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1 Introdu
tionIn the present paper, we study the re
urren
e of 
ontinuous-time Markov pro
esses. More pre-
isely, we provide a 
riterion that yields a pre
ise 
ontrol of a subgeometri
 moment of thereturn-time to a test-set. The obtained result permits further quantitative analysis of 
hara
-teristi
s su
h as the regularity of the pro
ess, the rate of 
onvergen
e to the stationary state,and a moderate deviation prin
iple.The stability and ergodi
 theory of 
ontinuous-time Markov pro
esses has a large literaturewhi
h is mainly devoted to the geometri
 
ase (also referred to as the exponential 
ase). Meynand Tweedie developed stability 
on
epts for 
ontinuous-time Markov pro
esses as well as sim-ple 
riteria for non-explosivity, non-evanes
en
e, Harris-re
urren
e, positive Harris-re
urren
e,ergodi
ity and geometri
 ergodi
ity [21, 23, 24℄. Of parti
ular importan
e in a
tually applyingthese 
on
epts is the existen
e of veri�able 
onditions. In the dis
rete-time 
ontext, developmentof Foster-Lyapunov type 
onditions on the transition kernel has provided su
h 
riteria (e.g. [22℄).In the 
ontinuous-time 
ontext, Foster-Lyapunov inequalities applied to the generator of the pro-
ess play the same role. These 
riteria were su

essfully applied to the study of the solution tosto
hasti
 di�erential equations (see [16℄ and more re
ently, [14℄ and referen
es therein). Resultsrelative to rates of 
onvergen
e slower than geometri
 are not so well established. In [32, 20℄(resp. [34℄), polynomial and sub-exponential ergodi
ity of sto
hasti
 di�erential equations (resp.sub-exponential ergodi
ity of queuing models) are addressed, but these results are quite model-spe
i�
. Fort and Roberts [11℄ are, to our best knowledge, the �rst to study the subgeometri
ergodi
ity of general strong Markov pro
esses. Their 
onditions are in terms of subgeomet-ri
 moment of the return-time to a test-set. Fort and Roberts derive nested drift inequalitieson the generator of the pro
ess that makes the result of pra
ti
al interest in the polynomial 
ase.One of the appli
ation of the 
ondition we derive in the present paper makes the Fort-Roberts's theory appli
able for more general subgeometri
 rates su
h as the logarithmi
 or thesubexponential ones. It also provides 
riteria for the (f; r)-regularity of a pro
ess, a 
hara
teristi
whi
h is an extension of the regularity 
on
ept [23℄. We obtain theoreti
al results that areanalogous to those in the dis
rete-time 
ase [31℄. We then relate our 
ondition to a 
riterionbased on the generator of the pro
ess. This 
riterion is the natural analogue of the Foster-Lyapunov 
ondition for the geometri
 
ase; it also provides a single drift 
ondition that generatesthe set of nested drift 
onditions by Fort-Roberts [11℄ for the polynomial 
ase. Furthermore, itis analogous to the dis
rete-time version re
ently proposed by Dou
-Fort-Moulines-Soulier [4℄.In the literature, one approa
h for the theory of 
ontinuous-time Markov pro
ess is through theuse of asso
iated dis
rete-time 
hains : the resolvent 
hains and/or a skeleton 
hain. We dis
usshow our 
ondition is related to a subgeometri
 drift inequality for these dis
rete-time Markov
hains. As a 
onsequen
e, we state new limit theorems su
h as moderate deviations for integralof bounded fun
tionals, thus weakening the 
onditions derived in Guillin-Wu [15, 33℄.Our 
onditions are then su

essfully applied to various non trivial models: (a) we �rst 
on-2



sider ellipti
 sto
hasti
 di�erential equations for whi
h 
onditions on the drift fun
tion enableus to generalize results by Veretennikov [32℄, Ganidis-Roynette-Simonot [12℄ or Malyshkin [20℄(see also Pardoux-Veretennikov [27℄ for a study of the regularity of the solution of the Poissonequation under this drift 
ondition); (b) we then study a "
old" Langevin tempered di�usionwhen the invariant target distribution is subexponential in the tails. This model is parti
u-larly useful in Markov Chain Monte Carlo method. Di�erent regime of ergodi
ity (polynomial,subexponential or exponential) depending on the 
oldness of the di�usion term are exhibited,the di�erent regimes are then 
hara
terized by the invariant target distribution. This studygeneralizes the Fort-Roberts' results, whi
h 
onsider the 
ase when the target density is polyno-mial in the tails [11℄; (
) we also give a toy hypoellipti
 example, namely a sto
hasti
 dampingHamiltonian system, in the 
ase when it 
annot be geometri
ally ergodi
. This model is shownto be polynomially ergodi
 (see Wu [33℄ for the exponential 
ase); (d) we �nally 
onsider a sim-ple 
ompound Poisson-pro
ess driven Ornstein-Uhlenbe
k pro
ess (relevant for re
ent studies in�nan
ial e
onometri
s) with heavy tailed jump. It is shown to be subgeometri
ally ergodi
.Our approa
h may be 
onsidered as a probabilisti
 one. There are another ways to getsubexponential rates of 
onvergen
e (in total variation norm, in L2 or in entropy) su
h asthose based on spe
tral te
hniques (as in [12℄), or on fun
tional inequalities (weak Poin
ar�einequalities [29℄ or weak logarithmi
 Sobolev inequalities [1℄). These results are however noteasy to 
ompare to ours and we postpone a 
omparative utilization of these approa
hes tofurther resear
h.Let us �nally present the organization of the paper. Se
tion 2 re
alls basi
 de�nitions onMarkov pro
esses. The main results are given in Se
tion 3. All the proofs are postponed inappendix. Se
tion 4 is devoted to the examples and Se
tion 5 to a new moderate deviationprin
iple.2 De�nitionsLet (
;F ; (Ft)t�0; (Xt)t�0; (Px)x2X) be a Markov family on a lo
ally 
ompa
t and separablemetri
 spa
e X endowed with its Borel �-�eld B(X) : (
;F) is a measurable spa
e, (Xt)t�0 is aMarkov pro
ess with respe
t to the �ltration (Ft)t�0 and Px (resp. Ex) denotes the 
anoni
alprobability (resp. expe
tation) asso
iated to the Markov pro
ess with initial distribution thepoint mass at x. Throughout this paper, the pro
ess is assumed to be a time-homogeneousstrong Markov pro
ess with 
ad-lag paths, and we denote by (Pt)t�0 the asso
iated transitionfun
tion on (X;B(X)).Let �0 denote the 
lass of the measurable and nonde
reasing fun
tions r : [0;+1)! [2;+1)su
h that log r(t)=t # 0 as t ! +1. Let � denote the 
lass of positive measurable fun
tions �r,su
h that for some r 2 �0, 0 < lim inft �r(t)r(t) � lim supt �r(t)r(t) <1:3



� is the 
lass of the subgeometri
 rate fun
tions and examples of fun
tions �r 2 � are�r(t) = t� (log t)� exp(
tÆ)for 0 < Æ < 1 and either 
 > 0, or 
 = 0 and � > 0, or 
 = � = 0 and � � 0. We are ultimatelyinterested in 
onditions implying that for all x 2 Xlimt!+1 r(t) kP t(x; �)� �(�)kf = 0; (2.1)where r 2 �, � is the (unique) invariant distribution of the pro
ess i.e. �P t = � for allt � 0, and for a signed measure �, k�kf = supjgj�f j�(g)j where f : X ! [1;1) is a measurablefun
tion. When f is the 
onstant fun
tion 1 (1(t) = 1, t � 0), the f -norm is nothing more thanthe total variation norm.To that goal, we will need di�erent notions of regularity and stability of 
ontinuous-time Markovpro
esses and we brie
y re
all some basi
 de�nitions. The pro
ess is �-irredu
ible for some�-�nite measure � on B(X) if �(A) > 0 implies Ex �R10 1A(Xs) ds� > 0 for all x 2 X. A�-irredu
ible pro
ess possesses a maximal irredu
ibility measure  su
h that � is absolutely
ontinuous with respe
t to  for any other irredu
ibility measure � [25℄. Maximal irredu
ibilitymeasures are not unique and are equivalent. A set A 2 B(X) su
h that  (A) > 0 for somemaximal irredu
ibility measure is said a

essible; and full if  (A
) = 0. A measurable set C is�a-petite (or simply petite) if there exist a probability measure a on the Borel �-�eld of [0;+1)and a non-trivial �-�nite measure �a on B(X) su
h that8x 2 C; Z +10 P t(x; �) a(dt) � �a(�):For a  -irredu
ible pro
ess, an a

essible 
losed petite set always exists [21℄. A pro
ess is Harris-re
urrent if, for some �-�nite measure �, �(A) > 0 implies that the event fR10 1A(Xs)ds =1gholds Px-a.s. for all x 2 X. Harris-re
urren
e trivially implies �-irredu
ibility. A Harris-re
urrentright pro
ess possesses an invariant measure � [13℄; if � is an invariant probability distribution,the pro
ess is 
alled positive Harris-re
urrent. A �-irredu
ible pro
ess is aperiodi
 if there existsan a

essible �Æm -petite set C and t0 su
h that for all x 2 C; t � t0; P t(x; C) > 0. A suÆ-
ient 
ondition for a positive Harris-re
urrent pro
ess to be aperiodi
 is the existen
e of some�-irredu
ible skeleton 
hain [23℄; re
all that a skeleton Pm (m > 0) is said �-irredu
ible if thereexists a �-�nite measure � su
h that �(A) > 0 implies 8x 2 X, 9k 2 N, P km(x;A) > 0 [22℄.A  -irredu
ible and aperiodi
 Markov pro
ess that veri�es (2.1) is said f -ergodi
 at a subge-ometri
 rate (or simply f -ergodi
 when r = 1). When r is of the form r(t) = �t for some� > 1, the pro
ess is said f -ergodi
 at a geometri
 rate. In the literature, 
riteria for thestability of Markov pro
esses, when stability is 
ou
hed in terms of Harris-re
urren
e, positiveHarris-re
urren
e, f -ergodi
ity, with in this latter 
ase, a mention of the rate of 
onvergen
e,are expressed in terms of hitting-times of some 
losed petite set. For any Æ > 0 and any 
losedset C 2 B(X), let �C(Æ) = infft � Æ;Xt 2 Cg;4



be the hitting-time on C delayed by Æ and de�ne its (f; r)-modulated momentGC(x; f; r; Æ) = Ex "Z �C(Æ)0 r(s) f(Xs) ds# ;where f : X ! [1;1) is a measurable fun
tion and r : [0;+1) ! (0;+1) is a rate fun
tion.When f = 1 (resp. r = 1), this moment is simply 
alled the r-modulated (resp. f -modulated)moment. Following dis
rete-time usage [22, 31, 17℄, we 
all a measurable set C (f; r)-regular ifsupx2CGB(x; f; r; Æ)<1;for all Æ > 0 and all a

essible setB. Criteria for Harris-re
urren
e and positive Harris-re
urren
e
an be found in [21, Theorems 1.1 and 1.2℄; ergodi
ity and f -ergodi
ity are addressed in [23,Theorems 6.1 and 7.2℄; 
riteria for geometri
 f -ergodi
ity at a geometri
 rate (resp. at a subge-ometri
 rate) are provided by [6, Theorem 7.4℄ (resp. [11, Theorem 1℄). A short review of thesenotions and results 
an be found in [11℄.In many appli
ations, these moments 
an not be expli
itly 
al
ulated; a se
ond set of 
riteriabased on the extended generator were thus derived for some of the stability properties above.We postpone to Se
tion 3.4 a review of the existing 
onditions.3 Main resultsLet us 
onsider the following drift 
ondition towards a 
losed petite set C.D(C;V; �;b): There exist a 
losed petite set C, a 
ad-lag fun
tion V : X ! [1;1), anin
reasing di�erentiable 
on
ave positive fun
tion � : [1;1) ! (0;1) and a 
onstantb <1 su
h that for any s � 0, x 2 X,Ex [V (Xs)℄ + Ex �Z s0 � Æ V (Xu)du� � V (x) + b Ex �Z s0 1C(Xu)du� : (3.1)Note that (3.1) is equivalent to the 
ondition that the fun
tionals 7! V (Xs)� V (X0) + Z s0 � Æ V (Xu)du� b Z s0 1C(Xu)duis, for all x 2 X, a Px-supermartingale with respe
t to the �ltration (Ft)t�0.The main result of Se
tion 3.1 is Theorem 3.1 that states that this drift 
ondition allowsthe 
al
ulation of an upper bound for some r-modulated moment where r 2 �, and for somef -modulated moment, f � 1. Using interpolating inequalities, we obtain (f; r)-modulatedmoments for a wide family of pairs (f; r). Se
tion 3.2 is devoted to (f; r)-regularity : the mainresult of this se
tion is Proposition 3.7 that identi�es (f; r)-regular sets from the 
ondition5



