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Abstract—This paper investigates the problem of distributed
stochastic approximation in multi-agent systems. The algorithm
under study consists of two steps: a local stochastic approxi-
mation step and a gossip step which drives the network to a
consensus. The gossip step uses row-stochastic matrices to weight
network exchanges.
We first prove the convergence of a distributed optimization
algorithm, when the function to optimize may not be convex and
the communication protocol in independent of the observations.
In that case, we prove that the average estimate converges to
a consensus; we also show that the set of limit points is not
necessarily the set of the critical points of the function to optimize
and is affected by the Perron eigenvector of a mean-matrix
describing the communication protocol. Discussion about the
success or failure of convergence to the minimizers of the function
to optimize is also addressed. In a second part of the paper, we
extend the convergence results to the more general context of
distributed stochastic approximation.

I. INTRODUCTION

Distributed stochastic approximation has been recently pro-
posed using different cooperative approaches. In the so-called
incremental approach (see for instance [1], [2]) a message
containing an estimate of the quantity of interest iteratively
travels all over the network. This paper focuses on another
cooperative approach based on average consensus techniques
where the estimates computed locally by each agent are com-
bined through the network. This idea traces back to [3] where
a network of processors seeks to optimize some objective
function known by all agents (possibly up to some additive
noise).

In this paper, we consider the following cooperative ap-
proach. Let a network be composed by N agents, or nodes.
Agents seek to find a consensus on some global parameter by
means of local observations and peer-to-peer communications.
Node i (i = 1, . . . , N ) generates a Rd-valued stochastic
process (θn,i)n≥0, initialized at some arbitrary θ0,i ∈ Rd. Let
(γn)n≥1 be a deterministic positive step size sequence. At
time n, for all i = 1, . . . , N :
[Local step] Node i generates a temporary estimate θ̃n,i

θ̃n,i := θn−1,i + γn Yn,i , (1)

where the Rd-valued random process (Yn,i)n≥0 represents the
observations made by agent i.
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[Gossip step] Node i is able to observe the values θ̃n,j
of some other nodes and computes the weighted average:

θn,i :=

N∑
j=1

wn(i, j) θ̃n,j , (2)

where the wn(i, j)’s are non-negative random coefficients such
that

∑N
j=1 wn(i, j) = 1 for any i. The random matrix Wn :=

[wn(i, j)]Ni,j=1 represents the network connections between the
nodes at time n. One simply set wn(i, j) = 0 whenever nodes
i and j are unable to communicate at time n.

Application to distributed optimization. In many appli-
cations related to machine learning and sensor networks (we
refer to [8] and [10]–[12] for more details) or smart grids [13],
one seeks to minimize a sum of local private cost functions
fi of the agents:

min
θ∈Rd

N∑
i=1

fi(θ) . (3)

In this context, the distributed Algorithm (1)-(2) reduces to a
distributed stochastic gradient algorithm by letting

Yn,i = −∇fi(θn−1,i) + ξn,i (4)

where ∇ is the gradient operator and ξn,i represents some
random perturbation which possibly occurs when observing
the gradient. The function fi is supposed to be unknown from
the other agents j, j 6= i. In this paper, we handle the case
where functions fi are not necessarily convex. Of course, in
that case, there is generally no hope to ensure the convergence
to a minimizer to (3). Instead, a more realistic objective is to
achieve critical points of the objective function i.e., points θ
such that

∑
i∇fi(θ) = 0.

Doubly and non-doubly stochastic matrices. In most
works (see for instance [14], [15]), the matrices (Wn)n≥1 are
assumed doubly stochastic, meaning that WT

n 1 = Wn1 = 1
where 1 is the N × 1 vector whose components are all
equal to one and where T denotes transposition. Although
row-stochasticity (Wn1 = 1) is rather easy to ensure in
practice, column-stochasticity (WT

n 1 = 1) implies more strin-
gent restrictions on the communication protocol. For instance,
in [16], each one-way transmission from an agent i to another
agent j requires at the same time a feedback link from j
to i. As a matter of fact, double stochasticity prevents from
using natural broadcast schemes, in which a given node may
transmit its local estimate to all neighbors without expecting
any immediate feedback.

