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For geometri rate funtions, i.e. funtions r that satisfy0 < lim inf log r(n)n and lim sup log r(n)n <1 (1.2)it is known (MT, Theorem 16.0.1) that (1.1) holds if and only if the Foster Lyapunov driftondition is veri�ed i.e. there exist an extended real valued funtion V : X ! [1;1℄ �nite atsome x0 2 X, a petite set C, � 2 (0; 1), b > 0 and  > 0 suh that �1f � V � f andPV � �V + b1C : (1.3)In that ase, the onvergene (1.1) holds for all x in the set fV <1g whih is of � measure one.For rates of onvergene slower than geometri, no suh de�nitive result exist. An impor-tant family of suh rates is the lass of subgeometri rate funtions, de�ned in Nummelin andTuominen (1983) as follows. Let �0 be the set of positive non dereasing funtions r0 suh thatr0(0) � 1 and logfr0(n)g=n dereases to 0. The lass of subgeometri rate funtions is the set� of positive funtions r suh that there exists a sequene r0 2 �0 andlim inf r(n)=r0(n) > 0 and lim sup r(n)=r0(n) <1: (1.4)This lass inludes for example polynomial rate funtions, i.e. rate funtions r suh that (1.4)holds with r0(n) := (1 + n)� and � � 0. It also inludes rate funtions whih inrease fasterthan polynomially, e.g. rate funtions r satisfying (1.4) withr0(n) := (n+ 1)�en ; for � 2 R;  2 (0; 1) and  > 0: (1.5)We will refer to these rates as subexponential in order to distinguish them in the broad lass ofsubgeometri rates.Tuominen and Tweedie (1994) (see also Nummelin and Tuominen (1983)) have given a setof neessary and suÆient onditions for the onvergene (1.1) to hold with a subgeometri ratefuntion r 2 �. To state this result, we �rst reall some notations and de�nitions.A measurable set C is  apetite (or petite) if there exist a distribution a := (a(n); n � 0), aonstant � > 0 and a non trivial measure  a on B(X) suh that for all x 2 C, B 2 B(X),Ka(x;B) :=Xn�0 a(n)Pn(x;B) �  a(B):The return time to a measurable set A, denoted by �A is de�ned as �A := inffn � 1;�n 2 Ag(with the onvention inf ; = +1). Let  be a maximal irreduibility measure and let B+(X) bethe set of aessible sets, i.e. sets B 2 B(X) suh that  (B) > 0. A set A 2 B(X) is alled full if (A) = 0, absorbing if P (x;A) = 1 for all x 2 A and, for a measurable positive funtion f anda rate funtion r, A is said (f; r) regular if, for every B 2 B+(X),supx2AEx "�B�1Xk=0 r(k)f(�k)# <1:2



A �nite positive measure � on B(X) is said (f; r) regular if E� [P�B�1k=0 r(k) f(�k)℄ < 1 for allset B 2 B+(X). The set of all (f; r) regular points (i.e. the points x 2 X suh that Æx is (f; r)regular) is denoted by S(f; r).We an now reall (part of) (Tuominen and Tweedie, 1994, Theorem 2.1).Theorem 1.1 (Tuominen and Tweedie (1994)). Assume that P is  irreduible and ape-riodi. Let f : X ! [1;1℄ be a measurable funtion, and let r 2 � be given. The followingonditions are equivalent.(i) There exists a petite set C 2 B(X) suh thatsupx2C Ex "�C�1Xk=0 r(k)f(�k)# <1:(ii) There exist a sequene of extended real valued funtions (Vn; n � 0), Vn : X ! [1;1℄, apetite set C 2 B(X) and a onstant b <1 suh that V0 is bounded on C,V0(x) = +1 ) V1(x) = +1and PVn+1 + r(n)f � Vn + br(n)1C : (1.6)(iii) There exists a (f; r) regular set A 2 B+(X).Any of these onditions implies that, for all x 2 S(f; r),r(n)kPn(x; �)� �(�)kf = 0; n!1;and the set S(f; r) is full, absorbing and ontains the set fV0 < 1g. Moreover, for all (f; r)regular initial distributions �; �, there exists a onstant  suh that1Xn=0 r(n) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)kf �  (�(V0) + �(V0)) :This theorem annot be improved sine it provides a neessary and suÆient ondition, butthe sequene of drift onditions (1.6) is notoriously diÆult to hek in pratie and one hasvery little insight on the way to hoose the family of drift funtion (Vn; n � 0). This is whythese drift onditions, up to the best of our knowledge, have seldom been used diretly.A �rst step towards �nding a more pratial drift ondition was taken by Jarner and Roberts(2002) who, simplifying and generalising an argument in Fort and Moulines (2000), have shownthat if there exist a funtion V : X! [1;1℄ �nite at some x0 2 X, positive onstants b and , apetite set C and � 2 [0; 1) suh thatPV + V � � V + b1C ;3



then the hain is positive reurrent and for eah � 2 [1; 1=(1� �)℄, the onvergene (1.1) holdsfor all x 2 fV < 1g whih is of � measure one, with r(n) := n��1 and f := V 1��(1��). It isnoteworthy that there is a balane between the rate of onvergene and the norm: the largerthe latter, the slower the former. In partiular, the fastest rate of onvergene (r(n) � n�=(1��))orresponds to the total variation norm, and the slowest rate (r(n) � 1) orresponds to the V �norm.In this paper, we onsider the following drift ondition whih generalizes the Foster Lyapunovand the Jarner Roberts drift onditions.Condition D(�; V; C): There exist a funtion V : X ! [1;1℄, a onave non dereasingdi�erentiable funtion � : [1;1) 7! (0;1), a measurable set C and a �nite onstant b suh thatPV + � Æ V � V + b1C :Here � is assumed di�erentiable for onveniene. It an be relaxed sine a onave funtion hasnon inreasing left and right derivatives everywhere. If P is  irreduible and aperiodi, andD(�; V; C) holds for some petite set C suh that supC V < 1, then the f norm ergodi Theo-rem for aperiodi hain (see MT, Theorem 14.0.1) states that there exists an unique invariantdistribution � and that the limit limn kPn(x; �)� �k�ÆV = 0;for all x in the set of � measure one fV <1g. The � Æ V norm is the maximal norm for whihonvergene an be proved under ondition D(�; V; C), and in that ase, the rate of onvergeneis minimal: r � 1. This implies that for any funtion 1 � f � � Æ V onvergene in the fnorm also holds. In order to determine the rate of onvergene in the f norm, we should tryto �nd a sequene of funtion (Vn; n � 0) suh that (1.6) holds, but this is preisely what weare trying to avoid doing for all funtions f . Instead, having in mind the balane between therate of onvergene and the norm, we will �rst determine the rate of onvergene in the totalvariation norm by using the riterion (1.6) and then dedue intermediate rates of onvergenein f norm using an interpolation tehnique.The rest of the paper is organized as follows. Our main result, Theorem 2.8, is stated andproved in the next setion. Several typial funtions � are then onsidered, leading to a varietyof subgeometri rate funtions. In partiular, by setting �(v) := v�, � 2 [0; 1), we retrieve theresults in Jarner and Roberts (2002). Several appliations are given in setion 3. We establishsubgeometri rates of onvergene in several models: �rst order nonlinear autoregressive models,stohasti unit root models, and random walk multidimensional Hastings Metropolis algorithm,under onditions whih do not imply geometri ergodiity.4



