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1. Introduction

Markov chain Monte Carlo (MCMC) methods generate samples from distributions known
up to a scaling factor.

In the last decade, several non-Markovian simulation algorithms have been proposed.
In the so-called adaptive MCMC algorithm, the transition kernel of the MCMC algorithm
depends on a finite dimensional parameter which is updated at each iteration from the
past values of the chain and the parameters. The prototypical example is the adaptive
Metropolis algorithm, introduced in Haario et al. (1999) (see Saksman and Vihola (2010)
and the references therein for recent references). Many other examples of adaptive MCMC
algorithms are presented in the survey papers by Andrieu and Thoms (2008); Rosenthal
(2009); Atchadé et al. (2011).

In the so-called Interacting MCMC, several processes are simulated in parallel, each
targeting different distribution. Each process might interact with the whole past of its
neighboring processes. A prototypical example is the equi-energy sampler introduced in
Kou et al. (2006), where the different processes target a tempered version of the target
distribution. The convergence of this algorithm has been considered in a series of papers
by Andrieu et al. (2007b), Andrieu et al. (2007a), Andrieu et al. (2011) and in Fort et al.
(2012). Different variants of the interacting MCMC algorithm have been later introduced
and studied in Bercu et al. (2009), Del Moral and Doucet (2010) and Brockwell et al.
(2010). These algorithms are so far limited to specific scenarios, and the assumptions used
in these papers preclude the applications of their results in the applications considered
in this paper.

The analysis of the convergence of these algorithms is involved. Whereas the basic
building blocks of these simulation algorithms are Markov kernels, the processes gener-
ated by these techniques are no longer Markovian. Indeed, each individual process either
interacts with its distant past, or the distant past of some auxiliary processes.

The ergodicity and the consistency of additive functionals for adaptive and interacting
Markov Chains have been considered in several recent papers: see Fort et al. (2012) and
the references therein. Up to now, there are much fewer works addressing Central Limit
Theorems (CLT). In Andrieu and Moulines (2006) the authors establish the asymptotic
normality of additive functionals for a special class of adaptive MCMC algorithms in
which a finite dimensional parameter is adapted using a stochastic approximation pro-
cedure. Atchadé (2011) established a CLT for general adaptive MCMC samplers under
stronger conditions than in Andrieu and Moulines (2006), by assuming simultaneous
ergodicity of the transition kernels involved in the adaptive algorithm. Some of the theo-
retical limitations of Andrieu and Moulines (2006) have been alleviated by Saksman and
Vihola (2010) for the so-called adaptive Metropolis algorithm, which established a CLT
for additive functionals for the Adaptive Metropolis algorithm (with a proof specially
tailored for this algorithm). The results presented in this contribution contain as special
cases these three earlier results.

The theory for interacting MCMC algorithms is up to now quite limited, despite the
clear potential of this class of methods to sample complicated multimodal target distribu-
tions. The law of large numbers for additive functionals have been established in Andrieu
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et al. (2008) for some specific interacting algorithm. A wider class of interacting Markov
chains has been considered in Del Moral and Doucet (2010). This paper establishes the
consistency of a form of interacting tempering algorithm and provides non-asymptotic
Lp-inequalities. The assumptions under which the results are derived are restrictive and
the results do not cover the interacting MCMC algorithms considered in this paper. More
recently, Fort et al. (2012) have established the ergodicity and law of large numbers for
a wide class of interacting MCMC, under the weakest conditions known so far.

A functional CLT was derived in Bercu et al. (2009) for a specific class of interacting
Markov Chains but their assumptions do not cover the interactive MCMC considered
in this paper (and in particular, the interacting MCMC algorithm). A CLT for additive
functionals is established by Atchadé (2010) for the interacting tempering algorithm; the
proof of the main result in this paper, Theorem 3.3, contains a serious gap (p.865) which
seems difficult to correct.