Remarkably, although generally assumed, double stochas-
ticity of the matrices Wn is in fact not mandatory. A couple



of works (see e.g., [8], [18]) get rid of the column-stochasticity
condition, but at the price of assumptions that may not always
be satisfied in practice. Other works [?], [9] manage to
circumvent the use of feedback links by coupling the gradient
descent with the so-called push-sum protocol [19]. The latter
however introduces an additional communication of weights
in the network in order to keep track of some summary of the
past transmissions.

The following questions remain unanswered. “What con-
ditions on the sequence (Wn)n≥0 are needed to ensure that
Algorithm (1)-(2) drives all agents to a common critical point
of
∑
i fi? What happens if these conditions are not satisfied?”.

Contributions.

1) Assuming that (Wn)n≥0 forms an i.i.d. sequence of
stochastic matrices, we prove under some technical
hypotheses that Algorithm (1)-(2) leads the agents to
a consensus, which is characterized. It is shown that
the latter consensus does not necessarily coincide with
a critical point of

∑
i fi.

2) We provide sufficient conditions either on the communi-
cation protocol or on the functions fi which ensure that
limit points are the critical points of

∑
i fi. When such

conditions are not satisfied, we also propose a simple
modification of the algorithm which allows to recover
the sought behavior.

3) We extend our results to a broader setting, assuming
that the matrices (Wn)n≥0 are no longer i.i.d., but
are likely to depend on both the current observations
and the past estimates. We also investigate a general
stochastic approximation framework which goes beyond
the model (4) and beyond the only problem of distributed
optimization.

The paper is organized as follows. Section II addresses the
convergence of a distributed stochastic algorithm. The conver-
gence result is extended to the general setting of distributed
stochastic approximation in Section III. The sketch of the
proof is given in Section IV. The paper is finally concluded
in Section V by numerical illustrations of our results.

Notation: Throughout the paper, the vectors are column
vectors. For any vector x ∈ R`, |x| represents the Euclidean
norm of x. IN is the N × N identity matrix. J := 11T /N
denotes the orthogonal projector onto the linear span of the
all-one N × 1 vector 1, and J⊥ := IN − J .
The random variables Wn ∈ RN×N and Yn :=
(Y Tn,1, . . . , Y

T
n,N )T ∈ RdN , n ≥ 1, are defined on the same

measurable space equipped with a probability P; E denotes
the associated expectation. For any n ≥ 1, define the σ-
field Fn := σ(θ0,W1, . . . ,Wn, Y1, . . . , Yn) where θ0 is the
(possibly random) initial point of the algorithm.
Throughout the paper, it is assumed that for any i ∈ 1, . . . , N ,
(θn,i)n≥0 satisfies the update equations (1)-(2); and we set

θn := (θTn,1, . . . , θ
T
n,N )T .

II. DISTRIBUTED OPTIMIZATION

A. Framework

In this section, we consider the case when Yn,i satisfies (4)
with

Assumption 1. 1) fi : Rd → R is differentiable and ∇fi
is locally Lipschitz-continuous.

2) For any Borel set A of RdN , almost-surely

P [ξn+1 ∈ A |Fn] = νθn(A) ,

where (νθ)θ∈RdN is a family of probability measures
such that

a)
∫
z dνθ(z) = 0

b) sup
θ∈K

∫
|z|2dνθ(z) < ∞ for any compact set K ⊂

RdN .

We consider the following assumption on the communica-
tion matrix Wn:

Assumption 2. 1) For any n ≥ 0, conditionally to Fn,
(Wn+1, Yn+1) are independent.

2) (Wn)n≥1 is an independent and identically distributed
(i.i.d.) sequence of row-stochastic matrices (i.e. Wn1 =
1 for any n) with non-negative entries.

3) The spectral radius of the matrix E[WT
1 J⊥W1] is strictly

lower than 1.

Assumption 2 implies that at each time n, the commu-
nication matrix Wn is random and does not depend on the
observations (Y1, . . . , Yn).

The row-stochasticity assumption is a rather mild condition.
It claims that

∑
j wn(i, j) = 1 for any i i.e. each node i

computes a weighted average of the temporary updates at
each node (with possibly some null weights). In many works,
it is usually also assumed that Wn is column-stochastic i.e.∑
i wn(i, j) = 1 for any j. Our weaker framework addresses

more general gossip protocols, usually less demanding in terms
of scheduling and overall network coordination.

