Practical drift conditions for subgeometric rates of convergence
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Abstract

We present a new drift condition which implies rates of convergence to the stationary
distribution of the iterates of a w-irreducible aperiodic and positive recurrent transition
kernel. This condition, extending a condition introduced by Jarner and Roberts (2002)
for polynomial convergence rates, turns out to be very convenient to prove subgeometric
rates of convergence. Several applications are presented including nonlinear autoregressive
models, stochastic unit root models and multidimensional random walk Hastings Metropolis
algorithms.

Abbreviated title Subgeometric rates of convergence.
MSC 2000 subject classification 60J10.
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1 Introduction

Let @ := (®,,,n > 0) be a discrete time Markov chain on a general measurable state space
(X, B(X)) with transition kernel P. Assume that ® is i irreducible, aperiodic and positive
recurrent. This paper considers the use of drift conditions to establish the convergence in f
norm of the iterates P" of the kernel to the stationary distribution 7 at rate r := (r(n),n > 0),
i.e.

lim r(n)||[P"(z,-) — 7|y =0, 7—a.e. (1.1)

n— 0o
where f: X — [1,00] is an extended real valued function and for any signed measure p, the f
norm |[[u]|s is defined as supj, < |p(g)| (cf. (Meyn and Tweedie, 1993, Chapter 14), hereafter
MT).
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For geometric rate functions, i.e. functions r that satisfy

0 < liminf M and limsup
n

logr(n) < 0o (1.2)
n
it is known (MT, Theorem 16.0.1) that (1.1) holds if and only if the Foster Lyapunov drift

condition is verified i.e. there exist an extended real valued function V' : X — [1, 00] finite at
some zo € X, a petite set C', A € (0,1), 5> 0 and ¢ > 0 such that ¢71f <V < ¢f and

PV < AV + blg. (1.3)

In that case, the convergence (1.1) holds for all z in the set {V < oo} which is of 7 measure one.

For rates of convergence slower than geometric, no such definitive result exist. An impor-
tant family of such rates is the class of subgeometric rate functions, defined in Nummelin and
Tuominen (1983) as follows. Let Ay be the set of positive non decreasing functions rg such that
ro(0) > 1 and log{rg(n)}/n decreases to 0. The class of subgeometric rate functions is the set
A of positive functions r such that there exists a sequence rg € Ag and

liminf r(n)/ro(n) >0 and limsupr(n)/ro(n) < oco. (1.4)

This class includes for example polynomial rate functions, i.e. rate functions r such that (1.4)
holds with ro(n) := (1 +n)® and 8 > 0. It also includes rate functions which increase faster
than polynomially, e.g. rate functions r satisfying (1.4) with

ro(n) := (n 4 1)Pe™”, for BER, v € (0,1) and ¢ > 0. (1.5)

We will refer to these rates as subexponential in order to distinguish them in the broad class of
subgeometric rates.

Tuominen and Tweedie (1994) (see also Nummelin and Tuominen (1983)) have given a set
of necessary and sufficient conditions for the convergence (1.1) to hold with a subgeometric rate
function r € A. To state this result, we first recall some notations and definitions.

A measurable set C' is ¢, petite (or petite) if there exist a distribution a := (a(n),n > 0), a
constant € > 0 and a non trivial measure 1, on B(X) such that for all 2 € C, B € B(X),

Ko(z,B) =Y a(n)P"(x,B) > t.(B).

n>0

The return time to a measurable set A, denoted by 74 is defined as 74 := inf{n > 1,®, € A}
(with the convention inf ) = +00). Let ¢ be a maximal irreducibility measure and let BT (X) be
the set of accessible sets, i.e. sets B € B(X) such that ¢(B) > 0. A set A € B(X) is called full if
P(A°) = 0, absorbing if P(z, A) = 1 for all # € A and, for a measurable positive function f and
a rate function r, A is said (f,r) regular if, for every B € B¥(X),

< 0.

Tp—1
sup E, r(k) f(®
sup [; (k) f(Pr)




A finite positive measure A on B(X) is said (f,r) regular if Ex[3725" r(k) f(®x)] < oo for all
set B € BT(X). The set of all (f,r) regular points (i.e. the points x € X such that d, is (f,r)
regular) is denoted by S(f,r).

We can now recall (part of) (Tuominen and Tweedie, 1994, Theorem 2.1).

Theorem 1.1 (Tuominen and Tweedie (1994)). Assume that P is ¢ irreducible and ape-
riodic. Let f : X — [1,00] be a measurable function, and let r € A be given. The following
conditions are equivalent.

(i) There exists a petite set C' € B(X) such that

< 0.

SupE, [Z () F(@)

zel k=0

(ii) There exist a sequence of extended real valued functions (V,,n > 0), V,, : X = [1,00], a
petite set C' € B(X) and a constant b < oo such that Vi is bounded on C,

W(z) =400 = Vi(z)=+o0

and

PVoyi+r(n)f <V, +br(n)lc. (1.6)

(iii) There exists a (f,r) reqular set A € BT (X).

Any of these conditions implies that, for all x € S(f,r),
r)|P* (2, ) =7 ()llf =0, n— o0,

and the set S(f,r) is full, absorbing and contains the set {Vy < oo}. Moreover, for all (f,r)
reqular initial distributions A, pt, there exists a constant ¢ such that

Z // (da)u(dy) || P" (2, ) = P"(y,)]l5 < ¢ (A(Vo) + (Vo)) -

This theorem cannot be improved since it provides a necessary and sufficient condition, but
the sequence of drift conditions (1.6) is notoriously difficult to check in practice and one has
very little insight on the way to choose the family of drift function (V,,,» > 0). This is why
these drift conditions, up to the best of our knowledge, have seldom been used directly.

A first step towards finding a more practical drift condition was taken by Jarner and Roberts
(2002) who, simplifying and generalising an argument in Fort and Moulines (2000), have shown
that if there exist a function V' : X — [1, o] finite at some ¢ € X, positive constants b and ¢, a
petite set C' and « € [0, 1) such that

PV £V <V 4+ ble,



then the chain is positive recurrent and for each 8 € [1,1/(1 — «)], the convergence (1.1) holds
for all z € {V < oo} which is of 7 measure one, with r(n) := n®~! and f := V'=P0-9) Tt is
noteworthy that there is a balance between the rate of convergence and the norm: the larger
the latter, the slower the former. In particular, the fastest rate of convergence (r(n) = n®/(1=2))
corresponds to the total variation norm, and the slowest rate (r(n) = 1) corresponds to the V¢
norm.

