θ⊥,n|2

]
≤∑n E

[
|θ⊥,n|2

]
<∞.

Lemma 6: Suppose Assumptions 1a-b), 2, 3a-e) and 5. Assume in addition STAB1-2). Then,

P {lim supn |〈θn〉| <∞} = 1.

Proof: The sequence (〈θn〉)n≥1 satisfies the equation (10). The proof is an application of

[22, Theorem 2.2.]: in order to apply this Theorem, we only have to prove that with probability

one (i) the sequence (〈θn〉)n≥1 is infinitely often in a level set {V ≤M} i.e. P {lim infn V (〈θn〉) <∞} =

1 and (ii) ∑
n

γn
(
(Wn ⊗ Id)(Y n + γ−1

n θ⊥,n−1)− h(〈θn−1〉)
)
<∞ .

For the recurrence property, we have

E
(

lim inf
n

V (〈θn〉)
)
≤ lim inf

n
E (V (〈θn〉)) ≤ sup

n
E (V (〈θn〉)) .

By Lemma 5, the RHS is finite thus showing that P {lim infn V (〈θn〉) <∞} = 1. For the second

property, we write 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 − h(〈θn−1〉) = en + ξn−1 where

en := 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 −

∫
〈y〉µθn−1(dy)

ξn−1 :=

∫
〈y〉µθn−1(dy)−

∫
〈y〉µ1⊗〈θn−1〉(dy) .

By Assumption STAB2) and the inequality 2ab ≤ a2 + b2, there exists a constant C such that

E

∣∣∣∣∣∑
n≥1

γnξn−1

∣∣∣∣∣ ≤ C

(∑
n≥1

γ2
n +

∑
n≥1

E |θ⊥,n−1|2
)

. (41)

Therefore, the RHS in (41) is finite under the condition 2 and Lemma 5, thus implying that∑
n≥1 γnξn converges w.p.1. Since E [en |Fn−1] = 0, the sequence (Sn :=

∑n
k=1 γkek)n≥1 is a

martingale. We prove that it converges almost surely by estimating its second order moment.

For any k ≥ 1,

E
[
|Sk|2

]
≤

∑
n≥1

γ2
n E
[
|en|2

]
≤

∑
n≥1

γ2
n E
[
(Y n + γ−1

n θ⊥,n−1)TPn(Y n + γ−1
n θ⊥,n−1)

]
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where we set Pn := N−2W T
n 11

TWn ⊗ Id. Note that Pn is independent of Yn conditionally to

Fn−1. Since Wn is a stochastic matrix, its spectral norm is bounded uniformly in n. Therefore,

there exists a constant C > 0 such that:

E
[
|Sn|2

]
≤ C

∑
n≥1

γ2
n E
[∣∣Y n + γ−1

n θ⊥,n−1

∣∣2] ≤ 2C
∑
n≥1

γ2
n E
[
|Y n|2

]
+ 2C

∑
n≥1

E
[
|θ⊥,n−1|2

]
.

By Lemma 5 and Assumption 2 it follows that supn E [|Sn|2] is finite thus implying that the

martingale (Sn)n≥1 converges almost surely to a r.v. which is finite w.p.1. (see e.g. [34, Corollary

2.2.]). This concludes the proof.

D. Proof of Theorem 4

Set Vn := (IN − 11T/N)Wn and for any 1 ≤ k ≤ n,

Φn,k := (Vn ⊗ Id)(Vn−1 ⊗ Id) · · · (Vk ⊗ Id) . (42)

Note that by Assumptions 1b-c),

‖Φn,kX‖2
2 = E[XTΦT

n−1,k(V
T
n Vn ⊗ Id)Φn−1,kX] = E[XTΦT

n−1,kE(V T
n Vn ⊗ Id)Φn−1,kX]

≤ ρ E[XTΦT
n−1,kΦn−1,kX] = ρ‖Φn−1,kX‖2

2 . (43)

From (4) and since J⊥(Wn⊗ Id) = J⊥(Wn⊗ Id)J⊥ = (Vn⊗ Id)J⊥ by Assumption 1a), it holds

for any n ≥ 1, θ⊥,n = (Vn ⊗ Id)(θ⊥,n−1 + γnY⊥,n). By induction,

θ⊥,n =
n∑
k=1

γkΦn,kY⊥,k + Φn,1θ⊥,0 (44)

where Φn,k is defined by (42). By (43) and Assumption 1c), the second term in the RHS of (44)

is a OL2(ρn/2). We now consider the first term in the RHS of (44). Using Minkowski’s inequality

and Equation (43)

‖
n∑
k=1

γkΦn,kY⊥,k1sup`≤n−1 |θ`|≤M‖2 ≤
n∑
k=1

γk‖Φn,kY⊥,k1sup`≤n−1 |θ`|≤M‖2

≤
n∑
k=1

γk
√
ρn−k+1‖Y⊥,k1sup`≤k−1 |θ`|≤M‖2 .

By [35, Result 178,pp.38], the RHS is upper bounded by lim supn→∞ ‖Y⊥,n1|θn−1|≤M‖2ρ(1 −
√
ρ)−1. Under Assumption 4a), this upper bound is finite (the proof follows the same lines as

in the proof of Lemma 2 and is omitted). This concludes the proof.
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E. Proof of Theorem 5

Assumption 2 implies that limn ρ
n/2γ−2

n = 0. Upon noting that

P

{⋃
M

{sup
n
|θn| ≤M}| lim

q
θq = 1⊗ θ?

