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For geometri
 rate fun
tions, i.e. fun
tions r that satisfy0 < lim inf log r(n)n and lim sup log r(n)n <1 (1.2)it is known (MT, Theorem 16.0.1) that (1.1) holds if and only if the Foster Lyapunov drift
ondition is veri�ed i.e. there exist an extended real valued fun
tion V : X ! [1;1℄ �nite atsome x0 2 X, a petite set C, � 2 (0; 1), b > 0 and 
 > 0 su
h that 
�1f � V � 
f andPV � �V + b1C : (1.3)In that 
ase, the 
onvergen
e (1.1) holds for all x in the set fV <1g whi
h is of � measure one.For rates of 
onvergen
e slower than geometri
, no su
h de�nitive result exist. An impor-tant family of su
h rates is the 
lass of subgeometri
 rate fun
tions, de�ned in Nummelin andTuominen (1983) as follows. Let �0 be the set of positive non de
reasing fun
tions r0 su
h thatr0(0) � 1 and logfr0(n)g=n de
reases to 0. The 
lass of subgeometri
 rate fun
tions is the set� of positive fun
tions r su
h that there exists a sequen
e r0 2 �0 andlim inf r(n)=r0(n) > 0 and lim sup r(n)=r0(n) <1: (1.4)This 
lass in
ludes for example polynomial rate fun
tions, i.e. rate fun
tions r su
h that (1.4)holds with r0(n) := (1 + n)� and � � 0. It also in
ludes rate fun
tions whi
h in
rease fasterthan polynomially, e.g. rate fun
tions r satisfying (1.4) withr0(n) := (n+ 1)�e
n
 ; for � 2 R; 
 2 (0; 1) and 
 > 0: (1.5)We will refer to these rates as subexponential in order to distinguish them in the broad 
lass ofsubgeometri
 rates.Tuominen and Tweedie (1994) (see also Nummelin and Tuominen (1983)) have given a setof ne
essary and suÆ
ient 
onditions for the 
onvergen
e (1.1) to hold with a subgeometri
 ratefun
tion r 2 �. To state this result, we �rst re
all some notations and de�nitions.A measurable set C is  apetite (or petite) if there exist a distribution a := (a(n); n � 0), a
onstant � > 0 and a non trivial measure  a on B(X) su
h that for all x 2 C, B 2 B(X),Ka(x;B) :=Xn�0 a(n)Pn(x;B) �  a(B):The return time to a measurable set A, denoted by �A is de�ned as �A := inffn � 1;�n 2 Ag(with the 
onvention inf ; = +1). Let  be a maximal irredu
ibility measure and let B+(X) bethe set of a

essible sets, i.e. sets B 2 B(X) su
h that  (B) > 0. A set A 2 B(X) is 
alled full if (A
) = 0, absorbing if P (x;A) = 1 for all x 2 A and, for a measurable positive fun
tion f anda rate fun
tion r, A is said (f; r) regular if, for every B 2 B+(X),supx2AEx "�B�1Xk=0 r(k)f(�k)# <1:2



A �nite positive measure � on B(X) is said (f; r) regular if E� [P�B�1k=0 r(k) f(�k)℄ < 1 for allset B 2 B+(X). The set of all (f; r) regular points (i.e. the points x 2 X su
h that Æx is (f; r)regular) is denoted by S(f; r).We 
an now re
all (part of) (Tuominen and Tweedie, 1994, Theorem 2.1).Theorem 1.1 (Tuominen and Tweedie (1994)). Assume that P is  irredu
ible and ape-riodi
. Let f : X ! [1;1℄ be a measurable fun
tion, and let r 2 � be given. The following
onditions are equivalent.(i) There exists a petite set C 2 B(X) su
h thatsupx2C Ex "�C�1Xk=0 r(k)f(�k)# <1:(ii) There exist a sequen
e of extended real valued fun
tions (Vn; n � 0), Vn : X ! [1;1℄, apetite set C 2 B(X) and a 
onstant b <1 su
h that V0 is bounded on C,V0(x) = +1 ) V1(x) = +1and PVn+1 + r(n)f � Vn + br(n)1C : (1.6)(iii) There exists a (f; r) regular set A 2 B+(X).Any of these 
onditions implies that, for all x 2 S(f; r),r(n)kPn(x; �)� �(�)kf = 0; n!1;and the set S(f; r) is full, absorbing and 
ontains the set fV0 < 1g. Moreover, for all (f; r)regular initial distributions �; �, there exists a 
onstant 
 su
h that1Xn=0 r(n) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)kf � 
 (�(V0) + �(V0)) :This theorem 
annot be improved sin
e it provides a ne
essary and suÆ
ient 
ondition, butthe sequen
e of drift 
onditions (1.6) is notoriously diÆ
ult to 
he
k in pra
ti
e and one hasvery little insight on the way to 
hoose the family of drift fun
tion (Vn; n � 0). This is whythese drift 
onditions, up to the best of our knowledge, have seldom been used dire
tly.A �rst step towards �nding a more pra
ti
al drift 
ondition was taken by Jarner and Roberts(2002) who, simplifying and generalising an argument in Fort and Moulines (2000), have shownthat if there exist a fun
tion V : X! [1;1℄ �nite at some x0 2 X, positive 
onstants b and 
, apetite set C and � 2 [0; 1) su
h thatPV + 
V � � V + b1C ;3



then the 
hain is positive re
urrent and for ea
h � 2 [1; 1=(1� �)℄, the 
onvergen
e (1.1) holdsfor all x 2 fV < 1g whi
h is of � measure one, with r(n) := n��1 and f := V 1��(1��). It isnoteworthy that there is a balan
e between the rate of 
onvergen
e and the norm: the largerthe latter, the slower the former. In parti
ular, the fastest rate of 
onvergen
e (r(n) � n�=(1��))
orresponds to the total variation norm, and the slowest rate (r(n) � 1) 
orresponds to the V �norm.In this paper, we 
onsider the following drift 
ondition whi
h generalizes the Foster Lyapunovand the Jarner Roberts drift 
onditions.Condition D(�; V; C): There exist a fun
tion V : X ! [1;1℄, a 
on
ave non de
reasingdi�erentiable fun
tion � : [1;1) 7! (0;1), a measurable set C and a �nite 
onstant b su
h thatPV + � Æ V � V + b1C :Here � is assumed di�erentiable for 
onvenien
e. It 
an be relaxed sin
e a 
on
ave fun
tion hasnon in
reasing left and right derivatives everywhere. If P is  irredu
ible and aperiodi
, andD(�; V; C) holds for some petite set C su
h that supC V < 1, then the f norm ergodi
 Theo-rem for aperiodi
 