2 Main result2.1 Rate of onvergene in the total variation normLet � : [1;1)! (0;1) be a onave non dereasing di�erentiable funtion. De�neH�(v) := Z v1 dx�(x) : (2.1)Then H� is a non dereasing onave di�erentiable funtion on [1;1). Moreover, sine � isonave, �0 is non inreasing. Hene �(v) � �(1)+ �0(1)(v� 1) for all v � 1, whih implies thatH� inreases to in�nity. We an thus de�ne its inverse H�1� : [0;1)! [1;1), whih is also aninreasing and di�erentiable funtion, with derivative (H�1� )0(x) = �ÆH�1� (x). For k 2 N, z � 0and v � 1, de�ne r�(z) := (H�1� )0(z) = � ÆH�1� (z); (2.2)Hk(v) := Z H�(v)0 r�(z + k) dz = H�1� (H�(v) + k)�H�1� (k);Vk := Hk Æ V:We will show that, provided D(�; C; V ) holds with C petite and supx2C V (x) < 1, then thehain (�k; k � 0) is (1; r�) regular, i.e. r� is the rate of onvergene in total variation norm thatan be dedued from the drift ondition. To this end, we will use Theorem 1.1 ondition (ii),i.e., we will show that (1.6) holds with (Vk; k � 0), f := 1 and r := r�.Proposition 2.1. Assume D(�; V; C). Then r� is log onave and for all k � 0, Hk is onaveand PVk+1 � Vk � r�(k) + br�(k + 1)�(1) 1C :Proof. Note �rst that r0�(z)=r�(z) = �0 ÆH�1� (z) for all z � 0. Sine �0 is non inreasing andH�1� is inreasing, �0 ÆH�1� is non inreasing and log(r�) is onave. This implies that for any�xed k � 0, the funtion z 7! r�(z+k)=r�(z) is a dereasing funtion. The derivative of Hk hasthe following expressionH 0k(v) = r�(H�(v) + k)=�(v) = r�(H�(v) + k)=r�(H�(v)): (2.3)Sine H� is inreasing, it follows from the disussion above that H 0k is non inreasing, hene Hkis onave for all k � 0. Applying (2.3) and the fat that r� is inreasing, we obtain:Hk+1(v)�Hk(v) = Z H�(v)0 fr�(z + k + 1)� r�(z + k)g dz = Z H�(v)0 Z 10 r0�(z + k + s) dsdz= Z 10 fr�(H�(v) + k + s) � r�(k+ s)g ds� r�(H�(v) + k + 1)� r�(k) = �(v)H 0k+1(v)� r�(k):5



We have thus shown the following inequality whih is the key tool of the proof.Hk+1(v)� �(v)H 0k+1(v) � Hk(v)� r�(k): (2.4)Let g be a onave di�erentiable funtion on [1;1). Sine g0 is dereasing, for all v � 1 andx 2 R suh that v + x � 1, it holds thatg(v + x) � g(v) + g0(v)x: (2.5)Applying this property to the onave funtion Hk+1, we obtain for all k � 0, x 2 fV <1g,PVk+1(x) � Hk+1fV (x)� � Æ V (x) + b1C(x)g� Hk+1(V (x))� � Æ V (x)H 0k+1(V (x)) + bH 0k+1(V (x))1C(x)� Hk+1(V (x))� � Æ V (x)H 0k+1(V (x)) + bH 0k+1(1)1C(x):Applying (2.3) and (2.4), we obtain that H 0k+1(1) = r�(k + 1)=�(1) andPVk+1(x) � Vk(x)� r�(k) + br�(k+ 1)�(1) 1C(x):This inequality still holds for x 2 fV =1g. Whih onludes the proof.The drift ondition D(�; V; C) and Proposition 2.1 imply the following bounds for the mod-ulated moments of the return time �C , by appliation of Dynkin's inequality (see MT, Theorem11.3.2).Proposition 2.2. Assume D(�; V; C). Then, for all x 2 X,Ex "�C�1Xk=0 � Æ V (�k)# � V (x) + b1C(x);Ex "�C�1Xk=0 r�(k)# � V (x) + br�(1)�(1) 1C(x):In order to apply Theorem 1.1 we must also hek the following onditions:� the rate sequene r� := (� ÆH�1� (k); k � 0) belongs to �,� the drift funtion V is bounded on C, supx2C V (x) <1.The next Lemma gives a simple riterion to hek that r� 2 �.Lemma 2.3. If limt!1 �0(t) = 0, then r� 2 �.6



Proof. We have already noted that r0�(x)=r�(x) = �0 Æ H�1� (x) for all x � 0. Let r be anydi�erentiable funtion suh that r(0) = 1 and limx!1 r0(x)=r(x) = 0. Then, applying Cesaro'sLemma, we obtain: log(r(n))n = 1n Z n0 r0(s)r(s) ds! 0:If moreover r0=r dereases, then log(r(x))=x also dereases. Thus r� 2 �.The ondition supx2C V (x) < 1 an easily be avoided, thanks to the following Lemma,adapted from Theorem 14.2.6 of MT.Lemma 2.4. Assume that D(�; V; C) holds for some petite set C and that limv!1 �(v) = 1.Then for all M � 1, the sublevel sets fx 2 X; V (x) � Mg are petite. In addition, for any �,0 < � < 1, there exists a sublevel set C� suh that D(��; V; C�) holds.Proof. Sine � is positive non dereasing and V � 1, the ondition D(�; V; C) implies the driftondition PV � V � �(1) + b1C . Theorem 11.3.11 of MT shows that, for all aessible setB 2 B+(X), there exists a onstant (B) < 1 suh that, for all x 2 X we have �(1)Ex [�B℄ �V (x)+(B). Hene, every set A 2 B(X) suh that supx2A V (x) <1 is regular, and the sublevelsets are all regular. Proposition 11.3.8 of MT shows that if a set A is regular, then it is petite.Hene, all the sublevel sets are petite.Sine limv!1 �(v) = 1, for all � 2 (0; 1), there exists M� suh that v > M� implies�(v) � b=(1� �). For x =2 C� := fV �M�g, we thus have b � (1� �)�(V (x)) andPV + ��(V ) � V + (� � 1)�(V ) + b1C � V:For x 2 C�, sine � 2 (0; 1), it trivially holds thatPV + ��(V ) � V + b:Theorem 2.5. Let P be a  irreduible and aperiodi kernel. Assume that D(�; V; C) holds fora funtion � suh that limt!1 �0(t) = 0 and a petite set C suh that supC V < 1. Then, thereexists an invariant probability measure �, and for all x in the full and absorbing set fV <1g,limn r�(n) kPn(x; �)� �(�)kTV = 0:Any probability measure � suh that �(V ) < 1 is (1; r�) regular and for two (1; r�) regulardistributions �; �, there exists a onstant  suh that1Xn=0 r�(n) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)kTV �  (�(V ) + �(V )) :7