D(C;V; �;b). In Se
tion 3.3, we show that the drift 
ondition D(C;V; �;b) provides a simplesuÆ
ient 
ondition for an aperiodi
 strong Markov pro
ess to be f -ergodi
 at a subgeometri
rate : the main result is Theorem 3.10 that builds on the work by Fort and Roberts [11℄. Weprovide in Se
tion 3.4 a 
ondition 
ou
hed in terms of the extended generators that implies thedrift inequality D(C;V; �;b). This 
ondition generalizes the 
ondition in [11, Proposition 6℄that restri
ts to the polynomial 
ase, and reveals of great interest in many appli
ations. Wepresent in Se
tion 3.5 the interplay between a drift 
ondition on the resolvent kernel and thedrift 
ondition D(C;V; �;b).All the proofs are given in Appendix A.3.1 Modulated momentsWe show that D(C;V; �;b) is a simple 
ondition that allows the 
ontrol of f -modulated mo-ments and r-modulated moments, for a general rate fun
tion r 2 �, of the delayed hitting-time�C(Æ). Let H�(u) = Z u1 ds�(s) ; u � 1 :Theorem 3.1. Assume D(C;V; �;b).i) For all x 2 X and Æ > 0,Ex "Z �C(Æ)0 � Æ V (Xs) ds# � V (x)� 1 + bÆ :ii) For all x 2 X and Æ > 0,Ex "Z �C(Æ)0 � ÆH�1� (s) ds# � V (x)� 1 + b�(1) Z Æ0 � ÆH�1� (s)ds :The proof of Theorem 3.1 does not require C to be petite. Nevertheless, this petitenessproperty will be 
ru
ial in all the following results: we will see that this assumption allows theextension of the above 
ontrols to those of modulated moments �B(Æ) for any a

essible setB. Theorem 3.1 gives the largest f -modulated and r-modulated moments of �C(Æ) that 
anbe dedu
ed from D(C;V; �;b). Interpolated (f; rf)-modulated moments of �C(Æ) 
an easily beobtained for a wide family of fun
tions 1 � f � f� (and, equivalently, a wide family of ratefun
tions r(s) � r�(s)) wheref� = � Æ V; r�(s) = � ÆH�1� (s): (3.2)To that goal, we follow the same lines as in [4℄ and [11℄ and introdu
e the pairs of Young'sfun
tions (H1; H2) that, by de�nition, satisfy the propertyx y � H1(x) +H2(y); 8x; y � 0; (3.3)6



and are invertible (see e.g [19, Chapter 1℄). Let I be the pairs of inverse Young's fun
tionsaugmented with the pairs (Id; 1) and (1; Id). Examples of pairs (H1; H2) are given in [4℄ and[11℄ while a general 
onstru
tion 
an be found in [19, Chapter 1℄. Corollary 3.2 trivially resultsfrom Theorem 3.1 and Eq. (3.3).Corollary 3.2. Assume D(C;V; �;b). For any pairs (	1;	2) 2 I and all Æ > 0,Ex "Z �C(Æ)0 	1 (r�(s)) 	2 (f�(Xs)) ds# � 2(V (x)� 1) + b Z Æ0 �1 + r�(s)r�(0)�ds:For two pairs (	1;	2) and (	01;	02) in I, if 	1(x) � 	01(x) for all large x, then 	2(y) � 	02(y)for all large y [19, Theorem 1.2.1℄. This shows that the rate 	1 (r�(�)) and the fun
tion 	2 (f�(�))have to be balan
ed : the maximal rate fun
tion r� is asso
iated to the fun
tion f with minimalgrowth in the range 1 � f � f�, that is with f = 1; and the fun
tion with the largest rapidityof growth f = f� is asso
iated to the minimal rate r = 1.Theorem 3.1 and Corollary 3.2 thus provides a 
ontrol of (f; r)-modulated moments; a simple
ondition for the rate r to be in the set � of the subgeometri
 rate fun
tions is re
alled in thefollowing lemma [4, Lemmas 2.3 and 2.7℄Lemma 3.3. If lim1 �0 = 0, r� 2 � and for all inverse Young fun
tion 	1, 	1 Æ r� 2 �.Proposition 3.4. Assume D(C;V; �;b). Then the pro
ess is  -irredu
ible. If supC V <1,(i) the level sets fV � ng are petite and the union of these level sets is full.(ii) there exists a 
losed a

essible petite set B su
h that D(B;V; �;b) holds and supB V <1.As a 
onsequen
e, when D(C;V; �;b) holds and supC V < 1, we 
an assume without lossof generality that C is a

essible.3.2 (f; r)-regularityCorollary 3.2 shows that the drift 
ondition D(C;V; �;b) allows the 
ontrol of modulated mo-ments GC(x; f; r; Æ), for all Æ > 0 and a large family of pairs (f; r). Similar modulated momentsrelative to any a

essible set B 
an be 
ontrolled provided supx2C GC(x; f; r; Æ) < 1 for someÆ > 0 (and thus any Æ > 0, as established in [11, Lemma 20℄). This naturally yields the notion of(f; r)-regular sets. The obje
tive of this se
tion is to identify regular sets from the drift 
onditionD(C;V; �;b).We start with a proposition that shows that the \self-regularity" of a 
losed petite set C a
-tually implies (f; r)-regularity. This results extends [21, Proposition 4.1℄ (resp. [11, Proposition22℄) that addresses the 
ase r = 1 (resp. f = 1). It also generalizes [11, Proposition 23℄ whi
h
on
erns the 
ase r = 	1(r�) and f = 	2(f�) for some pair (	1;	2) 2 I. This propositionis the 
ounterpart in the subexponential setting of the result by Down-Meyn-Tweedie for theexponential 
ase [6, Theorem 7.2℄. 7



Proposition 3.5. Let f : X ! [1;1) be a measurable fun
tion and r 2 � be a subgeometri
rate fun
tion. Assume that the pro
ess is  -irredu
ible and supx2C GC(x; f; r; Æ)<1 for some(and thus any) Æ > 0 and some 
losed petite set C.For all a

essible set B 2 B(X) and all t � 0, there exists a 
onstant 
B;t <1 su
h that for allx 2 X, GB(x; f; r; t)� 
B;tGC(x; f; r; Æ): (3.4)Hen
e C is (f; r)-regular.Proposition 3.6. Assume that D(C;V; �;b) holds with C; V; � su
h that supC V < 1 andlim+1 �0 = 0. Then for any pair (	1;	2) 2 I, any a

essible set B and all Æ > 0, there existsa �nite 
onstant 
 su
h thatEx "Z �B(Æ)0 	1 (r�(s)) 	2 (f�(Xs)) ds# � 
 V (x):Hen
e, any V -level set fx 2 X; V (x) � vg is (f; r)-regular for all pairs (f; r) = (	2 Æ f�;	1 Æ r�)with (	1;	2) 2 I.Proof. By Corollary 3.2, supx2C GC(x; f; r; Æ) < 1 for all Æ > 0 provided the drift 
onditionD(C;V; �;b) holds and supC V < 1. Finally, r = 	1 Æ r� for some inverse Young fun
tion 	1is a subgeometri
 rate if lim+1 �0 = 0. Proposition 3.5 thus implies that the level sets of V are(f; r)-regular sets.We now establish a general result that extends to 
ontinuous-time Markov pro
esses, partof [31, Theorem 2.1℄ relative to dis
rete-time Markov 
hain. In the 
ase r = 1, some of theseequivalen
es are proved in [21℄ for 
ontinuous-time strong Markov pro
esses.Proposition 3.7. Let f : X ! [1;1) be a measurable fun
tion and r 2 � be a subgeometri
rate fun
tion. Assume that the pro
ess is  -irredu
ible. The following 
onditions are equivalenti) There exist a 
losed petite set C and Æ > 0 su
h that supC GC(x; f; r; Æ)<1.ii) There exists a (f; r)-regular 
losed set whi
h is a

essible.iii) There exists a full set S	 whi
h is the union of a 
ountable number of (f; r)-regular sets.Theorem 3.1 proves that these equivalent 
onditions are veri�ed provided D(C;V; �;b)holds, supC V <1 and lim1 �0 = 0.We 
on
lude this se
tion by establishing that under mild additional 
onditions, the drift 
on-dition D also yields 
ontrols of modulated moments for the skeleton 
hains. For all m > 0, letTm;C be the return-time to C of the skeleton 
hain Pm,Tm;C = inffk � 1; Xmk 2 Cg:8



Proposition 3.8. Assume that D(C;V; �;b) holds with supC V <1, and some skeleton 
hainis irredu
ible. For all m > 0 and any a

essible set B, there exist 
onstants 
i; 1 � i � 4, su
hthat for all x 2 X,Ex 24Tm;B�1Xk=0 � Æ V (Xmk)35 � 
1 Ex �Z Tm;B0 � Æ V (Xsm) ds� � 
2 V (x);and 8x 2 X; Ex 24Tm;B�1Xk=0 r�(km)35 � 
3 Ex "Z �B(Æ)0 r�(s) ds# � 
4 V (x):We will see in the last se
tion that this proposition whi
h 
learly links the behavior ofthe skeleton 
hain to that of the initial pro
ess leads to new limit theorems su
h as moderatedeviations. It will also imply interesting appli
ations to averaging prin
iple.3.3 f-ergodi
ity at a subgeometri
 rateFrom the 
ontrol of x 7! GC(x; f; r; Æ) where C is a 
losed petite set, we are able to dedu
eresults on the ergodi
 behavior of the strong Markov pro
ess.The �rst result 
on
erns the existen
e of an invariant probability distribution � and showsthat the drift 
ondition D(C;V; �;b) provides a simple tool when identifying the set of the�-integrable fun
tions. The se
ond one states that the Markov pro
ess 
onverges in f -norm tothe invariant probability measure �, for a wide family of fun
tions 1 � f � f� and a wide familyof rate fun
tions rf � r�.Proposition 3.9. Assume D(C;V; �;b) and supC V <1. Then the pro
ess is positive Harris-re
urrent with an invariant probability measure � su
h that �(� Æ V ) <1.Proposition 3.9 results from [21, Theorems 1.1 and 1.2℄ and Theorem 3.1(i). It is known thatpositive Harris-re
urren
e does not ne
essarily imply ergodi
ity and aperiodi
ity is required [23,Proposition 6.1℄; similar 
onditions are required in the dis
rete-time 
ase [22℄. In the present
ase, we have more information than positive Harris-re
urren
e and thus, we are able to establishf -ergodi
ity at a subgeometri
 rate.For a sequen
e r 2 �, de�ne r0(t) = R t0 r(s) ds, and, for a di�erentiable rate fun
tion r, set�r(t) = dr(t)dt .Theorem 3.10. Assume that(i) some skeleton 
hain is irredu
ible.(ii) the 
ondition D(C;V; �;b) holds with C; V; � su
h that supC V <1 and lim+1 �0 = 0.9