In this paper, we consider the following drift condition which generalizes the Foster Lyapunov
and the Jarner Roberts drift conditions.

Condition D(¢,V,C): There exist a function V' : X — [1,00], a concave non decreasing
differentiable function ¢ : [1,00) — (0, 00), a measurable set C' and a finite constant b such that

PV +¢oV <V +blc.

Here ¢ is assumed differentiable for convenience. It can be relaxed since a concave function has
non increasing left and right derivatives everywhere. If P is 1) irreducible and aperiodic, and
D(¢,V,C) holds for some petite set C' such that supo V' < oo, then the f norm ergodic Theo-
rem for aperiodic chain (see MT, Theorem 14.0.1) states that there exists an unique invariant
distribution 7 and that the limit

lim |P"(z, ) = 7[lgov =0,

for all  in the set of # measure one {V < oco}. The ¢ oV norm is the maximal norm for which
convergence can be proved under condition D(¢, V, ('), and in that case, the rate of convergence
is minimal: r = 1. This implies that for any function 1 < f < ¢ oV convergence in the f
norm also holds. In order to determine the rate of convergence in the f norm, we should try
to find a sequence of function (V,,,n > 0) such that (1.6) holds, but this is precisely what we
are trying to avoid doing for all functions f. Instead, having in mind the balance between the
rate of convergence and the norm, we will first determine the rate of convergence in the total
variation norm by using the criterion (1.6) and then deduce intermediate rates of convergence
in f norm using an interpolation technique.

The rest of the paper is organized as follows. Our main result, Theorem 2.8, is stated and
proved in the next section. Several typical functions ¢ are then considered, leading to a variety
of subgeometric rate functions. In particular, by setting ¢(v) := v®, a € [0, 1), we retrieve the
results in Jarner and Roberts (2002). Several applications are given in section 3. We establish
subgeometric rates of convergence in several models: first order nonlinear autoregressive models,
stochastic unit root models, and random walk multidimensional Hastings Metropolis algorithm,
under conditions which do not imply geometric ergodicity.



2 Main result

2.1 Rate of convergence in the total variation norm

Let ¢ : [1,00) — (0,00) be a concave non decreasing differentiable function. Define

v odx
Holv): 1 o)
Then Hy is a non decreasing concave differentiable function on [1,00). Moreover, since ¢ is
concave, ¢’ is non increasing. Hence ¢(v) < ¢(1)+ ¢'(1)(v — 1) for all v > 1, which implies that
H, increases to infinity. We can thus define its inverse H;l : [0,00) — [1,00), which is also an
increasing and differentiable function, with derivative (H(;l)’(w) = qﬁoH;l(x). ForkeN,z>0
and v > 1, define

. (2.1)

rg(2) = (H71) (2) = 6o H'(2), (2.2)
Hy(v)

Hy(v) ::/0 re(z+ k) dz:H(;l(H(b(v)—l—k)—H(;l(k),

Vk = Hk oV.

We will show that, provided D(¢,C, V) holds with C' petite and sup,c V(2) < oo, then the
chain (®g, k > 0) is (1,r4) regular, i.e. ry is the rate of convergence in total variation norm that
can be deduced from the drift condition. To this end, we will use Theorem 1.1 condition (ii),
i.e., we will show that (1.6) holds with (Vi, k> 0), f:=1 and r := ry.

Proposition 2.1. Assume D(¢,V,C'). Then ry is log concave and for all k > 0, Hy, is concave
and

bf‘(b(k + 1)

PV < Vi — T‘(b(k) + (b(l) 1.

Proof. Note first that rj(z)/re(z) = ¢' o H;l(z) for all z > 0. Since ¢’ is non increasing and

H7'is increasing, ¢’ o H; ! is non increasing and log(r4) is concave. This implies that for any
fixed k > 0, the function z +— ry(z+k)/rs(2) is a decreasing function. The derivative of Hy, has
the following expression

Hj(v) = rg(Hy(v) + k) /d(v) = ro(He(v) + k) /rs(Hy(v)). (2.3)

Since H is increasing, it follows from the discussion above that [} is non increasing, hence Hj,
is concave for all £ > 0. Applying (2.3) and the fact that ry is increasing, we obtain:

Hy(v) Ho(w) 1
Hk_|_1(v)—Hk(v):/ {r¢(2+k—|—1)—r¢(2+k)}dz:/ / ro(z+k+s)dsdz
0 0 0

= [ Hralsto) + ko4 5) = rae ) ds
<re(Hg(v)+k+1) —re(k) = (b(v)H,’H_l(v) —ry(k).



We have thus shown the following inequality which is the key tool of the proof.
Hyy1(v) = (0) Hpyy (v0) < Hip(v) = 1o (k). (2.4)

Let ¢ be a concave differentiable function on [1,00). Since ¢’ is decreasing, for all v > 1 and
x € R such that v+ 2z > 1, it holds that

g(v+2) < g(v)+g'(v)a. (2.5)
Applying this property to the concave function Hyyq, we obtain for all £ > 0, z € {V < oo},

PVii(2) < Hipt {V (@) = 60 V(@) + bl (2)
< Hi1 (V(2)) = 60 V(@) Hf, (V(2) + b}, (V (@) 1c(2)
< Hip1 (V(2) = 60 V(@) L, (V(2) + bHL, (D1c(2).

Applying (2.3) and (2.4), we obtain that H; , (1) = rg(k+1)/¢(1) and

k+1
bry(k+1
PViegs () < Vi) — rg (k) + %10@).
This inequality still holds for @ € {V = co}. Which concludes the proof. O

The drift condition D(¢, V, ) and Proposition 2.1 imply the following bounds for the mod-
ulated moments of the return time 7¢, by application of Dynkin’s inequality (see MT, Theorem
11.3.2).

Proposition 2.2. Assume D(¢,V,C ). Then, for all z € X,
Tc—l

E. [Z b oV (D)
k=0

E, [Z_ (k)

k=0

< Vi(z)+ble(z),

<Vie)+ b;¢(1)1c(x).

In order to apply Theorem 1.1 we must also check the following conditions:

e the rate sequence ry := (¢ o H(;l(k)7 k > 0) belongs to A,

e the drift function V' is bounded on C, sup,co V(2) < oc.

The next Lemma gives a simple criterion to check that r4 € A.

Lemma 2.3. Iflim;_,, ¢'(t) =0, then ry € A.