Remark 1. Sine �0 is non inreasing, if we do not assume that limv!1 �0(v) = 0, then thereexists  2 (0; 1) suh that limv!1 �0(v) =  > 0. This yields v � �(v) � (1� )v + � �(1). Inthis ase, ondition D(�; V; C) implies the Foster Lyapunov drift ondition, and the hain is Vgeometrially ergodi.Proof of Theorem 2.5. The only statement whih requires a proof is the fat that any probabilitymeasure suh that �(V ) < 1 is (1; r�) regular. This assertion is established in (Tuominen andTweedie, 1994, Proposition 3.1.(ii)), and relies on (Nummelin and Tuominen, 1983, Lemma3.1.). We nevertheless propose a proof that drastially shortens the previous one. The proofis adapted from the proof of Theorem 14.2.3 of MT. Proposition 2.1 shows that there exist asequene of drift funtions (Vk; k � 0) and a onstant b suh that V0 � V andPVk+1 � Vk � r�(k) + b�(1)�1r�(k + 1)1C :Dynkin's formula shows that for all aessible set B,Ex "�B�1Xk=0 r�(k)# � V0(x) + b �(1)�1 Ex "�B�1Xk=0 r�(k+ 1)1C(�k)# :>From Propositions 5.5.5 and 5.5.6 of MT, we an assume without loss of generality that C is a petite, where  a is equivalent to  , and that the sampling distribution a has �nite meanma :=P1j=1 jaj <1. By the Comparison Theorem (MT, Theorem 14.2.2), the bound 1C(x) � a(B)�1Ka(x;B) and the fat that r� is non dereasing, we have:Ex "�B�1Xk=0 r�(k)# � V0(x) + b �(1)�1 Ex "�B�1Xk=0 r�(k + 1)1C(�k)#� V0(x) + b �(1)�1  a(B)�1Xi�0 aiEx "�B�1Xk=0 r�(k + 1)1B(�k+i)#� V0(x) + b �(1)�1  a(B)�1maEx [r�(�B)℄:For k � 1, de�ne R�(k) := Pk�1j=0 r�(j). Sine r� is subgeometri, it holds that limk!1r�(k)=R�(k) = 0. Hene, for any Æ > 0, there exists a onstant (Æ) suh that for all k � 1,r�(k) � ÆR�(k) + (Æ). This yields:Ex [R�(�B)℄ � V0(x) + b�(1)�1  a(B)�1ma (ÆEx [R�(�B)℄ + (Æ)) :Thus for small enough Æ, we obtainEx [R�(�B)℄ � V0(x) + bma �1a (B)(Æ)�(1)�11� bÆma �1a (B)�(1)�1 : (2.6)8



2.2 Rate of onvergene in f normsAs seen in the polynomial ase and disussed in Tuominen and Tweedie (1994), in the subgeomet-ri ase there is a ompromise between the rate of onvergene and the ontrol funtion. In whatfollows, we will show that it is possible at almost no ost to obtain many intermediate di�erentrates of onvergene and ontrol funtions. Let Y be the set of pairs of ultimately non dereasingfuntions 	1 and 	2 de�ned on [1;1) suh that limx!1	1(x) =1 or limx!1	2(x) =1 andfor all x; y 2 [1;1), 	1(x)	2(y) � x+ y: (2.7)The set Y inludes for example 	1(x) = x and 	2(x) = 1, but there are of ourse moreinteresting examples. For example, it is well known that, for any x; y � 0, and p and q suhthat 1=p+ 1=q = 1 we have xy � xp=p+ yq=q:Hene, the pair of funtions 	1(x) = p1=px1=p, 	2(x) = q1=qx1=q satis�es (2.7). These arepreisely the interpolating funtions used in Jarner and Roberts (2002) to derive polynomial ratesof onvergene. Young funtions provide many useful interpolating funtions. We reall theirde�nition. Let %1 : (0;1)! (0;1) be an inreasing left ontinuous funtion suh that %1(0) = 0and limv!+1 %1(v) = +1. Let %2 be the left ontinuous inverse of %1, whih is inreasing andsatis�es also %2(0) = 0 and limv!+1 %2(v) = +1. De�ne then Gi(x) := R x0 %i(t)dt , i = 1; 2.The well known Young inequality states that, for all x; y � 0, we havexy � G1(x) + G2(y): (2.8)Let 	i be the inverse of Gi, i = 1; 2. Then 	1 and 	2 are onave funtions and it followsimmediately from (2.8) that the pair (	1;	2) satis�es (2.7).We use this full sale of interpolating funtions in ombination with Proposition 2.2 to derivebounds for the modulated moment of return time to the set C. More preisely, we haveProposition 2.6. Assume D(�; V; C) and let (	1;	2) 2 Y. ThenEx "�C�1Xk=0 	1(r�(k))	2(� Æ V (�k))# � 2V (x) + b(1 + r�(1)=�(1))1C(x):We need a riterion for a rate funtion 	1 Æ r� to be subgeometri. Note that if the pair(	1;	2) belongs to Y , then, for large enough x, it holds that 	i(x) � 2x (i = 1; 2).Lemma 2.7. Assume that limt!1 �0(t) = 0. For any non dereasing funtion 	 suh that	(x) � ax for some onstant a, then 	 Æ r� 2 �0.The next theorem summarizes all our previous results.Theorem 2.8. Let P be a  irreduible and aperiodi kernel. Assume that D(�; V; C) holdsfor a funtion � suh that limt!1 �0(t) = 0 and a petite set C suh that supC V < 1. Let9