Assumption 2-3) is a contraction condition which is required
to drive the network to a consensus.

We introduce some assumptions on the step-size sequence
(γn)n≥1, which are satisfied for example by polynomially
decreasing sequences γn = γ?/n

a for some a ∈ (1/2, 1] and
γ? > 0.

Assumption 3. The deterministic step size sequence (γn)n≥1
satisfies γn > 0 and:

1)
∑
n γn = +∞,

∑
n γ

1+λ
n <∞ for some λ ∈ (0, 1).

2) limn γn+1/γn = 1 and
∑
n γn|γn+1/γn − 1| <∞ .

Finally, we introduce a stability-like condition.

Assumption 4. Almost surely, there exists a compact set K of
RdN such that θn ∈ K for any n ≥ 0.

Assumption 4 claims that the sequence (θn)n≥0 remains in
a compact set and this compact set may depend on the path. It
is implied by the stronger assumption “there exists a compact



set K of RdN such that with probability one, θn ∈ K for any
n ≥ 0”. Checking Assumption 4 is not always an easy task.
As the main scope of this paper is the analysis of convergence
rather than stability, it is taken for granted: we refer to [8] for
sufficient conditions implying stability.

B. Main Result

The statement of our convergence result is prefaced with
the following lemma, which shows that the matrix

W := E[W1]

admits a unique left Perron eigenvector v; this vector will
play a role in the characterization of the limiting points of the
gossip algorithm (1)-(2).

Lemma 1. Under Assumption 2-3), the RN -valued vector v
defined by

vT :=
1

N
1TW (IN − J⊥W )−1 (5)

is the unique non-negative vector satisfying vT = vTW and
vT1 = 1.

Proof: By the Jensen’s inequality, for any x ∈ RN ,
xTW

T
J⊥Wx ≤ xTE

[
WT

1 J⊥W1

]
x. Then, by Assump-

tion 2-3), the spectral norm of J⊥W is strictly lower than
one. Therefore, IN − J⊥W is invertible.
The vector v satisfies vT1 = 1 and vTW = vT ; to that
goal, observe that (IN − J⊥W )−11 = 1. Let us prove
that a vector satisfying these two properties is unique; let
w ∈ RN satisfying these properties. Then, wT = wTW =
wTJ⊥W + 1TW/N thus implying that wT = vT .
Since W is a stochastic matrix, its spectral radius is one.
By [21], there exists a non-negative vector w such that
wTW = wT and 1Tw > 0. We can therefore assume without
loss of generality that wT1 = 1. The above discussion implies
that w = v. This concludes the proof.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold true. Define
the function V : Rd → R

V (θ) :=

N∑
i=1

vi fi(θ) (6)

where v = (v1, . . . , vN ) is the vector defined in Lemma 1.
Assume that the set L = {θ ∈ Rd | ∇V = 0} of critical
points of V is nonempty, bounded, included in some level set
{θ : V (θ) ≤ C} and that V (L) has an empty interior. Assume
also that the level sets {θ : V (θ) ≤ C} are either empty or
compact. The following holds with probability one:

1) The algorithm converges to a consensus i.e.,
limn→∞maxi,j |θn,i − θn,j | = 0.

2) The sequence (θn,1)n≥0 converges to L as n→∞.

C. Success and Failure of Convergence

Theorem 1 implies that the Algorithm (1)-(2) generally fails
to converge towards a critical point of the problem (3). Instead,
the algorithm converges to L which in general is not the set

of the critical points of θ 7→
∑
i fi(θ). We now discuss some

examples of cases when the algorithm does converges to the
sought points.

Scenario 1. All functions fi are strictly convex and admit
a (unique) common minimizer θ?.

This case is for instance investigated by [7] in the framework
of statistical estimation in wireless sensor network. In this
scenario, we may assume without loss of generality that
fi(θ) ≥ fi(θ?) = 0 for all i (note that the Algorithm (1)-
(2) is not modified when fi is translated). Since vi ≥ 0, V is
a non-negative strictly convex function such that V (θ?) = 0.
Therefore, the set of minimizers of V is {θ?}. On the other
hand, since V is convex, L is the set of minimizers of V . This
implies that the set L is formed by the minimizers of

∑
i fi.