This paper aims at providing a theory removing the limitations mentioned above and
covering both adaptive and interacting MCMC in a common unifying framework. The
paper is organized as follows. In Section 2 we derive our main theorem (Theorem 2.3)
which establishes CLTs for adaptive and interacting MCMC algorithms. These results are
applied in section 3.2 to the 2-chain interacting tempering algorithm which is a simplified
version of the Equi-Energy sampler. All the proofs are postponed in Section 4.

Notations

Let (X,X ) be a general state space and P be a Markov transition kernel (see e.g. (Meyn
and Tweedie, 2009, Chapter 3)). P acts on bounded functions f on X and on σ-finite
positive measures µ on X via

Pf(x) def=
∫
P (x, dy)f(y) , µP (A) def=

∫
µ(dx)P (x,A) .

We denote by Pn the n-iterated transition kernel defined inductively

Pn(x,A) def=
∫
Pn−1(x, dy)P (y,A) =

∫
P (x, dy)Pn−1(y,A) ;

where P 0 is the identity kernel. For a function V : X→ [1,+∞), define the V -norm of a
function f : X→ R by

|f |V
def= sup

x∈X

|f |(x)
V (x)

.

When V = 1, the V -norm is the supremum norm denoted by |f |∞. Let LV be the set of
measurable functions such that |f |V < +∞. For µ a finite signed measure on (X,X ) and
V : X→ [1,∞) such that |µ|(V ) <∞ where |µ| is the variation of µ, we define ‖µ‖V the
V -norm of µ as

‖µ‖V = sup
f∈LV ,|f |V ≤1

|µ(f)| .
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When V ≡ 1, the V -norm corresponds to the total variation norm.
For finite signed kernels P on (X,X ) and V : X → [1,∞) such that |P (x, ·)|(V ) < ∞

for any x ∈ X, define
‖P‖V

def= sup
x∈X

V −1(x) ‖P (x, ·)‖V . (1)

Let (xn)n∈N be a sequence. For p ≤ q ∈ N2, xp:q denotes the vector (xp, . . . , xq).

2. Main results

Let (Θ, T ) be a measurable space. Let {Pθ, θ ∈ Θ} be a collection of Markov transition
kernels on (X,X ) indexed by a parameter θ ∈ Θ. From here on, it is assumed that for
any A ∈ X , (x, θ) 7→ Pθ(x,A) is X ⊗ T /B([0, 1]) measurable, where B([0, 1]) denotes
the Borel σ-field. From here on Θ is not necessarily a finite-dimensional vector space. It
might be a function space or a space of measures. We consider a X × Θ-valued process
{(Xn, θn)}n∈N on a filtered probability space (Ω,A, {Fn, n ≥ 0},P). It is assumed that

A1 The process {(Xn, θn)}n∈N is (Fn)n∈N-adapted and for any bounded measurable
function h,

E [h(Xn+1) | Fn] = Pθnh(Xn) .

Assumption A1 implies that conditional to the past (subsumed in the σ-algebra Fn), the
distribution of the next sample Xn+1 is governed by the current value Xn and the current
parameter θn. This assumption covers any adaptive and interacting MCMC algorithms;
see Andrieu and Thoms (2008), Atchadé et al. (2011), Fort et al. (2012) for examples.
This assumption on the adaptation of the parameter (θn)n∈N is quite weak since it only
requires the parameter to be adapted to the filtration. In practice, it frequently occurs
that the joint process {(Xn, θn)}n∈N is Markovian but assumption A1 covers more general
adaptation rules.

We assume that the transition kernels {Pθ, θ ∈ Θ} satisfy a Lyapunov drift inequality
and smallness conditions:

A2 For all θ ∈ Θ, Pθ is phi-irreducible, aperiodic and there exists a function V : X →
[1,+∞), and for any θ ∈ Θ there exist some constants bθ ∈ (1,+∞), λθ ∈ (0, 1)
such that for any x ∈ X,

PθV (x) ≤ λθV (x) + bθ .

In addition, for any d ≥ 1 and any θ ∈ Θ, the level sets {V ≤ d} are m-small for
Pθ i.e. , for any θ ∈ Θ, there exist κθ > 0 and a probability νθ such that for all
x ∈ {V ≤ d}, Pmθ (x,A) ≥ κθνθ(A) for all A ∈ X .

