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1 IntrodutionIn the present paper, we study the reurrene of ontinuous-time Markov proesses. More pre-isely, we provide a riterion that yields a preise ontrol of a subgeometri moment of thereturn-time to a test-set. The obtained result permits further quantitative analysis of hara-teristis suh as the regularity of the proess, the rate of onvergene to the stationary state,and a moderate deviation priniple.The stability and ergodi theory of ontinuous-time Markov proesses has a large literaturewhih is mainly devoted to the geometri ase (also referred to as the exponential ase). Meynand Tweedie developed stability onepts for ontinuous-time Markov proesses as well as sim-ple riteria for non-explosivity, non-evanesene, Harris-reurrene, positive Harris-reurrene,ergodiity and geometri ergodiity [21, 23, 24℄. Of partiular importane in atually applyingthese onepts is the existene of veri�able onditions. In the disrete-time ontext, developmentof Foster-Lyapunov type onditions on the transition kernel has provided suh riteria (e.g. [22℄).In the ontinuous-time ontext, Foster-Lyapunov inequalities applied to the generator of the pro-ess play the same role. These riteria were suessfully applied to the study of the solution tostohasti di�erential equations (see [16℄ and more reently, [14℄ and referenes therein). Resultsrelative to rates of onvergene slower than geometri are not so well established. In [32, 20℄(resp. [34℄), polynomial and sub-exponential ergodiity of stohasti di�erential equations (resp.sub-exponential ergodiity of queuing models) are addressed, but these results are quite model-spei�. Fort and Roberts [11℄ are, to our best knowledge, the �rst to study the subgeometriergodiity of general strong Markov proesses. Their onditions are in terms of subgeomet-ri moment of the return-time to a test-set. Fort and Roberts derive nested drift inequalitieson the generator of the proess that makes the result of pratial interest in the polynomial ase.One of the appliation of the ondition we derive in the present paper makes the Fort-Roberts's theory appliable for more general subgeometri rates suh as the logarithmi or thesubexponential ones. It also provides riteria for the (f; r)-regularity of a proess, a harateristiwhih is an extension of the regularity onept [23℄. We obtain theoretial results that areanalogous to those in the disrete-time ase [31℄. We then relate our ondition to a riterionbased on the generator of the proess. This riterion is the natural analogue of the Foster-Lyapunov ondition for the geometri ase; it also provides a single drift ondition that generatesthe set of nested drift onditions by Fort-Roberts [11℄ for the polynomial ase. Furthermore, itis analogous to the disrete-time version reently proposed by Dou-Fort-Moulines-Soulier [4℄.In the literature, one approah for the theory of ontinuous-time Markov proess is through theuse of assoiated disrete-time hains : the resolvent hains and/or a skeleton hain. We disusshow our ondition is related to a subgeometri drift inequality for these disrete-time Markovhains. As a onsequene, we state new limit theorems suh as moderate deviations for integralof bounded funtionals, thus weakening the onditions derived in Guillin-Wu [15, 33℄.Our onditions are then suessfully applied to various non trivial models: (a) we �rst on-2



sider ellipti stohasti di�erential equations for whih onditions on the drift funtion enableus to generalize results by Veretennikov [32℄, Ganidis-Roynette-Simonot [12℄ or Malyshkin [20℄(see also Pardoux-Veretennikov [27℄ for a study of the regularity of the solution of the Poissonequation under this drift ondition); (b) we then study a "old" Langevin tempered di�usionwhen the invariant target distribution is subexponential in the tails. This model is partiu-larly useful in Markov Chain Monte Carlo method. Di�erent regime of ergodiity (polynomial,subexponential or exponential) depending on the oldness of the di�usion term are exhibited,the di�erent regimes are then haraterized by the invariant target distribution. This studygeneralizes the Fort-Roberts' results, whih onsider the ase when the target density is polyno-mial in the tails [11℄; () we also give a toy hypoellipti example, namely a stohasti dampingHamiltonian system, in the ase when it annot be geometrially ergodi. This model is shownto be polynomially ergodi (see Wu [33℄ for the exponential ase); (d) we �nally onsider a sim-ple ompound Poisson-proess driven Ornstein-Uhlenbek proess (relevant for reent studies in�nanial eonometris) with heavy tailed jump. It is shown to be subgeometrially ergodi.Our approah may be onsidered as a probabilisti one. There are another ways to getsubexponential rates of onvergene (in total variation norm, in L2 or in entropy) suh asthose based on spetral tehniques (as in [12℄), or on funtional inequalities (weak Poinar�einequalities [29℄ or weak logarithmi Sobolev inequalities [1℄). These results are however noteasy to ompare to ours and we postpone a omparative utilization of these approahes tofurther researh.Let us �nally present the organization of the paper. Setion 2 realls basi de�nitions onMarkov proesses. The main results are given in Setion 3. All the proofs are postponed inappendix. Setion 4 is devoted to the examples and Setion 5 to a new moderate deviationpriniple.2 De�nitionsLet (
;F ; (Ft)t�0; (Xt)t�0; (Px)x2X) be a Markov family on a loally ompat and separablemetri spae X endowed with its Borel �-�eld B(X) : (
;F) is a measurable spae, (Xt)t�0 is aMarkov proess with respet to the �ltration (Ft)t�0 and Px (resp. Ex) denotes the anonialprobability (resp. expetation) assoiated to the Markov proess with initial distribution thepoint mass at x. Throughout this paper, the proess is assumed to be a time-homogeneousstrong Markov proess with ad-lag paths, and we denote by (Pt)t�0 the assoiated transitionfuntion on (X;B(X)).Let �0 denote the lass of the measurable and nondereasing funtions r : [0;+1)! [2;+1)suh that log r(t)=t # 0 as t ! +1. Let � denote the lass of positive measurable funtions �r,suh that for some r 2 �0, 0 < lim inft �r(t)r(t) � lim supt �r(t)r(t) <1:3



� is the lass of the subgeometri rate funtions and examples of funtions �r 2 � are�r(t) = t� (log t)� exp(tÆ)for 0 < Æ < 1 and either  > 0, or  = 0 and � > 0, or  = � = 0 and � � 0. We are ultimatelyinterested in onditions implying that for all x 2 Xlimt!+1 r(t) kP t(x; �)� �(�)kf = 0; (2.1)where r 2 �, � is the (unique) invariant distribution of the proess i.e. �P t = � for allt � 0, and for a signed measure �, k�kf = supjgj�f j�(g)j where f : X ! [1;1) is a measurablefuntion. When f is the onstant funtion 1 (1(t) = 1, t � 0), the f -norm is nothing more thanthe total variation norm.To that goal, we will need di�erent notions of regularity and stability of ontinuous-time Markovproesses and we briey reall some basi de�nitions. The proess is �-irreduible for some�-�nite measure � on B(X) if �(A) > 0 implies Ex �R10 1A(Xs) ds� > 0 for all x 2 X. A�-irreduible proess possesses a maximal irreduibility measure  suh that � is absolutelyontinuous with respet to  for any other irreduibility measure � [25℄. Maximal irreduibilitymeasures are not unique and are equivalent. A set A 2 B(X) suh that  (A) > 0 for somemaximal irreduibility measure is said aessible; and full if  (A) = 0. A measurable set C is�a-petite (or simply petite) if there exist a probability measure a on the Borel �-�eld of [0;+1)and a non-trivial �-�nite measure �a on B(X) suh that8x 2 C; Z +10 P t(x; �) a(dt) � �a(�):For a  -irreduible proess, an aessible losed petite set always exists [21℄. A proess is Harris-reurrent if, for some �-�nite measure �, �(A) > 0 implies that the event fR10 1A(Xs)ds =1gholds Px-a.s. for all x 2 X. Harris-reurrene trivially implies �-irreduibility. A Harris-reurrentright proess possesses an invariant measure � [13℄; if � is an invariant probability distribution,the proess is alled positive Harris-reurrent. A �-irreduible proess is aperiodi if there existsan aessible �Æm -petite set C and t0 suh that for all x 2 C; t � t0; P t(x; C) > 0. A suÆ-ient ondition for a positive Harris-reurrent proess to be aperiodi is the existene of some�-irreduible skeleton hain [23℄; reall that a skeleton Pm (m > 0) is said �-irreduible if thereexists a �-�nite measure � suh that �(A) > 0 implies 8x 2 X, 9k 2 N, P km(x;A) > 0 [22℄.A  -irreduible and aperiodi Markov proess that veri�es (2.1) is said f -ergodi at a subge-ometri rate (or simply f -ergodi when r = 1). When r is of the form r(t) = �t for some� > 1, the proess is said f -ergodi at a geometri rate. In the literature, riteria for thestability of Markov proesses, when stability is ouhed in terms of Harris-reurrene, positiveHarris-reurrene, f -ergodiity, with in this latter ase, a mention of the rate of onvergene,are expressed in terms of hitting-times of some losed petite set. For any Æ > 0 and any losedset C 2 B(X), let �C(Æ) = infft � Æ;Xt 2 Cg;4



be the hitting-time on C delayed by Æ and de�ne its (f; r)-modulated momentGC(x; f; r; Æ) = Ex "Z �C(Æ)0 r(s) f(Xs) ds# ;where f : X ! [1;1) is a measurable funtion and r : [0;+1) ! (0;+1) is a rate funtion.When f = 1 (resp. r = 1), this moment is simply alled the r-modulated (resp. f -modulated)moment. Following disrete-time usage [22, 31, 17℄, we all a measurable set C (f; r)-regular ifsupx2CGB(x; f; r; Æ)<1;for all Æ > 0 and all aessible setB. Criteria for Harris-reurrene and positive Harris-reurrenean be found in [21, Theorems 1.1 and 1.2℄; ergodiity and f -ergodiity are addressed in [23,Theorems 6.1 and 7.2℄; riteria for geometri f -ergodiity at a geometri rate (resp. at a subge-ometri rate) are provided by [6, Theorem 7.4℄ (resp. [11, Theorem 1℄). A short review of thesenotions and results an be found in [11℄.In many appliations, these moments an not be expliitly alulated; a seond set of riteriabased on the extended generator were thus derived for some of the stability properties above.We postpone to Setion 3.4 a review of the existing onditions.3 Main resultsLet us onsider the following drift ondition towards a losed petite set C.D(C;V; �;b): There exist a losed petite set C, a ad-lag funtion V : X ! [1;1), aninreasing di�erentiable onave positive funtion � : [1;1) ! (0;1) and a onstantb <1 suh that for any s � 0, x 2 X,Ex [V (Xs)℄ + Ex �Z s0 � Æ V (Xu)du� � V (x) + b Ex �Z s0 1C(Xu)du� : (3.1)Note that (3.1) is equivalent to the ondition that the funtionals 7! V (Xs)� V (X0) + Z s0 � Æ V (Xu)du� b Z s0 1C(Xu)duis, for all x 2 X, a Px-supermartingale with respet to the �ltration (Ft)t�0.The main result of Setion 3.1 is Theorem 3.1 that states that this drift ondition allowsthe alulation of an upper bound for some r-modulated moment where r 2 �, and for somef -modulated moment, f � 1. Using interpolating inequalities, we obtain (f; r)-modulatedmoments for a wide family of pairs (f; r). Setion 3.2 is devoted to (f; r)-regularity : the mainresult of this setion is Proposition 3.7 that identi�es (f; r)-regular sets from the ondition5