Proof. We have already noted that rj,(z)/r¢(z) = ¢ o H;l(x) for all # > 0. Let r be any
differentiable function such that r(0) = 1 and lim,_, r'(2)/r(2) = 0. Then, applying Cesaro’s
Lemma, we obtain:

oglr) L [ 764,y

n n r(s)

If moreover r’/r decreases, then log(r(z))/x also decreases. Thus ry € A. O

The condition sup,co V(z) < oo can easily be avoided, thanks to the following Lemma,
adapted from Theorem 14.2.6 of MT.

Lemma 2.4. Assume that D(¢,V,C) holds for some petite set C' and that lim,_, ¢(v) = 0.
Then for all M > 1, the sublevel sets {a € X,V (z) < M} are petite. In addition, for any 3,
0 < B < 1, there exists a sublevel set Cg such that D(5¢,V,Cp) holds.

Proof. Since ¢ is positive non decreasing and V' > 1, the condition D(¢, V,C) implies the drift
condition PV < V — ¢(1) 4+ b1lg. Theorem 11.3.11 of MT shows that, for all accessible set
B € Bt (X), there exists a constant ¢(B) < oo such that, for all € X we have ¢(1)E,[rg] <
V(z)+c(B). Hence, every set A € B(X) such that sup 4 V( ) < oo is regular, and the sublevel
sets are all regular. Proposition 11.3.8 of MT shows that if a set A is regular, then it is petite.
Hence, all the sublevel sets are petite.

Since lim, o ¢(v) = oo, for all § € (0,1), there exists Mg such that v > Mp implies
o(v) > b/(1—pB). For x ¢ Cz:={V < Mg}, we thus have b < (1 — 5)o(V (z)) and

PV 4+ 56(V) <V + (B -1)o(V) +ble < V.
For x € Cg, since 8 € (0, 1), it trivially holds that
PV + Bo(V) <V +b.

O

Theorem 2.5. Let P be a v irreducible and aperiodic kernel. Assume that D(¢,V,C') holds for
a function ¢ such that lim;_.. ¢'(t) = 0 and a petite set C' such that supo V < co. Then, there
exists an invariant probability measure w, and for all x in the full and absorbing set {V < oo},

lim rg(n) [|P*(z,-) = 7()llTv = 0.

Any probability measure X such that A(V) < oo is (1,ry) regular and for two (1,r4) regular
distributions A, v, there exists a constant ¢ such that

Z // (dz)p(dy)||P"(z,-) = P"(y,)|ltv < c(AMV) +u(V)).



Remark 1. Since ¢ is non increasing, if we do not assume that lim,_, ¢'(v) = 0, then there
exists ¢ € (0, 1) such that lim,_,, ¢'(v) = ¢ > 0. This yields v — ¢(v) < (1 — c)v+ ¢ — ¢(1). In
this case, condition D(¢, V, ) implies the Foster Lyapunov drift condition, and the chain is V'
geometrically ergodic.

Proof of Theorem 2.5. The only statement which requires a proof is the fact that any probability
measure such that A(V) < oo is (1,ry) regular. This assertion is established in (Tuominen and
Tweedie, 1994, Proposition 3.1.(ii)), and relies on (Nummelin and Tuominen, 1983, Lemma
3.1.). We nevertheless propose a proof that drastically shortens the previous one. The proof
is adapted from the proof of Theorem 14.2.3 of MT. Proposition 2.1 shows that there exist a
sequence of drift functions (Vi, k > 0) and a constant b such that Vo <V and

PV < Vi — T‘(b(k) + b(b(l)_lf‘(b(k + 1)10

Dynkin’s formula shows that for all accessible set B,

£, [i ro(k)

k=0

<Volz) +b (1) E, [i re(k+1)1c(Pk)

k=0

JFrom Propositions 5.5.5 and 5.5.6 of MT, we can assume without loss of generality that C' is
¥, petite, where 1, is equivalent to 4, and that the sampling distribution ¢ has finite mean
My 1= Z(;; ja; < co. By the Comparison Theorem (MT, Theorem 14.2.2), the bound 1¢(z) <
Vo (B)"' K, (2, B) and the fact that ry is non decreasing, we have:

[Ti T‘¢ < Vo ) +b Cb(l)_l Ti_: T‘¢(l€ + 1)10((I)k)
k=0 k=0
<Volw) +0 6(1)7" ¢a(B)7D 4, [i ro(k 4+ 1)15(®rps)
>0 k=0

< Vol(@) + 0 (1) a(B) " maEe[rg(7s)]-

For k > 1, define Ry(k) := Zf ors(j). Since ry is subgeometric, it holds that limj_.,
re(k)/Ry(k ) = 0. Hence, for any 6 > 0, there exists a constant ¢(d) such that for all & > 1,
re(k) < ORy(k) 4 ¢(8). This yields:

E. [Ry(75)] < Vo(r) +b¢(1) " ©a(B) 'y (3B, [Ry(15)] + ¢(3)).

Thus for small enough &, we obtain

Vo(x) + bmaty (B)e(d)o(1)

B o)) < e T (B)o(1)

(2.6)



2.2 Rate of convergence in f norms

As seen in the polynomial case and discussed in Tuominen and Tweedie (1994), in the subgeomet-
ric case there is a compromise between the rate of convergence and the control function. In what
follows, we will show that it is possible at almost no cost to obtain many intermediate different
rates of convergence and control functions. Let Y be the set of pairs of ultimately non decreasing
functions ¥y and W, defined on [1, 00) such that lim,_. V1 (2) = oo or lim ;o ¥a(2) = oo and
for all z,y € [1, 00),

Ui(x)W2(y) <z +y. (2.7)

The set Y includes for example Wy(z) = 2 and Wy(z) = 1, but there are of course more
interesting examples. For example, it is well known that, for any z,y > 0, and p and ¢ such
that 1/p+ 1/¢ = 1 we have
vy <2f/p+y'/q.

Hence, the pair of functions Wy(z) = p'/Pa'/?, Wy(z) = ¢"/92'/7 satisfies (2.7). These are
precisely the interpolating functions used in Jarner and Roberts (2002) to derive polynomial rates
of convergence. Young functions provide many useful interpolating functions. We recall their
definition. Let gy : (0,00) — (0, 00) be an increasing left continuous function such that g;(0) =0
and lim,_ 4o 01(v) = +00. Let g3 be the left continuous inverse of g1, which is increasing and
satisfies also 02(0) = 0 and limy_ 4o 02(v) = +o00. Define then Gy(z) == [ 0i(t)dt , i = 1,2.
The well known Young inequality states that, for all z,y > 0, we have

ry < Gy(z) 4+ Ga(y). (2.8)

Let W; be the inverse of GG;, ¢ = 1,2. Then ¥; and ¥y are concave functions and it follows
immediately from (2.8) that the pair (W, ¥y) satisfies (2.7).