hain (see MT, Theorem 14.0.1) states that there exists an unique invariantdistribution � and that the limit limn kPn(x; �)� �k�ÆV = 0;for all x in the set of � measure one fV <1g. The � Æ V norm is the maximal norm for whi
h
onvergen
e 
an be proved under 
ondition D(�; V; C), and in that 
ase, the rate of 
onvergen
eis minimal: r � 1. This implies that for any fun
tion 1 � f � � Æ V 
onvergen
e in the fnorm also holds. In order to determine the rate of 
onvergen
e in the f norm, we should tryto �nd a sequen
e of fun
tion (Vn; n � 0) su
h that (1.6) holds, but this is pre
isely what weare trying to avoid doing for all fun
tions f . Instead, having in mind the balan
e between therate of 
onvergen
e and the norm, we will �rst determine the rate of 
onvergen
e in the totalvariation norm by using the 
riterion (1.6) and then dedu
e intermediate rates of 
onvergen
ein f norm using an interpolation te
hnique.The rest of the paper is organized as follows. Our main result, Theorem 2.8, is stated andproved in the next se
tion. Several typi
al fun
tions � are then 
onsidered, leading to a varietyof subgeometri
 rate fun
tions. In parti
ular, by setting �(v) := v�, � 2 [0; 1), we retrieve theresults in Jarner and Roberts (2002). Several appli
ations are given in se
tion 3. We establishsubgeometri
 rates of 
onvergen
e in several models: �rst order nonlinear autoregressive models,sto
hasti
 unit root models, and random walk multidimensional Hastings Metropolis algorithm,under 
onditions whi
h do not imply geometri
 ergodi
ity.4



2 Main result2.1 Rate of 
onvergen
e in the total variation normLet � : [1;1)! (0;1) be a 
on
ave non de
reasing di�erentiable fun
tion. De�neH�(v) := Z v1 dx�(x) : (2.1)Then H� is a non de
reasing 
on
ave di�erentiable fun
tion on [1;1). Moreover, sin
e � is
on
ave, �0 is non in
reasing. Hen
e �(v) � �(1)+ �0(1)(v� 1) for all v � 1, whi
h implies thatH� in
reases to in�nity. We 
an thus de�ne its inverse H�1� : [0;1)! [1;1), whi
h is also anin
reasing and di�erentiable fun
tion, with derivative (H�1� )0(x) = �ÆH�1� (x). For k 2 N, z � 0and v � 1, de�ne r�(z) := (H�1� )0(z) = � ÆH�1� (z); (2.2)Hk(v) := Z H�(v)0 r�(z + k) dz = H�1� (H�(v) + k)�H�1� (k);Vk := Hk Æ V:We will show that, provided D(�; C; V ) holds with C petite and supx2C V (x) < 1, then the
hain (�k; k � 0) is (1; r�) regular, i.e. r� is the rate of 
onvergen
e in total variation norm that
an be dedu
ed from the drift 
ondition. To this end, we will use Theorem 1.1 
ondition (ii),i.e., we will show that (1.6) holds with (Vk; k � 0), f := 1 and r := r�.Proposition 2.1. Assume D(�; V; C). Then r� is log 
on
ave and for all k � 0, Hk is 
on
aveand PVk+1 � Vk � r�(k) + br�(k + 1)�(1) 1C :Proof. Note �rst that r0�(z)=r�(z) = �0 ÆH�1� (z) for all z � 0. Sin
e �0 is non in
reasing andH�1� is in
reasing, �0 ÆH�1� is non in
reasing and log(r�) is 
on
ave. This implies that for any�xed k � 0, the fun
tion z 7! r�(z+k)=r�(z) is a de
reasing fun
tion. The derivative of Hk hasthe following expressionH 0k(v) = r�(H�(v) + k)=�(v) = r�(H�(v) + k)=r�(H�(v)): (2.3)Sin
e H� is in
reasing, it follows from the dis
ussion above that H 0k is non in
reasing, hen
e Hkis 
on
ave for all k � 0. Applying (2.3) and the fa
t that r� is in
reasing, we obtain:Hk+1(v)�Hk(v) = Z H�(v)0 fr�(z + k + 1)� r�(z + k)g dz = Z H�(v)0 Z 10 r0�(z + k + s) dsdz= Z 10 fr�(H�(v) + k + s) � r�(k+ s)g ds� r�(H�(v) + k + 1)� r�(k) = �(v)H 0k+1(v)� r�(k):5



We have thus shown the following inequality whi
h is the key tool of the proof.Hk+1(v)� �(v)H 0k+1(v) � Hk(v)� r�(k): (2.4)Let g be a 
on
ave di�erentiable fun
tion on [1;1). Sin
e g0 is de
reasing, for all v � 1 andx 2 R su
h that v + x � 1, it holds thatg(v + x) � g(v) + g0(v)x: (2.5)Applying this property to the 
on
ave fun
tion Hk+1, we obtain for all k � 0, x 2 fV <1g,PVk+1(x) � Hk+1fV (x)� � Æ V (x) + b1C(x)g� Hk+1(V (x))� � Æ V (x)H 0k+1(V (x)) + bH 0k+1(V (x))1C(x)� Hk+1(V (x))� � Æ V (x)H 0k+1(V (x)) + bH 0k+1(1)1C(x):Applying (2.3) and (2.4), we obtain that H 0k+1(1) = r�(k + 1)=�(1) andPVk+1(x) � Vk(x)� r�(k) + br�(k+ 1)�(1) 1C(x):This inequality still holds for x 2 fV =1g. Whi
h 
on
ludes the proof.The drift 
ondition D(�; V; C) and Proposition 2.1 imply the following bounds for the mod-ulated moments of the return time �C , by appli
ation of Dynkin's inequality (see MT, Theorem11.3.2).Proposition 2.2. Assume D(�; V; C). Then, for all x 2 X,Ex "�C�1Xk=0 � Æ V (�k)# � V (x) + b1C(x);Ex "�C�1Xk=0 r�(k)# � V (x) + br�(1)�(1) 1C(x):In order to apply Theorem 1.1 we must also 
he
k the following 
onditions:� the rate sequen
e r� := (� ÆH�1� (k); k � 0) belongs to �,� the drift fun
tion V is bounded on C, supx2C V (x) <1.The next Lemma gives a simple 
riterion to 
he
k that r� 2 �.Lemma 2.3. If limt!1 �0(t) = 0, then r� 2 �.6