(	1;	2) 2 Y. Then, there exists an invariant probability measure �, and for all x in the full setfV <1g, limn 	1(r�(n)) kPn(x; �)� �(�)k	2(�ÆV ) = 0:Any probability measure � suh that �(V ) <1 is (	2(� Æ V );	1(r�)) regular and for two suhdistributions �; �, there exists a onstant  suh that1Xn=0	1(r�(n)) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)k	2(�ÆV ) �  (�(V ) + �(V )) :Proof. From Proposition 2.6 we havesupx2C Ex "�C�1Xk=0 	1(r�(k)) 	2(� Æ V (�k))# <1:Theorem 1.1 shows that � is (	2(� Æ V );	1(r�)) regular. As in the proof of Theorem 2.5, andusing again the Comparison Theorem, for any set B 2 B+(X), there exist onstants 1(B) and2(B) suh that Ex "�B�1Xk=0 � Æ V (�k)#+ Ex "�B�1Xk=0 r�(k)# � 1(B)V (x) + 2(B):Hene, for any (	1;	2) 2 Y , we haveEx "�B�1Xk=0 	1(r�(k)) 	2(� Æ V (�k))# � 1(B)V (x) + 2(B);whih shows that any probability measure suh that �(V ) <1 is (	2(�ÆV );	1(r�)) regular.2.3 Some usual rate funtionsIn this setion, we provide examples of rates of onvergene obtained by Theorem 2.8. For twosequenes un and vn, we write un � vn if there exists positive onstants 1 and 2 suh that forlarge n, 1un � vn � 2un.We assume throughout this setion that the ondition D(�; V; C) holds for some petite set Cand supC V <1.Polynomial rates of onvergene Polynomial rates of onvergene have been widely stud-ied reently under various onditions (see Veretennikov (1997, 1999), Tanikawa (2001), Jarnerand Roberts (2002), Fort and Moulines (2002)). As already mentioned, polynomial rates ofonvergene are assoiated to the funtions �(v) := v� for some � 2 [0; 1) and  2 (0; 1℄ and the10



rate of onvergene in total variation distane is r�(n) / n�=(1��). Set 	1(x) := ((1� p)x)(1�p)and 	2(x) := (px)p for some p, 0 < p < 1. Applying Theorem 2.8 yields, x 2 fV <1g,limn n(1�p)�=(1��) kPn(x; �)� �(�)kV �p = 0: (2.9)This onvergene remains valid for p = 0; 1 by Proposition 2.2. Set � := 1+ (1� p)�=(1� �) sothat 1 � � � 1=(1� �). With these notations (2.9) readslimn n��1 kPn(x; �)� �(�)kV 1��(1��) = 0;whih is the result given in (Jarner and Roberts, 2002, Theorem 3.6).It is possible to extend this result by using more general interpolation funtions. We anfor example obtain non polynomial rates of onvergene with ontrol funtions whih are notsimply power of the drift funtions. To illustrate this point, set for b > 0, 	1(x) := (1_ log(x))band 	2(x) := x(1 _ log(x))�b. It is not diÆult to hek that we havesup(x;y)2[1;1)�[1;1)(x+ y)�1	1(x)	2(y) <1;so that, for all x 2 fV <1g, we havelimn logb(n) kPn(x; �)� �(�)kV�(1+log(V ))�b = 0; (2.10)limn n�=(1��) log�b(n) kPn(x; �)� �(�)k(1+log(V ))b = 0; (2.11)and for all 0 < p < 1,limn n(1�p)�=(1��) logb n kPn(x; �)� �(�)kV�p(1+logV )�b = 0:Logarithmi rates of onvergene We now onsider drift onditions whih imply rates ofonvergene slower than any polynomial. Suh rates are obtained when ondition D(�; V; C)holds with a funtion � that inreases to in�nity slower than polynomially. We only onsiderhere the ase �(v) = (1+ log(v))� for some � � 0 and  2 (0; 1℄. A straightforward alulationshows that r�(n) � log�(n):Theorem 2.5 shows that the hain is (1; log�(n)) and ((1 + logV )�; 1) regular. ApplyingTheorem 2.8, intermediate rate an be obtained along the same lines as above. Choosingfor instane 	1(x) := ((1 � p)x)1�p and 	2(x) := (px)p for 0 � p � 1, then the hain is((1 + logV )p�; log(n)(1�p)�) regular and thus for all x 2 fV <1g,limn!1 (1 + log(n))(1�p)� kPn(x; �)� �(�)k(1+log(V ))p� = 0:11



Subexponential rates of onvergene Subexponential rates (as de�ned in (1.5)) have beenonsidered only reently in the literature. An example (in ontinuous time) has been studiedby Malyshkin (2001); disrete time examples are onsidered in the reent work by Klokov andVeretennikov (2002). These rates, whih inrease to in�nity faster than polynomially, are ob-tained when the ondition D(�; V; C) holds with � suh that v=�(v) goes to in�nity slower thanpolynomially. More preisely, assume that � is onave and di�erentiable on [1;+1) and thatfor large v, �(v) = v= log�(v) for some � > 0 and  > 0. A simple alulation yieldsr�(n) � n��=(1+�) exp�f(1 + �)ng1=(1+�)� ;and thus the hain is (1; n��=(1+�) exp �f(1 + �)ng1=(1+�)�) and (V=(1 + logV )�; 1) regular.Applying Theorem 2.8 with 	1(x) := x1�p(1 _ log(x))�b and 	2(x) := xp(1 _ log(x))b forp 2 (0; 1) and b 2 R, p = 0 and b > 0 or p = 1 and b < �� yields, for all x 2 fV <1g,limn n�(�+b)=(1+�) exp�(1� p)f(1+ �)ng1=(1+�)� kPn(x; �)� �(�)kV p(1+logV )b = 0: (2.12)3 AppliationsWe now illustrate our �ndings by applying Theorem 2.8 to several models.In this setion, we denote by h�; �i the salar produt and by j � j the Eulidean norm. If uis a twie ontinuously di�erentiable real valued funtion on Rd, ru (resp. r2u) denotes itsgradient (resp. its Hessian matrix).3.1 Bakward reurrene time hainThe bakward reurrene time hain (see MT, Setion 3.3.1) is a rih soure of simple examplesof stable and unstable behavior. We onsider it here to provide examples of hains satisfyingondition D(�; V; C) and for whih the rates of onvergene implied by it are optimal.Let (pn; n � 0) be a sequene of positive real numbers suh that p0 = 1, pn 2 (0; 1) for alln � 1 and limn!1Qni=1 pi = 0. Consider the bakward reurrene time hain � with transitionkernel P de�ned as P (n; n + 1) = 1 � P (n; 0) = pn, for all n � 0. Then � is irreduible andstrongly aperiodi and f0g is an atom. Let �0 be the return time to f0g. We have for all n � 1P0(�0 = n+ 1) = (1� pn) n�1Yj=0 pj and P0(�0 > n) = n�1Yj=0 pj ;By Ka's theorem (MT, Theorem 10.2.2) sine � is  irreduible and aperiodi, � is positivereurrent if and only if E0 [�0℄ <1, i.e. 1Xn=1 nYj=1 pj <1;12