We use this full scale of interpolating functions in combination with Proposition 2.2 to derive
bounds for the modulated moment of return time to the set C'. More precisely, we have

Proposition 2.6. Assume D(¢,V,C) and let (V1,Vy) € Y. Then

Tc—l

E. | Y Wilrs(k)Wa(d0 V(@) | <2V (2) +b(1+re(1)/d(1)1c(w).
k=0

We need a criterion for a rate function ¥; o ry4 to be subgeometric. Note that if the pair
(U1, ¥s) belongs to Y, then, for large enough =z, it holds that V;(z) <2z (¢ =1, 2).

Lemma 2.7. Assume that lim;. ¢'(t) = 0. For any non decreasing function ¥ such that
U(z) < ax for some constant a, then Wory € Ag.
The next theorem summarizes all our previous results.

Theorem 2.8. Let P be a v irreducible and aperiodic kernel. Assume that D(¢,V,C) holds
for a function ¢ such that lim;—o. &' (t) = 0 and a petite set C' such that sup, V < oo. Let



(U1,Wy) € Y. Then, there exists an invariant probability measure ©, and for all x in the full set
{V < o0},
lim Wy(rg(n)) [[P"(2,) = 7()lles(sov) = 0.

Any probability measure A such that A(V) < oo is (Wa(po V), Wy(ry)) regular and for two such
distributions A\, u, there exists a constant ¢ such that

S witron)) [ [ Nl P (a) = P llasgaery < 0 + (V).

Proof. From Proposition 2.6 we have

Tc—l

D Wi (k) Wa(6 0V (0,)
k=0

sup E,. < 00.

zeC

Theorem 1.1 shows that ® is (Uy(¢po V), Wy(ry)) regular. As in the proof of Theorem 2.5, and
using again the Comparison Theorem, for any set B € Bt (X), there exist constants ¢;(B) and
c2(B) such that

E, Bz_: po V()| +E, Bz_: r(b(k)] < a(B)V(z)+ ca(B).
k=0 k=0
Hence, for any (¥, ¥;) € Y, we have
B | 37 W0 (ral1) Wa(60 V()| < (B (e) + ea(B),
k=0

which shows that any probability measure such that A(V) < oois (Wa(¢oV'), Wy (rg)) regular. O

2.8 Some usual rate functions

In this section, we provide examples of rates of convergence obtained by Theorem 2.8. For two
sequences u, and v,, we write u, =< v, if there exists positive constants ¢; and ¢y such that for
large n, ciu, < v, < cauy,.

We assume throughout this section that the condition D(¢, V,C') holds for some petite set C'
and supy V < 0.

Polynomial rates of convergence Polynomial rates of convergence have been widely stud-
ied recently under various conditions (see Veretennikov (1997, 1999), Tanikawa (2001), Jarner
and Roberts (2002), Fort and Moulines (2002)). As already mentioned, polynomial rates of
convergence are associated to the functions ¢(v) := cv® for some a € [0,1) and ¢ € (0, 1] and the

10



rate of convergence in total variation distance is ry(n) oc n®/0=9). Set W, () := ((1 — p)a)(=7)
and Wy (z) := (pz)? for some p, 0 < p < 1. Applying Theorem 2.8 yields, z € {V < oo},

lim n(t=P)2/(=a) PP (g ) — 1 ()||yer = 0. (2.9)

This convergence remains valid for p = 0,1 by Proposition 2.2. Set x : =1+ (1 —p)ar/(1 — &) so
that 1 <k < 1/(1 — «). With these notations (2.9) reads

lim 0" P" (@) = 7 ()llyrse) =0,

which is the result given in (Jarner and Roberts, 2002, Theorem 3.6).

It is possible to extend this result by using more general interpolation functions. We can
for example obtain non polynomial rates of convergence with control functions which are not
simply power of the drift functions. To illustrate this point, set for b > 0, ¥y (z) := (1 Vlog(x))
and Wy(z) := (1 Vlog(x))~". It is not difficult to check that we have

sup (x + y)_l\Ill(x)\Ilg(y) < 00,
(z,y)E€[1,00) x[1,00)

so that, for all € {V < oo}, we have

lim log”(n) |[P"(z,) = 7 ()lva(tiogvy-+ = 0, (2.10)
lim /= og™"(n) |[P" (2, ) = 7 ()|l (1410g(v))> = 0 (2.11)

n

and for all 0 < p < 1,

fim o120 ogh [P ,) = 7 () [yaniaog vy = 0.

Logarithmic rates of convergence We now consider drift conditions which imply rates of
convergence slower than any polynomial. Such rates are obtained when condition D(¢,V,C')
holds with a function ¢ that increases to infinity slower than polynomially. We only consider
here the case ¢(v) = ¢(1 +log(v))® for some o > 0 and ¢ € (0, 1]. A straightforward calculation
shows that

re(n) < log®(n).
Theorem 2.5 shows that the chain is (1,log”(n)) and ((1 + logV)®, 1) regular. Applying
Theorem 2.8, intermediate rate can be obtained along the same lines as above. Choosing
for instance ¥y(z) := ((1 — p)x)!7? and Wy(z) := (pz)? for 0 < p < 1, then the chain is
((1 4 log V)P log(n) (1 =)%) regular and thus for all z € {V < oo},

Tim (14 1og(n) " |P" (2, ) = 7() 1105y = 0.

11



Subexponential rates of convergence Subexponential rates (as defined in (1.5)) have been
considered only recently in the literature. An example (in continuous time) has been studied
by Malyshkin (2001); discrete time examples are considered in the recent work by Klokov and
Veretennikov (2002). These rates, which increase to infinity faster than polynomially, are ob-
tained when the condition D(¢, V, C) holds with ¢ such that v/¢(v) goes to infinity slower than
polynomially. More precisely, assume that ¢ is concave and differentiable on [1,4+00) and that
for large v, ¢p(v) = cv/log”(v) for some o > 0 and ¢ > 0. A simple calculation yields

ro(n) = n= /05 exp ({e(1 4 a)ny/0+)

and thus the chain is (1,77 exp ({e(1+ a)n}/IF)) and (V/(1+ logV)?, 1) regular.
Applying Theorem 2.8 with Wy(z) = 2'7P(1 V log(z))~" and Wy(x) = 2P(1 V log(z))® for
pe(0,1)andbeR,p=0and b >0o0r p=1and b < —e« yields, for all 2 € {V < o0},

fim /04 e (1= p){e(1+ @)nP0F) [P0, ) = 7O lvagragry = 0 (212

n

3 Applications

We now illustrate our findings by applying Theorem 2.8 to several models.