The same conclusion holds by relaxing the strict convexity
assumption on the functions fi: if the functions fi are convex
with a common minimizer and vi > 0 for any i, then L is
formed by the minimizers of

∑
i fi. The proof is along the

same lines and is omitted.
Scenario 2. W is column-stochastic i.e., 1TW = 1T .
In this case, v given by Lemma 1 is the vector 1

N 1. Conse-
quently, V = 1

N

∑
i fi. Here again, L is the set of minimizers

of
∑
i fi. An example of random communication protocol

satisfying 1TW = 1T is the following: at time n, a single
node i wakes up at random with probability pi and broadcasts
its temporary update θ̃n,i to all its neighbors Ni. Any neighbor
j computes the weighted average θn,j = βθ̃n,i + (1− β)θ̃n,j .
On the other hand, any node k which does not belong to the
neighborhood of i (including i itself) sets θn,k = θ̃n,k. Then,
given i wakes up, the (k, `)th entry of Wn is given by:

wn(k, `) =


1 if k /∈ Ni and k = ` ,
β if k ∈ Ni and ` = i ,
1− β if k ∈ Ni and k = ` ,
0 otherwise.

Wn is not doubly stochastic. However, when nodes wake up
according to the uniform distribution (pi = 1

N for all i) it is
easily seen that 1TE[Wn] = 1T .

Remark 1. We end up this section with a simple modification
of the initial algorithm in the case where vi > 0 for all i. Let
us replace the local step (1) of the algorithm by

θ̃n,i := θn−1,i + γn v
−1
i Yn,i (7)

where Yn,i is still given by (4). As an immediate Corollary of
Theorem 1, the Algorithm (7)-(2) drives the agent to a con-
sensus which coincides with the critical points of

∑
i fi. Note

that this modification requires for each node i to have some
prior knowledge of the communication protocol through the
coefficients vi (questions related to the practical computation
of vi are however beyond the scope of this paper).

III. A GENERAL ROBBINS-MONRO ALGORITHM

In this section, we consider the general setting described by
Algorithm (1)-(2) with weaker conditions on the distribution
of the observations Yn. We also weaken the assumptions on



the conditional distribution of (Yn+1,Wn+1) given the past
behavior of the algorithm Fn: our general framework includes
the case when the communication protocol is adapted at each
time n and takes into account the network observations.

For a matrix A, the spectral norm is denoted by ‖A‖. For
any vector x ∈ RdN of the form x = (xT1 , . . . , x

T
N )T where

xi ∈ Rd, we define the vector of Rd

〈x〉 :=
x1 + · · ·+ xN

N
=

1

N
(1T ⊗ Id)x , (8)

where ⊗ denotes the Kronecker product. Recall the standard
formula

(A⊗B)(C ⊗D) = (AC)⊗ (BD) . (9)

We extend the notation to matrices X ∈ RdN×k as 〈X〉 :=
1
N (1T ⊗ Id)X ∈ Rd×k. Set J = J ⊗ Id and J⊥ = J⊥ ⊗ Id.
Matrix J represents the orthogonal projector onto the consen-
sus space defined as the set of vectors x ∈ RdN whose d-
dimensional blocs x1, . . . , xN are all equal. As a consequence
of (9), Jx = 1 ⊗ 〈x〉. Following this notation, we define the
gossip matrix as Wn = Wn⊗Id. The Algorithm (1)-(2) under
study can be written as the following matrix form:

θn = Wn (θn−1 + γnYn) . (10)

The following assumption describes the distribution of
(Yn+1,Wn+1) given the past Fn. We denote by M1 the set of
N × N non-negative row-stochastic matrices and we endow
M1 with its Borel σ-field.

Assumption 5. 1) There exists a collection of distributions
(µθ)θ∈RdN on RdN ×M1 such that for any Borel set A:

P [(Yn+1,Wn+1) ∈ A |Fn] = µθn(A) almost-surely.

In addition, the application θ 7→ µθ(A) defined on RdN
is measurable for any A in the Borel σ-field of RdN ×
M1.

2) sup
θ∈K

∫
|y|2dµθ(y, w) < ∞ for any compact set K ⊂

RdN .