and the stationary distribution � is given, by �(0) = �(1) = 1=E0 [�0℄ and for j � 2,�(j) = E0 �P�0k=1 1f�k = jg�E0 [�0℄ = P0(�0 � j)E0 [�0℄ = p0 : : : pj�2P1n=1 p1 : : : pn :Beause the distribution of the return time to the atom f0g has suh a simple expression interms of the transition probability (pn; n � 0), we are able to exhibit the largest possible ratefuntion r suh that the (1; r) modulated moment of the return time E0 hP�0�1k=0 r(k)i is �nite.We will also prove that the drift ondition D(�; V; C) holds for appropriately hosen funtionsV and � and yields the optimal rate of onvergene. Note also that for any funtion f , it holdsthat E0 "�0�1Xk=0 f(�k)# = E0 "�0�1Xk=0 f(k)# :Therefore there is no loss of generality to onsider only (1; r) modulated moments of the returntime to zero.If supn�1 pn � � < 1, then, for all � < � < 1, E0 [���0 ℄ <1 and f0g is thus a geometriallyergodi atom (MT, Theorem 15.1.5). Subgeometri rates of onvergene in total variation normare obtained when lim sup pn = 1. Depending on the rate at whih pn approahes 1, di�erentbehaviors an be obtained, overing essentially the three typial rates (polynomial, logarithmiand subexponential) disussed above.Polynomial rates Assume �rst that for � > 0 and large n, pn = 1 � (1 + �)n�1. ThenQni=1 pi � n�1�� . Thus, E0 hP�0�1k=0 r(k)i < 1 if and only if P1k=1 r(k)k�1�� < 1. Forinstane, r(n) := n� with 0 � � < � is suitable.Logarithmi rates If for � > 0 and large n, pn = 1 � 1=n � (1 + �)=(n log(n)), thenQnj=1 pj � n�1 log�1��(n), whih is a summable series. Hene if r is non dereasing andP1k=1 r(k)Qnj=1 pj < 1, then r(k) = o(log�(k)). In partiular r(k) := log�(k) is suitablefor all 0 � � < �.Subgeometri rates If for large n, pn = 1 � ��n��1 for some � > 0 and � 2 (0; 1), thenQni=1 pi � e��n� . Thus, E0 [P�0�1k=0 eak� ℄ <1 if a < �, and E0 [P�0�1k=0 eak� ℄ =1 if a � �.Cheking ondition D(�; V; C) In order to prove that Theorem 2.5 provides the optimalrates of onvergene, we now ompute in eah of the previous examples the rates of onvergeneit yields. 13



For the polynomial and subexponential ases, the same tehnique an be used. For  2 (0; 1)and x 2 N�, de�ne V (0) := 1 and V (x) := Qx�1j=0 p�j . Then, for all x � 0, we have:PV (x) = pxV (x+ 1) + (1� px)V (0) = p1�x V (x) + 1� px� V (x)� (1� p1�x )V (x) + 1� pxThus, for 0 < Æ < 1�  and large enough x, it holds thatPV (x) � V (x)� Æ(1� px)V (x): (3.1)� Case pn = 1 � (1 + �)n�1, � > 0. Then V (x) � x(1+�) and (1� px)V (x) � V (x)1�1=((1+�).Thus ondition D(�; V; C) holds with �(v) = v� for � = 1 � 1=((1 + �)) for any  2 (0; 1).Theorem 2.8 yields the rate of onvergene n�=(1��) = n(1+�)�1, i.e. n� for any 0 � � < �.� Case pn = 1� ��n��1. Then, for large enough x, (3.1) yields:PV (x) � V (x)� ��Æx��1V (x) � V (x)flog(V (x))g1�1=�;for  < �1=��Æ. De�ning � := 1=� � 1, Proposition 2.1 yields the following rate of onvergenein total variation norm:n��=(1+�) exp�f(1 + �)ng1=(1+�)� = n��1 exp��Æ�n�� :Sine Æ is arbitrarily lose to 1, we reover the fat that E0 [P�0�1k=0 eak� ℄ <1 for any a < �.� Case pn = 1�n�1� (1+ �)n�1 log�1(n), � > 0. Choose V (x) := �Qx�1j=0 pj� = log�(x) for � > 0arbitrarily small. Then, for onstants  < 0 < 00 < 1 and large x, we obtain:PV (x) = log�(x)log�(x+ 1)V (x) + 1� px = V (x)� 00� V (x)x log(x) + 1� px� V (x)� 0� log���(x) � V (x)� � log���(V (x)):Here again Theorem 2.8 yields the optimal rate of onvergene.3.2 Symmetri random walk Hastings Metropolis algorithmWe onsider the symmetri random walk Hastings Metropolis algorithm. The purpose of thisalgorithm is to simulate from a probability distribution � whih is known only up to a salefator. At eah iteration, a move is proposed aording to a random walk whose inrementdistribution has a symmetri density q with respet to the Lebesgue measure �d on Rd. Themove is aepted with probability �(x; y) de�ned by�(x; y) := (minn�(y)�(x) ; 1o if �(x) > 01 if �(x) = 0: (3.2)14