In this section, we denote by (-,-) the scalar product and by | - | the Euclidean norm. If u
is a twice continuously differentiable real valued function on R% Vu (resp. V2u) denotes its
gradient (resp. its Hessian matrix).

3.1 Backward recurrence time chain

The backward recurrence time chain (see MT, Section 3.3.1) is a rich source of simple examples
of stable and unstable behavior. We consider it here to provide examples of chains satisfying
condition D(¢, V, ') and for which the rates of convergence implied by it are optimal.

Let (pn,n > 0) be a sequence of positive real numbers such that pg = 1, p, € (0,1) for all
n > 1 and lim, o [[/—; p; = 0. Consider the backward recurrence time chain ® with transition
kernel P defined as P(n,n+ 1) =1 — P(n,0) = p,, for all n > 0. Then & is irreducible and
strongly aperiodic and {0} is an atom. Let 7y be the return time to {0}. We have for all n > 1

n—1

Po(ro=n+1)=(1-p,) Hp] and Py(ro > n) = Hp],

7=0

By Kac’s theorem (MT, Theorem 10.2.2) since ® is 1 irreducible and aperiodic, ¢ is positive
recurrent if and only if Ey[r] < oo, i.e.

o0 n
> 1Ipi<e

n=1j=1
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and the stationary distribution = is given, by 7(0) = 7 (1) = 1/Eq[7o] and for j > 2,

Eo [ 2021 1{®y :j}] . IET’0(7'0 > j) _ Po---Pj-2

o [7o] Eo [7o] Y1 P1- P
Because the distribution of the return time to the atom {0} has such a simple expression in
terms of the transition probability (p,,n > 0), we are able to exhibit the largest possible rate
function r such that the (1,r) modulated moment of the return time Eqg {2202_01 r(k)} is finite.

We will also prove that the drift condition D(¢, V, ') holds for appropriately chosen functions
V and ¢ and yields the optimal rate of convergence. Note also that for any function f, it holds

that
7'0—1 7'0—1
Eq [Z F( @) > f(k)] :
Therefore there is no loss of generality to consider only (1, r) modulated moments of the return
time to zero.

©(j) =

= Ko

If sup,~q pn < A <1, then, forall A < p < 1, Ey[pp7™] < 0o and {0} is thus a geometrically
ergodic atom (MT, Theorem 15.1.5). Subgeometric rates of convergence in total variation norm
are obtained when limsup p, = 1. Depending on the rate at which p, approaches 1, different
behaviors can be obtained, covering essentially the three typical rates (polynomial, logarithmic
and subexponential) discussed above.

Polynomial rates  Assume first that for § > 0 and large n, p, = 1 — (1 + 6)n~!. Then
[T, pi < n~ =% Thus, K {ZZOZ_OI r(k)} < oo if and only if 52, r(k)k™17% < co. For
instance, r(n) := n” with 0 < 3 < 6 is suitable.

Logarithmic rates If for # > 0 and large n, p, = 1 — 1/n — (1 4+ §)/(nlog(n)), then
[Iioip = n~'log=!7%(n), which is a summable series. Hence if r is non decreasing and
dper (k) [Tioy pj < oo, then r(k) = o(log’(k)). In particular r(k) := log”(k) is suitable
forall 0 < 5 < 4.

Subgeometric rates If for large n, p, = 1 — 31"~ for some § > 0 and 8 € (0,1), then
T, pi < e=0"  Thus, Fo [0 e*] < o0 if a < 6, and Fo[> 10 e* = oo if a > 0.

Checking condition D(¢,V,C') In order to prove that Theorem 2.5 provides the optimal
rates of convergence, we now compute in each of the previous examples the rates of convergence
it yields.

13



For the polynomial and subexponential cases, the same technique can be used. For v € (0, 1)
and z € N*, define V(0) := 1 and V(z) := Hf;é p; . Then, for all z > 0, we have:
PV(2) =pV{z+ 1)+ (L=p)V(0) =p, "V(2) + 1 = ps
<V(@@) = (1 =p V() +1-ps
Thus, for 0 < § < 1 — v and large enough z, it holds that

PV(z) <V(z)—-90(1—-p,)V(x). (3.1)

o Case p, =1—(1+8)n"" 0> 0. Then V(z) < 270+ and (1 — p,)V(z) < V(x)!=/0(+0),
Thus condition D(¢, V,C) holds with ¢(v) = cv® for @« =1 — 1/(v(1+ 8)) for any v € (0,1).
Theorem 2.8 yields the rate of convergence n®/(1=2) = p¥(+6=1 " ¢ 3 for any 0 < B < 6.

e Case p, = 1 — 030", Then, for large enough =, (3.1) yields:
PV (x) < V(x) = 0832771V () < eV (@) {log(V ()} 717,

for ¢ < 8Y/P35. Defining a = 1/p — 1, Proposition 2.1 yields the following rate of convergence
in total variation norm:

n=/(14) axp ({c(l + oe)n}l/(l‘i'a)) =n"lexp (05*871*8) .

Since ¢ is arbitrarily close to 1, we recover the fact that ]EO[ZZO:_OI e“kﬂ] < oo for any a < 6.

e Casep, =1—n"t—(14+60)n"tlog™'(n), # > 0. Choose V() := (Hf;é pj) /log®(z) for e > 0
arbitrarily small. Then, for constants ¢ < ¢/ < ¢ < 1 and large =, we obtain:
log* (z) n Vi(z)
P =— 1—p,= - 1= ps
Vo) = o) 41— = Vi) - e By
<Vi(z) = elog’ (z) <V (x) — celog’ =" (V ().

Here again Theorem 2.8 yields the optimal rate of convergence.

3.2 Symmetric random walk Hastings Metropolis algorithm

We consider the symmetric random walk Hastings Metropolis algorithm. The purpose of this
algorithm is to simulate from a probability distribution 7 which is known only up to a scale
factor. At each iteration, a move is proposed according to a random walk whose increment
distribution has a symmetric density ¢ with respect to the Lebesgue measure pg on R% The
move is accepted with probability «(z,y) defined by

min {M 1} if w(x)>0
alx = ()’ .
(#:9) {1 if m(z)=0. (32)
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The transition kernel of the Metropolis algorithm is then given by

PlacA) = [ aleat patn) dusto) +14() [ (1= ate.o+9))ato) dua).