For any pair 	 = (	1;	2) 2 I and any probability distribution � satisfying �(V ) <1,limt!+1 f	1(r�(t)) _ 1g ZX �(dx) kP t(x; �)� �(�)k	2(f�)_1 = 0; (3.5)where r� and f� are given by (3.2) and I is de�ned in Se
tion 3.1. Furthermore, there exist�nite 
onstants C	;i su
h that for all t � 0 and all x 2 X,f	1(r�(t))_ 1g kP t(x; �)� �(�)k	2(f�)_1 � C	;1 V (x); (3.6)Z 10 f	1(r�(t)) _ 1g kP t(x; �)� P t(y; �)k	2(f�)_1 dt � C	;2 fV (x) + V (y)g; (3.7)and if �[	1(r�)℄ 2 �, there exists a �nite 
onstant C	;3 su
h that for all t � 0,Z 10 f�[	1(r�)℄(t) _ 1g kP t(x; �)� �(�)k	2(f�)_1 dt � C	;3 V (x): (3.8)The limit (3.5) is a dire
t appli
ation of [11, Theorem 1℄ while (3.6) to (3.8) are, to our bestknowledge, new results. The proof of this theorem is detailed in Appendix A.As already 
ommented in [11℄, Eq. (3.5) shows that the rate of 
onvergen
e and the norm inwhi
h 
onvergen
e o

urs have to be balan
ed : if 	1 strongly in
reases at in�nity then 	2slowly in
reases (see [19℄ and the 
omments in Se
tion 3.1). Hen
e, the stronger the norm, theweaker the rate and 
onversely. The maximal rate of 
onvergen
e is a
hieved with the totalvariation norm (	2 Æ f� = 1) and the minimal one (	2 Æ r� = 1) is a
hieved with the f�-norm.Hen
e, the drift 
ondition D(C;V; �;b) dire
tly provides two major informations: the largestrate of 
onvergen
e r� = � Æ H�1� is given by the 
on
ave fun
tion � and the largest norm of
onvergen
e k � kf� is given by the pair (�; V ).Eqs. (3.6) to (3.8) are, to our best knowledge, the �rst results that address the dependen
e uponthe initial point in the ergodi
 behavior. When applied to dis
rete-time Markov 
hains, (3.6) to(3.8) 
oin
ide with resp. [31, Theorems 2.1, 4.1, 4.2℄ (the dependen
e upon x 
an be read fromthe proof of these theorems; the details are also provided in [9, Chapter 3℄). These results forthe dis
rete-time 
ase and the de�nition of the set S in [11, Theorem 1℄ suggest that in (3.6),the minimal dependen
e in the starting value x is of the form GC(x;	2(f�);	1(r�); Æ). Similarexpressions 
an be predi
ted for (3.7) and (3.8). The proof of this assertion and the expli
it
onstru
tion of the 
onstants C	;i in terms of the quantities appearing in the assumptions arebeyond the s
ope of this paper. Currently in progress is work on expli
it 
ontrol of subgeometri
ergodi
ity for strong Markov pro
esses.In the examples given in Se
tion 4, we will see that the pair (�; V ) that solves D(C;V; �;b)is not unique. Roughly speaking, we read from Theorem 3.10 that � is related to the rate of
onvergen
e in total variation norm, while V is the dependen
e upon the initial point in the
ontrol of 
onvergen
e. As a 
onsequen
e, the rate of 
onvergen
e r�(t) and the dependen
eV (x) 
an be balan
ed to make the bounds (3.6) to (3.8) minimal. In Se
tion 4, we will givesome examples (on X = Rn), where both a pair of polynomially in
reasing fun
tions and a pairof subgeometri
ally in
reasing fun
tions 
an be found. One then immediately remarks that the10



stronger the 
ontrol in the initial point is, the stronger the de
ay in time is for a given norm. Itstresses on
e again the interest for exa
t 
onstant in our 
ontrols to de
ide whi
h "ergodi
ity"to use to rea
h a 
ertain level. The fa
t that the pair (�; V ) is not unique shows that thedrift 
ondition only provides an upper bound of the true rate of 
onvergen
e. Nevertheless, inmany appli
ations, we are able to prove that the true rate belongs to the exhibited 
lass of ratefun
tions (see for example, se
tion 4.2).3.4 Generator and drift inequality (3.1)The drift 
ondition D(C;V; �;b) may not be easy to derive sin
e it is 
ou
hed in terms of thepro
ess itself. The main goal of this se
tion is to provide an easier path to ensure subgeometri
ergodi
ity, whi
h is moreover the usual form of 
onditions adopted on earlier paper to addressdi�erent 
lasses of stability. Namely we will use the formalism of the extended generator [3, Def.1.15.15℄.Let D(A) denote the set of measurable fun
tions f : X ! R with the following property:there exists a measurable fun
tion h : X ! R su
h that the fun
tion t 7! h(Xt) is integrablePx-a.s. for ea
h x 2 X and the pro
esst 7! f(Xt)� f(X0)� Z t0 h(Xs)ds (3.9)is a Px-lo
al martingale for all x. Then we write h = Af , and f is said in the domain of theextended generator (A;D(A)) of the pro
ess X . The 
ondition (3.1) looks like a Dynkin formula.This is the reason why we want it to hold as widely as possible, thus justifying the interest inthe extended generator 
on
ept.Theorem 3.11. Assume that there exist a 
losed petite set C, a 
ad-lag fun
tion V : X! [1;1)with V 2 D(A), an in
reasing di�erentiable 
on
ave positive fun
tion � : [1;1)! (0;1) and a
onstant b <1 su
h that for all x 2 X,AV (x) � �� Æ V (x) + b1C(x): (3.10)Then D(C;V; �;b) holds.The proof is in Se
tion A.7. The extended generator is less restri
tive than the in�nitesimalgenerator ~A : if f is in the domain of ~A, then the pro
ess (3.9) is a martingale and f is inthe domain of A (see e.g. [3, Proposition 1.14.13℄). In parti
ular, it is often quite diÆ
ult to
hara
terize the domain of ~A but there may be (and are, in the appli
ations of Se
tion 4) easily
he
ked suÆ
ient 
onditions for membership of D(A).This drift 
ondition naturally inserts in the existing literature, that addresses 
riteria for non-explosivity, re
urren
e, polynomial ergodi
ity, geometri
 and uniform ergodi
ity. More pre
isely,Meyn and Tweedie provide 
onditions for non-explosion, re
urren
e, positive-Harris re
urren
e11



and V -ergodi
ity at a subgeometri
 rate, respe
tively of the formAV (x) � 
V (x); (3.11)AV (x) � 
1C(x); (3.12)AV (x) � �
f(x) + b1C(x); (3.13)AV (x) � �
V (x) + b1C(x) (3.14)for some positive 
onstants b; 
 <1 and a measurable fun
tion f � 1 (see [24, Conditions (CD0)to (CD3)℄; see also [6℄ for the 
ondition (3.14)). These 
riteria are similar to some 
onditionsprovided by [16℄ for the stability of sto
hasti
 di�erential equations. The drift inequality (3.14)is the limit of our approa
h, sin
e it 
orresponds to (3.10) with �(v) / v.In a re
ent work, Fort and Roberts [11℄ 
onsidered a family of drift 
ondition that implies f -ergodi
ity at a polynomial rate : namely, there exist 0 < � < 1, b > 0 su
h that for all � � � � 1,there exists 
� > 0 su
h that AV �(x) � �
�V ���(x) + b1C(x): (3.15)Our drift 
ondition (3.10) with �(v) / v1�� yields the same results as those provided in [11,Theorem 1, Lemma 25, Proposition 26℄ (see Theorem 3.10 and Proposition 3.1). Hen
e, the driftinequality (3.10) that addresses subgeometri
 ergodi
ity generalizes the 
riterion for polynomialergodi
ity proposed by Fort-Roberts. The 
omparison of the Fort-Roberts nested drift 
onditions(3.15) and our single drift 
ondition 
an be more expli
it when V 2 D(A) and the pro
ess (3.9)is a Px-martingale for all x. In that 
ase, it is easily seen that the single drift 
ondition impliesthe nested drift 
onditions. The martingale property is equivalent tot 7! exp�ln V (Xt)� lnV (X0)� Z t0 H(lnV )(Xs)ds�is a Px-martingale for all x, where H(lnV ) = V �1AV [8℄. Furthermore, H(lnV ) � �g + s ifand only if t 7! exp�ln V (Xt)� lnV (X0)� Z t0 f�g(Xu) + s(Xu)gdu�is a Px-supermartingale for all x [8℄. As a 
onsequen
e, if V � is in the domain of A for all0 � � � 1 then the Jensen's inequality yields H(� lnV ) � � exp(�� lnV ) + b� exp(� lnV )1Cwhi
h in turn implies (3.15).3.5 Resolvent and drift inequality (3.1)One of the approa
hes for studying the stability and ergodi
 theory of 
ontinuous time Markovpro
esses 
onsists in making use of the asso
iated dis
rete time resolvent 
hains. This allowsto take pro�t of the analysis of dis
rete time Markov 
hains whi
h is quite well understood([25, 22℄) and then to transfer properties established in terms of the resolvent or \generalisedresolvent" kernel (see for e.g. [21℄) to the Markov pro
ess itself. Following the dis
ussion (done12



for exponentially ergodi
 Markov pro
ess) by Down-Meyn-Tweedie [6, Th.5.1℄ and extending itto the subgeometri
 
ase, we will now link the drift 
ondition D(C;V; �;b; �) asso
iated to theMarkov pro
ess to a drift 
ondition asso
iated to the dis
rete time resolvent 
hain.More pre
isely, de�ne, for � > 0, the resolvent kernel R� by R�(x;A) = R10 �e��tP t(x;A)dtand 
onsider the following drift 
ondition asso
iated to the resolvent kernel.�D(C;V; �;b; �): There exist a petite set C, a fun
tion V : X ! [1;1), an in
reasingdi�erentiable 
on
ave positive fun
tion � : [1;1) ! (0;1) and a 
onstant b < 1 su
hthat for any x 2 X, R�V (x) � V (x)� � Æ V (x) + b1C(x): (3.16)The following result ensures that drift 
onditions expressed in terms of the resolvent kernelor of the Markov pro
ess are essentially equivalent. This theorem parallels Theorem 5.1. byDown-Meyn-Tweedie [6℄ for exponentially ergodi
 Markov pro
esses.Theorem 3.12. (i) Assume �D(C;V; �;b; �) where C is a 
losed set and R�V is a 
ad-lagfun
tion. Then D(C;R�V; ��; �b) holds.(ii) Assume D(C;V; �;b) with supC V < 1. Then, for all � > 0, there exists a 
onstant 
su
h that for all x 2 X,W (x) � (1 + �)V (x) + 
 and limt!1 r��(t)r�((1 + �)t) = 1 + �su
h that �D(�C;W; ��; �b; �) holds.The proof is given in Se
tion A.8.4 ExamplesIn this se
tion, X = Rn. Ve
tors are intended as 
olumn ve
tors, jxj and h�; �i denote respe
tivelythe Eu
lidean norm and the s
alar produ
t. For a matrix a, jaj = �Pi;j a2i;j�1=2, Tr(a) standsfor the tra
e of the matrix and a0 the matrix transpose. Idn is the n�n identity matrix. If V isa twi
e 
ontinuously di�erentiable fun
tion with respe
t to x 2 Rn, �V (or �xV when 
onfusionis possible) denotes its gradient, and �2V its Hessian.For a set A, A
 is its 
omplement in Rn.Four appli
ations are 
onsidered: we �rst analyze general ellipti
 di�usions on Rn su
h thatthe drift 
oeÆ
ient veri�es a 
ontra
tion 
ondition of the form hb(x); xi � �rjxj1�p for all large x,where 0 < p < 1. We then 
onsider a Langevin di�usion on Rn having an invariant distributionwhi
h is super-exponential in the tails, and show that the rate of 
onvergen
e 
an be modi�edby \heating" the di�usion. The method is however not limited to ellipti
 di�usions but 
an also13