Proof. We have already noted that r0�(x)=r�(x) = �0 Æ H�1� (x) for all x � 0. Let r be anydi�erentiable fun
tion su
h that r(0) = 1 and limx!1 r0(x)=r(x) = 0. Then, applying Cesaro'sLemma, we obtain: log(r(n))n = 1n Z n0 r0(s)r(s) ds! 0:If moreover r0=r de
reases, then log(r(x))=x also de
reases. Thus r� 2 �.The 
ondition supx2C V (x) < 1 
an easily be avoided, thanks to the following Lemma,adapted from Theorem 14.2.6 of MT.Lemma 2.4. Assume that D(�; V; C) holds for some petite set C and that limv!1 �(v) = 1.Then for all M � 1, the sublevel sets fx 2 X; V (x) � Mg are petite. In addition, for any �,0 < � < 1, there exists a sublevel set C� su
h that D(��; V; C�) holds.Proof. Sin
e � is positive non de
reasing and V � 1, the 
ondition D(�; V; C) implies the drift
ondition PV � V � �(1) + b1C . Theorem 11.3.11 of MT shows that, for all a

essible setB 2 B+(X), there exists a 
onstant 
(B) < 1 su
h that, for all x 2 X we have �(1)Ex [�B℄ �V (x)+
(B). Hen
e, every set A 2 B(X) su
h that supx2A V (x) <1 is regular, and the sublevelsets are all regular. Proposition 11.3.8 of MT shows that if a set A is regular, then it is petite.Hen
e, all the sublevel sets are petite.Sin
e limv!1 �(v) = 1, for all � 2 (0; 1), there exists M� su
h that v > M� implies�(v) � b=(1� �). For x =2 C� := fV �M�g, we thus have b � (1� �)�(V (x)) andPV + ��(V ) � V + (� � 1)�(V ) + b1C � V:For x 2 C�, sin
e � 2 (0; 1), it trivially holds thatPV + ��(V ) � V + b:Theorem 2.5. Let P be a  irredu
ible and aperiodi
 kernel. Assume that D(�; V; C) holds fora fun
tion � su
h that limt!1 �0(t) = 0 and a petite set C su
h that supC V < 1. Then, thereexists an invariant probability measure �, and for all x in the full and absorbing set fV <1g,limn r�(n) kPn(x; �)� �(�)kTV = 0:Any probability measure � su
h that �(V ) < 1 is (1; r�) regular and for two (1; r�) regulardistributions �; �, there exists a 
onstant 
 su
h that1Xn=0 r�(n) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)kTV � 
 (�(V ) + �(V )) :7



Remark 1. Sin
e �0 is non in
reasing, if we do not assume that limv!1 �0(v) = 0, then thereexists 
 2 (0; 1) su
h that limv!1 �0(v) = 
 > 0. This yields v � �(v) � (1� 
)v + 
� �(1). Inthis 
ase, 
ondition D(�; V; C) implies the Foster Lyapunov drift 
ondition, and the 
hain is Vgeometri
ally ergodi
.Proof of Theorem 2.5. The only statement whi
h requires a proof is the fa
t that any probabilitymeasure su
h that �(V ) < 1 is (1; r�) regular. This assertion is established in (Tuominen andTweedie, 1994, Proposition 3.1.(ii)), and relies on (Nummelin and Tuominen, 1983, Lemma3.1.). We nevertheless propose a proof that drasti
ally shortens the previous one. The proofis adapted from the proof of Theorem 14.2.3 of MT. Proposition 2.1 shows that there exist asequen
e of drift fun
tions (Vk; k � 0) and a 
onstant b su
h that V0 � V andPVk+1 � Vk � r�(k) + b�(1)�1r�(k + 1)1C :Dynkin's formula shows that for all a

essible set B,Ex "�B�1Xk=0 r�(k)# � V0(x) + b �(1)�1 Ex "�B�1Xk=0 r�(k+ 1)1C(�k)# :>From Propositions 5.5.5 and 5.5.6 of MT, we 
an assume without loss of generality that C is a petite, where  a is equivalent to  , and that the sampling distribution a has �nite meanma :=P1j=1 jaj <1. By the Comparison Theorem (MT, Theorem 14.2.2), the bound 1C(x) � a(B)�1Ka(x;B) and the fa
t that r� is non de
reasing, we have:Ex "�B�1Xk=0 r�(k)# � V0(x) + b �(1)�1 Ex "�B�1Xk=0 r�(k + 1)1C(�k)#� V0(x) + b �(1)�1  a(B)�1Xi�0 aiEx "�B�1Xk=0 r�(k + 1)1B(�k+i)#� V0(x) + b �(1)�1  a(B)�1maEx [r�(�B)℄:For k � 1, de�ne R�(k) := Pk�1j=0 r�(j). Sin
e r� is subgeometri
, it holds that limk!1r�(k)=R�(k) = 0. Hen
e, for any Æ > 0, there exists a 
onstant 
(Æ) su
h that for all k � 1,r�(k) � ÆR�(k) + 
(Æ). This yields:Ex [R�(�B)℄ � V0(x) + b�(1)�1  a(B)�1ma (ÆEx [R�(�B)℄ + 
(Æ)) :Thus for small enough Æ, we obtainEx [R�(�B)℄ � V0(x) + bma �1a (B)
(Æ)�(1)�11� bÆma �1a (B)�(1)�1 : (2.6)8



2.2 Rate of 
onvergen
e in f normsAs seen in the polynomial 
ase and dis
ussed in Tuominen and Tweedie (1994), in the subgeomet-ri
 
ase there is a 
ompromise between the rate of 
onvergen
e and the 
ontrol fun
tion. In whatfollows, we will show that it is possible at almost no 
ost to obtain many intermediate di�erentrates of 
onvergen
e and 
ontrol fun
tions. Let Y be the set of pairs of ultimately non de
reasingfun
tions 	1 and 	2 de�ned on [1;1) su
h that limx!1	1(x) =1 or limx!1	2(x) =1 andfor all x; y 2 [1;1), 	1(x)	2(y) � x+ y: (2.7)The set Y in
ludes for example 	1(x) = x and 	2(x) = 1, but there are of 
ourse moreinteresting examples. For example, it is well known that, for any x; y � 0, and p and q su
hthat 1=p+ 1=q = 1 we have xy � xp=p+ yq=q:Hen
e, the pair of fun
tions 	1(x) = p1=px1=p, 	2(x) = q1=qx1=q satis�es (2.7). These arepre
isely the interpolating fun
tions used in Jarner and Roberts (2002) to derive polynomial ratesof 
onvergen
e. Young fun
tions provide many useful interpolating fun
tions. We re
all theirde�nition. Let %1 : (0;1)! (0;1) be an in
reasing left 
ontinuous fun
tion su
h that %1(0) = 0and limv!+1 %1(v) = +1. Let %2 be the left 
ontinuous inverse of %1, whi
h is in
reasing andsatis�es also %2(0) = 0 and limv!+1 %2(v) = +1. De�ne then Gi(x) := R x0 %i(t)dt , i = 1; 2.The well known Young inequality states that, for all x; y � 0, we havexy � G1(x) + G2(y): (2.8)Let 	i be the inverse of Gi, i = 1; 2. Then 	1 and 	2 are 
on
ave fun
tions and it followsimmediately from (2.8) that the pair (	1;	2) satis�es (2.7).We use this full s
ale of interpolating fun
tions in 
ombination with Proposition 2.2 to derivebounds for the modulated moment of return time to the set C. More pre
isely, we haveProposition 2.6. Assume D(�; V; C) and let (	1;	2) 2 Y. ThenEx "�C�1Xk=0 	1(r�(k))	2(� Æ V (�k))# � 2V (x) + b(1 + r�(1)=�(1))1C(x):We need a 
riterion for a rate fun
tion 	1 Æ r� to be subgeometri
. Note that if the pair(	1;	2) belongs to Y , then, for large enough x, it holds that 	i(x) � 2x (i = 1; 2).Lemma 2.7. Assume that limt!1 �0(t) = 0. For any non de
reasing fun
tion 	 su
h that	(x) � ax for some 
onstant a, then 	 Æ r� 2 �0.The next theorem summarizes all our previous results.Theorem 2.8. Let P be a  irredu
ible and aperiodi
 kernel. Assume that D(�; V; C) holdsfor a fun
tion � su
h that limt!1 �0(t) = 0 and a petite set C su
h that supC V < 1. Let9