D(C;V; �;b). In Setion 3.3, we show that the drift ondition D(C;V; �;b) provides a simplesuÆient ondition for an aperiodi strong Markov proess to be f -ergodi at a subgeometrirate : the main result is Theorem 3.10 that builds on the work by Fort and Roberts [11℄. Weprovide in Setion 3.4 a ondition ouhed in terms of the extended generators that implies thedrift inequality D(C;V; �;b). This ondition generalizes the ondition in [11, Proposition 6℄that restrits to the polynomial ase, and reveals of great interest in many appliations. Wepresent in Setion 3.5 the interplay between a drift ondition on the resolvent kernel and thedrift ondition D(C;V; �;b).All the proofs are given in Appendix A.3.1 Modulated momentsWe show that D(C;V; �;b) is a simple ondition that allows the ontrol of f -modulated mo-ments and r-modulated moments, for a general rate funtion r 2 �, of the delayed hitting-time�C(Æ). Let H�(u) = Z u1 ds�(s) ; u � 1 :Theorem 3.1. Assume D(C;V; �;b).i) For all x 2 X and Æ > 0,Ex "Z �C(Æ)0 � Æ V (Xs) ds# � V (x)� 1 + bÆ :ii) For all x 2 X and Æ > 0,Ex "Z �C(Æ)0 � ÆH�1� (s) ds# � V (x)� 1 + b�(1) Z Æ0 � ÆH�1� (s)ds :The proof of Theorem 3.1 does not require C to be petite. Nevertheless, this petitenessproperty will be ruial in all the following results: we will see that this assumption allows theextension of the above ontrols to those of modulated moments �B(Æ) for any aessible setB. Theorem 3.1 gives the largest f -modulated and r-modulated moments of �C(Æ) that anbe dedued from D(C;V; �;b). Interpolated (f; rf)-modulated moments of �C(Æ) an easily beobtained for a wide family of funtions 1 � f � f� (and, equivalently, a wide family of ratefuntions r(s) � r�(s)) wheref� = � Æ V; r�(s) = � ÆH�1� (s): (3.2)To that goal, we follow the same lines as in [4℄ and [11℄ and introdue the pairs of Young'sfuntions (H1; H2) that, by de�nition, satisfy the propertyx y � H1(x) +H2(y); 8x; y � 0; (3.3)6



and are invertible (see e.g [19, Chapter 1℄). Let I be the pairs of inverse Young's funtionsaugmented with the pairs (Id; 1) and (1; Id). Examples of pairs (H1; H2) are given in [4℄ and[11℄ while a general onstrution an be found in [19, Chapter 1℄. Corollary 3.2 trivially resultsfrom Theorem 3.1 and Eq. (3.3).Corollary 3.2. Assume D(C;V; �;b). For any pairs (	1;	2) 2 I and all Æ > 0,Ex "Z �C(Æ)0 	1 (r�(s)) 	2 (f�(Xs)) ds# � 2(V (x)� 1) + b Z Æ0 �1 + r�(s)r�(0)�ds:For two pairs (	1;	2) and (	01;	02) in I, if 	1(x) � 	01(x) for all large x, then 	2(y) � 	02(y)for all large y [19, Theorem 1.2.1℄. This shows that the rate 	1 (r�(�)) and the funtion 	2 (f�(�))have to be balaned : the maximal rate funtion r� is assoiated to the funtion f with minimalgrowth in the range 1 � f � f�, that is with f = 1; and the funtion with the largest rapidityof growth f = f� is assoiated to the minimal rate r = 1.Theorem 3.1 and Corollary 3.2 thus provides a ontrol of (f; r)-modulated moments; a simpleondition for the rate r to be in the set � of the subgeometri rate funtions is realled in thefollowing lemma [4, Lemmas 2.3 and 2.7℄Lemma 3.3. If lim1 �0 = 0, r� 2 � and for all inverse Young funtion 	1, 	1 Æ r� 2 �.Proposition 3.4. Assume D(C;V; �;b). Then the proess is  -irreduible. If supC V <1,(i) the level sets fV � ng are petite and the union of these level sets is full.(ii) there exists a losed aessible petite set B suh that D(B;V; �;b) holds and supB V <1.As a onsequene, when D(C;V; �;b) holds and supC V < 1, we an assume without lossof generality that C is aessible.3.2 (f; r)-regularityCorollary 3.2 shows that the drift ondition D(C;V; �;b) allows the ontrol of modulated mo-ments GC(x; f; r; Æ), for all Æ > 0 and a large family of pairs (f; r). Similar modulated momentsrelative to any aessible set B an be ontrolled provided supx2C GC(x; f; r; Æ) < 1 for someÆ > 0 (and thus any Æ > 0, as established in [11, Lemma 20℄). This naturally yields the notion of(f; r)-regular sets. The objetive of this setion is to identify regular sets from the drift onditionD(C;V; �;b).We start with a proposition that shows that the \self-regularity" of a losed petite set C a-tually implies (f; r)-regularity. This results extends [21, Proposition 4.1℄ (resp. [11, Proposition22℄) that addresses the ase r = 1 (resp. f = 1). It also generalizes [11, Proposition 23℄ whihonerns the ase r = 	1(r�) and f = 	2(f�) for some pair (	1;	2) 2 I. This propositionis the ounterpart in the subexponential setting of the result by Down-Meyn-Tweedie for theexponential ase [6, Theorem 7.2℄. 7



Proposition 3.5. Let f : X ! [1;1) be a measurable funtion and r 2 � be a subgeometrirate funtion. Assume that the proess is  -irreduible and supx2C GC(x; f; r; Æ)<1 for some(and thus any) Æ > 0 and some losed petite set C.For all aessible set B 2 B(X) and all t � 0, there exists a onstant B;t <1 suh that for allx 2 X, GB(x; f; r; t)� B;tGC(x; f; r; Æ): (3.4)Hene C is (f; r)-regular.Proposition 3.6. Assume that D(C;V; �;b) holds with C; V; � suh that supC V < 1 andlim+1 �0 = 0. Then for any pair (	1;	2) 2 I, any aessible set B and all Æ > 0, there existsa �nite onstant  suh thatEx "Z �B(Æ)0 	1 (r�(s)) 	2 (f�(Xs)) ds# �  V (x):Hene, any V -level set fx 2 X; V (x) � vg is (f; r)-regular for all pairs (f; r) = (	2 Æ f�;	1 Æ r�)with (	1;	2) 2 I.Proof. By Corollary 3.2, supx2C GC(x; f; r; Æ) < 1 for all Æ > 0 provided the drift onditionD(C;V; �;b) holds and supC V < 1. Finally, r = 	1 Æ r� for some inverse Young funtion 	1is a subgeometri rate if lim+1 �0 = 0. Proposition 3.5 thus implies that the level sets of V are(f; r)-regular sets.We now establish a general result that extends to ontinuous-time Markov proesses, partof [31, Theorem 2.1℄ relative to disrete-time Markov hain. In the ase r = 1, some of theseequivalenes are proved in [21℄ for ontinuous-time strong Markov proesses.Proposition 3.7. Let f : X ! [1;1) be a measurable funtion and r 2 � be a subgeometrirate funtion. Assume that the proess is  -irreduible. The following onditions are equivalenti) There exist a losed petite set C and Æ > 0 suh that supC GC(x; f; r; Æ)<1.ii) There exists a (f; r)-regular losed set whih is aessible.iii) There exists a full set S	 whih is the union of a ountable number of (f; r)-regular sets.Theorem 3.1 proves that these equivalent onditions are veri�ed provided D(C;V; �;b)holds, supC V <1 and lim1 �0 = 0.We onlude this setion by establishing that under mild additional onditions, the drift on-dition D also yields ontrols of modulated moments for the skeleton hains. For all m > 0, letTm;C be the return-time to C of the skeleton hain Pm,Tm;C = inffk � 1; Xmk 2 Cg:8



Proposition 3.8. Assume that D(C;V; �;b) holds with supC V <1, and some skeleton hainis irreduible. For all m > 0 and any aessible set B, there exist onstants i; 1 � i � 4, suhthat for all x 2 X,Ex 24Tm;B�1Xk=0 � Æ V (Xmk)35 � 1 Ex �Z Tm;B0 � Æ V (Xsm) ds� � 2 V (x);and 8x 2 X; Ex 24Tm;B�1Xk=0 r�(km)35 � 3 Ex "Z �B(Æ)0 r�(s) ds# � 4 V (x):We will see in the last setion that this proposition whih learly links the behavior ofthe skeleton hain to that of the initial proess leads to new limit theorems suh as moderatedeviations. It will also imply interesting appliations to averaging priniple.3.3 f-ergodiity at a subgeometri rateFrom the ontrol of x 7! GC(x; f; r; Æ) where C is a losed petite set, we are able to dedueresults on the ergodi behavior of the strong Markov proess.The �rst result onerns the existene of an invariant probability distribution � and showsthat the drift ondition D(C;V; �;b) provides a simple tool when identifying the set of the�-integrable funtions. The seond one states that the Markov proess onverges in f -norm tothe invariant probability measure �, for a wide family of funtions 1 � f � f� and a wide familyof rate funtions rf � r�.Proposition 3.9. Assume D(C;V; �;b) and supC V <1. Then the proess is positive Harris-reurrent with an invariant probability measure � suh that �(� Æ V ) <1.Proposition 3.9 results from [21, Theorems 1.1 and 1.2℄ and Theorem 3.1(i). It is known thatpositive Harris-reurrene does not neessarily imply ergodiity and aperiodiity is required [23,Proposition 6.1℄; similar onditions are required in the disrete-time ase [22℄. In the presentase, we have more information than positive Harris-reurrene and thus, we are able to establishf -ergodiity at a subgeometri rate.For a sequene r 2 �, de�ne r0(t) = R t0 r(s) ds, and, for a di�erentiable rate funtion r, set�r(t) = dr(t)dt .Theorem 3.10. Assume that(i) some skeleton hain is irreduible.(ii) the ondition D(C;V; �;b) holds with C; V; � suh that supC V <1 and lim+1 �0 = 0.9