be of use in the hypoellipti
 
ase: we 
onsider as an illustration a simple sto
hasti
 dampingHamiltonian system whi
h 
annot be exponentially ergodi
 but is shown to be subexponentiallyergodi
. We �nally study a 
ompound Poisson-pro
ess driven Ornstein-Uhlenbe
k pro
ess whenthe distribution of the jump is heavy tailed.Queuing theory is another important �eld of appli
ation for our theory. We do not dis
usshere this �eld of appli
ations. This will be done in a forth
oming paper, whi
h will also in
ludea 
omparison of our results to those by [2, 34℄. Te
hniques in Dai-Meyn [2℄ di�er from ourssin
e they are based on 
uid limits. Con
erning [34℄, our 
onditions are more general; indeedthe authors assume that there exists a state x0 su
h that whenever the Markov pro
ess hits x0,it will sojourn there for a random time that is positive with probability 1, [34, Assumption 1.1℄.This assumption makes their results unavailable for the appli
ations we now 
onsider.4.1 Ellipti
 di�usions on RnConsider the sto
hasti
 integral equation of the formXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dBs; (4.1)where Xt 2 Rn, b : Rn ! Rn and � : Rn ! Rn�n are measurable fun
tions, and fBtgt is an-dimensional Brownian motion. Assume that b : Rn ! Rn and � : Rn ! Rn�n are fun
tionssatisfyingA1 � is bounded and b and � are lo
ally Lips
hitz : for any l > 0, there exists a �nite 
onstant
l su
h that for all jxj � l; jyj � l,jb(x)� b(y)j+ j�(x)� �(y)j � 
ljx� yj: (4.2)Let a(x) = �(x)�(x)0 be the di�usion matrix. We assume thatA2 (i) a(x) is non-singular : the smallest eigenvalue of the di�usion matrix a(x) is boundedaway from zero in every bounded domain.(ii) there exist 0 < p < 1, r > 0 and M su
h that for all jxj �M , hb(x); xi � �rjxj1�p.Note that under A1, � = n�1 supx2RnTr(a(x)) and �+ = supx6=0ha(x) xjxj; xjxji are �nite. More-over, sin
e under A1 � is 
ontinuous, the assumption A2(i) is equivalent to the 
onditiondet(�(x)) 6= 0 for all x.Under A1, it is possible to de�ne 
ontinuous fun
tions bl and �l that satisfy the at mostlinear in
reasing jbl(x)j+ j�l(x)j � 
l(1 + jxj); 8x 2 Rn;the Lips
hitz 
ondition (4.2) on the whole state spa
e, and are su
h that bl = b and �l = � onthe 
ylinder fx 2 Rn; jxj < lg. The sto
hasti
 equation (4.1) has a unique t-
ontinuous solution14



fX(l)t gt, when b and � are repla
ed by bl and �l [16, Theorem 3.3.2℄. The �rst exit times offX(m)t gt from fx 2 Rn; jxj < lg are identi
al for all m � l (and is thus denoted �l). This allowsthe 
onstru
tion of a pro
ess fXtgt that satis�es (4.1) up to the explosion time � = liml �l. If� = +1 a.s., fXtgt is a.s. de�ned for all t � 0 and the pro
ess is said regular. Under the statedassumptions, an easy to 
he
k suÆ
ient 
ondition for regularity relies on the operator L thata
ts on fun
tion V : Rn, x 7! V (x) that are twi
e 
ontinuously di�erentiable with respe
t to x:LV (x) = hb(x); �V (x)i+ 12Tr �a(x) �2V (x)� : (4.3)The pro
ess is regular if there exists a non-negative twi
e-
ontinuously di�erentiable fun
tionV on Rn su
h that for some �nite 
, LV � 
V on Rn and inf jxj>R V (x) ! 1 as R ! 1 [16,Theorem 3.4.1.℄. Under A2(ii), it is trivial to verify that by setting V (x) = 1 + jxj2,LV (x) � � �2rjxj1�p + n�; if jxj �M;2M supjxj�M jb(x)j+ n� otherwise: (4.4)This shows that the pro
ess is regular. Consequently, there exists a solution to (4.1), whi
h isan almost surely 
ontinuous sto
hasti
 pro
ess and is unique up to equivalen
e. This solution isan homogeneous Markov pro
ess whose transition fun
tions are Feller fun
tions [16, Theorem3.4.1℄. Hen
e, it is strongly Markovian, as a right-
ontinuous Markov pro
ess with Feller tran-sition fun
tions. We now dis
uss the existen
e of an irredu
ible skeleton Pm and the petitenessproperty of the 
ompa
t sets. All of these properties dedu
e from the existen
e of an uniqueinvariant probability distribution �.Proposition 4.1. Under A1-A2, X possesses an unique invariant probability measure �. � isa maximal irredu
ibility measure and any skeleton Pm is irredu
ible. Furthermore, the 
ompa
tsets are 
losed petite sets.Proof. By (4.4), [16, Theorem 3.7.1℄ and its 
orollary 2 [16, p. 99℄, there exists a boundeddomain U with regular boundary and a �nite 
onstant 
 su
h that for all x 2 U 
, Ex [TU
℄ <1and for any 
ompa
t K � Rn, supx2K Ex [TU
℄ <1, whereTU = infft � 0; Xt =2 Ug:Sin
e the di�usion matrix a(x) is non-singular, we dedu
e from [16, Theorem 4.4.1 and Corol-lary 2 p.123℄ that the pro
ess possesses an unique invariant probability distribution �. [16,Lemma 4.6.5℄ implies that any skeleton is �-irredu
ible, with an irredu
ibility measure abso-lutely 
ontinuous with respe
t to the Lebesgue measure. By [16, Lemma 4.6.1℄, the supportof � has non-empty interior; sin
e the pro
ess is  -irredu
ible and has the Feller property, all
ompa
t subsets of Rn are petite (this assertion 
an be proved in exa
tly the same way as inthe dis
rete-parameter 
ase [22, Proposition 6.2.8℄).Under A1-2, it si easily 
he
ked that any twi
e 
ontinuously di�erentiable fun
tion V : Rn!R is in the domain of A and LV (x) = AV (x) for all x 2 Rn. Observe indeed that t 7! LV (Xt)15



is integrable Px-a.s. for all x 2 Rn and t 7! V (Xt)�V (X0)� R t0 LV (Xs)ds is a right-
ontinuouslo
al martingale. Hen
e V 2 D(A) and LV = AV . We now establish drift inequalities fordi�erent test fun
tions V .Proposition 4.2. Assume A1-2. Let V : Rn ! [1;+1) be a twi
e 
ontinuously di�erentiablefun
tion su
h that V (x) = exp(� jxjm) outside a 
ompa
t set, for some 0 < m < 1 and � > 0.Then supjxj�M AV (x) <1 and for all jxj �M ,(i) If 0 < m < 1� p, AV (x) � �� 1+pm mr [ln V (x)℄1�( 1+pm ) V (x) (1 + o(1)) ;(ii) If m = 1� p,AV (x) � �� 1+p1�p (1� p) fr � (1=2)�+�(1� p)g [lnV (x)℄�2 p1�p V (x) (1 + o(1)) :Proof. Under the stated assumptions, supfx;jxj�MgAV (x) <1. By de�nition of A, we have forall jxj �M ,AV (x) � ��m �r � (1=2)�+�mjxjp+m�1� jxjm�1�pV (x) + (1=2)�mn�jxjm�2V (x):As a dire
t appli
ation of Proposition 3.9 and Theorem 3.1(ii), we haveTheorem 4.3. Assume A1-2.(i) For all � > 0 su
h that r� (1=2)�+�(1� p) > 0,Z �(dx) exp(�jxj1�p) <1;where � is the invariant probability distribution of the Markov pro
ess that solves (4.1).(ii) There exists a 
losed petite set C su
h that for any 0 < m < 1� p, 0 < �1 < �2 and Æ > 0,there exists a �nite 
onstant 
 su
h thatEx hexp(�1 f�C(Æ)g m1+p )i � 
 exp(�2jxjm): (4.5)If m = 1� p, (4.5) still holds for any 0 < �1 < �2 su
h that r� (1=2)�2�+(1� p) > 0.The results of Theorem 4.3 
an be 
ompared to those by [20℄, where subexponential ergodi
ityin total variation norm of a di�usion satisfying the 
onditions A1-2 is addressed. The te
hniqueused in [20℄ is based on the 
oupling method. Theorem 4.3(i) states the same result as [20,Lemma 3℄. Nevertheless, Theorem 4.3(ii) yields a stronger 
ontrol of delayed return-time to16



a 
losed petite set than those obtained in [20, Theorem 5℄. They show that for all 0 < � <(1=2)(1� p) there exists a 
onstant 
� su
h thatEx [exp(�C(Æ)�)℄ � 
� exp(jxj2�);and this remains valid for � = (1 � p)=2 if r � (1=2)�+(1 � p) > 0. Theorem 4.3(ii) 
laimsthat for all 0 < � < (1 � p)(1 + p)�1 and � > 1, Ex [exp(�C(Æ)�)℄ � 
� exp(� jxj(1+p)�) and for� = (1 � p)(1 + p)�1, Ex [exp(�1�C(Æ)�)℄ � 
� exp(�2 jxj(1+p)�) for all 0 < �1 < �2 su
h thatr � (1=2) �2�+(1� p) > 0.As a dire
t appli
ation of Theorem 3.10, we obtain the following results for f -ergodi
ity at asubgeometri
 rate.Theorem 4.4. Assume A1-2 and let � be the invariant probability distribution of the Markovpro
ess that solves (4.1). Then the pro
ess is subgeometri
ally f -ergodi
: for any x 2 Rn, thelimits (3.5) to (3.8) hold with V (x) � exp(�jxj1�p) for some positive � su
h that r�0:5�+�(1�p) >0, f�(x) � jxj�2p exp(�jxj1�p) and r�(t) � t�2p=(1+p) exp(f�0tg(1�p)=(1+p)) where�0 = � 1+p1�p (1 + p) fr � (1=2)�+�(1� p)g :In [20℄, only the 
onvergen
e in total variation norm of the semi-group fP tgt�0 to the in-variant probability � is addressed: is is established that the pro
ess is ergodi
 at the raterM� (t) / exp(Æt(1�p)=2) for some Æ > 0, and in that 
ase, the dependen
e upon the initial pointin (3.5) is VM(x) � exp(Æjxj1�p). Theorem 4.4 improves these results and also provides rates of
onvergen
e in f -norm for unbounded fun
tions f .We reported in Theorem 4.4 the values (V; f�; r�) that yield the best rate of 
onvergen
e in totalvariation norm. Proposition 4.2 shows that one 
ould establish the drift inequality (3.10) withV (x) � exp(�jxjm) for some 0 < m < 1 � p; this would imply the limits (3.5) to (3.8) withV (x) � exp(�jxjm), f�(x) � jxjm�1�p exp(�jxjm) and r�(t) � t(m�1�p)=(1+p) exp(�0jxjm=(1+p)) forall 0 < �0 < �. We thus obtain a weaker maximal rate fun
tion r�, and a weaker maximal normk � kf�, but this has to be balan
ed with the fa
t that the dependen
e upon the initial value(i.e. the quantity V (x)) is weaker too. Similarly, polynomially in
reasing 
ontrols V (x) 
ouldbe 
onsidered, thus limiting the rate r� (resp. the fun
tion f�) to the 
lass of the polynomiallyin
reasing rate fun
tions (resp. to the 
lass of the polynomially in
reasing fun
tion). These dis-
ussions illustrate the fa
t that the pair (�; V ) that solves (3.10) is not unique, and this resultsin balan
ing the pair (r�; f�) and the dependen
e upon the initial value x.4.2 Langevin tempered di�usions on RnLet � : Rn! (0;1) satisfyingB1 � is, up to a normalizing 
onstant, a positive and thri
e 
ontinuously di�erentiable densityon Rn, with respe
t to the Lebesgue measure.17