(	1;	2) 2 Y. Then, there exists an invariant probability measure �, and for all x in the full setfV <1g, limn 	1(r�(n)) kPn(x; �)� �(�)k	2(�ÆV ) = 0:Any probability measure � su
h that �(V ) <1 is (	2(� Æ V );	1(r�)) regular and for two su
hdistributions �; �, there exists a 
onstant 
 su
h that1Xn=0	1(r�(n)) Z Z �(dx)�(dy)kPn(x; �)� Pn(y; �)k	2(�ÆV ) � 
 (�(V ) + �(V )) :Proof. From Proposition 2.6 we havesupx2C Ex "�C�1Xk=0 	1(r�(k)) 	2(� Æ V (�k))# <1:Theorem 1.1 shows that � is (	2(� Æ V );	1(r�)) regular. As in the proof of Theorem 2.5, andusing again the Comparison Theorem, for any set B 2 B+(X), there exist 
onstants 
1(B) and
2(B) su
h that Ex "�B�1Xk=0 � Æ V (�k)#+ Ex "�B�1Xk=0 r�(k)# � 
1(B)V (x) + 
2(B):Hen
e, for any (	1;	2) 2 Y , we haveEx "�B�1Xk=0 	1(r�(k)) 	2(� Æ V (�k))# � 
1(B)V (x) + 
2(B);whi
h shows that any probability measure su
h that �(V ) <1 is (	2(�ÆV );	1(r�)) regular.2.3 Some usual rate fun
tionsIn this se
tion, we provide examples of rates of 
onvergen
e obtained by Theorem 2.8. For twosequen
es un and vn, we write un � vn if there exists positive 
onstants 
1 and 
2 su
h that forlarge n, 
1un � vn � 
2un.We assume throughout this se
tion that the 
ondition D(�; V; C) holds for some petite set Cand supC V <1.Polynomial rates of 
onvergen
e Polynomial rates of 
onvergen
e have been widely stud-ied re
ently under various 
onditions (see Veretennikov (1997, 1999), Tanikawa (2001), Jarnerand Roberts (2002), Fort and Moulines (2002)). As already mentioned, polynomial rates of
onvergen
e are asso
iated to the fun
tions �(v) := 
v� for some � 2 [0; 1) and 
 2 (0; 1℄ and the10



rate of 
onvergen
e in total variation distan
e is r�(n) / n�=(1��). Set 	1(x) := ((1� p)x)(1�p)and 	2(x) := (px)p for some p, 0 < p < 1. Applying Theorem 2.8 yields, x 2 fV <1g,limn n(1�p)�=(1��) kPn(x; �)� �(�)kV �p = 0: (2.9)This 
onvergen
e remains valid for p = 0; 1 by Proposition 2.2. Set � := 1+ (1� p)�=(1� �) sothat 1 � � � 1=(1� �). With these notations (2.9) readslimn n��1 kPn(x; �)� �(�)kV 1��(1��) = 0;whi
h is the result given in (Jarner and Roberts, 2002, Theorem 3.6).It is possible to extend this result by using more general interpolation fun
tions. We 
anfor example obtain non polynomial rates of 
onvergen
e with 
ontrol fun
tions whi
h are notsimply power of the drift fun
tions. To illustrate this point, set for b > 0, 	1(x) := (1_ log(x))band 	2(x) := x(1 _ log(x))�b. It is not diÆ
ult to 
he
k that we havesup(x;y)2[1;1)�[1;1)(x+ y)�1	1(x)	2(y) <1;so that, for all x 2 fV <1g, we havelimn logb(n) kPn(x; �)� �(�)kV�(1+log(V ))�b = 0; (2.10)limn n�=(1��) log�b(n) kPn(x; �)� �(�)k(1+log(V ))b = 0; (2.11)and for all 0 < p < 1,limn n(1�p)�=(1��) logb n kPn(x; �)� �(�)kV�p(1+logV )�b = 0:Logarithmi
 rates of 
onvergen
e We now 
onsider drift 
onditions whi
h imply rates of
onvergen
e slower than any polynomial. Su
h rates are obtained when 
ondition D(�; V; C)holds with a fun
tion � that in
reases to in�nity slower than polynomially. We only 
onsiderhere the 
ase �(v) = 
(1+ log(v))� for some � � 0 and 
 2 (0; 1℄. A straightforward 
al
ulationshows that r�(n) � log�(n):Theorem 2.5 shows that the 
hain is (1; log�(n)) and ((1 + logV )�; 1) regular. ApplyingTheorem 2.8, intermediate rate 
an be obtained along the same lines as above. Choosingfor instan
e 	1(x) := ((1 � p)x)1�p and 	2(x) := (px)p for 0 � p � 1, then the 
hain is((1 + logV )p�; log(n)(1�p)�) regular and thus for all x 2 fV <1g,limn!1 (1 + log(n))(1�p)� kPn(x; �)� �(�)k(1+log(V ))p� = 0:11



Subexponential rates of 
onvergen
e Subexponential rates (as de�ned in (1.5)) have been
onsidered only re
ently in the literature. An example (in 
ontinuous time) has been studiedby Malyshkin (2001); dis
rete time examples are 
onsidered in the re
ent work by Klokov andVeretennikov (2002). These rates, whi
h in
rease to in�nity faster than polynomially, are ob-tained when the 
ondition D(�; V; C) holds with � su
h that v=�(v) goes to in�nity slower thanpolynomially. More pre
isely, assume that � is 
on
ave and di�erentiable on [1;+1) and thatfor large v, �(v) = 
v= log�(v) for some � > 0 and 
 > 0. A simple 
al
ulation yieldsr�(n) � n��=(1+�) exp�f
(1 + �)ng1=(1+�)� ;and thus the 
hain is (1; n��=(1+�) exp �f
(1 + �)ng1=(1+�)�) and (V=(1 + logV )�; 1) regular.Applying Theorem 2.8 with 	1(x) := x1�p(1 _ log(x))�b and 	2(x) := xp(1 _ log(x))b forp 2 (0; 1) and b 2 R, p = 0 and b > 0 or p = 1 and b < �� yields, for all x 2 fV <1g,limn n�(�+b)=(1+�) exp�(1� p)f
(1+ �)ng1=(1+�)� kPn(x; �)� �(�)kV p(1+logV )b = 0: (2.12)3 Appli
ationsWe now illustrate our �ndings by applying Theorem 2.8 to several models.In this se
tion, we denote by h�; �i the s
alar produ
t and by j � j the Eu
lidean norm. If uis a twi
e 
ontinuously di�erentiable real valued fun
tion on Rd, ru (resp. r2u) denotes itsgradient (resp. its Hessian matrix).3.1 Ba
kward re
urren
e time 
hainThe ba
kward re
urren
e time 
hain (see MT, Se
tion 3.3.1) is a ri
h sour
e of simple examplesof stable and unstable behavior. We 
onsider it here to provide examples of 
hains satisfying
ondition D(�; V; C) and for whi
h the rates of 
onvergen
e implied by it are optimal.Let (pn; n � 0) be a sequen
e of positive real numbers su
h that p0 = 1, pn 2 (0; 1) for alln � 1 and limn!1Qni=1 pi = 0. Consider the ba
kward re
urren
e time 
hain � with transitionkernel P de�ned as P (n; n + 1) = 1 � P (n; 0) = pn, for all n � 0. Then � is irredu
ible andstrongly aperiodi
 and f0g is an atom. Let �0 be the return time to f0g. We have for all n � 1P0(�0 = n+ 1) = (1� pn) n�1Yj=0 pj and P0(�0 > n) = n�1Yj=0 pj ;By Ka
's theorem (MT, Theorem 10.2.2) sin
e � is  irredu
ible and aperiodi
, � is positivere
urrent if and only if E0 [�0℄ <1, i.e. 1Xn=1 nYj=1 pj <1;12