For any pair 	 = (	1;	2) 2 I and any probability distribution � satisfying �(V ) <1,limt!+1 f	1(r�(t)) _ 1g ZX �(dx) kP t(x; �)� �(�)k	2(f�)_1 = 0; (3.5)where r� and f� are given by (3.2) and I is de�ned in Setion 3.1. Furthermore, there exist�nite onstants C	;i suh that for all t � 0 and all x 2 X,f	1(r�(t))_ 1g kP t(x; �)� �(�)k	2(f�)_1 � C	;1 V (x); (3.6)Z 10 f	1(r�(t)) _ 1g kP t(x; �)� P t(y; �)k	2(f�)_1 dt � C	;2 fV (x) + V (y)g; (3.7)and if �[	1(r�)℄ 2 �, there exists a �nite onstant C	;3 suh that for all t � 0,Z 10 f�[	1(r�)℄(t) _ 1g kP t(x; �)� �(�)k	2(f�)_1 dt � C	;3 V (x): (3.8)The limit (3.5) is a diret appliation of [11, Theorem 1℄ while (3.6) to (3.8) are, to our bestknowledge, new results. The proof of this theorem is detailed in Appendix A.As already ommented in [11℄, Eq. (3.5) shows that the rate of onvergene and the norm inwhih onvergene ours have to be balaned : if 	1 strongly inreases at in�nity then 	2slowly inreases (see [19℄ and the omments in Setion 3.1). Hene, the stronger the norm, theweaker the rate and onversely. The maximal rate of onvergene is ahieved with the totalvariation norm (	2 Æ f� = 1) and the minimal one (	2 Æ r� = 1) is ahieved with the f�-norm.Hene, the drift ondition D(C;V; �;b) diretly provides two major informations: the largestrate of onvergene r� = � Æ H�1� is given by the onave funtion � and the largest norm ofonvergene k � kf� is given by the pair (�; V ).Eqs. (3.6) to (3.8) are, to our best knowledge, the �rst results that address the dependene uponthe initial point in the ergodi behavior. When applied to disrete-time Markov hains, (3.6) to(3.8) oinide with resp. [31, Theorems 2.1, 4.1, 4.2℄ (the dependene upon x an be read fromthe proof of these theorems; the details are also provided in [9, Chapter 3℄). These results forthe disrete-time ase and the de�nition of the set S in [11, Theorem 1℄ suggest that in (3.6),the minimal dependene in the starting value x is of the form GC(x;	2(f�);	1(r�); Æ). Similarexpressions an be predited for (3.7) and (3.8). The proof of this assertion and the expliitonstrution of the onstants C	;i in terms of the quantities appearing in the assumptions arebeyond the sope of this paper. Currently in progress is work on expliit ontrol of subgeometriergodiity for strong Markov proesses.In the examples given in Setion 4, we will see that the pair (�; V ) that solves D(C;V; �;b)is not unique. Roughly speaking, we read from Theorem 3.10 that � is related to the rate ofonvergene in total variation norm, while V is the dependene upon the initial point in theontrol of onvergene. As a onsequene, the rate of onvergene r�(t) and the dependeneV (x) an be balaned to make the bounds (3.6) to (3.8) minimal. In Setion 4, we will givesome examples (on X = Rn), where both a pair of polynomially inreasing funtions and a pairof subgeometrially inreasing funtions an be found. One then immediately remarks that the10



stronger the ontrol in the initial point is, the stronger the deay in time is for a given norm. Itstresses one again the interest for exat onstant in our ontrols to deide whih "ergodiity"to use to reah a ertain level. The fat that the pair (�; V ) is not unique shows that thedrift ondition only provides an upper bound of the true rate of onvergene. Nevertheless, inmany appliations, we are able to prove that the true rate belongs to the exhibited lass of ratefuntions (see for example, setion 4.2).3.4 Generator and drift inequality (3.1)The drift ondition D(C;V; �;b) may not be easy to derive sine it is ouhed in terms of theproess itself. The main goal of this setion is to provide an easier path to ensure subgeometriergodiity, whih is moreover the usual form of onditions adopted on earlier paper to addressdi�erent lasses of stability. Namely we will use the formalism of the extended generator [3, Def.1.15.15℄.Let D(A) denote the set of measurable funtions f : X ! R with the following property:there exists a measurable funtion h : X ! R suh that the funtion t 7! h(Xt) is integrablePx-a.s. for eah x 2 X and the proesst 7! f(Xt)� f(X0)� Z t0 h(Xs)ds (3.9)is a Px-loal martingale for all x. Then we write h = Af , and f is said in the domain of theextended generator (A;D(A)) of the proess X . The ondition (3.1) looks like a Dynkin formula.This is the reason why we want it to hold as widely as possible, thus justifying the interest inthe extended generator onept.Theorem 3.11. Assume that there exist a losed petite set C, a ad-lag funtion V : X! [1;1)with V 2 D(A), an inreasing di�erentiable onave positive funtion � : [1;1)! (0;1) and aonstant b <1 suh that for all x 2 X,AV (x) � �� Æ V (x) + b1C(x): (3.10)Then D(C;V; �;b) holds.The proof is in Setion A.7. The extended generator is less restritive than the in�nitesimalgenerator ~A : if f is in the domain of ~A, then the proess (3.9) is a martingale and f is inthe domain of A (see e.g. [3, Proposition 1.14.13℄). In partiular, it is often quite diÆult toharaterize the domain of ~A but there may be (and are, in the appliations of Setion 4) easilyheked suÆient onditions for membership of D(A).This drift ondition naturally inserts in the existing literature, that addresses riteria for non-explosivity, reurrene, polynomial ergodiity, geometri and uniform ergodiity. More preisely,Meyn and Tweedie provide onditions for non-explosion, reurrene, positive-Harris reurrene11



and V -ergodiity at a subgeometri rate, respetively of the formAV (x) � V (x); (3.11)AV (x) � 1C(x); (3.12)AV (x) � �f(x) + b1C(x); (3.13)AV (x) � �V (x) + b1C(x) (3.14)for some positive onstants b;  <1 and a measurable funtion f � 1 (see [24, Conditions (CD0)to (CD3)℄; see also [6℄ for the ondition (3.14)). These riteria are similar to some onditionsprovided by [16℄ for the stability of stohasti di�erential equations. The drift inequality (3.14)is the limit of our approah, sine it orresponds to (3.10) with �(v) / v.In a reent work, Fort and Roberts [11℄ onsidered a family of drift ondition that implies f -ergodiity at a polynomial rate : namely, there exist 0 < � < 1, b > 0 suh that for all � � � � 1,there exists � > 0 suh that AV �(x) � ��V ���(x) + b1C(x): (3.15)Our drift ondition (3.10) with �(v) / v1�� yields the same results as those provided in [11,Theorem 1, Lemma 25, Proposition 26℄ (see Theorem 3.10 and Proposition 3.1). Hene, the driftinequality (3.10) that addresses subgeometri ergodiity generalizes the riterion for polynomialergodiity proposed by Fort-Roberts. The omparison of the Fort-Roberts nested drift onditions(3.15) and our single drift ondition an be more expliit when V 2 D(A) and the proess (3.9)is a Px-martingale for all x. In that ase, it is easily seen that the single drift ondition impliesthe nested drift onditions. The martingale property is equivalent tot 7! exp�ln V (Xt)� lnV (X0)� Z t0 H(lnV )(Xs)ds�is a Px-martingale for all x, where H(lnV ) = V �1AV [8℄. Furthermore, H(lnV ) � �g + s ifand only if t 7! exp�ln V (Xt)� lnV (X0)� Z t0 f�g(Xu) + s(Xu)gdu�is a Px-supermartingale for all x [8℄. As a onsequene, if V � is in the domain of A for all0 � � � 1 then the Jensen's inequality yields H(� lnV ) � � exp(�� lnV ) + b� exp(� lnV )1Cwhih in turn implies (3.15).3.5 Resolvent and drift inequality (3.1)One of the approahes for studying the stability and ergodi theory of ontinuous time Markovproesses onsists in making use of the assoiated disrete time resolvent hains. This allowsto take pro�t of the analysis of disrete time Markov hains whih is quite well understood([25, 22℄) and then to transfer properties established in terms of the resolvent or \generalisedresolvent" kernel (see for e.g. [21℄) to the Markov proess itself. Following the disussion (done12



for exponentially ergodi Markov proess) by Down-Meyn-Tweedie [6, Th.5.1℄ and extending itto the subgeometri ase, we will now link the drift ondition D(C;V; �;b; �) assoiated to theMarkov proess to a drift ondition assoiated to the disrete time resolvent hain.More preisely, de�ne, for � > 0, the resolvent kernel R� by R�(x;A) = R10 �e��tP t(x;A)dtand onsider the following drift ondition assoiated to the resolvent kernel.�D(C;V; �;b; �): There exist a petite set C, a funtion V : X ! [1;1), an inreasingdi�erentiable onave positive funtion � : [1;1) ! (0;1) and a onstant b < 1 suhthat for any x 2 X, R�V (x) � V (x)� � Æ V (x) + b1C(x): (3.16)The following result ensures that drift onditions expressed in terms of the resolvent kernelor of the Markov proess are essentially equivalent. This theorem parallels Theorem 5.1. byDown-Meyn-Tweedie [6℄ for exponentially ergodi Markov proesses.Theorem 3.12. (i) Assume �D(C;V; �;b; �) where C is a losed set and R�V is a ad-lagfuntion. Then D(C;R�V; ��; �b) holds.(ii) Assume D(C;V; �;b) with supC V < 1. Then, for all � > 0, there exists a onstant suh that for all x 2 X,W (x) � (1 + �)V (x) +  and limt!1 r��(t)r�((1 + �)t) = 1 + �suh that �D(�C;W; ��; �b; �) holds.The proof is given in Setion A.8.4 ExamplesIn this setion, X = Rn. Vetors are intended as olumn vetors, jxj and h�; �i denote respetivelythe Eulidean norm and the salar produt. For a matrix a, jaj = �Pi;j a2i;j�1=2, Tr(a) standsfor the trae of the matrix and a0 the matrix transpose. Idn is the n�n identity matrix. If V isa twie ontinuously di�erentiable funtion with respet to x 2 Rn, �V (or �xV when onfusionis possible) denotes its gradient, and �2V its Hessian.For a set A, A is its omplement in Rn.Four appliations are onsidered: we �rst analyze general ellipti di�usions on Rn suh thatthe drift oeÆient veri�es a ontration ondition of the form hb(x); xi � �rjxj1�p for all large x,where 0 < p < 1. We then onsider a Langevin di�usion on Rn having an invariant distributionwhih is super-exponential in the tails, and show that the rate of onvergene an be modi�edby \heating" the di�usion. The method is however not limited to ellipti di�usions but an also13



be of use in the hypoellipti ase: we onsider as an illustration a simple stohasti dampingHamiltonian system whih annot be exponentially ergodi but is shown to be subexponentiallyergodi. We �nally study a ompound Poisson-proess driven Ornstein-Uhlenbek proess whenthe distribution of the jump is heavy tailed.Queuing theory is another important �eld of appliation for our theory. We do not disusshere this �eld of appliations. This will be done in a forthoming paper, whih will also inludea omparison of our results to those by [2, 34℄. Tehniques in Dai-Meyn [2℄ di�er from ourssine they are based on uid limits. Conerning [34℄, our onditions are more general; indeedthe authors assume that there exists a state x0 suh that whenever the Markov proess hits x0,it will sojourn there for a random time that is positive with probability 1, [34, Assumption 1.1℄.This assumption makes their results unavailable for the appliations we now onsider.4.1 Ellipti di�usions on RnConsider the stohasti integral equation of the formXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dBs; (4.1)where Xt 2 Rn, b : Rn ! Rn and � : Rn ! Rn�n are measurable funtions, and fBtgt is an-dimensional Brownian motion. Assume that b : Rn ! Rn and � : Rn ! Rn�n are funtionssatisfyingA1 � is bounded and b and � are loally Lipshitz : for any l > 0, there exists a �nite onstantl suh that for all jxj � l; jyj � l,jb(x)� b(y)j+ j�(x)� �(y)j � ljx� yj: (4.2)Let a(x) = �(x)�(x)0 be the di�usion matrix. We assume thatA2 (i) a(x) is non-singular : the smallest eigenvalue of the di�usion matrix a(x) is boundedaway from zero in every bounded domain.(ii) there exist 0 < p < 1, r > 0 and M suh that for all jxj �M , hb(x); xi � �rjxj1�p.Note that under A1, � = n�1 supx2RnTr(a(x)) and �+ = supx6=0ha(x) xjxj; xjxji are �nite. More-over, sine under A1 � is ontinuous, the assumption A2(i) is equivalent to the onditiondet(�(x)) 6= 0 for all x.Under A1, it is possible to de�ne ontinuous funtions bl and �l that satisfy the at mostlinear inreasing jbl(x)j+ j�l(x)j � l(1 + jxj); 8x 2 Rn;the Lipshitz ondition (4.2) on the whole state spae, and are suh that bl = b and �l = � onthe ylinder fx 2 Rn; jxj < lg. The stohasti equation (4.1) has a unique t-ontinuous solution14