It is known that under Assumption 3.1 below, the chain ® is % irreducible, aperiodic with
stationary distribution 7 dpg and any non empty compact set is petite (Roberts and Tweedie,
1996, Theorem 2.2.).

Assumption 3.1. The target density = is continuous and positive on R, The proposal density
q is symmetric and bounded away from zero in a neighborhood of zero.

A R valued Metropolis chain is V' geometrically ergodic when (a) the proposal density ¢
satisfies moment conditions and (b) the target density 7 is continuous, positive and log concave
in the tails (Mengersen and Tweedie, 1996, Theorem 3.2.). This condition is necessary in the
sense that if the chain is geometrically ergodic then [exp(s|z|)7(z)duq(z) < oo for some s > 0.
These results have later been extended to the multidimensional case by Roberts and Tweedie
(1996) and Jarner and Hansen (2000). Polynomial ergodicity was proved by Fort and Moulines
(2000) for target density with regularly varying tails. We now state conditions that imply
subexponential rates of convergence

Assumption 3.2. there exist m € (0,1), r € (0,1), positive constants d;, D;,1 = 0,1,2 and
Ry < 0o such that if |x| > Ro, ® — w(2) is twice continuously differentiable and

Vr(z)

,—) < —r, 3.3
NEGINEL )

dolz|” < —logn(x) < Dol|z|™ (3.4)
dy|z|" 7 < [Vlogm(e)| < Dyle|™ (3.5)
do|z|™™? < |V?logm(2)| < Dalz|™ 2 (3.6)

The Weibull distribution on R with density 7(z) := Bya?" texp(—B27), for z > 0, 8 > 0
and 0 < v < 1 satisfies assumption 3.2. Multidimensional examples are provided in Fort and
Moulines (2000). For the sake of simplicity, we make the following assumption on the proposal
density g¢.

Assumption 3.3. The proposal density is compactly supported, i.e. there exists c; such that
Jor all ly| > ek, q(y) = 0.

Fort and Moulines (2000) show that under Assumptions 3.1 and 3.2, the chain ¢ is (f,r)
ergodic with f(z) := (1 + |2]*) and r(n) := (1 + n)”, for any g > 0 and v > 0, i.e. ¢ is (f,7)
ergodic at any polynomial rate. We show in the next Theorem 3.1 that a stronger result actually
holds: the chain is ergodic (in total variation norm) at a subgeometrical rate

re(n) = exp(zn™ 2=y,
for some z > 0; rate of convergence in norms 77*(z)(—log7)"(z) where 0 < s < z and t € R

(resp. s=0and ¢ > 0; s =z and t < =2(1 — m)/m) are given by (2.12).
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Theorem 3.1. Under Assumptions 3.1 to 3.3, there exist z > 0 and ¢ > 0 such that the functions
V(z) = n(2)"* and ¢(v) := cv(1 + logv)~21=m/" satisfy the drift condition D (¢, V,C') where
C is a petite set such that sup, V < oo.

Remark 2. The compactness assumption 3.3 could be relaxed and replaced by a moment con-
dition. It may be shown (the computations are not detailed here but are similar to those of
Section 3.3) that if there exists zg > 0 such that

/e%'y'm ¢(y)dpaly) < oo, (3.7)
then the conclusion of Theorem 3.1 still holds by choosing V (z) := 7(2) 7 for some 0 < z < z.

Proof. Define R(z) := {y € R%w(x +y) < 7(x)} the potential rejection region. Using the
definition of the transition kernel P, we have

V()= Via) = [ (Ve +9) - Vi) aly)dualy

m(z +
+/ V(e +y) - V(z)) (M - 1) q(y)dua(y).
R(x) ()
Set l(z) = —logn(z), R(V,z,y) == V(z+y) — V(z)+ 2V(2)(VI(z),y) and R(m,z,y) =
m(e+y)/m(z) — 1+ (Vi(z),y). It is proved in (Fort and Moulines, 2000, Lemma B.4.), that
limsup |22~ sup |R(x, z,y)||y| "2 < oo. (3.8)
|| =00 ly|<ex

Using a Taylor expansion with integral remainder term of the function 2 — V(z), it is easily
shown that there exists ¢ independent on z such that for large ||

sup [R(V,2,y)|[y|™* < e2*V () |27 (14 0(1)). (3.9)

lyl<cr

Since ¢ dpug is a zero mean distribution, we have

PV(@) = Vie) = =2V (@) [ (VI a0 duals) + [ B g)ats)dudy)

R(=)

—/ R(V, 2, y)(Vi(z), y)q(y)dpa(y)
R(z)

+ZV(96)/ <Vl(w)7y>q(y)R(ﬂ7w7y)q(y)dud(y)+/ R(V,z,y)R(r,x,y)q(y)dpa(y)
R(z) R

(=)

and for large |z|, we deduce from (3.8) and (3.9) that
= —Z/ (Vi(2),9)%4(y)dpaly) + =277 + o |27 71),
R(z)
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for some positive constant ¢ that does not depend on z. It is shown in (Fort and Moulines, 2000,
Lemma B.3.) (see below) that there exists n > 0 such that for large ||,

/R (e 9 a0 dal) > alU) > e (3.10)

Hence, upon noting that dp|z|™ < logV (z), there exists a constant x which is positive for z
small enough, such that for large |z|

PV (z) = V(z) < =k [log V()] 7207™/™ v (2) (1 + o(1)).

Since 7 is bounded on compact sets, sup,<pr PV (2)+V (2) < oo and the proof is concluded. [

Proof of (3.10). The proof is similar to that of (Fort and Moulines, 2000, Lemma B.3.). For
completeness, we sketch the arguments here. Set n(z) := z/|z| and

W(z)={z R 2=2+a€,0<a< e, €€ 8N [€—n(2)] < r/3).

We establish that there exists ¢ > 0 such that
/ (Vi(z),y)*q(y)dpaly) > / (Vi(z),y)*q(y)dpa(y)
R(z) W(z)-=
> 129 |Vi(z)) /W W) dpa(y) > ¢ Vi),

z)—w

since the Lebesgue measure of the domain W (z) — 2 does not depend on z.