Assumption 5-1) means that the joint distribution of the r.v.’s
Yn+1 and Wn+1 depends on the past Fn only through the last
value θn of the vector of estimates. It also implies that Wn

is almost-surely (a.s.) non-negative and row-stochastic. Since
the variables (Yn+1,Wn+1) are not necessarily conditionally
independent and (Wn)n≥0 are no more i.i.d., the contraction
condition on J⊥W1 is replaced with the following condition:

Assumption 6. For any compact set K ⊂ RdN , there exists
ρK ∈ (0, 1) such that for all θ ∈ K, φ in RdN and A ∈
RdN×dN ,∫

(φ+Ay)TWT J⊥W(φ+Ay) dµθ(y, w)

≤ ρK
∫
|φ+Ay|2 dµθ(y, w) ,

where W := (w ⊗ Id).

Assumption 6 implies that

sup
θ∈K

sup
x,|x|=1

∣∣∣∣∫ J⊥Wx dµθ(y, w)

∣∣∣∣2
≤ sup
θ∈K

∣∣∣∣∫ WT J⊥W dµθ(y, w)

∣∣∣∣ ≤ ρK , (11)

Regularity conditions on the conditional distribution of the
input variables (Yn,Wn)n are also required.

Assumption 7. For any compact set K ⊂ RdN , there exists
a constant CK > 0 such that for any θ, θ′ ∈ K,∣∣∣∣∫ w dµθ(y, w)−

∫
w dµθ′(y, w)

∣∣∣∣ ≤ CK|θ − θ′| , (12)∣∣∣∣∫ 〈Wy〉 dµθ(y, w)−
∫
〈Wy〉 dµJθ(y, w)

∣∣∣∣ ≤ CK|J⊥θ| ,

(13)∣∣∣∣∫ J⊥Wy dµθ(y, w)−
∫

J⊥Wy dµθ′(y, w)

∣∣∣∣ ≤ CK|θ − θ′| ,

(14)

where W := w ⊗ Id.

Let us introduce the following quantities for any θ ∈ RdN :

Ωθ :=

∫
J⊥W dµθ(y, w) (15)

υθ :=

∫
J⊥W y dµθ(y, w) (16)

mθ := (IdN − Ωθ)
−1υθ , (17)

where W := w⊗Id. Under Assumption 5-2), it is not difficult
to show that for any compact K ⊂ RdN , supθ∈K ‖Ωθ‖ ≤√
ρK, which implies that mθ is well defined. Finally, define

the so-called mean-field function h : Rd → Rd by

h(ϑ) =

∫
〈W(y +m1⊗ϑ)〉dµ1⊗ϑ(y, w) , (18)

where W := w ⊗ Id. We finally assume that there exists a
Lyapunov function V for the mean field function h.

Assumption 8. 1) h : Rd → Rd is continuous.
2) there exists a continuously differentiable function V :

Rd → R+ such that
a) there exists M > 0 such that L := {ϑ ∈ Rd :
∇V T (ϑ)h(ϑ) = 0} ⊂ {V ≤ M}. In addition,
V (L) has an empty interior.

b) there exists M ′ > M such that {V ≤ M ′} is a
compact subset of Rd.

c) for any ϑ ∈ Rd \ L, ∇V T (ϑ)h(ϑ) < 0.

Assumptions 5 and 6 imply that ϑ 7→ m1⊗ϑ is continuous
on Rd. Therefore, a sufficient condition for Assumption 8-1)
is to strengthen the conditions (13-14) as follows∣∣∣∣∫ Wy dµθ(y, w)−

∫
Wy dµθ′(y, w)

∣∣∣∣ ≤ CK|θ − θ′| .

Observe that when V is a continuous coercive function i.e., a
continuous function such that lim|ϑ|→∞ V (ϑ) = ∞, then the
level sets {V ≤M} are compact subsets of Rd.



Theorem 2. Let Assumptions 3, 4, 5, 6, 7 and 8 hold true for
the algorithm defined by (10). The following properties hold
with probability one:

1) The algorithm converges to a consensus i.e.,
limn→∞ J⊥θn = 0;

2) The sequence (θn,1)n≥0 converges to a connected com-
ponent of L, where L is defined in Assumption 8-2).