fX(l)t gt, when b and � are replaed by bl and �l [16, Theorem 3.3.2℄. The �rst exit times offX(m)t gt from fx 2 Rn; jxj < lg are idential for all m � l (and is thus denoted �l). This allowsthe onstrution of a proess fXtgt that satis�es (4.1) up to the explosion time � = liml �l. If� = +1 a.s., fXtgt is a.s. de�ned for all t � 0 and the proess is said regular. Under the statedassumptions, an easy to hek suÆient ondition for regularity relies on the operator L thatats on funtion V : Rn, x 7! V (x) that are twie ontinuously di�erentiable with respet to x:LV (x) = hb(x); �V (x)i+ 12Tr �a(x) �2V (x)� : (4.3)The proess is regular if there exists a non-negative twie-ontinuously di�erentiable funtionV on Rn suh that for some �nite , LV � V on Rn and inf jxj>R V (x) ! 1 as R ! 1 [16,Theorem 3.4.1.℄. Under A2(ii), it is trivial to verify that by setting V (x) = 1 + jxj2,LV (x) � � �2rjxj1�p + n�; if jxj �M;2M supjxj�M jb(x)j+ n� otherwise: (4.4)This shows that the proess is regular. Consequently, there exists a solution to (4.1), whih isan almost surely ontinuous stohasti proess and is unique up to equivalene. This solution isan homogeneous Markov proess whose transition funtions are Feller funtions [16, Theorem3.4.1℄. Hene, it is strongly Markovian, as a right-ontinuous Markov proess with Feller tran-sition funtions. We now disuss the existene of an irreduible skeleton Pm and the petitenessproperty of the ompat sets. All of these properties dedue from the existene of an uniqueinvariant probability distribution �.Proposition 4.1. Under A1-A2, X possesses an unique invariant probability measure �. � isa maximal irreduibility measure and any skeleton Pm is irreduible. Furthermore, the ompatsets are losed petite sets.Proof. By (4.4), [16, Theorem 3.7.1℄ and its orollary 2 [16, p. 99℄, there exists a boundeddomain U with regular boundary and a �nite onstant  suh that for all x 2 U , Ex [TU℄ <1and for any ompat K � Rn, supx2K Ex [TU℄ <1, whereTU = infft � 0; Xt =2 Ug:Sine the di�usion matrix a(x) is non-singular, we dedue from [16, Theorem 4.4.1 and Corol-lary 2 p.123℄ that the proess possesses an unique invariant probability distribution �. [16,Lemma 4.6.5℄ implies that any skeleton is �-irreduible, with an irreduibility measure abso-lutely ontinuous with respet to the Lebesgue measure. By [16, Lemma 4.6.1℄, the supportof � has non-empty interior; sine the proess is  -irreduible and has the Feller property, allompat subsets of Rn are petite (this assertion an be proved in exatly the same way as inthe disrete-parameter ase [22, Proposition 6.2.8℄).Under A1-2, it si easily heked that any twie ontinuously di�erentiable funtion V : Rn!R is in the domain of A and LV (x) = AV (x) for all x 2 Rn. Observe indeed that t 7! LV (Xt)15



is integrable Px-a.s. for all x 2 Rn and t 7! V (Xt)�V (X0)� R t0 LV (Xs)ds is a right-ontinuousloal martingale. Hene V 2 D(A) and LV = AV . We now establish drift inequalities fordi�erent test funtions V .Proposition 4.2. Assume A1-2. Let V : Rn ! [1;+1) be a twie ontinuously di�erentiablefuntion suh that V (x) = exp(� jxjm) outside a ompat set, for some 0 < m < 1 and � > 0.Then supjxj�M AV (x) <1 and for all jxj �M ,(i) If 0 < m < 1� p, AV (x) � �� 1+pm mr [ln V (x)℄1�( 1+pm ) V (x) (1 + o(1)) ;(ii) If m = 1� p,AV (x) � �� 1+p1�p (1� p) fr � (1=2)�+�(1� p)g [lnV (x)℄�2 p1�p V (x) (1 + o(1)) :Proof. Under the stated assumptions, supfx;jxj�MgAV (x) <1. By de�nition of A, we have forall jxj �M ,AV (x) � ��m �r � (1=2)�+�mjxjp+m�1� jxjm�1�pV (x) + (1=2)�mn�jxjm�2V (x):As a diret appliation of Proposition 3.9 and Theorem 3.1(ii), we haveTheorem 4.3. Assume A1-2.(i) For all � > 0 suh that r� (1=2)�+�(1� p) > 0,Z �(dx) exp(�jxj1�p) <1;where � is the invariant probability distribution of the Markov proess that solves (4.1).(ii) There exists a losed petite set C suh that for any 0 < m < 1� p, 0 < �1 < �2 and Æ > 0,there exists a �nite onstant  suh thatEx hexp(�1 f�C(Æ)g m1+p )i �  exp(�2jxjm): (4.5)If m = 1� p, (4.5) still holds for any 0 < �1 < �2 suh that r� (1=2)�2�+(1� p) > 0.The results of Theorem 4.3 an be ompared to those by [20℄, where subexponential ergodiityin total variation norm of a di�usion satisfying the onditions A1-2 is addressed. The tehniqueused in [20℄ is based on the oupling method. Theorem 4.3(i) states the same result as [20,Lemma 3℄. Nevertheless, Theorem 4.3(ii) yields a stronger ontrol of delayed return-time to16



a losed petite set than those obtained in [20, Theorem 5℄. They show that for all 0 < � <(1=2)(1� p) there exists a onstant � suh thatEx [exp(�C(Æ)�)℄ � � exp(jxj2�);and this remains valid for � = (1 � p)=2 if r � (1=2)�+(1 � p) > 0. Theorem 4.3(ii) laimsthat for all 0 < � < (1 � p)(1 + p)�1 and � > 1, Ex [exp(�C(Æ)�)℄ � � exp(� jxj(1+p)�) and for� = (1 � p)(1 + p)�1, Ex [exp(�1�C(Æ)�)℄ � � exp(�2 jxj(1+p)�) for all 0 < �1 < �2 suh thatr � (1=2) �2�+(1� p) > 0.As a diret appliation of Theorem 3.10, we obtain the following results for f -ergodiity at asubgeometri rate.Theorem 4.4. Assume A1-2 and let � be the invariant probability distribution of the Markovproess that solves (4.1). Then the proess is subgeometrially f -ergodi: for any x 2 Rn, thelimits (3.5) to (3.8) hold with V (x) � exp(�jxj1�p) for some positive � suh that r�0:5�+�(1�p) >0, f�(x) � jxj�2p exp(�jxj1�p) and r�(t) � t�2p=(1+p) exp(f�0tg(1�p)=(1+p)) where�0 = � 1+p1�p (1 + p) fr � (1=2)�+�(1� p)g :In [20℄, only the onvergene in total variation norm of the semi-group fP tgt�0 to the in-variant probability � is addressed: is is established that the proess is ergodi at the raterM� (t) / exp(Æt(1�p)=2) for some Æ > 0, and in that ase, the dependene upon the initial pointin (3.5) is VM(x) � exp(Æjxj1�p). Theorem 4.4 improves these results and also provides rates ofonvergene in f -norm for unbounded funtions f .We reported in Theorem 4.4 the values (V; f�; r�) that yield the best rate of onvergene in totalvariation norm. Proposition 4.2 shows that one ould establish the drift inequality (3.10) withV (x) � exp(�jxjm) for some 0 < m < 1 � p; this would imply the limits (3.5) to (3.8) withV (x) � exp(�jxjm), f�(x) � jxjm�1�p exp(�jxjm) and r�(t) � t(m�1�p)=(1+p) exp(�0jxjm=(1+p)) forall 0 < �0 < �. We thus obtain a weaker maximal rate funtion r�, and a weaker maximal normk � kf�, but this has to be balaned with the fat that the dependene upon the initial value(i.e. the quantity V (x)) is weaker too. Similarly, polynomially inreasing ontrols V (x) ouldbe onsidered, thus limiting the rate r� (resp. the funtion f�) to the lass of the polynomiallyinreasing rate funtions (resp. to the lass of the polynomially inreasing funtion). These dis-ussions illustrate the fat that the pair (�; V ) that solves (3.10) is not unique, and this resultsin balaning the pair (r�; f�) and the dependene upon the initial value x.4.2 Langevin tempered di�usions on RnLet � : Rn! (0;1) satisfyingB1 � is, up to a normalizing onstant, a positive and thrie ontinuously di�erentiable densityon Rn, with respet to the Lebesgue measure.17



Let �(x) = j ln �(x)jd for some d > 0 and de�ne the di�usion matrix by a(x) = �2(x)Idn, andthe drift vetor by b(x) = (b1(x); � � � ; bn(x))0 wherebi(x) = (1=2) nXj=1 aij(x) �xj log �(x) + (1=2) nXj=1 �xjaij(x); 1 � i � n:Observe that sine � is de�ned up to a normalizing onstant, we an assume that �(x) > 0 forall x. Our objetive is to study the ergodiity of the solution to the stohasti integral equationXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dBs (4.6)where fBtgt is a n-dimensional Brownian motion. This di�usion is the so-alled Langevindi�usion and the drift vetor b is de�ned in suh a way that � is, up to a multipliative onstant,the density of the unique invariant probability distribution. Note that this model is not apartiular ase of the ellipti di�usion of setion 4.1 sine here, � may be an unbounded funtion(� = j ln �(x)jd).Fort and Roberts investigate the behavior of these di�usions when � is polynomially dereasingin the tails and address ergodiity in total variation norm and in f -norm as well [11℄. Theyonsider the ase �(x) = ��d(x) (d > 0) and show that the rate of onvergene in total variationnorm and in f -norm for f(x) � ���(x) (� > 0) depends on d. When d is lower than some ritialtemperature d�, the proess is ergodi at a polynomial rate, and when d is larger than d�, theproess is uniformly ergodi in total variation norm and geometrially ergodi otherwise [11,Theorem 16℄. Fort and Roberts thus proved that the rate of onvergene an be improved byhoosing a di�usion oeÆient � whih is small when the proess is lose to the modes of � andbig when it is far from the modes. The objetive of this setion is to investigate the ase when� is super-exponentially dereasing in the tails. We assume thatB2 there exists 0 < � < 1 suh that for all large jxj,jxj1�� h� ln �(x); xjxji < 0;0 < lim infx!1 j� ln �(x)jj ln�(x)j1=��1 � lim supx!1 j� ln �(x)jj ln�(x)j1=��1 <1;lim supx!1 Tr ��2 ln �(x)� j� ln �(x)j�2 = 0:The lass of density � desribed by B1-2 ontains densities that are super-exponential in thetails. The Weibull distribution on (0;1) with density �(x) / x��1 exp(��x�) satis�es B2. Formultidimensional examples, see e.g. [18, 28, 10℄. Following the same steps as in Setion 4.1,we an prove that under B1-2 and provided the proess is regular, there exists a solution to(4.6) whih is an almost surely ontinuous stohasti proess and is unique up to equivalene.This solution is an homogeneous strong Markov proess whose transition funtions are Fellerfuntions. Under B2, the proess is regular whatever d > 0; this an be proved as in the previoussetion (by hoosing V = 1 + ��2, see (4.7) below).18