We first prove that W(z) —a C R(z). To that goal, we establish that for 2 € W (z), the function
o(t) = m(x + t(z — 2)) defined on [0, 1] is monotonically decreasing on [z, z] by showing that
(n(z —2),n(Vr(y))) >< 0 for any y € [z, z]. We write

(n(z =), n(Vr(y)))
= (n(z = @) = (), n(Vr(y)) + (n(z) = n(y), n(Vr (y))) + (n(y), n (V7 (y))).
By definition of W (z), we have
[(n(z =) = n(z),n(Vr(y)))| < r/3 [(n(2) = n(y), n(Va(y))l < r/3

so that (n(z — 2),n(Vr(y))) < —r/3 < 0. It remains to prove that for all y + 2 € W(z),
[(Vi(z),y)| > r/3|VI(z)||ly], which is deduced from the previous calculations applied with y :=
z—zand x:=y . O

3.3 Nonlinear autoregressive model

Consider a process (®,,n > 0) that satisfies the following nonlinear autoregressive equation of
order 1:

(I)n-l—l = g(q)n) + €41, (311)

where the innovation and the function g satisfy the following assumption.
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Assumption 3.4. (¢,,n > 0) is a sequence of i.i.d. zero mean, d dimensional random vectors
that satisfy
Efell™] < oo, (3.12)

for some zg > 0 and o € (0,1]; g is bounded on the set {x € R% |z| < Ry} for some Ry > 0
and there exists p € [0,2) such that

lg ()] < l2[(L=rlz[7") i [z = Ro. (3.13)

There already exists a wide literature on on conditions implying a geometric rate of con-
vergence for nonlinear autoregressive models (see e.g. Duflo (1997) and Grunwald et al. (2000)
and the references therein). Conditions implying a polynomial rate of convergence have been
obtained by Tuominen and Tweedie (1994) and AngoNze (1994) and have later been refined by
Veretennikov (1997, 1999), AngoNze (2000) and Fort and Moulines (2002). Conditions implying
truly subexponential rate of convergence are considered in Klokov and Veretennikov (2002) (see
also Malyshkin (2001) for diffusion processes).

Theorem 3.2. Assume that Assumption 3.4 holds.

o If p > o, the drift condition D ($,V,C') holds with ¢(v) := cv(1 4 log(v))'=/(0A2=r)),
Vi) = el g ¢ = {z € RY |g(z)] < My} U {z € RY |z| < My} for some
z € (0,20), ¢>0, My >0 and My > Ry.

e If p = 7o, then the Foster Lyapunov condition (1.3) holds with V (z) := e”*I" and C =
{z € RY |g(2)] < My} U {z € RY, |2| < My} for some 2 € (0, 2), My > 0 and My > Ry.

o If p < 7o, then the Foster Lyapunov condition (1.3) holds with V () := e*l*I™ and C' :=
{z € R, |z| < M} for some M > Ry.

If in addition the chain is # irreducible, aperiodic and sublevel sets of ¢ and compact sets are
petite, then we may apply Theorem 2.8 (resp. Theorem 15.0.1. MT) to prove (f, r) ergodicity or
geometrical ergodicity, depending upon the value of p and v¢. Conditions implying irreducibility,
and aperiodicity of the kernel, and petiteness of the level sets {z, || < M1} and {z,|g(z)| < My}
may be found in Tuominen and Tweedie (1994).

Proof of Theorem 3.2. Throughout the proof, ¢ is a generic constant that can change upon each
appearance.
(i) We start by examining the case p > vg. Set 8 := vy A (2 — p). We write

PV (z) PV(z) - Vig(z))  Vig(z))

0 1= ) LTy ~ 1. (3.14)

Using the inequality (1 — u)"™ < 1 — ~ou for all 0 < u < 1, we have for |z| > Ry, |g(2)]? <
|z|® — Br|z|?~* and since e” — 1 < z + 22/2 for all z < 0,

Vig(z))
V()

1
— 1= lo@P==lel” _ < —zrB|z|’r + 522r252|$|2(5_p). (3.15)
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Let 0 < 7 < 1. We establish that for large |z| and large |g(z)|,
1
PV (w) = V(g(x)) < 52° 8 Blleo[V (eo)] |27V () (14 0(1)). (3.16)
To that goal, set R(u, w) :=V(u+w)—V(u) — (VV(u), w). Since E[eg] = 0, this yields

PV(z) = V(g(2)) = E[V(g(x) + )] = V(g(2)) = E[R(g(2), 0)], (3.17)

and we have to upper bound the remainder term E[R(g(z), ¢)]. If |w| < n|u|, then by using a
Taylor expansion with integral remainder term, one has,

1
|R(u, w)| < / (1) |0'V?V (u + tw)w]| dt
0

< Z|w|* 28 sup (1—|—zﬁ|u—|—tw|’8) lu+ tw]’ =2V (u+ tw)

tefo,1]

N | —

Since y +— |y|25_2ez|y|ﬂ and y — |y|5_2ez|y|ﬂ are ultimately nondecreasing, then for large |z|, we
have:

1 -
(R, w)] < ol 28 (14 26(ul + [w)?) (jul + [0}~ V(@)V (w)
1
< L2 2V () o2V () + e 2V () Jul 2V () i Jul < glul (3.18)
If |w| > n|u|, using again the inequality V(u+ w) < V(u)V (w)

|[R(u,w)] < V(u+w)+ V() + [VV ()] Juw] < eluw] V(w) [ul* V()
< clw*V (w)]ul " V(u) if Jw| > nlul. (3.19)

We now apply (3.18) and (3.19) with u := g¢(2) and w = eg; since y — |y|25_2ez|y|ﬂ and
Y |y|5_2ez|y|ﬂ are ultimately nondecreasing, then for large |g(z)|, we have:

Rig(e), o)l < 5 26 [PV (eo) [o72V (&) ¢ eoV (eo) o2V (@), (3.20)

Eq. (3.16) now follows from (3.20). Gathering (3.15) and (3.16), as § < 2 — p, we obtain that
for large |z| and large |g(2)]

PV(2) = V(2) = =2k |2|°77V (2) (14 0(1)) = —2"Pkp [log V()]" /P V(2) (14 o(1)),
where

K:i=r ifg<2—p, de. v<2-p
H::r—l/QﬁzE{egeZkO'ﬂ} ifB=2—pie ~>2-p,
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and z is chosen small enough such that £ > 0.
(i) We now consider the case p = 7o (observe that 5 := 9 A (2 — p) = 7o and that many results
above remain valid). By (3.14), (3.15), (3.17) and (3.20), we have for large |z| and large |g(z)|,

< —zryo + %227‘2702 + %22702 |20 2E [gV (e0)] (14 0(1)).