Theorem 1 can be obtained as a special case of Theorem 2.
Indeed, the assumptions of Theorem 1 imply the assumptions 5
to 8 as we now prove.
For any θ = (θ1, . . . , θN ) ∈ RdN where θi ∈ Rd, define the
RdN -valued function g by

g(θ) := (−∇f1(θ1)T , . . . ,−∇fN (θN )T )T .

Under Assumption 2-1) and Assumption 2-2), for any Borel
set A×B of RdN ×M1

P[(Yn+1,Wn+1) ∈ A×B|Fn] = P[Yn+1 ∈ A|Fn]P[Wn+1 ∈ B] .

In addition, by Assumption 1 and Eq. (4)

P[Yn+1 ∈ A|Fn] =

∫
IA (g(θn) + z) dνθn(z) ,

where IA denotes the indicator function of a set A. This above
discussion provides the expression of µθ in Assumption 5. In
addition, under Assumption 1-2), for any compact set K of
RdN ,

sup
θ∈K

∫
|y|2dµθ(y, w) = sup

θ∈K

(
|g(θ)|2 +

∫
|z|2dνθ(z)

)
<∞

which proves Assumption 5-2). The above expression of µθ
implies that∫

(φ+Ay)TWT J⊥W(φ+Ay) dµθ(y, w)

=

∫
(φ+A(g(θ)+z))TE

[
WT J⊥W

]
(φ+A(g(θ)+z)) dνθ(z) .

Therefore, Assumption 6 easily follows from Assumption 2-
3). The regularity conditions of Assumption 7 are satisfied by
Assumption 1 as the left hand side of (13) is zero and (12) and
(14) are true as long as (∇fi)i are local Lipschitz-continuous.
Again, the expression of µθ implies that

Ωθ = J⊥ E [W1] ,

υθ = J⊥ E [W1] g(θ) .

Therefore, the mean field vector h defined by (18) gets into
h(ϑ) = 〈E[W1]A g (1⊗ ϑ)〉 where

A :=
(
IdN + (IdN − J⊥E [W1])−1J⊥E [W1]

)
.

Using the Woodbury matrix identity (see [21]), we have

h(ϑ) = (vT ⊗ Id) g(1⊗ ϑ) = −
N∑
i=1

vi∇fi(ϑ)

where v = (v1, . . . , vN ) is given by Lemma 1. Set V̄ :=
exp(V ) where V is defined by (6). Upon noting that ∇V̄ =
−h V̄ , it is easily seen that under the assumptions of Theo-
rem 1, Assumption 8 holds.

IV. SKETCH OF THE PROOF OF THEOREM 2

We provide here the sketch of the proof of Theorem 2. The
detailed proof will be provided in an extended version of this
paper.

By using (8), we write

θn = 1⊗ 〈θn〉+ J⊥θn .

We define the normalized disagreement vector (φn)n≥0 by

φn = γ−1n+1 J⊥θn where αn = γn/γn+1 . (19)

The following lemma establishes the dynamics of the consen-
sus sequence (〈θn〉)n≥0 and of the normalized disagreement
sequence (φn)n≥0.

Lemma 2. Let (θn)n≥0 be the sequence given by (10). Assume
that (Wn)n≥0 are row-stochastic matrices. It holds

〈θn〉 = 〈θn−1〉+ γn〈Wn(Yn + φn−1)〉 , (20)
φn = αn J⊥Wn(φn−1 + Yn) . (21)

The next step is to prove that the square norm of the
normalized disagreement sequence is uniformly bounded, con-
ditionally on the event that the past values of the sequence
(θj)j≥0 remain in a compact set. A main ingredient for the
proof of this lemma is the contraction property Assumption 6.

Lemma 3. Let Assumptions 5 and 6 hold true. For any
compact set K ⊂ RdN ,

sup
n

E
[
|φn|2I⋂

j≤n−1{θj∈K}

]
<∞ .

Since
∑
n γ

1−λ
n < ∞ for some λ ∈ (0, 1) under As-

sumption 3, this lemma implies the convergence result on the
disagreement vector:

Proposition 1 (Agreement). Let Assumptions 3-1), 4, 5 and 6
hold true. Then almost-surely, limn→∞ J⊥θn = 0 .