These assumptions also imply that � is (up to a saling fator) the density of an invariantdistribution of the di�usion proess, any skeleton hain is  -irreduible and ompat sets arelosed petite sets ([11, Proposition 15℄).Let V : Rn! [1;1) be a twie-ontinuously di�erentiable funtion suh that V (x) = 1+���(x)outside a ompat set; then AV (x) = LV (x) = `1(x) + `2(x) where L is the di�usion operator(4.3) and for large jxj,`1(x) = ��(1� �)2 ���(x)1 + ���(x) � j� ln �(x)jj ln �(x)j1�1=��2 j ln �(x)j2(d+1�1=�) V (x); (4.7)and `2(x) = o(`1(x)). In [30, Theorem 3.1℄, it is established that the proess is geometriallyergodi if and only if d � 1=� � 1. From (4.7), we are able to retrieve these results and we alsoprove that when 0 � d < 1=� � 1, the proess is subgeometrially ergodi. Observe indeed thatfor large jxj, (4.7) and B2 implyAV (x) � �� [lnV (x)℄�� V (x); where � = 2(1=� � 1� d); and � > 0() 0 < � < 1:Hene, if � � 0, the proess is V -geometrially ergodi [21, Theorem 6.1℄ (see also setion 3.4);if � > 0, it is subgeometrially ergodi as a onsequene of Theorems 3.10 and 3.11.A polynomially inreasing drift funtion an also be onsidered: we an assume without loss ofgenerality that for large x, ln �(x) < 0 sine � is de�ned up to a multipliative onstant. Wethus set V (x) = 2 + sign(�) (� ln �(x))� outside a ompat set. Then for large x,AV (x) � �j�j2 (� ln �(x))�+1+2(d�1=�) � j� ln �(x)jj ln �(x)j1�1=��2 (1 + o(1)) ;and there exists a onstant  > 0 suh that for large x,AV (x) � �V 1��(x); where � = 2��1(1=� � d� (1=2)): (4.8)First onsider the ase when � > 0. If 1=� � 1 < d < 1=� � (1=2), the drift ondition (4.8) andTheorems 3.10 and 3.11 yield polynomial ergodiity. For example, this implies onvergene intotal variation norm at the rate r(t) � t1=��1. If d = 1=� � (1=2), then � = 0 and the proessis geometrially ergodi. In the ase when � an be set negative and 1 � � > 0 i.e. whend > 1=� � (1=2), the proess is uniformly ergodi: there exist � < 1 and a onstant  <1 suhthat for all x, ��t kP t(x; �)� �(�)kTV � ;and the onvergene does not depend on the starting point.The above disussions are summarized in the following theorem. The �rst part (resp. third part)results from [30, Theorem 3.1℄ (resp. [21, Theorem 6.1℄). The seond assertion is a onsequeneof Theorem 3.10. The last assertion was already proved by [30, Theorem 3.1℄ for one-dimensionaldi�usions (n = 1).Theorem 4.5. Consider the Langevin di�usion on Rn solution to the equation (4.6) where thetarget distribution � satis�es B1-2. 19



(i) If 0 � d < 1=� � 1, the proess fails to be geometrially ergodi.(ii) If 0 � d < 1=� � 1, the proess is subgeometrially ergodi: the limits (3.5) to (3.8) holdwith V (x) � ���(x), f�(t) � ���(x) jln �(x)j�2(1=��1�d) and ln r�(t) � �t�=(2���2d�) forall 0 < � < 1.(iii) If d � 1=� � 1, then for all 0 < � < 1, the di�usion is V -geometrially ergodi withV (x) = 1 + ���(x).(iv) If d > 1=� � (1=2), the di�usion is uniformly ergodi.This theorem extends earlier results to the multi-dimensional ase and provides subgeomet-rial rates of onvergene of the 'old' Langevin di�usion, for a wide family of norms. Weestablished that for a given ���-norm, the minimal rate of onvergene is ahieved with d = 0and in that ase, the rate oinides with the rate of onvergene of the symmetri random-walkHastings-Metropolis algorithm ([4, Theorem 3.1℄). This rate an be improved by hoosing adi�usion matrix whih is heavy where � is light and onversely. When d is larger than theritial value d� = 1=� � 1, the proess is geometrially ergodi; when d is lower that d�, theproess an not be geometrially ergodi and we prove that it is subgeometrially ergodi. Theonlusions of Theorem 4.5 are similar to those of [11, Theorem 16℄, that address the ase when� is polynomial in the tails.We assumed that � = j ln �jd. A �rst extension is to onsider a suÆiently smooth funtion �suh that �(x) � j ln �(x)jd for large jxj; this yields similar onlusions and details are omitted.A seond extension onsists in the ase when �(x) � ��d(x). In this latter ase, following thesame lines, it is easily veri�ed that for small enough values of d, the proess is regular (the setof the admissible values is in the range (0; 1=2℄), and the proess is V -geometrially ergodi witha test funtion V (x) � ���(x), � > 0. Details are omitted and left to the interested reader.4.3 Stohasti damping Hamiltonian systemBoth examples of the previous setions assumed that the di�usion proess is ellipti. Howeverthe drift ondition (3.10) enables us to onsider also hypoellipti di�usion that we will illustrateon the example of a simple stohasti damping Hamiltonian system, i.e. let xt (resp. yt) be theposition (resp. the veloity) at time t of a physial system moving in RndXt = YtdtdYt = �(Xt; Yt)dBt � ((Xt; Yt)Yt + �xU(Xt))dt (4.9)where ��xU is some frition fore, �(x; y)y is the damping fore and �(x; y)dB is a randomfore where (Bt) is a standard Brownian motion in Rn. This system has been studied from thelarge and moderate deviations point of view by Wu [33℄ where he also establishes the exponentialergodiity under various set of assumptions.As our goal is not to onsider the model in its full generality but to illustrate the subexpo-nential behavior of hypoellipti di�usion, via the simple use of drift ondition (3.10), hereafter20



we will onsider the partiular (but also urrent in pratie) ase where the damping and ran-dom fores are onstant (x; y) =  Idn and �(x; y) = � Idn,  and � being positive onstants(as, if one is identially equal to 0, there is none of the usual ergodi properties suh as positivereurrene). We will assume moreover that the potential U is lower bounded and ontinuouslydi�erentiable over Rn. In this ase, the system is known to have an unique invariant measuregiven by �(dx; dy) = e� 2� H(x;y)dxdywhere H is the Hamiltonian given by H(x; y) = 12 jyj2 + U(x):Let us �rst ensure the existene of solutions and aperiodiity for the proess Zt = (Xt; Yt)via the following proposition due to Wu [33, Lemma 1.1, Proposition 1.2℄Proposition 4.6. For every initial state z = (x; y) 2 R2n, the SDE (4.9) admits an uniqueweak solution Pz whih is non explosive. Moreover denoting (P t(z; dz0))t the assoiated semigroup of transition, we have that for every t > 0 and every z 2 R2n, P t(z; dz0) = pt(z; z0)dz0and pt(z; z0) > 0; dz0 � a:e: The density pt(z; �) is moreover ontinuous, and the proess is thusstrongly Feller.As a onsequene, the solution is a strong Markov proess, all the skeletons are irreduibleand ompat sets are petite sets.Let us build an example of polynomially ergodi stohasti damping Hamiltonian system indimension 1. We rewrite the system asdXt = YtdtdYt = �dBt � (Yt + U 0(Xt))dt; (4.10)and assume that U is C2, and there exist 0 < p < 1 and positive onstants a; b suh that for jxjlarge enough ajxjp�1 � U 0(x) � bjxjp�1: (4.11)The fat that p is less than 1 implies that (Zt)t�0 annot be exponentially ergodi [33, Theorem5.1℄. We now exhibit a drift funtion satisfying (3.10). Consider positive onstants �; � and asmooth positive funtion G suh that for m, 1� p < m � 1, G0(x) = jxjm for large jxj; de�ne atwie ontinuously di�erentiable funtion V � 1 suh that for large x; y,V (x; y) = �(y2=2 + U(x)) + �(G0(x)y + G(x)):By de�nition of A, it holdsAVm(x; y) = 12�2 �2yVm(x; y) + y �xVm(x; y)� (y + U 0(x)) �yVm(x; y)so thatAVm(x; y) = 12��2 + y(�U 0(x) + �G00(x)y + �G0(x))� (y + U 0(x))(�y + �G0(x))= 12��2 + (�G00(x)� �)y2 � �G0(x)U 0(x):21