For z small enough, the term on the right hand side is in the interval (—1,0) and this shows that
the Foster Lyapunov drift condition (1.3) holds with C' on the form {z,¢(z) < M} U{z,|z| <
M} for large enough My, Ms.

(iii) We finally consider the case p < 9. Using the inequality (1—u)" < 1—vpuforall 0 < u <1,
we have for |z| > Ro, |g(z)]" < |27 — ~yor|z|"~”. Hence, since V(u+ w) < V(u)V(w), this
yields, for |z| > Ry,

PV (2) = B[V (g(2) + co)] < V(g B[V (e0)] < e 020 E [elol ™| v (q).

Hence lim|y,o PV (2)/V(2) = 0, which implies that the Foster Lyapunov drift condition (1.3)
holds with C':= {V(2) < M} for large enough M.

(iv) In all cases, to conclude the proof, we must bound PV (z) on sets on the form {|g(z)| < M;}
and {|z| < M3}. Applying the inequality V(u+w) < V(u)V (w) and the fact that g is bounded
on compact sets, we obtain, for all such =z,

PV(z) =E[V(g(z) +€)] < {l Sfi% Vig(z)) + V(M1)} E[V (€0)] < oc.

3.4 Stochastic unit root

We now consider a process which belongs to the wide family of stochastic unit root models. See
for example Granger and Sawnson (1997) for many examples. The model we consider is one of
the simplest. It has been considered in Gourieroux and Robert (2001) with main focus on its
extremal behavior.

Q41 = 1{Un+1§g(q)n)}q)n + €nti, (3.21)

where (¢,,n € N) is a sequence of i.i.d. random variables that satisfies (3.12) and (U,,n > 1) is
a sequence of i.i.d random variables, uniformly distributed on [0, 1] and independent from the
sequence (e,,n € N). Moreover, we make the following assumption on g¢.

Assumption 3.5. ¢ is a continuous function with values in [0,1) and there exist k € (0,1),
c1(g9) >0, c_(g9) <1 and Ry > 0 such that

V$ 2 R07 1 —g($>
V$ S R07 g(ac)

cp(g)x", (3.22)
c_(g). (3.23)
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Let P be the transition kernel of the chain. For all z € R and all Borel sets A, it can be
expressed as:
P(z,A)=g(z)P(z+ ¢ € A) + (1 — g(z))P(eg € A). (3.24)
Under Assumption 3.5, for all M > 0, there exists a constant (M) such that for all # < M,
and all Borel set A,
Pz, A) > n(M)P(e € A). (3.25)

This means that every set of the form (—oo, M]is 1 small, hence petite. Define 1 = max(z,0).

Theorem 3.3. Under Assumption 3.5 and if €y satisfies (3.12), there exist z € (0, %], § > 0
and M > Ry such that the drift condition D (¢, V,C) holds with V (z) = e”i, o(v) = 527/Pu{1v
log(v)}~7/#, C' = (—c0, M] and either

e 5=v%A1—-k) and =~k if Ele] > 0;

e 5=v%A1-k/2) 7=k if Ele] =0;

e S=9pand 7= (1—-) Ak if Ele] <O0.

Equations (3.24) and (3.25) prove that the chain is # irreducible and (strongly) aperiodic.
Since morever V is obviously bounded on intervals (—oo, M], Theorem 2.8 can be applied.

Proof of Theorem 3.3. Let z < zg and & > 0. Using the definition of the transition kernel P, we
have:

PV(x) = V(z) = g()EV (z + )] + (1 = g(2)) B[V (c0)] = V(=)
= g(x) B[V (2 + )] = V(2)) = (1 = g(2)) (V(2) - E[V (0)])
SEV(z+e)] - V() - (1-g(x) (V(z) - E[V(«0)])

Define R(z, ) = V(z + ep) — V(2) — €0z’ 1V (z). For any 5 € (0, 1), we can write:
E[V (2 + o) = V(2) — B2Eleo]a” 'V (2) = E[R(z, o) 1{|eo| <2 }] + E[R(z, c0)1{|eo] > na}].
By the same arguments as in the proof of Theorem 3.2, we have:
E[R(x, co)L{leol > na}] <EV (1457 ")eol) + V (Jeo]) + 821" 7|60l 'V (leol)] (3.26)

Thus this term is bounded provided that 5 and z are chosen such that (14 771z < 2. To
bound the second term, note that for large enough z, the function  — 22=2V (2) is increasing.
Thus, for > M, for some M depending on 7, and |¢y| < na, there exists t € (0,1) such that

Vie+e)—V(z) - ﬁzeoxﬁ_l‘/(x)
= %5(5 — Dz(w 4 te)’ 2V (2 + teo) + (52(96 +teg)P ) 2eEV (x + teo)

< %W(Hn)w-%”—?eavw)vumw < SRV () (o).
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For ¢ < ¢4(g) and « large enough, say @ > M for some M > Ry, we have
(1—g(2)) (V(z) = E[V(c0)]) 2 ca™"V(2).

Hence, taking (3.26) into account, there exists a positive real number M such that if z > M,
then

PV(z)-V(z) < (zﬁwﬁ_lE[eo] + %5222$26_2E[63V(|60|)] - cw‘“) Viz).
If E[eg] > 0, set 8 =79 A (1 — k). Then, for large enough z, we obtain:
PV (z) = V(z) < 627"V (2) = 62"V () {log(V (2))} /",
withd =c < cq(g)ifyo0 < 1=k or§ = ¢c—BzEeo], ¢ < ¢4 (g) and z such that 6 > 0if v > 1 — .
If E[eg] < 0, set 8 =g and 7 = (1 — 79) A k. Then, for z large enough,
PV (z) = V(z) < =827V (z) = 62710V () {log(V (x))} 7/,

with § = ¢ < ¢4(9) if vo < 1 -k and 6§ = ¢ — zBE[¢], ¢ < ¢4(g) and z such that § > 0 if
Yo 21—k

If E[eg] = 0, then 5 must satisfy 25 — 2 < —k, thus we set 5 = (1 — kK/2) A 7o, and we obtain
PV(z) = V(z) < =627V (2) = —82"PV (2) {log(V (x))} /",

with § = ¢ < c4(g) if 1= £/2 > 70 and § = ¢ — L8222E[2V (|eo])], with ¢ < ¢4(g) and z such
that § > 0if 1 — k/2 < .

O
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