The second step is to address the long-time behavior of the
average estimate 〈θn〉. To that goal, we write the update rule
(20) as a stochastic approximation algorithm. We have

〈θn〉 = 〈θn−1〉+ γnE [ηn|Fn−1] + γn (ηn − E [ηn|Fn−1]) ,

where ηn := 〈Wn(Yn+φn−1)〉. Under the stated assumptions
on the conditional distribution of (Yn+1,Wn+1) given the past
Fn, E [ηn|Fn−1] =

∫
〈W (y + φn−1)〉 dµθn−1

(y, w) where
W := w ⊗ Id. By Proposition 1, θn−1 and 1 ⊗ 〈θn−1〉 are
close when n is large so

E [ηn|Fn−1] =

∫
〈W (y + φn−1)〉 dµ1⊗〈θn−1〉(y, w) + Ξ

(1)
n−1

(22)
where (Ξ

(1)
n )n is a remainder term in an appropriate sense.

In addition, (21) shows that (φn)n≥1 is a controlled Markov
chain:

P(φn ∈ A|Fn−1) = Pθn−1,αn
(φn−1, A)

where Pθ,α(x,A) :=
∫
IA (αJ⊥W(x+ y)) dµθ(y, w). We

show that under our assumptions, the transition kernel Pθ,α



possess a unique invariant distribution πθ,α. When n is large,
αn ∼ 1 and limn |θn − 1 ⊗ 〈θn〉| = 0 (almost-surely) so
the rough intuition is that in (22), φn−1 can be replaced with
the expectation of π1⊗〈θn−1〉,1; this expectation is m1⊗〈θn−1〉
given by (17). Combining these successive approximations
yield E [ηn|Fn−1] = h(〈θn−1〉) + Ξ

(1)
n−1 + Ξ

(2)
n−1 where h

is given by (18) and (Ξ
(2)
n )n is small in some appropriate

sense. We then establish the convergence results by verifying
the sufficient conditions of [22, Theorem 2.2 and 2.3] for the
convergence of stochastic approximation algorithms.

V. NUMERICAL RESULTS
Consider a network of N = 5 agents and for any i =

1, . . . , 5, we define fi : R→ R by fi(θ) = 1
2 (θ − λi)2 where

λT = (1, 4,−2, 2, 0). The minimizer of
∑
i fi is θf = 1.

Consider the graph with vertices {1, . . . , N} and edges {1, 2},
{2, 3}, {3, 4}, {4, 5}, {3, 5}. We choose θ0,i = 0 for all agent
i, γn = 1/n. Figure 1 represents a realization of the sequence
(θn,1)n≥0 as a function of n in 3 different scenarios. The plain
line curve with square markers corresponds to the standard
algorithm (10) when Yn,i is defined as in (4): (ξn,i)n,i is a
i.i.d. sequence with Gaussian distribution N(0, 1) and Wn is
assumed fixed and deterministic (Wn = W1); we select W1

in such a way that each agent computes the average of the
temporary estimates in its neighborhood. This is equivalent to
set W1 = (D+I)−1(A+I), where A is the adjacency matrix
of the graph and where D is the diagonal matrix containing
the degrees. Note that 1TW1 = 1

12 (10, 13, 15, 11, 11) 6=
1T . Computing the left Perron eigenvector (see (5)) yields
1
5v
T = ( 2

3 , 1,
4
3 , 1, 1). The minimizer of V =

∑
i vifi is

θV = 0.8. Figure 1 shows that the sequence (θn,1)n converges
to θV . The plain line curve with circle markers on Figure 1
represents the same algorithm when Yn,i is replaced by
v−1i (−∇fi(θn−1,i) + ξn,i) as in Remark 1. We refer to this
algorithm as weighted. As predicted by the Theorem 1-1), the
algorithm now converges to the sought value θf = 1. Finally,
the plain line curve represents the case where the broadcast
gossip protocol depicted in Scenario 2 is used with uniform
node selection pi = 1

N and with β = 1
2 . The algorithm

converges to the sought value θf as discussed in Section II-C.
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Figure 1: Trajectory of θn,1 as a function of n.

Figure 2 represents the norm of the scaled disagreement
vector as a function of n for the same algorithms. As expected
from Theorem 1-2), consensus is asymptotically achieved.
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i=1(θn,i − 〈θn〉)2 as a function of n
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