Let �(x) = j ln �(x)jd for some d > 0 and de�ne the di�usion matrix by a(x) = �2(x)Idn, andthe drift ve
tor by b(x) = (b1(x); � � � ; bn(x))0 wherebi(x) = (1=2) nXj=1 aij(x) �xj log �(x) + (1=2) nXj=1 �xjaij(x); 1 � i � n:Observe that sin
e � is de�ned up to a normalizing 
onstant, we 
an assume that �(x) > 0 forall x. Our obje
tive is to study the ergodi
ity of the solution to the sto
hasti
 integral equationXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dBs (4.6)where fBtgt is a n-dimensional Brownian motion. This di�usion is the so-
alled Langevindi�usion and the drift ve
tor b is de�ned in su
h a way that � is, up to a multipli
ative 
onstant,the density of the unique invariant probability distribution. Note that this model is not aparti
ular 
ase of the ellipti
 di�usion of se
tion 4.1 sin
e here, � may be an unbounded fun
tion(� = j ln �(x)jd).Fort and Roberts investigate the behavior of these di�usions when � is polynomially de
reasingin the tails and address ergodi
ity in total variation norm and in f -norm as well [11℄. They
onsider the 
ase �(x) = ��d(x) (d > 0) and show that the rate of 
onvergen
e in total variationnorm and in f -norm for f(x) � ���(x) (� > 0) depends on d. When d is lower than some 
riti
altemperature d�, the pro
ess is ergodi
 at a polynomial rate, and when d is larger than d�, thepro
ess is uniformly ergodi
 in total variation norm and geometri
ally ergodi
 otherwise [11,Theorem 16℄. Fort and Roberts thus proved that the rate of 
onvergen
e 
an be improved by
hoosing a di�usion 
oeÆ
ient � whi
h is small when the pro
ess is 
lose to the modes of � andbig when it is far from the modes. The obje
tive of this se
tion is to investigate the 
ase when� is super-exponentially de
reasing in the tails. We assume thatB2 there exists 0 < � < 1 su
h that for all large jxj,jxj1�� h� ln �(x); xjxji < 0;0 < lim infx!1 j� ln �(x)jj ln�(x)j1=��1 � lim supx!1 j� ln �(x)jj ln�(x)j1=��1 <1;lim supx!1 Tr ��2 ln �(x)� j� ln �(x)j�2 = 0:The 
lass of density � des
ribed by B1-2 
ontains densities that are super-exponential in thetails. The Weibull distribution on (0;1) with density �(x) / x��1 exp(��x�) satis�es B2. Formultidimensional examples, see e.g. [18, 28, 10℄. Following the same steps as in Se
tion 4.1,we 
an prove that under B1-2 and provided the pro
ess is regular, there exists a solution to(4.6) whi
h is an almost surely 
ontinuous sto
hasti
 pro
ess and is unique up to equivalen
e.This solution is an homogeneous strong Markov pro
ess whose transition fun
tions are Fellerfun
tions. Under B2, the pro
ess is regular whatever d > 0; this 
an be proved as in the previousse
tion (by 
hoosing V = 1 + ��2, see (4.7) below).18



These assumptions also imply that � is (up to a s
aling fa
tor) the density of an invariantdistribution of the di�usion pro
ess, any skeleton 
hain is  -irredu
ible and 
ompa
t sets are
losed petite sets ([11, Proposition 15℄).Let V : Rn! [1;1) be a twi
e-
ontinuously di�erentiable fun
tion su
h that V (x) = 1+���(x)outside a 
ompa
t set; then AV (x) = LV (x) = `1(x) + `2(x) where L is the di�usion operator(4.3) and for large jxj,`1(x) = ��(1� �)2 ���(x)1 + ���(x) � j� ln �(x)jj ln �(x)j1�1=��2 j ln �(x)j2(d+1�1=�) V (x); (4.7)and `2(x) = o(`1(x)). In [30, Theorem 3.1℄, it is established that the pro
ess is geometri
allyergodi
 if and only if d � 1=� � 1. From (4.7), we are able to retrieve these results and we alsoprove that when 0 � d < 1=� � 1, the pro
ess is subgeometri
ally ergodi
. Observe indeed thatfor large jxj, (4.7) and B2 implyAV (x) � �
� [lnV (x)℄�� V (x); where � = 2(1=� � 1� d); and 
� > 0() 0 < � < 1:Hen
e, if � � 0, the pro
ess is V -geometri
ally ergodi
 [21, Theorem 6.1℄ (see also se
tion 3.4);if � > 0, it is subgeometri
ally ergodi
 as a 
onsequen
e of Theorems 3.10 and 3.11.A polynomially in
reasing drift fun
tion 
an also be 
onsidered: we 
an assume without loss ofgenerality that for large x, ln �(x) < 0 sin
e � is de�ned up to a multipli
ative 
onstant. Wethus set V (x) = 2 + sign(�) (� ln �(x))� outside a 
ompa
t set. Then for large x,AV (x) � �j�j2 (� ln �(x))�+1+2(d�1=�) � j� ln �(x)jj ln �(x)j1�1=��2 (1 + o(1)) ;and there exists a 
onstant 
 > 0 su
h that for large x,AV (x) � �
V 1��(x); where � = 2��1(1=� � d� (1=2)): (4.8)First 
onsider the 
ase when � > 0. If 1=� � 1 < d < 1=� � (1=2), the drift 
ondition (4.8) andTheorems 3.10 and 3.11 yield polynomial ergodi
ity. For example, this implies 
onvergen
e intotal variation norm at the rate r(t) � t1=��1. If d = 1=� � (1=2), then � = 0 and the pro
essis geometri
ally ergodi
. In the 
ase when � 
an be set negative and 1 � � > 0 i.e. whend > 1=� � (1=2), the pro
ess is uniformly ergodi
: there exist � < 1 and a 
onstant 
 <1 su
hthat for all x, ��t kP t(x; �)� �(�)kTV � 
;and the 
onvergen
e does not depend on the starting point.The above dis
ussions are summarized in the following theorem. The �rst part (resp. third part)results from [30, Theorem 3.1℄ (resp. [21, Theorem 6.1℄). The se
ond assertion is a 
onsequen
eof Theorem 3.10. The last assertion was already proved by [30, Theorem 3.1℄ for one-dimensionaldi�usions (n = 1).Theorem 4.5. Consider the Langevin di�usion on Rn solution to the equation (4.6) where thetarget distribution � satis�es B1-2. 19



(i) If 0 � d < 1=� � 1, the pro
ess fails to be geometri
ally ergodi
.(ii) If 0 � d < 1=� � 1, the pro
ess is subgeometri
ally ergodi
: the limits (3.5) to (3.8) holdwith V (x) � ���(x), f�(t) � ���(x) jln �(x)j�2(1=��1�d) and ln r�(t) � 
�t�=(2���2d�) forall 0 < � < 1.(iii) If d � 1=� � 1, then for all 0 < � < 1, the di�usion is V -geometri
ally ergodi
 withV (x) = 1 + ���(x).(iv) If d > 1=� � (1=2), the di�usion is uniformly ergodi
.This theorem extends earlier results to the multi-dimensional 
ase and provides subgeomet-ri
al rates of 
onvergen
e of the '
old' Langevin di�usion, for a wide family of norms. Weestablished that for a given ���-norm, the minimal rate of 
onvergen
e is a
hieved with d = 0and in that 
ase, the rate 
oin
ides with the rate of 
onvergen
e of the symmetri
 random-walkHastings-Metropolis algorithm ([4, Theorem 3.1℄). This rate 
an be improved by 
hoosing adi�usion matrix whi
h is heavy where � is light and 
onversely. When d is larger than the
riti
al value d� = 1=� � 1, the pro
ess is geometri
ally ergodi
; when d is lower that d�, thepro
ess 
an not be geometri
ally ergodi
 and we prove that it is subgeometri
ally ergodi
. The
on
lusions of Theorem 4.5 are similar to those of [11, Theorem 16℄, that address the 
ase when� is polynomial in the tails.We assumed that � = j ln �jd. A �rst extension is to 
onsider a suÆ
iently smooth fun
tion �su
h that �(x) � j ln �(x)jd for large jxj; this yields similar 
on
lusions and details are omitted.A se
ond extension 
onsists in the 
ase when �(x) � ��d(x). In this latter 
ase, following thesame lines, it is easily veri�ed that for small enough values of d, the pro
ess is regular (the setof the admissible values is in the range (0; 1=2℄), and the pro
ess is V -geometri
ally ergodi
 witha test fun
tion V (x) � ���(x), � > 0. Details are omitted and left to the interested reader.4.3 Sto
hasti
 damping Hamiltonian systemBoth examples of the previous se
tions assumed that the di�usion pro
ess is ellipti
. Howeverthe drift 
ondition (3.10) enables us to 
onsider also hypoellipti
 di�usion that we will illustrateon the example of a simple sto
hasti
 damping Hamiltonian system, i.e. let xt (resp. yt) be theposition (resp. the velo
ity) at time t of a physi
al system moving in RndXt = YtdtdYt = �(Xt; Yt)dBt � (
(Xt; Yt)Yt + �xU(Xt))dt (4.9)where ��xU is some fri
tion for
e, �
(x; y)y is the damping for
e and �(x; y)dB is a randomfor
e where (Bt) is a standard Brownian motion in Rn. This system has been studied from thelarge and moderate deviations point of view by Wu [33℄ where he also establishes the exponentialergodi
ity under various set of assumptions.As our goal is not to 
onsider the model in its full generality but to illustrate the subexpo-nential behavior of hypoellipti
 di�usion, via the simple use of drift 
ondition (3.10), hereafter20



we will 
onsider the parti
ular (but also 
urrent in pra
ti
e) 
ase where the damping and ran-dom for
es are 
onstant 
(x; y) = 
 Idn and �(x; y) = � Idn, 
 and � being positive 
onstants(as, if one is identi
ally equal to 0, there is none of the usual ergodi
 properties su
h as positivere
urren
e). We will assume moreover that the potential U is lower bounded and 
ontinuouslydi�erentiable over Rn. In this 
ase, the system is known to have an unique invariant measuregiven by �(dx; dy) = e� 2
� H(x;y)dxdywhere H is the Hamiltonian given by H(x; y) = 12 jyj2 + U(x):Let us �rst ensure the existen
e of solutions and aperiodi
ity for the pro
ess Zt = (Xt; Yt)via the following proposition due to Wu [33, Lemma 1.1, Proposition 1.2℄Proposition 4.6. For every initial state z = (x; y) 2 R2n, the SDE (4.9) admits an uniqueweak solution Pz whi
h is non explosive. Moreover denoting (P t(z; dz0))t the asso
iated semigroup of transition, we have that for every t > 0 and every z 2 R2n, P t(z; dz0) = pt(z; z0)dz0and pt(z; z0) > 0; dz0 � a:e: The density pt(z; �) is moreover 
ontinuous, and the pro
ess is thusstrongly Feller.As a 
onsequen
e, the solution is a strong Markov pro
ess, all the skeletons are irredu
ibleand 
ompa
t sets are petite sets.Let us build an example of polynomially ergodi
 sto
hasti
 damping Hamiltonian system indimension 1. We rewrite the system asdXt = YtdtdYt = �dBt � (
Yt + U 0(Xt))dt; (4.10)and assume that U is C2, and there exist 0 < p < 1 and positive 
onstants a; b su
h that for jxjlarge enough ajxjp�1 � U 0(x) � bjxjp�1: (4.11)The fa
t that p is less than 1 implies that (Zt)t�0 
annot be exponentially ergodi
 [33, Theorem5.1℄. We now exhibit a drift fun
tion satisfying (3.10). Consider positive 
onstants �; � and asmooth positive fun
tion G su
h that for m, 1� p < m � 1, G0(x) = jxjm for large jxj; de�ne atwi
e 
ontinuously di�erentiable fun
tion V � 1 su
h that for large x; y,V (x; y) = �(y2=2 + U(x)) + �(G0(x)y + 
G(x)):By de�nition of A, it holdsAVm(x; y) = 12�2 �2yVm(x; y) + y �xVm(x; y)� (
y + U 0(x)) �yVm(x; y)so thatAVm(x; y) = 12��2 + y(�U 0(x) + �G00(x)y + �
G0(x))� (
y + U 0(x))(�y + �G0(x))= 12��2 + (�G00(x)� 
�)y2 � �G0(x)U 0(x):21