and the stationary distribution � is given, by �(0) = �(1) = 1=E0 [�0℄ and for j � 2,�(j) = E0 �P�0k=1 1f�k = jg�E0 [�0℄ = P0(�0 � j)E0 [�0℄ = p0 : : : pj�2P1n=1 p1 : : : pn :Be
ause the distribution of the return time to the atom f0g has su
h a simple expression interms of the transition probability (pn; n � 0), we are able to exhibit the largest possible ratefun
tion r su
h that the (1; r) modulated moment of the return time E0 hP�0�1k=0 r(k)i is �nite.We will also prove that the drift 
ondition D(�; V; C) holds for appropriately 
hosen fun
tionsV and � and yields the optimal rate of 
onvergen
e. Note also that for any fun
tion f , it holdsthat E0 "�0�1Xk=0 f(�k)# = E0 "�0�1Xk=0 f(k)# :Therefore there is no loss of generality to 
onsider only (1; r) modulated moments of the returntime to zero.If supn�1 pn � � < 1, then, for all � < � < 1, E0 [���0 ℄ <1 and f0g is thus a geometri
allyergodi
 atom (MT, Theorem 15.1.5). Subgeometri
 rates of 
onvergen
e in total variation normare obtained when lim sup pn = 1. Depending on the rate at whi
h pn approa
hes 1, di�erentbehaviors 
an be obtained, 
overing essentially the three typi
al rates (polynomial, logarithmi
and subexponential) dis
ussed above.Polynomial rates Assume �rst that for � > 0 and large n, pn = 1 � (1 + �)n�1. ThenQni=1 pi � n�1�� . Thus, E0 hP�0�1k=0 r(k)i < 1 if and only if P1k=1 r(k)k�1�� < 1. Forinstan
e, r(n) := n� with 0 � � < � is suitable.Logarithmi
 rates If for � > 0 and large n, pn = 1 � 1=n � (1 + �)=(n log(n)), thenQnj=1 pj � n�1 log�1��(n), whi
h is a summable series. Hen
e if r is non de
reasing andP1k=1 r(k)Qnj=1 pj < 1, then r(k) = o(log�(k)). In parti
ular r(k) := log�(k) is suitablefor all 0 � � < �.Subgeometri
 rates If for large n, pn = 1 � ��n��1 for some � > 0 and � 2 (0; 1), thenQni=1 pi � e��n� . Thus, E0 [P�0�1k=0 eak� ℄ <1 if a < �, and E0 [P�0�1k=0 eak� ℄ =1 if a � �.Che
king 
ondition D(�; V; C) In order to prove that Theorem 2.5 provides the optimalrates of 
onvergen
e, we now 
ompute in ea
h of the previous examples the rates of 
onvergen
eit yields. 13



For the polynomial and subexponential 
ases, the same te
hnique 
an be used. For 
 2 (0; 1)and x 2 N�, de�ne V (0) := 1 and V (x) := Qx�1j=0 p�
j . Then, for all x � 0, we have:PV (x) = pxV (x+ 1) + (1� px)V (0) = p1�
x V (x) + 1� px� V (x)� (1� p1�
x )V (x) + 1� pxThus, for 0 < Æ < 1� 
 and large enough x, it holds thatPV (x) � V (x)� Æ(1� px)V (x): (3.1)� Case pn = 1 � (1 + �)n�1, � > 0. Then V (x) � x
(1+�) and (1� px)V (x) � V (x)1�1=(
(1+�).Thus 
ondition D(�; V; C) holds with �(v) = 
v� for � = 1 � 1=(
(1 + �)) for any 
 2 (0; 1).Theorem 2.8 yields the rate of 
onvergen
e n�=(1��) = n
(1+�)�1, i.e. n� for any 0 � � < �.� Case pn = 1� ��n��1. Then, for large enough x, (3.1) yields:PV (x) � V (x)� ��Æx��1V (x) � 
V (x)flog(V (x))g1�1=�;for 
 < �1=��Æ. De�ning � := 1=� � 1, Proposition 2.1 yields the following rate of 
onvergen
ein total variation norm:n��=(1+�) exp�f
(1 + �)ng1=(1+�)� = n��1 exp��Æ�n�� :Sin
e Æ is arbitrarily 
lose to 1, we re
over the fa
t that E0 [P�0�1k=0 eak� ℄ <1 for any a < �.� Case pn = 1�n�1� (1+ �)n�1 log�1(n), � > 0. Choose V (x) := �Qx�1j=0 pj� = log�(x) for � > 0arbitrarily small. Then, for 
onstants 
 < 
0 < 
00 < 1 and large x, we obtain:PV (x) = log�(x)log�(x+ 1)V (x) + 1� px = V (x)� 
00� V (x)x log(x) + 1� px� V (x)� 
0� log���(x) � V (x)� 
� log���(V (x)):Here again Theorem 2.8 yields the optimal rate of 
onvergen
e.3.2 Symmetri
 random walk Hastings Metropolis algorithmWe 
onsider the symmetri
 random walk Hastings Metropolis algorithm. The purpose of thisalgorithm is to simulate from a probability distribution � whi
h is known only up to a s
alefa
tor. At ea
h iteration, a move is proposed a

ording to a random walk whose in
rementdistribution has a symmetri
 density q with respe
t to the Lebesgue measure �d on Rd. Themove is a

epted with probability �(x; y) de�ned by�(x; y) := (minn�(y)�(x) ; 1o if �(x) > 01 if �(x) = 0: (3.2)14