Fix Æ < 0; sine m � 1, we hoose � small enough so that �G00(x) � � < Æ < 0 for all largex. Furthermore, for all large jxj, G0(x)U 0(x) � bjxjp�1+m. Hene, there exist positive onstantsK;L suh that AVm(x; y) � K � L Vm(x; y) p�1+mm+1 :Condition (3.10) holds with �m(v) / v p�1+mm+1 and p�1+mm+1 < 1. Appliation of the results ofSetion 3.3 now implies that the proess (Zt)t�0 is polynomially-ergodi.Let k � 1 and de�ne a twie ontinuously di�erentiable funtion Vm;k � 1 suh that for largex; y Vm;k(x; y) = V km(x; y):Then for large x; y, the above alulations yieldAVm;k(x; y) = (AVm(x; y))V k�1m (x; y) + 12�2(�yVm(x; y))2V k�2m (x; y)= �AVm(x; y)) + 12�2 (�yVm(x; y))2Vm(x; y) �V k�1m (x; y)� (K 0 � LVm(x; y) p�1+mm+1 )V k�1m (x; y)� K 00 � L0V p�1+mm+1 +k�1mfor some positive onstant K 0; K 00; L0. This inequality is one again the ondition (3.10) with�m;k(v) = v( p�2m+1+k)k�1 . These disussions are summarized in the following Theorem.Theorem 4.7. Let U be a twie ontinuously di�erentiable funtion, lower bounded on R satis-fying (4.11) for some 0 < p < 1. Then (Zt)t�0 is not exponentially ergodi but is polynomiallyergodi : for any m suh that 1� p < m � 1 and any k � 1, the limits (3.5-3.8) hold with Vmkde�ned above, �m;k(v) / v( p�2m+1+k)k�1 , f� = �m;k Æ Vm;k and r�(t) / t k(m+1)2�p �1.Observe that the proess (Zt)t�0 is polynomially ergodi at any order and we strongly believeit is subexponentially ergodi. This sub exponential ase is left to the interested reader. Themultidimensional ase is more intriate in the hoie of the drift funtion and we do not pursuehere in this diretion.This example shows that our onditions are suÆiently exible to onsider the hypoelliptidi�usions as well as the ellipti ones.4.4 Compound Poisson-proess driven Ornstein-Uhlenbek proessIn this setion we onsider an example of Fort-Roberts [11℄ where subgeometri ergodiity anbe ahieved where they only obtain polynomial ergodiity. Let us �rst reall the model. Let Xbe an Ornstein-Uhlenbek proess driven by a �nite rate subordinator:dXt = ��Xt + dZt22



and Zt = PNti=1 Ui, where (Ui)i�1 is a sequene of i.i.d.r.v. with probability measure F , and(Nt) is an independent Poisson proess of rate �. We suppose the reall oeÆient � to bepositive. Remarking that only when F is suÆiently (even extremely) heavy tailed, X fails tobe exponentially ergodi, Fort-Roberts [11℄ give onditions for whih X is polynomially ergodi.Namely, denote G the law of the log jump sizes (G(A) = F (eA)), and assume that for all � > 0,R e�xdG(x) = +1. Lemma 17 of Fort-Roberts then prove that X is not exponentially ergodiand give examples where X is positive reurrent and polynomially ergodi, namely when forsome r > 1, R10 [log(1 + u)℄rF (du) is �nite. Suh assertion may be useful onsideringF (dx) = C�1kx(log(x))kdx k > 1F (dx) = C�1�;e�(log(x))�x dx � � 1:We shall strengthen their result byProposition 4.8. Suppose that (Xt) is aperiodi and that for some Æ < 1, � > 0Z 10 e�(log(1+x))ÆF (dx) <1:Then, the onlusions of Theorem 3.10 hold with V (x) = e�0(logx)Æ0 (and �0 < � if Æ0 = Æ), and�(v) = v(1�Æ0)=Æ0, r�(t) = at�(1+Æ0)ebtÆ0 , f� = � Æ V .Proof. We shall use the drift onditions introdued previously for the generator de�ned byfor all funtions V in the extended domain of the generatorAV (x) = � Z 10 (V (x+ u)� V (x))F (du)� �xV 0(x):Choosing V (x) = (log(x))r, as in Fort-Roberts [11, Lemma 18℄, for suÆiently large x ensuresthe polynomial ergodiity at the previous rate. Consider now V (x) = e�0(logx)Æ0 , so thatAV (x) = � Z 10 (e�0(log(x+u))Æ0 � e�0(logx)Æ0 )F (du)� �0Æ0� e�0(logx)Æ0(log x)1�Æ0� ��02�Æ0�Æ0 V(logV )(1�Æ0)=Æ0 + brealling that for large xe�0(log(x+u))Æ0 � e�0(logx)Æ0 � Æ0 e�0(logx)Æ0(log x)1�Æ0 log(1 + u=x);the dominated onvergene theorem ends the argument.23



5 Skeleton hain and moderate deviationsWe onsider here an important �eld of appliation for this subgeometri rate, namely moderatedeviations for bounded additive funtionals of Markov proess. In fat, Proposition 3.8 givesus more than a way to deal with subexponential ergodiity, it also implies a drift ondition inthe sense of Dou-Fort-Moulines-Soulier [4℄ whih will enables us, at least in a bounded testfuntion framework, to extend to the ontinuous time ase some limit theorems tailored for thesubexponential regime by Dou-Guillin-Moulines [5℄ suh as moderate deviations. Moderatedeviations are onerned with the asymptoti for entered g with respet to � and for 0 � t � Tof S�t = 1p�h(�) Z t0 g(Xs=�)dswhere as � tends to 0, h(�)!1 but p�h(�)! 0, namely a regime between the large deviationsand the entral limit theorem. We may then state (proofs will be done in appendix. )Theorem 5.1. Assume that D(C;V; �;b) holds with supC V <1, and some skeleton hain is -irreduible.(i) For all m > 0, there exist a funtion W : X ! [�(1);1), a small set ~C for the skeletonPm and a positive onstant b0 suh that sup ~CW is �nite, and on X,PmW � W � � ÆW + b01 ~C ; and � Æ V � W � �V:(ii) Assume that X0 is distributed as � and �(V ) <1 and that g is a bounded mapping fromX to Rn with �(g) = 0. Suppose moreover that for all positive alim�!0 1h2(�) log��H�1� �a h(�)p� �� =1then P� (S�� 2 �) satis�es a moderate deviation priniple in C0([0; 1℄;Rn) (the spae of on-tinuous funtions from [0; 1℄ to Rn starting from 0) equipped with the supremum normtopology, with speed 1h2(�) and rate funtion Ihg , i.e. for all Borel set A 2 C0([0; 1℄;Rn)� inf2int(A) Ihg () � lim inf�!0 1h2(�) logP� (S�� 2 A)� lim sup�!0 1h2(�) logP� (S�� 2 A) � � inf2l(A) Ihg ()where Ihg is given byIhg () :=8>><>>: 12 Z 10 sup�2Rn�h _(t); �i � 12�2(hg; �i)�dt if d(t)= _(t)dt; (0)=0;+1 else; (5.1)24



and �2(hg; �i) = limn!1 1nE� �Z n0 g(Xs)ds�2= 2 ZXhg; �i Z 10 Pthg; �idt d�: (5.2)The proof is in Setion A.9.To the authors' knowledge, this moderate deviations result (even for bounded funtion) isthe �rst one for Markov proesses whih are not exponentially ergodi. It extends then resultsof Guillin [15, Th 1.℄ or Wu [33, Th. 2.7℄ in the subexponential setting. As expeted, all rangesof speed are not allowed for suh a theorem but are limited by the ergodiity of the proess (werefer to Dou-Guillin-Moulines [5, Set. 4℄ for a omplete disussion on this interplay). Theextension of this moderate deviation priniple to unbounded funtion is left for further researh,as well as extension to inhomogeneous funtional and averaging priniple, those subjets needingpartiular tools and developments.A ProofsA.1 Proof of Theorem 3.1Lemma A.1. For any M > 0 and for any ad-lag funtion g,lim�!0 bM=�Xk=1 �����Z �k�(k�1)(g(s)� g(tk�1))ds����� = 0: (A.1)Proof. First note that g is bounded sine it is a ad-lag funtion. Let � > 0 be an arbitrary real.For any x 2 [0;M ℄, there exists an interval (x� �; x+ �) suh that8s 2 (x� �; x); jg(s)� g(x�)j < �=2 and 8s 2 [x; x+ �); jg(s)� g(x)j < �=2Thus, for any (u; v) in (x � �; x) � (x � �; x) or in [x; x + �) � [x; x + �), jg(u)� g(v)j � �.By ompaity of [0;M ℄, there exists a �nite number M� of suh intervals (xi � �i; xi + �i)whih overs [0;M ℄. Taking � suÆiently small, it an be easily heked that any interval[�(k� 1); �k℄ is inluded in some interval (xi � �; xi + �). Now, if some xi 2 [�(k� 1); �k℄, writesupu;v2[�(k�1);�k℄ jg(u)� g(v)j � 2 supx2[0;M ℄ jg(x)j. Otherwise, we have supu;v2[�(k�1);�k℄ jg(u)�g(v)j < �. Thus, sine there is at most M� intervals [�(k � 1); �k℄ whih ontain some xi,bM=�Xk=1 �����Z �k�(k�1)(g(s)� g(�(k� 1)))ds����� � 2 supx2[0;M ℄ jg(x)jM��+ �MThe proof follows by letting �! 0 and by noting that � is arbitrary.25



Proof. (Theorem 3.1) Proof of (i) is a diret appliation of the optional sampling theorem for aright ontinuous super-martingale (see e.g. [7, Theorem 2.13 p. 61℄)s 7! V (Xs)� V (X0) + Z s0 � Æ V (Xu)du� b Z s0 1C(Xu)du;with the bounded F -stopping time � = �C(Æ) ^M and by letting M !1. We now prove (ii).Let G(t; u) = H�1� (H�(u) + t)�H�1� (t). Note that�G(t; u)�u = � ÆH�1� (H�(u) + t)�(u) = � ÆH�1� (H�(u) + t)� ÆH�1� (H�(u)) (A.2)�G(t; u)�t = � ÆH�1� (H�(u) + t)� � ÆH�1� (t) (A.3)By log-onavity of �ÆH�1� , for any �xed t, u 7! �G(t;u)�u is non inreasing and thus, for any �xedt, the funtion u 7! G(t; u) is onave.Let � > 0. Write tk = �k andN� = (supfk � 1; tk�1 < �C(Æ)g if �C(Æ) <11 otherwise:Note that by (i), Px(�C(Æ) < 1) = 1. It is straightforward that �C(Æ) � �N� and that �N� is aF -stopping time. This implies that for any M > Æ,Ex "Z �C(Æ)^M0 � ÆH�1� (s)ds#� G(0; V (x)) � lim sup�!0 Ex "Z (�N�)^M0 � ÆH�1� (s)ds#�G(0; V (x))= lim sup�!0 Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#� G(0; V (x))� lim sup�!0 A(�) (A.4)whereM� := bM=�;A(�) := Ex �G(�(N� ^M�); V (X�(N�^M�)))�G(0; V (x))�+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds# :We now bound lim sup�!0A(�). First, write for any � > 0,A(�) = Ex "M�Xk=1 �G(tk; V (Xtk))� G(tk�1; V (Xtk�1))	1�C(Æ)>tk�1#+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#� Ex "M�Xk=1 E �G(tk; V (Xtk))�G(tk�1; V (Xtk�1))��Ftk�1� 1�C(Æ)>tk�1#+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#(A.5)26