Fix Æ < 0; sin
e m � 1, we 
hoose � small enough so that �G00(x) � 
� < Æ < 0 for all largex. Furthermore, for all large jxj, G0(x)U 0(x) � bjxjp�1+m. Hen
e, there exist positive 
onstantsK;L su
h that AVm(x; y) � K � L Vm(x; y) p�1+mm+1 :Condition (3.10) holds with �m(v) / v p�1+mm+1 and p�1+mm+1 < 1. Appli
ation of the results ofSe
tion 3.3 now implies that the pro
ess (Zt)t�0 is polynomially-ergodi
.Let k � 1 and de�ne a twi
e 
ontinuously di�erentiable fun
tion Vm;k � 1 su
h that for largex; y Vm;k(x; y) = V km(x; y):Then for large x; y, the above 
al
ulations yieldAVm;k(x; y) = (AVm(x; y))V k�1m (x; y) + 12�2(�yVm(x; y))2V k�2m (x; y)= �AVm(x; y)) + 12�2 (�yVm(x; y))2Vm(x; y) �V k�1m (x; y)� (K 0 � LVm(x; y) p�1+mm+1 )V k�1m (x; y)� K 00 � L0V p�1+mm+1 +k�1mfor some positive 
onstant K 0; K 00; L0. This inequality is on
e again the 
ondition (3.10) with�m;k(v) = v( p�2m+1+k)k�1 . These dis
ussions are summarized in the following Theorem.Theorem 4.7. Let U be a twi
e 
ontinuously di�erentiable fun
tion, lower bounded on R satis-fying (4.11) for some 0 < p < 1. Then (Zt)t�0 is not exponentially ergodi
 but is polynomiallyergodi
 : for any m su
h that 1� p < m � 1 and any k � 1, the limits (3.5-3.8) hold with Vmkde�ned above, �m;k(v) / v( p�2m+1+k)k�1 , f� = �m;k Æ Vm;k and r�(t) / t k(m+1)2�p �1.Observe that the pro
ess (Zt)t�0 is polynomially ergodi
 at any order and we strongly believeit is subexponentially ergodi
. This sub exponential 
ase is left to the interested reader. Themultidimensional 
ase is more intri
ate in the 
hoi
e of the drift fun
tion and we do not pursuehere in this dire
tion.This example shows that our 
onditions are suÆ
iently 
exible to 
onsider the hypoellipti
di�usions as well as the ellipti
 ones.4.4 Compound Poisson-pro
ess driven Ornstein-Uhlenbe
k pro
essIn this se
tion we 
onsider an example of Fort-Roberts [11℄ where subgeometri
 ergodi
ity 
anbe a
hieved where they only obtain polynomial ergodi
ity. Let us �rst re
all the model. Let Xbe an Ornstein-Uhlenbe
k pro
ess driven by a �nite rate subordinator:dXt = ��Xt + dZt22



and Zt = PNti=1 Ui, where (Ui)i�1 is a sequen
e of i.i.d.r.v. with probability measure F , and(Nt) is an independent Poisson pro
ess of rate �. We suppose the re
all 
oeÆ
ient � to bepositive. Remarking that only when F is suÆ
iently (even extremely) heavy tailed, X fails tobe exponentially ergodi
, Fort-Roberts [11℄ give 
onditions for whi
h X is polynomially ergodi
.Namely, denote G the law of the log jump sizes (G(A) = F (eA)), and assume that for all � > 0,R e�xdG(x) = +1. Lemma 17 of Fort-Roberts then prove that X is not exponentially ergodi
and give examples where X is positive re
urrent and polynomially ergodi
, namely when forsome r > 1, R10 [log(1 + u)℄rF (du) is �nite. Su
h assertion may be useful 
onsideringF (dx) = C�1kx(log(x))kdx k > 1F (dx) = C�1�;
e�
(log(x))�x dx � � 1:We shall strengthen their result byProposition 4.8. Suppose that (Xt) is aperiodi
 and that for some Æ < 1, � > 0Z 10 e�(log(1+x))ÆF (dx) <1:Then, the 
on
lusions of Theorem 3.10 hold with V (x) = e�0(logx)Æ0 (and �0 < � if Æ0 = Æ), and�(v) = v(1�Æ0)=Æ0, r�(t) = at�(1+Æ0)ebtÆ0 , f� = � Æ V .Proof. We shall use the drift 
onditions introdu
ed previously for the generator de�ned byfor all fun
tions V in the extended domain of the generatorAV (x) = � Z 10 (V (x+ u)� V (x))F (du)� �xV 0(x):Choosing V (x) = (log(x))r, as in Fort-Roberts [11, Lemma 18℄, for suÆ
iently large x ensuresthe polynomial ergodi
ity at the previous rate. Consider now V (x) = e�0(logx)Æ0 , so thatAV (x) = � Z 10 (e�0(log(x+u))Æ0 � e�0(logx)Æ0 )F (du)� �0Æ0� e�0(logx)Æ0(log x)1�Æ0� ��02�Æ0�Æ0 V(logV )(1�Æ0)=Æ0 + bre
alling that for large xe�0(log(x+u))Æ0 � e�0(logx)Æ0 � Æ0 e�0(logx)Æ0(log x)1�Æ0 log(1 + u=x);the dominated 
onvergen
e theorem ends the argument.23



5 Skeleton 
hain and moderate deviationsWe 
onsider here an important �eld of appli
ation for this subgeometri
 rate, namely moderatedeviations for bounded additive fun
tionals of Markov pro
ess. In fa
t, Proposition 3.8 givesus more than a way to deal with subexponential ergodi
ity, it also implies a drift 
ondition inthe sense of Dou
-Fort-Moulines-Soulier [4℄ whi
h will enables us, at least in a bounded testfun
tion framework, to extend to the 
ontinuous time 
ase some limit theorems tailored for thesubexponential regime by Dou
-Guillin-Moulines [5℄ su
h as moderate deviations. Moderatedeviations are 
on
erned with the asymptoti
 for 
entered g with respe
t to � and for 0 � t � Tof S�t = 1p�h(�) Z t0 g(Xs=�)dswhere as � tends to 0, h(�)!1 but p�h(�)! 0, namely a regime between the large deviationsand the 
entral limit theorem. We may then state (proofs will be done in appendix. )Theorem 5.1. Assume that D(C;V; �;b) holds with supC V <1, and some skeleton 
hain is -irredu
ible.(i) For all m > 0, there exist a fun
tion W : X ! [�(1);1), a small set ~C for the skeletonPm and a positive 
onstant b0 su
h that sup ~CW is �nite, and on X,PmW � W � � ÆW + b01 ~C ; and � Æ V � W � �V:(ii) Assume that X0 is distributed as � and �(V ) <1 and that g is a bounded mapping fromX to Rn with �(g) = 0. Suppose moreover that for all positive alim�!0 1h2(�) log��H�1� �a h(�)p� �� =1then P� (S�� 2 �) satis�es a moderate deviation prin
iple in C0([0; 1℄;Rn) (the spa
e of 
on-tinuous fun
tions from [0; 1℄ to Rn starting from 0) equipped with the supremum normtopology, with speed 1h2(�) and rate fun
tion Ihg , i.e. for all Borel set A 2 C0([0; 1℄;Rn)� inf
2int(A) Ihg (
) � lim inf�!0 1h2(�) logP� (S�� 2 A)� lim sup�!0 1h2(�) logP� (S�� 2 A) � � inf
2
l(A) Ihg (
)where Ihg is given byIhg (
) :=8>><>>: 12 Z 10 sup�2Rn�h _
(t); �i � 12�2(hg; �i)�dt if d
(t)= _
(t)dt; 
(0)=0;+1 else; (5.1)24



and �2(hg; �i) = limn!1 1nE� �Z n0 g(Xs)ds�2= 2 ZXhg; �i Z 10 Pthg; �idt d�: (5.2)The proof is in Se
tion A.9.To the authors' knowledge, this moderate deviations result (even for bounded fun
tion) isthe �rst one for Markov pro
esses whi
h are not exponentially ergodi
. It extends then resultsof Guillin [15, Th 1.℄ or Wu [33, Th. 2.7℄ in the subexponential setting. As expe
ted, all rangesof speed are not allowed for su
h a theorem but are limited by the ergodi
ity of the pro
ess (werefer to Dou
-Guillin-Moulines [5, Se
t. 4℄ for a 
omplete dis
ussion on this interplay). Theextension of this moderate deviation prin
iple to unbounded fun
tion is left for further resear
h,as well as extension to inhomogeneous fun
tional and averaging prin
iple, those subje
ts needingparti
ular tools and developments.A ProofsA.1 Proof of Theorem 3.1Lemma A.1. For any M > 0 and for any 
ad-lag fun
tion g,lim�!0 bM=�
Xk=1 �����Z �k�(k�1)(g(s)� g(tk�1))ds����� = 0: (A.1)Proof. First note that g is bounded sin
e it is a 
ad-lag fun
tion. Let � > 0 be an arbitrary real.For any x 2 [0;M ℄, there exists an interval (x� �; x+ �) su
h that8s 2 (x� �; x); jg(s)� g(x�)j < �=2 and 8s 2 [x; x+ �); jg(s)� g(x)j < �=2Thus, for any (u; v) in (x � �; x) � (x � �; x) or in [x; x + �) � [x; x + �), jg(u)� g(v)j � �.By 
ompa
ity of [0;M ℄, there exists a �nite number M� of su
h intervals (xi � �i; xi + �i)whi
h 
overs [0;M ℄. Taking � suÆ
iently small, it 
an be easily 
he
ked that any interval[�(k� 1); �k℄ is in
luded in some interval (xi � �; xi + �). Now, if some xi 2 [�(k� 1); �k℄, writesupu;v2[�(k�1);�k℄ jg(u)� g(v)j � 2 supx2[0;M ℄ jg(x)j. Otherwise, we have supu;v2[�(k�1);�k℄ jg(u)�g(v)j < �. Thus, sin
e there is at most M� intervals [�(k � 1); �k℄ whi
h 
ontain some xi,bM=�
Xk=1 �����Z �k�(k�1)(g(s)� g(�(k� 1)))ds����� � 2 supx2[0;M ℄ jg(x)jM��+ �MThe proof follows by letting �! 0 and by noting that � is arbitrary.25