The transition kernel of the Metropolis algorithm is then given byP (x;A) = ZA �(x; x+ y)q(y) d�d(y) + 1A(x) Z �1� �(x; x+ y)�q(y) d�d(y):It is known that under Assumption 3.1 below, the 
hain � is  irredu
ible, aperiodi
 withstationary distribution � d�d and any non empty 
ompa
t set is petite (Roberts and Tweedie,1996, Theorem 2.2.).Assumption 3.1. The target density � is 
ontinuous and positive on Rd. The proposal densityq is symmetri
 and bounded away from zero in a neighborhood of zero.A R valued Metropolis 
hain is V geometri
ally ergodi
 when (a) the proposal density qsatis�es moment 
onditions and (b) the target density � is 
ontinuous, positive and log 
on
avein the tails (Mengersen and Tweedie, 1996, Theorem 3.2.). This 
ondition is ne
essary in thesense that if the 
hain is geometri
ally ergodi
 then R exp(sjzj)�(z)d�d(z) <1 for some s > 0.These results have later been extended to the multidimensional 
ase by Roberts and Tweedie(1996) and Jarner and Hansen (2000). Polynomial ergodi
ity was proved by Fort and Moulines(2000) for target density with regularly varying tails. We now state 
onditions that implysubexponential rates of 
onvergen
eAssumption 3.2. there exist m 2 (0; 1), r 2 (0; 1), positive 
onstants di; Di; i = 0; 1; 2 andR0 <1 su
h that if jxj � R0, x 7! �(x) is twi
e 
ontinuously di�erentiable andh r�(x)jr�(x)j; xjxj i � �r; (3.3)d0jxjm � � log �(x) � D0jxjm (3.4)d1jxjm�1 � jr log�(x)j � D1jxjm�1 (3.5)d2jxjm�2 � jr2 log �(x)j � D2jxjm�2: (3.6)The Weibull distribution on R with density �(x) := �
x
�1 exp(��x
), for x > 0, � > 0and 0 < 
 < 1 satis�es assumption 3.2. Multidimensional examples are provided in Fort andMoulines (2000). For the sake of simpli
ity, we make the following assumption on the proposaldensity q.Assumption 3.3. The proposal density is 
ompa
tly supported, i.e. there exists 
k su
h thatfor all jyj � 
k, q(y) = 0.Fort and Moulines (2000) show that under Assumptions 3.1 and 3.2, the 
hain � is (f; r)ergodi
 with f(x) := (1 + jxj�) and r(n) := (1 + n)� , for any � > 0 and � � 0, i.e. � is (f; r)ergodi
 at any polynomial rate. We show in the next Theorem 3.1 that a stronger result a
tuallyholds: the 
hain is ergodi
 (in total variation norm) at a subgeometri
al rater�(n) � exp(znm=(2�m));for some z > 0; rate of 
onvergen
e in norms ��s(x)(� log�)t(x) where 0 < s < z and t 2 R(resp. s = 0 and t > 0; s = z and t < �2(1�m)=m) are given by (2.12).15



Theorem 3.1. Under Assumptions 3.1 to 3.3, there exist z > 0 and 
 > 0 su
h that the fun
tionsV (x) := �(x)�z and �(v) := 
v(1 + log v)�2(1�m)=m satisfy the drift 
ondition D(�; V; C) whereC is a petite set su
h that supC V <1.Remark 2. The 
ompa
tness assumption 3.3 
ould be relaxed and repla
ed by a moment 
on-dition. It may be shown (the 
omputations are not detailed here but are similar to those ofSe
tion 3.3) that if there exists z0 > 0 su
h thatZ ez0jyjm q(y)d�d(y) <1; (3.7)then the 
on
lusion of Theorem 3.1 still holds by 
hoosing V (x) := �(x)�z for some 0 < z < z0.Proof. De�ne R(x) := fy 2 Rd; �(x + y) � �(x)g the potential reje
tion region. Using thede�nition of the transition kernel P , we havePV (x)� V (x) = Z (V (x+ y)� V (x)) q(y)d�d(y)+ ZR(x) (V (x+ y)� V (x))��(x+ y)�(x) � 1� q(y)d�d(y):Set l(x) := � log �(x), R(V; x; y) := V (x + y) � V (x) + zV (x)hrl(x); yi and R(�; x; y) :=�(x+ y)=�(x)� 1 + hrl(x); yi. It is proved in (Fort and Moulines, 2000, Lemma B.4.), thatlim supjxj!1 jxj2(1�m) supjyj�
k jR(�; x; y)jjyj�2 <1: (3.8)Using a Taylor expansion with integral remainder term of the fun
tion x 7! V (x), it is easilyshown that there exists 
 independent on z su
h that for large jxjsupjyj�
k jR(V; x; y)j jyj�2 � 
z2V (x)jxj2(m�1) (1 + o(1)) : (3.9)Sin
e q d�d is a zero mean distribution, we havePV (x)� V (x) = �zV (x) ZR(x)hrl(x); yi2q(y)d�d(y) + Z R(V; x; y)q(y)d�d(y)� ZR(x)R(V; x; y)hrl(x); yiq(y)d�d(y)+ zV (x) ZR(x)hrl(x); yiq(y)R(�; x; y)q(y)d�d(y) + ZR(x)R(V; x; y)R(�; x; y)q(y)d�d(y)and for large jxj, we dedu
e from (3.8) and (3.9) thatPV (x)� V (x)V (x) = �z ZR(x)hrl(x); yi2q(y)d�d(y) + 
z2jxj2(m�1) + o(jxj2(m�1));16



for some positive 
onstant 
 that does not depend on z. It is shown in (Fort and Moulines, 2000,Lemma B.3.) (see below) that there exists � > 0 su
h that for large jxj,ZR(x)hrl(x); yi2q(y)d�d(y) > �jrl(x)j2 > �d21jxj2(m�1): (3.10)Hen
e, upon noting that d0jxjm � logV (x), there exists a 
onstant � whi
h is positive for zsmall enough, su
h that for large jxjPV (x)� V (x) � �� [logV (x)℄�2(1�m)=m V (x) (1 + o(1)) :Sin
e � is bounded on 
ompa
t sets, supjxj�M PV (x)+V (x) <1 and the proof is 
on
luded.Proof of (3.10). The proof is similar to that of (Fort and Moulines, 2000, Lemma B.3.). For
ompleteness, we sket
h the arguments here. Set n(x) := x=jxj andW (x) := fz 2 Rd; z = x + a�; 0 < a � 
k; � 2 Sd�1; j� � n(x)j � r=3g:We establish that there exists 
 > 0 su
h thatZR(x)hrl(x); yi2q(y)d�d(y) � ZW (x)�xhrl(x); yi2q(y)d�d(y)� r2=9 jrl(x)j2ZW (x)�x jyj2q(y)d�d(y) � 
 jrl(x)j2;sin
e the Lebesgue measure of the domain W (x)� x does not depend on x.We �rst prove thatW (x)�x � R(x). To that goal, we establish that for z 2 W (x), the fun
tion�(t) := �(x + t(z � x)) de�ned on [0; 1℄ is monotoni
ally de
reasing on [x; z℄ by showing thathn(z � x); n(r�(y))i>� 0 for any y 2 [x; z℄. We writehn(z � x); n(r�(y))i= hn(z � x)� n(x); n(r�(y))i+ hn(x)� n(y); n(r�(y))i+ hn(y); n(r�(y))i:By de�nition of W (x), we havejhn(z � x)� n(x); n(r�(y))ij � r=3 jhn(x)� n(y); n(r�(y))ij � r=3so that hn(z � x); n(r�(y))i � �r=3 < 0. It remains to prove that for all y + x 2 W (x),jhrl(x); yij � r=3jrl(x)jjyj, whi
h is dedu
ed from the previous 
al
ulations applied with y :=z � x and x := y .3.3 Nonlinear autoregressive modelConsider a pro
ess (�n; n � 0) that satis�es the following nonlinear autoregressive equation oforder 1: �n+1 = g(�n) + �n+1; (3.11)where the innovation and the fun
tion g satisfy the following assumption.17