The transition kernel of the Metropolis algorithm is then given byP (x;A) = ZA �(x; x+ y)q(y) d�d(y) + 1A(x) Z �1� �(x; x+ y)�q(y) d�d(y):It is known that under Assumption 3.1 below, the hain � is  irreduible, aperiodi withstationary distribution � d�d and any non empty ompat set is petite (Roberts and Tweedie,1996, Theorem 2.2.).Assumption 3.1. The target density � is ontinuous and positive on Rd. The proposal densityq is symmetri and bounded away from zero in a neighborhood of zero.A R valued Metropolis hain is V geometrially ergodi when (a) the proposal density qsatis�es moment onditions and (b) the target density � is ontinuous, positive and log onavein the tails (Mengersen and Tweedie, 1996, Theorem 3.2.). This ondition is neessary in thesense that if the hain is geometrially ergodi then R exp(sjzj)�(z)d�d(z) <1 for some s > 0.These results have later been extended to the multidimensional ase by Roberts and Tweedie(1996) and Jarner and Hansen (2000). Polynomial ergodiity was proved by Fort and Moulines(2000) for target density with regularly varying tails. We now state onditions that implysubexponential rates of onvergeneAssumption 3.2. there exist m 2 (0; 1), r 2 (0; 1), positive onstants di; Di; i = 0; 1; 2 andR0 <1 suh that if jxj � R0, x 7! �(x) is twie ontinuously di�erentiable andh r�(x)jr�(x)j; xjxj i � �r; (3.3)d0jxjm � � log �(x) � D0jxjm (3.4)d1jxjm�1 � jr log�(x)j � D1jxjm�1 (3.5)d2jxjm�2 � jr2 log �(x)j � D2jxjm�2: (3.6)The Weibull distribution on R with density �(x) := �x�1 exp(��x), for x > 0, � > 0and 0 <  < 1 satis�es assumption 3.2. Multidimensional examples are provided in Fort andMoulines (2000). For the sake of simpliity, we make the following assumption on the proposaldensity q.Assumption 3.3. The proposal density is ompatly supported, i.e. there exists k suh thatfor all jyj � k, q(y) = 0.Fort and Moulines (2000) show that under Assumptions 3.1 and 3.2, the hain � is (f; r)ergodi with f(x) := (1 + jxj�) and r(n) := (1 + n)� , for any � > 0 and � � 0, i.e. � is (f; r)ergodi at any polynomial rate. We show in the next Theorem 3.1 that a stronger result atuallyholds: the hain is ergodi (in total variation norm) at a subgeometrial rater�(n) � exp(znm=(2�m));for some z > 0; rate of onvergene in norms ��s(x)(� log�)t(x) where 0 < s < z and t 2 R(resp. s = 0 and t > 0; s = z and t < �2(1�m)=m) are given by (2.12).15



Theorem 3.1. Under Assumptions 3.1 to 3.3, there exist z > 0 and  > 0 suh that the funtionsV (x) := �(x)�z and �(v) := v(1 + log v)�2(1�m)=m satisfy the drift ondition D(�; V; C) whereC is a petite set suh that supC V <1.Remark 2. The ompatness assumption 3.3 ould be relaxed and replaed by a moment on-dition. It may be shown (the omputations are not detailed here but are similar to those ofSetion 3.3) that if there exists z0 > 0 suh thatZ ez0jyjm q(y)d�d(y) <1; (3.7)then the onlusion of Theorem 3.1 still holds by hoosing V (x) := �(x)�z for some 0 < z < z0.Proof. De�ne R(x) := fy 2 Rd; �(x + y) � �(x)g the potential rejetion region. Using thede�nition of the transition kernel P , we havePV (x)� V (x) = Z (V (x+ y)� V (x)) q(y)d�d(y)+ ZR(x) (V (x+ y)� V (x))��(x+ y)�(x) � 1� q(y)d�d(y):Set l(x) := � log �(x), R(V; x; y) := V (x + y) � V (x) + zV (x)hrl(x); yi and R(�; x; y) :=�(x+ y)=�(x)� 1 + hrl(x); yi. It is proved in (Fort and Moulines, 2000, Lemma B.4.), thatlim supjxj!1 jxj2(1�m) supjyj�k jR(�; x; y)jjyj�2 <1: (3.8)Using a Taylor expansion with integral remainder term of the funtion x 7! V (x), it is easilyshown that there exists  independent on z suh that for large jxjsupjyj�k jR(V; x; y)j jyj�2 � z2V (x)jxj2(m�1) (1 + o(1)) : (3.9)Sine q d�d is a zero mean distribution, we havePV (x)� V (x) = �zV (x) ZR(x)hrl(x); yi2q(y)d�d(y) + Z R(V; x; y)q(y)d�d(y)� ZR(x)R(V; x; y)hrl(x); yiq(y)d�d(y)+ zV (x) ZR(x)hrl(x); yiq(y)R(�; x; y)q(y)d�d(y) + ZR(x)R(V; x; y)R(�; x; y)q(y)d�d(y)and for large jxj, we dedue from (3.8) and (3.9) thatPV (x)� V (x)V (x) = �z ZR(x)hrl(x); yi2q(y)d�d(y) + z2jxj2(m�1) + o(jxj2(m�1));16



for some positive onstant  that does not depend on z. It is shown in (Fort and Moulines, 2000,Lemma B.3.) (see below) that there exists � > 0 suh that for large jxj,ZR(x)hrl(x); yi2q(y)d�d(y) > �jrl(x)j2 > �d21jxj2(m�1): (3.10)Hene, upon noting that d0jxjm � logV (x), there exists a onstant � whih is positive for zsmall enough, suh that for large jxjPV (x)� V (x) � �� [logV (x)℄�2(1�m)=m V (x) (1 + o(1)) :Sine � is bounded on ompat sets, supjxj�M PV (x)+V (x) <1 and the proof is onluded.Proof of (3.10). The proof is similar to that of (Fort and Moulines, 2000, Lemma B.3.). Forompleteness, we sketh the arguments here. Set n(x) := x=jxj andW (x) := fz 2 Rd; z = x + a�; 0 < a � k; � 2 Sd�1; j� � n(x)j � r=3g:We establish that there exists  > 0 suh thatZR(x)hrl(x); yi2q(y)d�d(y) � ZW (x)�xhrl(x); yi2q(y)d�d(y)� r2=9 jrl(x)j2ZW (x)�x jyj2q(y)d�d(y) �  jrl(x)j2;sine the Lebesgue measure of the domain W (x)� x does not depend on x.We �rst prove thatW (x)�x � R(x). To that goal, we establish that for z 2 W (x), the funtion�(t) := �(x + t(z � x)) de�ned on [0; 1℄ is monotonially dereasing on [x; z℄ by showing thathn(z � x); n(r�(y))i>� 0 for any y 2 [x; z℄. We writehn(z � x); n(r�(y))i= hn(z � x)� n(x); n(r�(y))i+ hn(x)� n(y); n(r�(y))i+ hn(y); n(r�(y))i:By de�nition of W (x), we havejhn(z � x)� n(x); n(r�(y))ij � r=3 jhn(x)� n(y); n(r�(y))ij � r=3so that hn(z � x); n(r�(y))i � �r=3 < 0. It remains to prove that for all y + x 2 W (x),jhrl(x); yij � r=3jrl(x)jjyj, whih is dedued from the previous alulations applied with y :=z � x and x := y .3.3 Nonlinear autoregressive modelConsider a proess (�n; n � 0) that satis�es the following nonlinear autoregressive equation oforder 1: �n+1 = g(�n) + �n+1; (3.11)where the innovation and the funtion g satisfy the following assumption.17