where we have used that f�C(Æ) > tk�1g 2 Ftk�1. Moreover, by onavity of u! G(t; u),E �G(tk; V (Xtk)� G(tk�1; V (Xtk�1))��Ftk�1�� �G�u (tk; V (Xtk�1))E �V (Xtk)� V (Xtk�1)��Ftk�1�+ Z tktk�1 �G�t (s; V (Xtk�1))dsReplaing by the expressions of the partial derivatives �G�u and �G�t given in (A.2) and (A.3) andinserting the resulting inequality in (A.5) yields, ombining with D(C;V; �;b)A(�) � Ex "M�Xk=1 � ÆH�1� (H�(V (Xtk�1)) + tk) �R tktk�1 � Æ V (Xs)ds�(V (Xtk�1)) + �! 1�C(Æ)>tk�1#+ b�(1)Ex "Z �(N�^M�)0 � ÆH�1� (s+ �)1C(Xs)ds#Consider the �rst term of the rhs. By Fatou's lemma,lim sup�!0 Ex 24bM=�Xk=1 � ÆH�1� (H�(V (Xtk�1)) + tk) ������R tktk�1 � Æ V (Xs)ds�(V (Xtk�1)) + ������35� Ex 24� ÆH�1� (H�( supt2[0;M ℄V (Xt)) +M) lim sup�!0 bM=�Xk=1 �����R tktk�1f� Æ V (Xs)� � Æ V (Xtk�1)gds�(1) �����35 = 0 ;by applying Lemma A.1 with g(s) := � Æ V (Xs). Thus, using again Fatou's lemma,Ex "Z �C(Æ)^M0 � ÆH�1� (s)ds#�G(0; V (x))� lim sup�!0 A(�) � b�(1) lim sup�!0 Ex "Z �(N�^M�)0 � ÆH�1� (s+ �)1C(Xs)ds#� b�(1)Ex �Z M0 � ÆH�1� (s)1C(Xs)�lim sup�!0 1s��N�<�C(Æ)+��ds�= b�(1)Ex �Z M0 � ÆH�1� (s)1C(Xs)1s��C(Æ)ds� = b�(1) Z Æ0 � ÆH�1� (s)dsThe proof follows by letting M !1.A.2 Proof of Proposition 3.4The  -irreduibility results from [21, Theorem 1.1℄. Under the stated assumptions, there existsa �nite onstant b0 suh that RV (x) � V (x) + b0 where R denotes the resolvent for the proessR(x; dy) = R exp(�t)P t(x; dy)dt. This shows that the set fV <1g is absorbing for the R-hain,27



and sine R is  -irreduible, it is full or empty [22, Proposition 4.2.3℄. Sine C � fV < 1g,this set is full.Let B be a losed aessible petite set, the existene of whih is proved in [21, Proposition 3.2(i)℄.Sine B is aessible, there exists t0 and  > 0 suh that infx2C Px (�B � t0) � . Observe indeedthat we an assume without loss of generality that C is �a-petite for some maximal irreduibilitymeasure �a [21, Proposition 3.2℄. Hene0 < �a(B) � Px (X� 2 B) � Px (X� 2 B; � � t0) +Px (� > t0) � Px (�B � t0) +P(� > t0) ;where � � a(dt) is independent of the proess. Choose t0 suh that P(� > t0) � 0:5�a(B) andthe existene of  follows. In the proof of [21, Proposition 4.1℄, it is shown that for all Æ > 0,there exists a onstant  <1 suh that for all x 2 X,Ex [�B℄ � Ex [�C(Æ)℄ + :Hene, by Theorem 3.1, there exists a onstant  < 1 suh that Ex [�B℄ � V (x). This impliesthat the level sets Bn = fV � ng are petite (see the proof of [21, Proposition 4.2℄).Sine fV < 1g is full, [nBn is full. This implies Bn is aessible for n large enough, andC � Bn� for some (and thus all) n� � supC V . Finally, sine �a is a regular measure, thereexists a ompat set B suh that C � B � Bn� and �a(B) > 0. This onludes the proof.A.3 Proof of Proposition 3.5We an assume without loss of generality that r 2 �0 and we will do so.By [11, Lemma 20℄, there exists a onstant � <1 suh thatGC(x; f; r; t)� �bt=Æ GC(x; f; r; Æ): (A.6)Sine supC GC(x; f; r; Æ) < 1, that for all for all t > 0, Mt = supC GC(x; f; r; t) < 1. Let t0be suh that for some  > 0, infx2C Px(�B � t0) �  > 0 (suh onstants always exist, see theproof of Proposition 3.4).Let �k be the kth-iterate of � = �C(t0)�k = �k�1 + � Æ ��k�1 ; k � 2;where � is the usual shift operator. De�ne for n � 2, the f0; 1g-valued random variables (un)nby un = 1 i� �B Æ ��n�1 � t0. Then by de�nition, un 2 F�n and Px (un = 1jF�n�1) �  > 0.Finally, set � = inffn � 2; un = 1g. Then it holdsGB(x; f; r; t0) � Ex �Z ��0 r(s)f(Xs) ds� �Xn�2 Ex �Z �n0 r(s)f(Xs) ds 1��n� :De�ne for all n � 2,ax(n) = Ex "Z �n�10 r(s)f(Xs) ds 1��n# ; bx(n) = Ex �r(�n�1) 1��n� :28



Then by the strong Markov property and the property r(s + t) � r(s)r(t) for all s; t � 0, wehave GB(x; f; r; t0) �Xn�2 (ax(n) +Mt0 bx(n)) :Following the same lines as in the proof of [26, Lemma 3.1℄, it may be proved that for all n � 3bx(n) � � bx(n� 1) +  (1� )n�1; ax(n) � (1� ) ax(n� 1) +M bx(n� 1);for some positive onstants  < 1 and � < 1. This proves that there exists a onstant  < 1suh that GB(x; f; r; t0) �  GC(x; f; r; t0). By (A.6), there exists a onstant t0 suh thatGB(x; f; r; t0) � t0 GC(x; f; r; Æ). This implies that supx2C GB(x; f; r; t0) < 1. Finally, for alln � 1 we writeGB(x; f; r; t0+ nt0) � Ex "Z �B(t0)Æ��nC (t0)+�nC(t0)0 r(s)f(Xs) ds#� Ex "Z �nC(t0)0 r(s)f(Xs) ds#+ Ex "r (�nC(t0)) EX�nC (t0) "Z �B(t0)0 r(s) f(Xs) ds##� Ex "Z �nC(t0)0 r(s)f(Xs) ds#+ supx2CGB(x; f; r; t0) Ex [r (�nC(t0))℄ :Sine f � 1 and limt!1 r(t)= R t0 r(s)ds = 0 for all r 2 �0, there exists a onstant  < 1 suhthat for all n large enoughGB(x; f; r; t0+ nt0) �  Ex "Z �nC(t0)0 r(s)f(Xs) ds# :As in the proof of [11, Lemma 20℄ (see also [21, Lemma 4.1℄ for a similar alulation), the termin the right hand side is upper bounded by nt0 GC(x; f; r; Æ) and this onludes the proof.A.4 Proof of Proposition 3.7We prove that (i) and (ii) are equivalent. That (ii) implies (i) is trivial. For the onverseimpliation, we start with proving that fx 2 X; GC(x; f; r; Æ) < 1g is full. This an be donefollowing the same lines as the proof of [21, Proposition 4.2℄ upon noting that (a) by [11, Lemma20℄, there exists M < 1 suh that for all t � 0, GC(x; f; r; Æ+ t) � GC(x; f; r; Æ) +M t; (b) wean assume that C is �a-petite for some maximal irreduibility measure �a and a distribution asuh that R M ta(dt) < 1 ([21, Proposition 3.2(ii)℄). Proposition 3.5 now implies that the setsCn = fx 2 X; GC(x; f; r; Æ)� ng are (f; r)-regular and thus petite ([21, Proposition 4.2(i)℄). Asin the proof of Proposition 3.4, we thus dedue that there exists a (f; r)-regular set, whih ispetite, losed and aessible.We have just proved that under (i), the sets Cn are (f; r)-regular petite sets and [nCn is full.29



This shows that (i) ) (iii).We �nally prove that (iii) ) (ii). Sine  ([nCn) > 0, Cn � Cn+1 and  is regular, there existsn� and a ompat set A suh that A � Cn� and  (A) > 0. Hene, A is aessible; furthermore,it is (f; r)-regular (and thus petite) as a subset of a (f; r)-regular set.A.5 Proof of Proposition 3.8(i) We �rst prove thatEx 24Tm;B^MXk=0 � Æ V (Xmk)35 � m�1Ex "Z m(Tm;B^M)0 f� Æ V (Xs) ds#+ b�0(1) Ex [m(Tm;B ^M)℄ :(A.7)where M is any positive real number. WriteEx0�Tm;B^MXk=1 � Æ V (Xmk)1A� Ex �Z Tm;B^M0 � Æ V (Xms)ds�= Ex  1Xk=1 �Z kk�1f� Æ V (Xmk)� � Æ V (Xms)gds�1k�Tm;B^M!� Ex  1Xk=1 �Z kk�1f�0 Æ V (Xms)(V (Xmk)� V (Xms))gds�1k�Tm;B^M!� 1Xk=1 Z kk�1 Ex �Ex (V (Xmk)� V (Xms)j Fms)�0 Æ V (Xms)1k�Tm;B^M�ds� b�0(1)Ex " 1Xk=1 Z kk�1 Z kmsm 1C(Xu)du ds 1k�Tm;B^M# = b�0(1)Ex "Z m(Tm;B^M)0 1C(Xu)du#� b�0(1)Ex [m(Tm;B ^M)℄ :Finally, Ex �Z Tm;B^M0 � Æ V (Xms)ds� = m�1 Ex "Z m(Tm;B^M)0 � Æ V (Xs)ds# ;and (A.7) is established. The drift ondition D(C;V; �;b) and the optional sampling theoremimply Ex "Z m(Tm;B^M)0 � Æ V (Xs)ds# � V (x) + b Ex [m(Tm;B ^M)℄ : (A.8)Combining (A.7) and (A.8) yieldsEx 24Tm;B^MXk=0 � Æ V (Xmk)35 � m�1V (x) +  Ex [Tm;B ^M ℄ ;30



for some �nite onstant . Sine supC V <1, by Proposition 3.4 and Theorem 3.1, there exista losed aessible petite set A and for all Æ > 0, a �nite onstant Æ suh thatEx [�A(Æ)℄ � Æ V (x); supA V <1:Furthermore, under the stated assumptions, the proess is positive Harris-reurrent [21, Theorem1.2℄ and sine some skeleton is irreduible, there exists a maximal irreduibility measure � andt0 > 0 suh that infx2A inf t�t0 P t(x; �) � �(�) ([23, Proposition 6.1℄ and [21, Proposition 3.2(ii)℄).Hene, there exists  > 0 suh that infx2A inf t0�t�t0+mPx (Xt 2 B) � . Following the samelines as in the proof of [11, Proposition 22(ii)℄, it may be proved that Ex [Tm;B℄ � 0V (x) forsome onstant 0 <1, thus onluding the proof.(ii) Sine r� = � ÆH�1� is inreasing,Ex 24Tm;B�1Xk=0 r�(km)35 � �(1) + Ex �Z mTm;B0 r�(s)ds� :As in the previous ase, we show that infx2A inf t0�t�t0+mPx (Xt 2 B) �  > 0 for some losedaessible petite set A. The result now follows from [11, Proposition 22(ii)℄ (with a minormodi�ation : the authors laim that Tm;B � �� while we have mTm;B � ��A) and Theorem 3.1.A.6 Proof of Theorem 3.10The theorem is a onsequene of [11, Theorem 1℄ and of results by Tuominen and Tweedie [31℄on disrete time Markov hains. We nevertheless have all the ingredients in this paper to rewritethe proof of [11, Theorem 1℄ in few lines. For ease of the proof of the new results, we start withthis onise proof.Let Pm be the irreduible skeleton. We an assume without loss of generality that 	1 Æ r� 2 �0,	1 Æ r� � 1 and 	2 Æ f� � 1, and we do so. Write t = km + u for some 0 � u < m and a non-negative integer k. Sine 	1 Æ r� 2 �0 and is a non-dereasing rate funtion, 	1 Æ r�(km+ u) �	1 Æ r�(km) 	1 Æ r�(m). Furthermore, if jgj � 	2 Æ f�, upon noting that 	2 and � are non-dereasing onave funtionsPujgj � Pu(	2 Æ � Æ V ) � 	2 Æ � (PuV ) � 	2 Æ � (V + bm) � 	2(f�) +mb�0(1) �  	2(f�);where we used that by (3.1), PuV � V + bu. Hene, there exists a �nite onstant  suh that	1 Æ r�(t) kP t(x; �)� �(�)k	2Æf� �  	1 Æ r�(km) kP km(x; �)� �(�)k	2Æf�: (A.9)By Proposition 3.4, there exists a V -level set A = fV � ng whih is aessible and petite forthe proess. Hene, under the stated assumptions, there exist t0 and a maximal irreduibilitymeasure  suh that inf t�t0 infx2A P t(x; �) �  (�) ([23, Proposition 6.1℄ and [21, Proposition31