Proof. (Theorem 3.1) Proof of (i) is a dire
t appli
ation of the optional sampling theorem for aright 
ontinuous super-martingale (see e.g. [7, Theorem 2.13 p. 61℄)s 7! V (Xs)� V (X0) + Z s0 � Æ V (Xu)du� b Z s0 1C(Xu)du;with the bounded F -stopping time � = �C(Æ) ^M and by letting M !1. We now prove (ii).Let G(t; u) = H�1� (H�(u) + t)�H�1� (t). Note that�G(t; u)�u = � ÆH�1� (H�(u) + t)�(u) = � ÆH�1� (H�(u) + t)� ÆH�1� (H�(u)) (A.2)�G(t; u)�t = � ÆH�1� (H�(u) + t)� � ÆH�1� (t) (A.3)By log-
on
avity of �ÆH�1� , for any �xed t, u 7! �G(t;u)�u is non in
reasing and thus, for any �xedt, the fun
tion u 7! G(t; u) is 
on
ave.Let � > 0. Write tk = �k andN� = (supfk � 1; tk�1 < �C(Æ)g if �C(Æ) <11 otherwise:Note that by (i), Px(�C(Æ) < 1) = 1. It is straightforward that �C(Æ) � �N� and that �N� is aF -stopping time. This implies that for any M > Æ,Ex "Z �C(Æ)^M0 � ÆH�1� (s)ds#� G(0; V (x)) � lim sup�!0 Ex "Z (�N�)^M0 � ÆH�1� (s)ds#�G(0; V (x))= lim sup�!0 Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#� G(0; V (x))� lim sup�!0 A(�) (A.4)whereM� := bM=�
;A(�) := Ex �G(�(N� ^M�); V (X�(N�^M�)))�G(0; V (x))�+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds# :We now bound lim sup�!0A(�). First, write for any � > 0,A(�) = Ex "M�Xk=1 �G(tk; V (Xtk))� G(tk�1; V (Xtk�1))	1�C(Æ)>tk�1#+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#� Ex "M�Xk=1 E �G(tk; V (Xtk))�G(tk�1; V (Xtk�1))��Ftk�1� 1�C(Æ)>tk�1#+ Ex "Z �(N�^M�)0 � ÆH�1� (s)ds#(A.5)26



where we have used that f�C(Æ) > tk�1g 2 Ftk�1. Moreover, by 
on
avity of u! G(t; u),E �G(tk; V (Xtk)� G(tk�1; V (Xtk�1))��Ftk�1�� �G�u (tk; V (Xtk�1))E �V (Xtk)� V (Xtk�1)��Ftk�1�+ Z tktk�1 �G�t (s; V (Xtk�1))dsRepla
ing by the expressions of the partial derivatives �G�u and �G�t given in (A.2) and (A.3) andinserting the resulting inequality in (A.5) yields, 
ombining with D(C;V; �;b)A(�) � Ex "M�Xk=1 � ÆH�1� (H�(V (Xtk�1)) + tk) �R tktk�1 � Æ V (Xs)ds�(V (Xtk�1)) + �! 1�C(Æ)>tk�1#+ b�(1)Ex "Z �(N�^M�)0 � ÆH�1� (s+ �)1C(Xs)ds#Consider the �rst term of the rhs. By Fatou's lemma,lim sup�!0 Ex 24bM=�
Xk=1 � ÆH�1� (H�(V (Xtk�1)) + tk) ������R tktk�1 � Æ V (Xs)ds�(V (Xtk�1)) + ������35� Ex 24� ÆH�1� (H�( supt2[0;M ℄V (Xt)) +M) lim sup�!0 bM=�
Xk=1 �����R tktk�1f� Æ V (Xs)� � Æ V (Xtk�1)gds�(1) �����35 = 0 ;by applying Lemma A.1 with g(s) := � Æ V (Xs). Thus, using again Fatou's lemma,Ex "Z �C(Æ)^M0 � ÆH�1� (s)ds#�G(0; V (x))� lim sup�!0 A(�) � b�(1) lim sup�!0 Ex "Z �(N�^M�)0 � ÆH�1� (s+ �)1C(Xs)ds#� b�(1)Ex �Z M0 � ÆH�1� (s)1C(Xs)�lim sup�!0 1s��N�<�C(Æ)+��ds�= b�(1)Ex �Z M0 � ÆH�1� (s)1C(Xs)1s��C(Æ)ds� = b�(1) Z Æ0 � ÆH�1� (s)dsThe proof follows by letting M !1.A.2 Proof of Proposition 3.4The  -irredu
ibility results from [21, Theorem 1.1℄. Under the stated assumptions, there existsa �nite 
onstant b0 su
h that RV (x) � V (x) + b0 where R denotes the resolvent for the pro
essR(x; dy) = R exp(�t)P t(x; dy)dt. This shows that the set fV <1g is absorbing for the R-
hain,27



and sin
e R is  -irredu
ible, it is full or empty [22, Proposition 4.2.3℄. Sin
e C � fV < 1g,this set is full.Let B be a 
losed a

essible petite set, the existen
e of whi
h is proved in [21, Proposition 3.2(i)℄.Sin
e B is a

essible, there exists t0 and 
 > 0 su
h that infx2C Px (�B � t0) � 
. Observe indeedthat we 
an assume without loss of generality that C is �a-petite for some maximal irredu
ibilitymeasure �a [21, Proposition 3.2℄. Hen
e0 < �a(B) � Px (X� 2 B) � Px (X� 2 B; � � t0) +Px (� > t0) � Px (�B � t0) +P(� > t0) ;where � � a(dt) is independent of the pro
ess. Choose t0 su
h that P(� > t0) � 0:5�a(B) andthe existen
e of 
 follows. In the proof of [21, Proposition 4.1℄, it is shown that for all Æ > 0,there exists a 
onstant 
 <1 su
h that for all x 2 X,Ex [�B℄ � Ex [�C(Æ)℄ + 
:Hen
e, by Theorem 3.1, there exists a 
onstant 
 < 1 su
h that Ex [�B℄ � 
V (x). This impliesthat the level sets Bn = fV � ng are petite (see the proof of [21, Proposition 4.2℄).Sin
e fV < 1g is full, [nBn is full. This implies Bn is a

essible for n large enough, andC � Bn� for some (and thus all) n� � supC V . Finally, sin
e �a is a regular measure, thereexists a 
ompa
t set B su
h that C � B � Bn� and �a(B) > 0. This 
on
ludes the proof.A.3 Proof of Proposition 3.5We 
an assume without loss of generality that r 2 �0 and we will do so.By [11, Lemma 20℄, there exists a 
onstant � <1 su
h thatGC(x; f; r; t)� �bt=Æ
 GC(x; f; r; Æ): (A.6)Sin
e supC GC(x; f; r; Æ) < 1, that for all for all t > 0, Mt = supC GC(x; f; r; t) < 1. Let t0be su
h that for some 
 > 0, infx2C Px(�B � t0) � 
 > 0 (su
h 
onstants always exist, see theproof of Proposition 3.4).Let �k be the kth-iterate of � = �C(t0)�k = �k�1 + � Æ ��k�1 ; k � 2;where � is the usual shift operator. De�ne for n � 2, the f0; 1g-valued random variables (un)nby un = 1 i� �B Æ ��n�1 � t0. Then by de�nition, un 2 F�n and Px (un = 1jF�n�1) � 
 > 0.Finally, set � = inffn � 2; un = 1g. Then it holdsGB(x; f; r; t0) � Ex �Z ��0 r(s)f(Xs) ds� �Xn�2 Ex �Z �n0 r(s)f(Xs) ds 1��n� :De�ne for all n � 2,ax(n) = Ex "Z �n�10 r(s)f(Xs) ds 1��n# ; bx(n) = Ex �r(�n�1) 1��n� :28



Then by the strong Markov property and the property r(s + t) � r(s)r(t) for all s; t � 0, wehave GB(x; f; r; t0) �Xn�2 (ax(n) +Mt0 bx(n)) :Following the same lines as in the proof of [26, Lemma 3.1℄, it may be proved that for all n � 3bx(n) � � bx(n� 1) + 
 (1� 
)n�1; ax(n) � (1� 
) ax(n� 1) +M bx(n� 1);for some positive 
onstants 
 < 1 and � < 1. This proves that there exists a 
onstant 
 < 1su
h that GB(x; f; r; t0) � 
 GC(x; f; r; t0). By (A.6), there exists a 
onstant 
t0 su
h thatGB(x; f; r; t0) � 
t0 GC(x; f; r; Æ). This implies that supx2C GB(x; f; r; t0) < 1. Finally, for alln � 1 we writeGB(x; f; r; t0+ nt0) � Ex "Z �B(t0)Æ��nC (t0)+�nC(t0)0 r(s)f(Xs) ds#� Ex "Z �nC(t0)0 r(s)f(Xs) ds#+ Ex "r (�nC(t0)) EX�nC (t0) "Z �B(t0)0 r(s) f(Xs) ds##� Ex "Z �nC(t0)0 r(s)f(Xs) ds#+ supx2CGB(x; f; r; t0) Ex [r (�nC(t0))℄ :Sin
e f � 1 and limt!1 r(t)= R t0 r(s)ds = 0 for all r 2 �0, there exists a 
onstant 
 < 1 su
hthat for all n large enoughGB(x; f; r; t0+ nt0) � 
 Ex "Z �nC(t0)0 r(s)f(Xs) ds# :As in the proof of [11, Lemma 20℄ (see also [21, Lemma 4.1℄ for a similar 
al
ulation), the termin the right hand side is upper bounded by 
nt0 GC(x; f; r; Æ) and this 
on
ludes the proof.A.4 Proof of Proposition 3.7We prove that (i) and (ii) are equivalent. That (ii) implies (i) is trivial. For the 
onverseimpli
ation, we start with proving that fx 2 X; GC(x; f; r; Æ) < 1g is full. This 
an be donefollowing the same lines as the proof of [21, Proposition 4.2℄ upon noting that (a) by [11, Lemma20℄, there exists M < 1 su
h that for all t � 0, GC(x; f; r; Æ+ t) � GC(x; f; r; Æ) +M t; (b) we
an assume that C is �a-petite for some maximal irredu
ibility measure �a and a distribution asu
h that R M ta(dt) < 1 ([21, Proposition 3.2(ii)℄). Proposition 3.5 now implies that the setsCn = fx 2 X; GC(x; f; r; Æ)� ng are (f; r)-regular and thus petite ([21, Proposition 4.2(i)℄). Asin the proof of Proposition 3.4, we thus dedu
e that there exists a (f; r)-regular set, whi
h ispetite, 
losed and a

essible.We have just proved that under (i), the sets Cn are (f; r)-regular petite sets and [nCn is full.29



This shows that (i) ) (iii).We �nally prove that (iii) ) (ii). Sin
e  ([nCn) > 0, Cn � Cn+1 and  is regular, there existsn� and a 
ompa
t set A su
h that A � Cn� and  (A) > 0. Hen
e, A is a

essible; furthermore,it is (f; r)-regular (and thus petite) as a subset of a (f; r)-regular set.A.5 Proof of Proposition 3.8(i) We �rst prove thatEx 24Tm;B^MXk=0 � Æ V (Xmk)35 � m�1Ex "Z m(Tm;B^M)0 f� Æ V (Xs) ds#+ b�0(1) Ex [m(Tm;B ^M)℄ :(A.7)where M is any positive real number. WriteEx0�Tm;B^MXk=1 � Æ V (Xmk)1A� Ex �Z Tm;B^M0 � Æ V (Xms)ds�= Ex  1Xk=1 �Z kk�1f� Æ V (Xmk)� � Æ V (Xms)gds�1k�Tm;B^M!� Ex  1Xk=1 �Z kk�1f�0 Æ V (Xms)(V (Xmk)� V (Xms))gds�1k�Tm;B^M!� 1Xk=1 Z kk�1 Ex �Ex (V (Xmk)� V (Xms)j Fms)�0 Æ V (Xms)1k�Tm;B^M�ds� b�0(1)Ex " 1Xk=1 Z kk�1 Z kmsm 1C(Xu)du ds 1k�Tm;B^M# = b�0(1)Ex "Z m(Tm;B^M)0 1C(Xu)du#� b�0(1)Ex [m(Tm;B ^M)℄ :Finally, Ex �Z Tm;B^M0 � Æ V (Xms)ds� = m�1 Ex "Z m(Tm;B^M)0 � Æ V (Xs)ds# ;and (A.7) is established. The drift 
ondition D(C;V; �;b) and the optional sampling theoremimply Ex "Z m(Tm;B^M)0 � Æ V (Xs)ds# � V (x) + b Ex [m(Tm;B ^M)℄ : (A.8)Combining (A.7) and (A.8) yieldsEx 24Tm;B^MXk=0 � Æ V (Xmk)35 � m�1V (x) + 
 Ex [Tm;B ^M ℄ ;30



for some �nite 
onstant 
. Sin
e supC V <1, by Proposition 3.4 and Theorem 3.1, there exista 
losed a

essible petite set A and for all Æ > 0, a �nite 
onstant 
Æ su
h thatEx [�A(Æ)℄ � 
Æ V (x); supA V <1:Furthermore, under the stated assumptions, the pro
ess is positive Harris-re
urrent [21, Theorem1.2℄ and sin
e some skeleton is irredu
ible, there exists a maximal irredu
ibility measure � andt0 > 0 su
h that infx2A inf t�t0 P t(x; �) � �(�) ([23, Proposition 6.1℄ and [21, Proposition 3.2(ii)℄).Hen
e, there exists 
 > 0 su
h that infx2A inf t0�t�t0+mPx (Xt 2 B) � 
. Following the samelines as in the proof of [11, Proposition 22(ii)℄, it may be proved that Ex [Tm;B℄ � 
0V (x) forsome 
onstant 
0 <1, thus 
on
luding the proof.(ii) Sin
e r� = � ÆH�1� is in
reasing,Ex 24Tm;B�1Xk=0 r�(km)35 � �(1) + Ex �Z mTm;B0 r�(s)ds� :As in the previous 
ase, we show that infx2A inf t0�t�t0+mPx (Xt 2 B) � 
 > 0 for some 
loseda