Assumption 3.4. (�n; n � 0) is a sequene of i.i.d. zero mean, d dimensional random vetorsthat satisfy E[ez0 j�0j0 ℄ <1; (3.12)for some z0 > 0 and 0 2 (0; 1℄; g is bounded on the set fx 2 Rd; jxj � R0g for some R0 > 0and there exists � 2 [0; 2) suh thatjg(x)j � jxj(1� rjxj��) if jxj � R0: (3.13)There already exists a wide literature on on onditions implying a geometri rate of on-vergene for nonlinear autoregressive models (see e.g. Duo (1997) and Grunwald et al. (2000)and the referenes therein). Conditions implying a polynomial rate of onvergene have beenobtained by Tuominen and Tweedie (1994) and AngoNze (1994) and have later been re�ned byVeretennikov (1997, 1999), AngoNze (2000) and Fort and Moulines (2002). Conditions implyingtruly subexponential rate of onvergene are onsidered in Klokov and Veretennikov (2002) (seealso Malyshkin (2001) for di�usion proesses).Theorem 3.2. Assume that Assumption 3.4 holds.� If � > 0, the drift ondition D(�; V; C) holds with �(v) := v(1 + log(v))1��=(0^(2��)),V (x) := ezjxj0^(2��) and C := fx 2 Rd; jg(x)j � M1g [ fx 2 Rd; jxj � M2g for somez 2 (0; z0),  > 0, M1 > 0 and M2 � R0.� If � = 0, then the Foster Lyapunov ondition (1.3) holds with V (x) := ezjxj0 and C :=fx 2 Rd; jg(x)j �M1g [ fx 2 Rd; jxj �M2g for some z 2 (0; z0), M1 > 0 and M2 � R0.� If � < 0, then the Foster Lyapunov ondition (1.3) holds with V (x) := ez0 jxj0 and C :=fx 2 Rd; jxj �Mg for some M � R0.If in addition the hain is  irreduible, aperiodi and sublevel sets of g and ompat sets arepetite, then we may apply Theorem 2.8 (resp. Theorem 15.0.1. MT) to prove (f; r) ergodiity orgeometrial ergodiity, depending upon the value of � and 0. Conditions implying irreduibility,and aperiodiity of the kernel, and petiteness of the level sets fx; jxj �M1g and fx; jg(x)j �M2gmay be found in Tuominen and Tweedie (1994).Proof of Theorem 3.2. Throughout the proof,  is a generi onstant that an hange upon eahappearane.(i) We start by examining the ase � > 0. Set � := 0 ^ (2� �). We writePV (x)V (x) � 1 = PV (x)� V (g(x))V (x) + V (g(x))V (x) � 1: (3.14)Using the inequality (1 � u)0 � 1 � 0u for all 0 � u � 1, we have for jxj � R0, jg(x)j� �jxj� � �rjxj��� and sine ex � 1 � x + x2=2 for all x � 0,V (g(x))V (x) � 1 = ezjg(x)j��zjxj� � 1 � �zr�jxj��� + 12z2r2�2jxj2(���): (3.15)18



Let 0 < � < 1. We establish that for large jxj and large jg(x)j,PV (x)� V (g(x))� 12z2�2 E[j�0 j2V (�0)℄ jxj2��2V (x) (1 + o(1)) : (3.16)To that goal, set R(u; w) := V (u+ w)� V (u)� hrV (u); wi: Sine E[�0 ℄ = 0, this yieldsPV (x)� V (g(x)) = E [V (g(x) + �0)℄� V (g(x)) = E [R(g(x); �0)℄ ; (3.17)and we have to upper bound the remainder term E [R(g(x); �0)℄. If jwj � �juj, then by using aTaylor expansion with integral remainder term, one has,jR(u; w)j � Z 10 (1� t) ��w0r2V (u+ tw)w�� dt� 12 jwj2 z� supt2[0;1℄�1 + z�ju+ twj�� ju+ twj��2 V (u+ tw)Sine y 7! jyj2��2ezjyj� and y 7! jyj��2ezjyj� are ultimately nondereasing, then for large jxj, wehave:jR(u; w)j � 12 jwj2 z� �1 + z�(juj+ jwj)�� (juj+ jwj)��2 V (u)V (w)� 12 z2�2 jwj2V (w) juj2��2V (u) + + jwj2V (w) juj��2V (u): if jwj � �juj (3.18)If jwj � �juj, using again the inequality V (u+ w) � V (u)V (w)jR(u; w)j � V (u+ w) + V (u) + jrV (u)j jwj �  jwjV (w) juj��1 V (u)� jwj2V (w)juj��2 V (u) if jwj � �juj: (3.19)We now apply (3.18) and (3.19) with u := g(x) and w := �0; sine y 7! jyj2��2ezjyj� andy 7! jyj��2ezjyj� are ultimately nondereasing, then for large jg(x)j, we have:jR(g(x); �0)j � 12 z2�2 j�0j2V (�0) jxj2��2V (x) +  j�0j2V (�0) jxj��2V (x): (3.20)Eq. (3.16) now follows from (3.20). Gathering (3.15) and (3.16), as � � 2 � �, we obtain thatfor large jxj and large jg(x)jPV (x)� V (x) = �z�� jxj���V (x) (1 + o(1)) = �z�=��� [logV (x)℄1��=� V (x) (1 + o(1)) ;where � := r if � < 2� �; i.e. 0 < 2� �� := r � 1=2 �z E h�20ezj�0j�i if � = 2� � i.e. 0 � 2� �;19



and z is hosen small enough suh that � > 0.(ii) We now onsider the ase � = 0 (observe that � := 0 ^ (2� �) = 0 and that many resultsabove remain valid). By (3.14), (3.15), (3.17) and (3.20), we have for large jxj and large jg(x)j,PV (x)� V (x)V (x) � �zr0 + 12z2r202 + 12z202 jxj20�2E ��20V (�0)� (1 + o(1)) :For z small enough, the term on the right hand side is in the interval (�1; 0) and this shows thatthe Foster Lyapunov drift ondition (1.3) holds with C on the form fx; g(x) � M1g [ fx; jxj �M2g for large enough M1, M2.(iii) We �nally onsider the ase � < 0. Using the inequality (1�u)0 � 1�0u for all 0 � u � 1,we have for jxj � R0, jg(x)j0 � jxj0 � 0rjxj0��. Hene, sine V (u + w) � V (u)V (w), thisyields, for jxj � R0,PV (x) = E[V (g(x) + �0)℄ � V (g(x))E [V (�0)℄ � e�r0z0jxj0��E hez0j�0j0 i V (x):Hene limjxj!1 PV (x)=V (x) = 0, whih implies that the Foster Lyapunov drift ondition (1.3)holds with C := fV (x) �Mg for large enough M .(iv) In all ases, to onlude the proof, we must bound PV (x) on sets on the form fjg(x)j �M1gand fjxj �M2g. Applying the inequality V (u+w) � V (u)V (w) and the fat that g is boundedon ompat sets, we obtain, for all suh x,PV (x) = E[V (g(x) + �0)℄ � ( supjxj�R0 V (g(x)) + V (M1))E[V (�0)℄ <1:3.4 Stohasti unit rootWe now onsider a proess whih belongs to the wide family of stohasti unit root models. Seefor example Granger and Sawnson (1997) for many examples. The model we onsider is one ofthe simplest. It has been onsidered in Gourieroux and Robert (2001) with main fous on itsextremal behavior. �n+1 = 1fUn+1�g(�n)g�n + �n+1; (3.21)where (�n; n 2 N) is a sequene of i.i.d. random variables that satis�es (3.12) and (Un; n � 1) isa sequene of i.i.d random variables, uniformly distributed on [0; 1℄ and independent from thesequene (�n; n 2 N). Moreover, we make the following assumption on g.Assumption 3.5. g is a ontinuous funtion with values in [0; 1) and there exist � 2 (0; 1),+(g) > 0, �(g) < 1 and R0 > 0 suh that8x � R0; 1� g(x) � +(g)x��; (3.22)8x � R0; g(x) � �(g): (3.23)20