Assumption 3.4. (�n; n � 0) is a sequen
e of i.i.d. zero mean, d dimensional random ve
torsthat satisfy E[ez0 j�0j
0 ℄ <1; (3.12)for some z0 > 0 and 
0 2 (0; 1℄; g is bounded on the set fx 2 Rd; jxj � R0g for some R0 > 0and there exists � 2 [0; 2) su
h thatjg(x)j � jxj(1� rjxj��) if jxj � R0: (3.13)There already exists a wide literature on on 
onditions implying a geometri
 rate of 
on-vergen
e for nonlinear autoregressive models (see e.g. Du
o (1997) and Grunwald et al. (2000)and the referen
es therein). Conditions implying a polynomial rate of 
onvergen
e have beenobtained by Tuominen and Tweedie (1994) and AngoNze (1994) and have later been re�ned byVeretennikov (1997, 1999), AngoNze (2000) and Fort and Moulines (2002). Conditions implyingtruly subexponential rate of 
onvergen
e are 
onsidered in Klokov and Veretennikov (2002) (seealso Malyshkin (2001) for di�usion pro
esses).Theorem 3.2. Assume that Assumption 3.4 holds.� If � > 
0, the drift 
ondition D(�; V; C) holds with �(v) := 
v(1 + log(v))1��=(
0^(2��)),V (x) := ezjxj
0^(2��) and C := fx 2 Rd; jg(x)j � M1g [ fx 2 Rd; jxj � M2g for somez 2 (0; z0), 
 > 0, M1 > 0 and M2 � R0.� If � = 
0, then the Foster Lyapunov 
ondition (1.3) holds with V (x) := ezjxj
0 and C :=fx 2 Rd; jg(x)j �M1g [ fx 2 Rd; jxj �M2g for some z 2 (0; z0), M1 > 0 and M2 � R0.� If � < 
0, then the Foster Lyapunov 
ondition (1.3) holds with V (x) := ez0 jxj
0 and C :=fx 2 Rd; jxj �Mg for some M � R0.If in addition the 
hain is  irredu
ible, aperiodi
 and sublevel sets of g and 
ompa
t sets arepetite, then we may apply Theorem 2.8 (resp. Theorem 15.0.1. MT) to prove (f; r) ergodi
ity orgeometri
al ergodi
ity, depending upon the value of � and 
0. Conditions implying irredu
ibility,and aperiodi
ity of the kernel, and petiteness of the level sets fx; jxj �M1g and fx; jg(x)j �M2gmay be found in Tuominen and Tweedie (1994).Proof of Theorem 3.2. Throughout the proof, 
 is a generi
 
onstant that 
an 
hange upon ea
happearan
e.(i) We start by examining the 
ase � > 
0. Set � := 
0 ^ (2� �). We writePV (x)V (x) � 1 = PV (x)� V (g(x))V (x) + V (g(x))V (x) � 1: (3.14)Using the inequality (1 � u)
0 � 1 � 
0u for all 0 � u � 1, we have for jxj � R0, jg(x)j� �jxj� � �rjxj��� and sin
e ex � 1 � x + x2=2 for all x � 0,V (g(x))V (x) � 1 = ezjg(x)j��zjxj� � 1 � �zr�jxj��� + 12z2r2�2jxj2(���): (3.15)18



Let 0 < � < 1. We establish that for large jxj and large jg(x)j,PV (x)� V (g(x))� 12z2�2 E[j�0 j2V (�0)℄ jxj2��2V (x) (1 + o(1)) : (3.16)To that goal, set R(u; w) := V (u+ w)� V (u)� hrV (u); wi: Sin
e E[�0 ℄ = 0, this yieldsPV (x)� V (g(x)) = E [V (g(x) + �0)℄� V (g(x)) = E [R(g(x); �0)℄ ; (3.17)and we have to upper bound the remainder term E [R(g(x); �0)℄. If jwj � �juj, then by using aTaylor expansion with integral remainder term, one has,jR(u; w)j � Z 10 (1� t) ��w0r2V (u+ tw)w�� dt� 12 jwj2 z� supt2[0;1℄�1 + z�ju+ twj�� ju+ twj��2 V (u+ tw)Sin
e y 7! jyj2��2ezjyj� and y 7! jyj��2ezjyj� are ultimately nonde
reasing, then for large jxj, wehave:jR(u; w)j � 12 jwj2 z� �1 + z�(juj+ jwj)�� (juj+ jwj)��2 V (u)V (w)� 12 z2�2 jwj2V (w) juj2��2V (u) + +
 jwj2V (w) juj��2V (u): if jwj � �juj (3.18)If jwj � �juj, using again the inequality V (u+ w) � V (u)V (w)jR(u; w)j � V (u+ w) + V (u) + jrV (u)j jwj � 
 jwjV (w) juj��1 V (u)� 
jwj2V (w)juj��2 V (u) if jwj � �juj: (3.19)We now apply (3.18) and (3.19) with u := g(x) and w := �0; sin
e y 7! jyj2��2ezjyj� andy 7! jyj��2ezjyj� are ultimately nonde
reasing, then for large jg(x)j, we have:jR(g(x); �0)j � 12 z2�2 j�0j2V (�0) jxj2��2V (x) + 
 j�0j2V (�0) jxj��2V (x): (3.20)Eq. (3.16) now follows from (3.20). Gathering (3.15) and (3.16), as � � 2 � �, we obtain thatfor large jxj and large jg(x)jPV (x)� V (x) = �z�� jxj���V (x) (1 + o(1)) = �z�=��� [logV (x)℄1��=� V (x) (1 + o(1)) ;where � := r if � < 2� �; i.e. 
0 < 2� �� := r � 1=2 �z E h�20ezj�0j�i if � = 2� � i.e. 
0 � 2� �;19