essible petite set A. The result now follows from [11, Proposition 22(ii)℄ (with a minormodi�
ation : the authors 
laim that Tm;B � �� while we have mTm;B � ��A) and Theorem 3.1.A.6 Proof of Theorem 3.10The theorem is a 
onsequen
e of [11, Theorem 1℄ and of results by Tuominen and Tweedie [31℄on dis
rete time Markov 
hains. We nevertheless have all the ingredients in this paper to rewritethe proof of [11, Theorem 1℄ in few lines. For ease of the proof of the new results, we start withthis 
on
ise proof.Let Pm be the irredu
ible skeleton. We 
an assume without loss of generality that 	1 Æ r� 2 �0,	1 Æ r� � 1 and 	2 Æ f� � 1, and we do so. Write t = km + u for some 0 � u < m and a non-negative integer k. Sin
e 	1 Æ r� 2 �0 and is a non-de
reasing rate fun
tion, 	1 Æ r�(km+ u) �	1 Æ r�(km) 	1 Æ r�(m). Furthermore, if jgj � 	2 Æ f�, upon noting that 	2 and � are non-de
reasing 
on
ave fun
tionsPujgj � Pu(	2 Æ � Æ V ) � 	2 Æ � (PuV ) � 	2 Æ � (V + bm) � 	2(f�) +mb�0(1) � 
 	2(f�);where we used that by (3.1), PuV � V + bu. Hen
e, there exists a �nite 
onstant 
 su
h that	1 Æ r�(t) kP t(x; �)� �(�)k	2Æf� � 
 	1 Æ r�(km) kP km(x; �)� �(�)k	2Æf�: (A.9)By Proposition 3.4, there exists a V -level set A = fV � ng whi
h is a

essible and petite forthe pro
ess. Hen
e, under the stated assumptions, there exist t0 and a maximal irredu
ibilitymeasure  su
h that inf t�t0 infx2A P t(x; �) �  (�) ([23, Proposition 6.1℄ and [21, Proposition31



3.2(ii)℄). This implies that A is petite and a

essible for the m-skeleton and Pm is aperiodi
.Furthermore, by Proposition 3.8 and the inequality (3.3),supA Ex 24Tm;A�1Xj=0 	1 Æ r�(jm) 	2 Æ f�(Xjm)35 <1: (A.10)We now have all the ingredients to dedu
e (3.5) to (3.8) from known results on dis
rete-timeMarkov 
hains. Eq. (3.5) results from [31, Theorem 4.1, Eq(36)℄ while (3.6) is established in theproof of [31, Theorem 4.1℄. (3.7) is a 
onsequen
e of [31, Theorem 4.2℄. Sin
e �[	1 Æ r�℄ 2 �0(and thus is non-de
reasing), there exists a �nite 
onstant 
 su
h that for all 0 � juj � m,�[	1 Æ r�℄(km+ u) � 
�[	1 Æ r�℄(km� u) � 
m�1 Z kmkm�m �[	1 Æ r�℄(s) ds� 
m�1f[	1 Æ r�℄(km)� [	1 Æ r�℄(km�m)g = 
m�1f�[	1 Æ r�℄(km)g;where for a rate fun
tion r de�ned on the non-negative integers, we asso
iate a sequen
e �rde�ned by �r(0) = r(0) and �r(k) = r(k)� r(k � 1), k � 1. Thus, there exists 
 < 1 su
hthat �[	1 Æ r�℄(t) kP t(x; �)� �(�)k	2Æf� � 
 �[	1 Æ r�℄(km) kP km(x; �)� �(�)k	2Æf� :Under the stated assumptions, f�[	1 Ær�℄(km)gk is a subgeometri
 rate fun
tion de�ned on theintegers (see e.g. the 
lass � in [31℄). Observe indeed thatln �[	1 Æ r�℄(km)km � ln�m�1 R (k+1)mkm �[	1 Æ r�℄(s) ds�km = ln �m�1�[	1 Æ r�℄(km+m)�km� ln �[	1 Æ r�℄((k+ 1)m)� lnm(k + 1)m (k + 1)mkm :Sin
e �[	1 Æ r�℄ 2 �0, the dis
rete rate fun
tion f�[	1 Æ r�℄(km)gk is equivalent to the dis
reterate fun
tion f�[	1 Æ r�℄(km)gk whi
h is in the 
lass �0 de�ned e.g. in [31℄. (3.8) now followsfrom [31, Theorem 4.3℄.A.7 Proof of Theorem 3.11Sin
e V 2 D(A), there exists an in
reasing sequen
e Tn " 1 of Ft-stopping times su
h thatfor any n, t 7! V (Xt^Tn) � V (X0) � R t^Tn0 AV (Xs)ds is a Px-martingale. Denote a+ = a _ 0.We have (AV )+(x) � b1C(x) and thus Ex(R t^Tn0 (AV )+(Xs))ds < 1 whi
h ensures that thequantity Ex(R t^Tn0 AV (Xs))ds is well de�ned. This implies that0 � Ex(V (Xt^Tn)) = V (x) + Ex �Z t^Tn0 AV (Xs)ds� � V (x) + bEx �Z t^Tn0 1C(Xs)ds� <1:32



This allows to writeEx(V (Xt^Tn)) + Ex �Z t^Tn0 � Æ V (Xs)ds� = V (x) + Ex �Z t^Tn0 [AV (Xs) + � Æ V (Xs)℄ds�� V (x) + bEx �Z t^Tn0 1C(Xs)ds� :The previous inequality ensures in parti
ular, by monotone 
onvergen
e theorem, that Ex �R t0 � Æ V (Xs)ds� <1. The proof is now 
ompleted by noting thatEx(V (Xt)) = Ex(lim infn V (Xt^Tn)) � lim infn Ex(V (Xt^Tn))� lim infn �V (x)� Ex �Z t^Tn0 � Æ V (Xs)ds�+ bEx �Z t^Tn0 1C(Xs)ds��= V (x)� Ex �Z t0 � Æ V (Xs)ds�+ bEx �Z t0 1C(Xs)ds�where the last equality follows from monotone 
onvergen
e.A.8 Proof of Theorem 3.12We �rst prove (i). It is straightforward that sin
e C is petite for the resolvent kernel, it is alsopetite for the Markov pro
ess asso
iated to the semi group Pt. Now, by de�nition, we haveEx(R�V (Xu)) = Z 10 �e��vP v+u(x; V )dv = e�uR�V (x)� e�u Z u0 �e��vP v(x; V )dv : (A.11)This implies thatEx �Z s0 �(R�V (Xu)� V (Xu))du�= Z s0 �e�uR�V (x)du� Z s0 �e�u Z u0 �e��vP v(x; V )dv�du� � Z s0 Pu(x; V )du= (e�s � 1)R�V (x)� Z s0 �Z sv �e�udu� e��vP v(x; V )dv � � Z s0 Pu(x; V )du= (e�s � 1)R�V (x)� e�s Z s0 �e��vP v(x; V )dv = Ex(R�V (Xs))�R�V (x) (A.12)Moreover, if �D(C;V; �;b; �) holds then,Ex �Z s0 �(R�V (Xu)� V (Xu))du� � �Ex �Z s0 �� Æ V (Xu)du�+�bEx �Z s0 1C(Xu)du� (A.13)33



Combining (A.12) and (A.13) yields (i). Now, 
onsider (ii). By [21, Theorem 2.3 (i) andProposition 4.4 (ii)℄ and Theorem 3.1, there exist positive 
onstants Æ; 
1 and 
2 su
h that forany x 2 X,�Ex " ��CXk=1 � Æ V ( �Xk)# � GC(x; � Æ V; 1; Æ) + 
1 supx2CGC(x; � Æ V; 1; Æ)� V (x) + 
2where ( �Xk)k is a Markov 
hain with transition kernel R�, ��C = inffk � 1 : �Xk 2 Cg and �Exis the expe
tation asso
iated to �Px the probability indu
ed by the Markov 
hain ( �Xk)k. WriteW (x) = �Ex �P��Ck=0 � Æ V ( �Xk)� and �x � > 0 small enough so that 0 � supu�1 �(u)� �u < 1.This implies that there exists some 
onstant 
 su
h thatW (x) � (1 + �)V (x) + 
; x 2 X:Let �C = fx 2 X : W (x) � supC � Æ V + Ag where A is a positive number su
h that (supC � ÆV + A � 
)=(1 + �) � 1. Note that C � �C sin
e if x 2 C, W (x) = � Æ V (x) � supC � Æ V andthus, x 2 �C. This implies that for all x 62 �C,R�W (x) = W (x)� � Æ V (x) � W (x)� �� ÆW (x) ; (A.14)with �� is a non de
reasing di�erentiable 
on
ave fun
tion su
h that ��(u) = ��u�
1+�� for u �supC � Æ V + A. Moreover, for all x 2 �C,R�W (x)�W (x) + �� ÆW (x) � sup�C (�Ex " ��CXk=1� Æ V ( �Xk)#+ � Æ V (x))� sup�C fV (x) + 
2 + � Æ V (x)g : (A.15)Sin
e � Æ V � W on X, V and � Æ V are �nite on �C. By (A.14) and (A.15), there exists a
onstant �b su
h that for all x 2 X,R�W � W � �� ÆW + �b1 �C :Moreover, we have by straightforward algebra limt r��(t)[r�((1 + �)t)℄�1 = 1 + �. It remains to
he
k that �C is petite w.r.t. R�. Sin
e �C is in
luded in some set fV � ng whi
h is petite w.r.t.the semi group Pt, we have that �C is petite w.r.t. the semi group Pt whi
h implies by [21,Proposition 3.2℄ that �C is petite w.r.t the Markov transition kernel R�. The proof is 
ompleted.A.9 Proof of Theorem 5.1(i) We �rst prove that PmW � W � � Æ W + b01C : This a 
onsequen
e of Proposition 3.8and Theorem 14.2.3 (ii) in Meyn-Tweedie [22℄. Indeed, sin
e supC V < 1, (i) shows that34



supx2C Ex hPTm;C�1k=0 � Æ V (Xkm)i < 1. De�ne �m;C = inffk � 0; Xmk 2 Cg and set W (x) =Ex �P�m;Ck=0 � Æ V (Xkm)�. Then the fun
tion W satis�es the 
onditions (see [22, Chapter 14℄).As dis
ussed in the proof of Theorem 3.10, for all n � n� the level sets fV � ng are a

essibleand petite for the skeleton 
hain Pm. As a 
onsequen
e, either supC V � n� and we may repla
eC by fV � n�g in the previous drift inequality, or supC V � n� and we 
hoose ~C = C.(ii) The Moderate deviations prin
iple (or MDP) 
omes from a de
omposition into blo
ks anda return to the dis
rete time 
ase. Assume that m = 1 whi
h 
an be done without loss ofgenerality. In fa
t, by (i), the Markov 
hain (�k := X[k;k+1[)k2N with probability transition Q issubgeometri
ally ergodi
 with the invariant probability measure ~� = P�jF1 and satis�es A1-A2in the terminology of Dou
-Guillin-Moulines [5℄. Then, we may write (denoting the integer partby b�
) S�t = 1p�h(�) Z t0 g(Xs=�)ds= p�h(�) Z t=�0 g(Xs)ds= p�h(�) bt=�
�1Xk=0 Z k+1k g(Xs)ds+ p�h(�) Z t=�bt=�
 g(Xs)ds= p�h(�) bt=�
�1Xk=0 G(�k) + p�h(�) Z t=�bt=�
 g(Xs)dswhere G is obviously a bounded mapping with values in Rn. By the boundedness of g, it is easyto see that the se
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