3.2(ii)℄). This implies that A is petite and aessible for the m-skeleton and Pm is aperiodi.Furthermore, by Proposition 3.8 and the inequality (3.3),supA Ex 24Tm;A�1Xj=0 	1 Æ r�(jm) 	2 Æ f�(Xjm)35 <1: (A.10)We now have all the ingredients to dedue (3.5) to (3.8) from known results on disrete-timeMarkov hains. Eq. (3.5) results from [31, Theorem 4.1, Eq(36)℄ while (3.6) is established in theproof of [31, Theorem 4.1℄. (3.7) is a onsequene of [31, Theorem 4.2℄. Sine �[	1 Æ r�℄ 2 �0(and thus is non-dereasing), there exists a �nite onstant  suh that for all 0 � juj � m,�[	1 Æ r�℄(km+ u) � �[	1 Æ r�℄(km� u) � m�1 Z kmkm�m �[	1 Æ r�℄(s) ds� m�1f[	1 Æ r�℄(km)� [	1 Æ r�℄(km�m)g = m�1f�[	1 Æ r�℄(km)g;where for a rate funtion r de�ned on the non-negative integers, we assoiate a sequene �rde�ned by �r(0) = r(0) and �r(k) = r(k)� r(k � 1), k � 1. Thus, there exists  < 1 suhthat �[	1 Æ r�℄(t) kP t(x; �)� �(�)k	2Æf� �  �[	1 Æ r�℄(km) kP km(x; �)� �(�)k	2Æf� :Under the stated assumptions, f�[	1 Ær�℄(km)gk is a subgeometri rate funtion de�ned on theintegers (see e.g. the lass � in [31℄). Observe indeed thatln �[	1 Æ r�℄(km)km � ln�m�1 R (k+1)mkm �[	1 Æ r�℄(s) ds�km = ln �m�1�[	1 Æ r�℄(km+m)�km� ln �[	1 Æ r�℄((k+ 1)m)� lnm(k + 1)m (k + 1)mkm :Sine �[	1 Æ r�℄ 2 �0, the disrete rate funtion f�[	1 Æ r�℄(km)gk is equivalent to the disreterate funtion f�[	1 Æ r�℄(km)gk whih is in the lass �0 de�ned e.g. in [31℄. (3.8) now followsfrom [31, Theorem 4.3℄.A.7 Proof of Theorem 3.11Sine V 2 D(A), there exists an inreasing sequene Tn " 1 of Ft-stopping times suh thatfor any n, t 7! V (Xt^Tn) � V (X0) � R t^Tn0 AV (Xs)ds is a Px-martingale. Denote a+ = a _ 0.We have (AV )+(x) � b1C(x) and thus Ex(R t^Tn0 (AV )+(Xs))ds < 1 whih ensures that thequantity Ex(R t^Tn0 AV (Xs))ds is well de�ned. This implies that0 � Ex(V (Xt^Tn)) = V (x) + Ex �Z t^Tn0 AV (Xs)ds� � V (x) + bEx �Z t^Tn0 1C(Xs)ds� <1:32



This allows to writeEx(V (Xt^Tn)) + Ex �Z t^Tn0 � Æ V (Xs)ds� = V (x) + Ex �Z t^Tn0 [AV (Xs) + � Æ V (Xs)℄ds�� V (x) + bEx �Z t^Tn0 1C(Xs)ds� :The previous inequality ensures in partiular, by monotone onvergene theorem, that Ex �R t0 � Æ V (Xs)ds� <1. The proof is now ompleted by noting thatEx(V (Xt)) = Ex(lim infn V (Xt^Tn)) � lim infn Ex(V (Xt^Tn))� lim infn �V (x)� Ex �Z t^Tn0 � Æ V (Xs)ds�+ bEx �Z t^Tn0 1C(Xs)ds��= V (x)� Ex �Z t0 � Æ V (Xs)ds�+ bEx �Z t0 1C(Xs)ds�where the last equality follows from monotone onvergene.A.8 Proof of Theorem 3.12We �rst prove (i). It is straightforward that sine C is petite for the resolvent kernel, it is alsopetite for the Markov proess assoiated to the semi group Pt. Now, by de�nition, we haveEx(R�V (Xu)) = Z 10 �e��vP v+u(x; V )dv = e�uR�V (x)� e�u Z u0 �e��vP v(x; V )dv : (A.11)This implies thatEx �Z s0 �(R�V (Xu)� V (Xu))du�= Z s0 �e�uR�V (x)du� Z s0 �e�u Z u0 �e��vP v(x; V )dv�du� � Z s0 Pu(x; V )du= (e�s � 1)R�V (x)� Z s0 �Z sv �e�udu� e��vP v(x; V )dv � � Z s0 Pu(x; V )du= (e�s � 1)R�V (x)� e�s Z s0 �e��vP v(x; V )dv = Ex(R�V (Xs))�R�V (x) (A.12)Moreover, if �D(C;V; �;b; �) holds then,Ex �Z s0 �(R�V (Xu)� V (Xu))du� � �Ex �Z s0 �� Æ V (Xu)du�+�bEx �Z s0 1C(Xu)du� (A.13)33



Combining (A.12) and (A.13) yields (i). Now, onsider (ii). By [21, Theorem 2.3 (i) andProposition 4.4 (ii)℄ and Theorem 3.1, there exist positive onstants Æ; 1 and 2 suh that forany x 2 X,�Ex " ��CXk=1 � Æ V ( �Xk)# � GC(x; � Æ V; 1; Æ) + 1 supx2CGC(x; � Æ V; 1; Æ)� V (x) + 2where ( �Xk)k is a Markov hain with transition kernel R�, ��C = inffk � 1 : �Xk 2 Cg and �Exis the expetation assoiated to �Px the probability indued by the Markov hain ( �Xk)k. WriteW (x) = �Ex �P��Ck=0 � Æ V ( �Xk)� and �x � > 0 small enough so that 0 � supu�1 �(u)� �u < 1.This implies that there exists some onstant  suh thatW (x) � (1 + �)V (x) + ; x 2 X:Let �C = fx 2 X : W (x) � supC � Æ V + Ag where A is a positive number suh that (supC � ÆV + A � )=(1 + �) � 1. Note that C � �C sine if x 2 C, W (x) = � Æ V (x) � supC � Æ V andthus, x 2 �C. This implies that for all x 62 �C,R�W (x) = W (x)� � Æ V (x) � W (x)� �� ÆW (x) ; (A.14)with �� is a non dereasing di�erentiable onave funtion suh that ��(u) = ��u�1+�� for u �supC � Æ V + A. Moreover, for all x 2 �C,R�W (x)�W (x) + �� ÆW (x) � sup�C (�Ex " ��CXk=1� Æ V ( �Xk)#+ � Æ V (x))� sup�C fV (x) + 2 + � Æ V (x)g : (A.15)Sine � Æ V � W on X, V and � Æ V are �nite on �C. By (A.14) and (A.15), there exists aonstant �b suh that for all x 2 X,R�W � W � �� ÆW + �b1 �C :Moreover, we have by straightforward algebra limt r��(t)[r�((1 + �)t)℄�1 = 1 + �. It remains tohek that �C is petite w.r.t. R�. Sine �C is inluded in some set fV � ng whih is petite w.r.t.the semi group Pt, we have that �C is petite w.r.t. the semi group Pt whih implies by [21,Proposition 3.2℄ that �C is petite w.r.t the Markov transition kernel R�. The proof is ompleted.A.9 Proof of Theorem 5.1(i) We �rst prove that PmW � W � � Æ W + b01C : This a onsequene of Proposition 3.8and Theorem 14.2.3 (ii) in Meyn-Tweedie [22℄. Indeed, sine supC V < 1, (i) shows that34



supx2C Ex hPTm;C�1k=0 � Æ V (Xkm)i < 1. De�ne �m;C = inffk � 0; Xmk 2 Cg and set W (x) =Ex �P�m;Ck=0 � Æ V (Xkm)�. Then the funtion W satis�es the onditions (see [22, Chapter 14℄).As disussed in the proof of Theorem 3.10, for all n � n� the level sets fV � ng are aessibleand petite for the skeleton hain Pm. As a onsequene, either supC V � n� and we may replaeC by fV � n�g in the previous drift inequality, or supC V � n� and we hoose ~C = C.(ii) The Moderate deviations priniple (or MDP) omes from a deomposition into bloks anda return to the disrete time ase. Assume that m = 1 whih an be done without loss ofgenerality. In fat, by (i), the Markov hain (�k := X[k;k+1[)k2N with probability transition Q issubgeometrially ergodi with the invariant probability measure ~� = P�jF1 and satis�es A1-A2in the terminology of Dou-Guillin-Moulines [5℄. Then, we may write (denoting the integer partby b�) S�t = 1p�h(�) Z t0 g(Xs=�)ds= p�h(�) Z t=�0 g(Xs)ds= p�h(�) bt=��1Xk=0 Z k+1k g(Xs)ds+ p�h(�) Z t=�bt=� g(Xs)ds= p�h(�) bt=��1Xk=0 G(�k) + p�h(�) Z t=�bt=� g(Xs)dswhere G is obviously a bounded mapping with values in Rn. By the boundedness of g, it is easyto see that the seond term is exponentially negligible in the sense of moderate deviations, andthus S�t and p�h(�)Pbt=��1k=0 G(�k) are exponentially equivalent, and share the same MDP.Note now that by Theorem 7 of Dou-Guillin-Moulines [5℄, under the subgeometri ergodiityof (�k) and the ondition on the speed, p�h(�)Pbt=��1k=0 G(�k) satis�es a MDP with speed 1h2(�)and rate funtion~Ihg () = 8>><>>: 12 Z 10 sup�2Rd�h _(t); �i � 12 ~�2(hG; �i)�dt if d(t)=_(t)dt; (0)=0;+1 else;where ~�2(hG; �i) = limn!1 1nE�  n�1Xk=0G(�k)!2 :On the other hand, by the subexponential ergodiity, the boundedness of g and E� hg; �i = 0,35
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