and z is 
hosen small enough su
h that � > 0.(ii) We now 
onsider the 
ase � = 
0 (observe that � := 
0 ^ (2� �) = 
0 and that many resultsabove remain valid). By (3.14), (3.15), (3.17) and (3.20), we have for large jxj and large jg(x)j,PV (x)� V (x)V (x) � �zr
0 + 12z2r2
02 + 12z2
02 jxj2
0�2E ��20V (�0)� (1 + o(1)) :For z small enough, the term on the right hand side is in the interval (�1; 0) and this shows thatthe Foster Lyapunov drift 
ondition (1.3) holds with C on the form fx; g(x) � M1g [ fx; jxj �M2g for large enough M1, M2.(iii) We �nally 
onsider the 
ase � < 
0. Using the inequality (1�u)
0 � 1�
0u for all 0 � u � 1,we have for jxj � R0, jg(x)j
0 � jxj
0 � 
0rjxj
0��. Hen
e, sin
e V (u + w) � V (u)V (w), thisyields, for jxj � R0,PV (x) = E[V (g(x) + �0)℄ � V (g(x))E [V (�0)℄ � e�r
0z0jxj
0��E hez0j�0j
0 i V (x):Hen
e limjxj!1 PV (x)=V (x) = 0, whi
h implies that the Foster Lyapunov drift 
ondition (1.3)holds with C := fV (x) �Mg for large enough M .(iv) In all 
ases, to 
on
lude the proof, we must bound PV (x) on sets on the form fjg(x)j �M1gand fjxj �M2g. Applying the inequality V (u+w) � V (u)V (w) and the fa
t that g is boundedon 
ompa
t sets, we obtain, for all su
h x,PV (x) = E[V (g(x) + �0)℄ � ( supjxj�R0 V (g(x)) + V (M1))E[V (�0)℄ <1:3.4 Sto
hasti
 unit rootWe now 
onsider a pro
ess whi
h belongs to the wide family of sto
hasti
 unit root models. Seefor example Granger and Sawnson (1997) for many examples. The model we 
onsider is one ofthe simplest. It has been 
onsidered in Gourieroux and Robert (2001) with main fo
us on itsextremal behavior. �n+1 = 1fUn+1�g(�n)g�n + �n+1; (3.21)where (�n; n 2 N) is a sequen
e of i.i.d. random variables that satis�es (3.12) and (Un; n � 1) isa sequen
e of i.i.d random variables, uniformly distributed on [0; 1℄ and independent from thesequen
e (�n; n 2 N). Moreover, we make the following assumption on g.Assumption 3.5. g is a 
ontinuous fun
tion with values in [0; 1) and there exist � 2 (0; 1),
+(g) > 0, 
�(g) < 1 and R0 > 0 su
h that8x � R0; 1� g(x) � 
+(g)x��; (3.22)8x � R0; g(x) � 
�(g): (3.23)20



Let P be the transition kernel of the 
hain. For all x 2 R and all Borel sets A, it 
an beexpressed as: P (x;A) = g(x)P(x+ �0 2 A) + (1� g(x))P(�0 2 A): (3.24)Under Assumption 3.5, for all M > 0, there exists a 
onstant �(M) su
h that for all x � M ,and all Borel set A, P (x;A) � �(M)P(�0 2 A): (3.25)This means that every set of the form (�1;M ℄ is 1 small, hen
e petite. De�ne x+ = max(x; 0).Theorem 3.3. Under Assumption 3.5 and if �0 satis�es (3.12), there exist z 2 (0; z0℄, Æ > 0and M � R0 su
h that the drift 
ondition D(�; V; C) holds with V (x) = ezx�+ , �(v) = Æz�=�vf1_log(v)g��=�, C = (�1;M ℄ and either� � = 
0 ^ (1� �) and � = � if E[�0 ℄ > 0;� � = 
0 ^ (1� �=2) � = � if E[�0 ℄ = 0;� � = 
0 and � = (1� 
0) ^ � if E[�0 ℄ < 0.Equations (3.24) and (3.25) prove that the 
hain is  irredu
ible and (strongly) aperiodi
.Sin
e morever V is obviously bounded on intervals (�1;M ℄, Theorem 2.8 
an be applied.Proof of Theorem 3.3. Let z < z0 and x > 0. Using the de�nition of the transition kernel P , wehave: PV (x)� V (x) = g(x)E[V (x+ �0)℄ + (1� g(x))E[V (�0)℄� V (x)= g(x) (E[V (x+ �0)℄� V (x))� (1� g(x)) (V (x)� E[V (�0)℄)� E[V (x+ �0)℄� V (x)� (1� g(x)) (V (x)� E[V (�0)℄) :De�ne R(x; �0) = V (x+ �0)� V (x)� �0�zx��1V (x). For any � 2 (0; 1), we 
an write:E[V (x+ �0)℄� V (x)� �zE[�0 ℄x��1V (x) = E[R(x; �0)1fj�0j � �xg℄ + E[R(x; �0)1fj�0j > �xg℄:By the same arguments as in the proof of Theorem 3.2, we have:E[R(x; �0)1fj�0j > �xg℄ � E[V ((1 + ��1)j�0j) + V (j�0j) + �z�1�� j�0j�V (j�0j)℄ (3.26)Thus this term is bounded provided that � and z are 
hosen su
h that (1 + ��1)�z � z0. Tobound the se
ond term, note that for large enough x, the fun
tion x 7! x2��2V (x) is in
reasing.Thus, for x �M , for some M depending on �, and j�0j � �x, there exists t 2 (0; 1) su
h thatV (x+ �0)� V (x)� �z�0x��1V (x)= 12�(� � 1)z(x+ t�0)��2�20V (x+ t�0) + 12(�z(x+ t�0)��1)2�20V (x+ t�0)� 12�2z2(1 + �)2��2x2��2�20V (x)V (j�0j) � 12�2z2x2��2�20V (x)V (j�0j):21



For 
 < 
+(g) and x large enough, say x �M for some M � R0, we have(1� g(x)) (V (x)� E[V (�0)℄) � 
x��V (x):Hen
e, taking (3.26) into a

ount, there exists a positive real number M su
h that if x � M ,then PV (x)� V (x) � �z�x��1E[�0 ℄ + 12�2z2x2��2E[�20V (j�0j)℄� 
x���V (x):If E[�0 ℄ > 0, set � = 
0 ^ (1� �). Then, for large enough x, we obtain:PV (x)� V (x) � �Æx��V (x) = �Æz�=�V (x)flog(V (x))g��=�;with Æ = 
 < 
+(g) if 
0 < 1�� or Æ = 
��zE[�0 ℄, 
 < 
+(g) and z su
h that Æ > 0 if 
0 � 1��.If E[�0 ℄ < 0, set � = 
0 and � = (1� 
0) ^ �. Then, for x large enough,PV (x)� V (x) � �Æx��V (x) = �Æz�=
0V (x)flog(V (x))g��=
0;with Æ = 
 < 
+(g) if 
0 < 1 � � and Æ = 
 � z�E[�0 ℄, 
 < 
+(g) and z su
h that Æ > 0 if
0 � 1� �.If E[�0 ℄ = 0, then � must satisfy 2� � 2 � ��, thus we set � = (1� �=2) ^ 
0, and we obtainPV (x)� V (x) � �Æx��V (x) = �Æz�=�V (x)flog(V (x))g��=�;with Æ = 
 < 
+(g) if 1� �=2 > 
0 and Æ = 
� 12�2z2E[�20V (j�0j)℄, with 
 < 
+(g) and z su
hthat Æ > 0 if 1� �=2 � 
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