}
= 1 ,

Theorem 4 implies that the sequence of r.v. (γ
−1/2
n θ⊥,n)n converges in probability to zero under

the conditional probability P {·| limq θq = 1⊗ θ?}. Since θn = 1 ⊗ 〈θn〉 + θ⊥,n, it remains to

prove that the sequence of r.v. (γ
−1/2
n (〈θn〉 − θ?))n≥0 converges in distribution to Z under the

conditional distribution given the event {limq θq = 1⊗ θ?}. To that goal, we write

〈θn〉 = 〈θn−1〉+ γnh (〈θn−1〉) + γnen + γnξn

where ξn :=
∫
〈y〉µθn−1(dy)−

∫
〈y〉µ1⊗〈θn−1〉(dy) and

en := 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 −

∫
〈y〉µθn−1(dy) = 〈Y n〉 −

∫
〈y〉µθn−1(dy) ,

since 1TWn = 1T . We then check the conditions C1 to C4 of [23, Theorem 1] (see also [24,

Theorem 1]). Under the assumptions 6 and 8a), the conditions C1 and C4 of [23, Theorem 1]

are satisfied. We now prove C2b: there exists a constant C such that

E
[
|en+1|2+τ1|θn−1⊗θ?|≤δ

]
≤ C E

[
|
∫
〈y〉µθn(dy)|2+τ1|θn−1⊗θ?|≤δ

]
+ C E

[
|〈Y n+1〉|2+τ1|θn−1⊗θ?|≤δ

]
≤ 2C sup

|θ−1⊗θ?|≤δ

∫
|〈y〉|2+τµθ(dy)

and the RHS is finite under Assumption 7. For C2c, we have

E
[
en+1e

T
n+1|Fn

]
=

{∫
〈y〉〈y〉Tµθn(dy)−

(∫
〈y〉µθn(dy)

)(∫
〈y〉µθn(dy)

)T}
.

By Assumption 7, this term converges w.p.1 to Υ on the set {limk θk = 1⊗ θ?}. This concludes

the proof of C2.

We now consider the condition C3 of [23] with rn = ξn + en1|θn−1−1⊗θ?|>δ: we prove that for

any M > 0, γ−1/2
n rn1supk |θk|≤M1limk θk=1⊗θ? = Ow.p.1oL1(1). By Assumption 4b), there exists a

constant C such that

γ−1/2
n E

[
|ξn|1limk θk=1⊗θ?1supk |θk|≤M

]
≤ C

(
γ−1
n E

[
|θ⊥,n|21supk |θk|≤M

])1/2

and the RHS tends to zero as n → ∞ by Theorem 4. On the set {limn θn = 1 ⊗ θ?}, the r.v.

en1|θn−1−1⊗θ?|>δ is null for all large n. This concludes the proof of the condition C3 of [23],

and the proof of Theorem 5.
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F. Proof of Theorem 6

We preface the proof by a preliminary result, established by [23, Theorem 2] (see also [21]

for a similar result obtained under stronger assumptions).

Theorem 7: Let (γn)n be a deterministic positive sequence such that log(γk/γk+1) = o(γk)

and satisfying Assumption 8b-c). Consider the random sequence (un)n given by

un+1 = un + γn+1h(un) + γn+1en+1 + γn+1ξn+1 , u0 ∈ Rd ,

where

AVER1. u? is a zero of the mean field: h(u?) = 0. The mean field h : Rd → Rd is twice continuously

differentiable (in a neighborhood of u?) and ∇h(u?) is a Hurwitz matrix.

AVER2. (i) (en)n≥1 is a Fn-adapted martingale-increment sequence.

(ii) For any M > 0, there exist τ > 0 s.t. supk E
[
|ek|2+τ1sup`≤k−1 |u`−u?|≤M

]
<∞.

(iii) There exists a positive definite (random) matrix U? such that on the set {limq uq = u?},
limk E

[
eke

T
k |Fk−1

]
= U? almost-surely.

AVER3. (ξn)n≥1 is a Fn-adapted sequence s.t.

(i) γ−1/2
n |ξn|1limq uq=u?1supn |un|≤M = Ow.p.1(1)OL2(1) for any M > 0.

(ii) n−1/2
∑n

k=0 ξk+11limq uq=u? converges to zero in probability.

Then for any t ∈ Rd,

lim
n

E

[
1limq uq=θ? exp

(
i
√
n tT

(
1

n

n∑
k=1

uk − u?
))]

= E
[
1limq uq=u? exp

(
−1

2
tT∇h(u?)

−1 U? ∇h(u?)
−T t

)]
.

Proof of Theorem 6. By Theorem 4 and Assumption 8c),
√
N
−1∑N

n=1 θ⊥,n1sup` |θ`|≤M converges

in L2 to zero for any M > 0. Since θn = θ⊥,n + 1 ⊗ 〈θn〉, we now prove a CLT for the

averaged sequence N−1
∑N

n=1〈θn〉. To that goal, we check the assumptions AVER1 to AVER3

of Theorem 7 with un = 〈θn〉; en, ξn defined as in the proof of Theorem 5. AVER1 and AVER2

can be proved along the same lines as in the proof of Theorem 5; details are omitted. Finally,

by Assumption 4b) and Theorem 4, E
[
|ξn|21limk θk=1⊗θ?1sup`≤n−1 |θ`|≤M

]
= O(γ2

n); and

`−1/2
∑̀
n=1

E
[
|ξn|1limk θk=1⊗θ?1sup`≤n−1 |θ`|≤M

]
≤ C `−1/2

∑̀
n=1

γn .

The RHS tends to zero under Assumption 8c) thus showing AVER3.
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Fig. 1. N = 40 sensors with the graph (line segments) and the source (star)
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Fig. 2. Square error per node (1/N)
∑

i |θn,i − θ?|2 as a function of the number of iterations.
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Fig. 3. Empirical distribution of real part of the normalized estimation error γ−1/2
n (〈θn〉 − θ?) for n = 50 000 (bars) versus

asymptotic distribution given by Theorem 5 (solid line)
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