Let P be the transition kernel of the hain. For all x 2 R and all Borel sets A, it an beexpressed as: P (x;A) = g(x)P(x+ �0 2 A) + (1� g(x))P(�0 2 A): (3.24)Under Assumption 3.5, for all M > 0, there exists a onstant �(M) suh that for all x � M ,and all Borel set A, P (x;A) � �(M)P(�0 2 A): (3.25)This means that every set of the form (�1;M ℄ is 1 small, hene petite. De�ne x+ = max(x; 0).Theorem 3.3. Under Assumption 3.5 and if �0 satis�es (3.12), there exist z 2 (0; z0℄, Æ > 0and M � R0 suh that the drift ondition D(�; V; C) holds with V (x) = ezx�+ , �(v) = Æz�=�vf1_log(v)g��=�, C = (�1;M ℄ and either� � = 0 ^ (1� �) and � = � if E[�0 ℄ > 0;� � = 0 ^ (1� �=2) � = � if E[�0 ℄ = 0;� � = 0 and � = (1� 0) ^ � if E[�0 ℄ < 0.Equations (3.24) and (3.25) prove that the hain is  irreduible and (strongly) aperiodi.Sine morever V is obviously bounded on intervals (�1;M ℄, Theorem 2.8 an be applied.Proof of Theorem 3.3. Let z < z0 and x > 0. Using the de�nition of the transition kernel P , wehave: PV (x)� V (x) = g(x)E[V (x+ �0)℄ + (1� g(x))E[V (�0)℄� V (x)= g(x) (E[V (x+ �0)℄� V (x))� (1� g(x)) (V (x)� E[V (�0)℄)� E[V (x+ �0)℄� V (x)� (1� g(x)) (V (x)� E[V (�0)℄) :De�ne R(x; �0) = V (x+ �0)� V (x)� �0�zx��1V (x). For any � 2 (0; 1), we an write:E[V (x+ �0)℄� V (x)� �zE[�0 ℄x��1V (x) = E[R(x; �0)1fj�0j � �xg℄ + E[R(x; �0)1fj�0j > �xg℄:By the same arguments as in the proof of Theorem 3.2, we have:E[R(x; �0)1fj�0j > �xg℄ � E[V ((1 + ��1)j�0j) + V (j�0j) + �z�1�� j�0j�V (j�0j)℄ (3.26)Thus this term is bounded provided that � and z are hosen suh that (1 + ��1)�z � z0. Tobound the seond term, note that for large enough x, the funtion x 7! x2��2V (x) is inreasing.Thus, for x �M , for some M depending on �, and j�0j � �x, there exists t 2 (0; 1) suh thatV (x+ �0)� V (x)� �z�0x��1V (x)= 12�(� � 1)z(x+ t�0)��2�20V (x+ t�0) + 12(�z(x+ t�0)��1)2�20V (x+ t�0)� 12�2z2(1 + �)2��2x2��2�20V (x)V (j�0j) � 12�2z2x2��2�20V (x)V (j�0j):21



For  < +(g) and x large enough, say x �M for some M � R0, we have(1� g(x)) (V (x)� E[V (�0)℄) � x��V (x):Hene, taking (3.26) into aount, there exists a positive real number M suh that if x � M ,then PV (x)� V (x) � �z�x��1E[�0 ℄ + 12�2z2x2��2E[�20V (j�0j)℄� x���V (x):If E[�0 ℄ > 0, set � = 0 ^ (1� �). Then, for large enough x, we obtain:PV (x)� V (x) � �Æx��V (x) = �Æz�=�V (x)flog(V (x))g��=�;with Æ =  < +(g) if 0 < 1�� or Æ = ��zE[�0 ℄,  < +(g) and z suh that Æ > 0 if 0 � 1��.If E[�0 ℄ < 0, set � = 0 and � = (1� 0) ^ �. Then, for x large enough,PV (x)� V (x) � �Æx��V (x) = �Æz�=0V (x)flog(V (x))g��=0;with Æ =  < +(g) if 0 < 1 � � and Æ =  � z�E[�0 ℄,  < +(g) and z suh that Æ > 0 if0 � 1� �.If E[�0 ℄ = 0, then � must satisfy 2� � 2 � ��, thus we set � = (1� �=2) ^ 0, and we obtainPV (x)� V (x) � �Æx��V (x) = �Æz�=�V (x)flog(V (x))g��=�;with Æ =  < +(g) if 1� �=2 > 0 and Æ = � 12�2z2E[�20V (j�0j)℄, with  < +(g) and z suhthat Æ > 0 if 1� �=2 � 0.ReferenesAngoNze, P. (1994). Crit�eres d'ergodiit�e de Mod�eles Markoviens. Estimation Non-Param�etrique sous des Hypoth�eses de D�ependane. Ph.D. thesis, Universit�e Paris 9, Dauphine.AngoNze, P. (2000). Geometri and subgeometri rates for Markovian proesses: A robustapproah. Teh. rep., Universit�e de Lille III.Duflo, M. (1997). Random Iterative Systems. Springer Verlag.Fort, G. and Moulines, E. (2000). V-subgeometri ergodiity for a Hastings-Metropolisalgorithm. Statistis and Probability Letters 49 401{410.Fort, G. and Moulines, E. (2002). Computable bounds for polynomial ergodiity. To appearin Stohasti Proesses ans their Appliations.Gourieroux, C. and Robert, C. (2001). Tails and extremal behaviour of stohasti unit rootmodels. Teh. rep., Centre de Reherhe en Eonomie et Statistique du Travail.22
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