In many examples considered so far (see Andrieu and Moulines (2006), Saksman and
Vihola (2010), Fort et al. (2012), Andrieu et al. (2011)) this condition is satisfied. All
the results below can be established under assumptions insuring that the drift inequality
and/or the smallness condition are satisfied for some m-iterated Pmθ . Note that checking
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assumption on the iterated kernel Pmθ is prone to be difficult because the expression of
the m-iterated kernel is most often rather involved.

A2 implies that, for any θ ∈ Θ, Pθ possesses an invariant probability distribution πθ
and the kernel Pθ is geometrically ergodic (Meyn and Tweedie, 2009, Chapter 15). The
following lemma summarizes the properties of the family {Pθ, θ ∈ Θ} used hereafter (see
e.g. Douc et al. (2004) and references therein for the explicit control of ergodicity; and
(Meyn and Tweedie, 2009, Proposition 17.4.1.) for the Poisson equation). For θ ∈ Θ,
denote by Λθ the operator which associates to any function f ∈ LV α the function Λθf
given by:

Λθf
def=
∑
n≥0

Pnθ f − πθ(f) . (2)

Lemma 2.1. Assume A2. Then for any θ ∈ Θ, there exists a probability distribution
πθ such that πθPθ = πθ and πθ(V ) ≤ bθ(1 − λθ)−1. In addition, for any α ∈ (0, 1], the
following property holds.

P[α] For any θ ∈ Θ, there exist Cθ <∞ and ρθ ∈ (0, 1) such that, for any γ ∈ [α, 1],

‖Pnθ − πθ‖V γ ≤ Cθ ρ
n
θ .

For any α ∈ (0, 1) and f ∈ LV α , the function Λθf exists and is in LV α . The function
Λθf is the unique solution up to an additive constant of the Poisson equation

Λθf − PθΛθf = f − πθ(f) . (3)

It has been shown in Fort et al. (2012), that under appropriate assumptions, when the
sequence (θk)k∈N converges to θ? ∈ Θ in an appropriate sense, n−1

∑n
k=1 f(Xk) converges

almost surely to πθ?(f), for any functions f belonging to a suitable class of functionsM.
The objective of this paper is to derive a CLT for n−1/2

∑n
k=1 {f(Xk)− πθ?(f)} for

functions f belonging to M. To that goal, consider the following decomposition

n−1/2
n∑
k=1

{f(Xk)− πθ?(f)} = S(1)
n (f) + S(2)

n (f) ,

where S(1)
n (f) and S

(2)
n (f) are given by

S(1)
n (f) def= n−1/2

n∑
k=1

{
f(Xk)− πθk−1(f)

}
, (4)

S(2)
n (f) def= n−1/2

n−1∑
k=0

{πθk(f)− πθ?(f)} . (5)

We consider these two terms separately. For the first term, we use a classical technique
based on the Poisson decomposition; this amounts to writing S

(1)
n (f) as the sum of a

martingale difference and of a remainder term converging to zero in probability; see
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Andrieu and Moulines (2006); Atchadé and Fort (2010); Fort et al. (2012); Del Moral
and Doucet (2010); Saksman and Vihola (2010) for law of large numbers for adaptive
and interacting MCMC. Then we apply a classical CLT for martingale difference array;
see for example (Hall and Heyde, 1980, Theorem 3.2).

The second term vanishes when πθ = πθ? for all θ ∈ Θ which is the case for example,
for the adaptive Metropolis algorithm (Haario et al., 1999). In scenarios where θ 7→ πθ
is a non trivial function of θ, the weak convergence S(2)

n (f) relies on conditions which
are quite problem specific. The application detailed in Section 3.2, an elementary version
of the interacting tempering algorithm, is a situation in which πθ? is known but the
expression of πθ, θ 6= θ?, is unknown, except in very simple examples. The Wang-Landau
algorithm (Wang and Landau, 2001; Liang et al., 2007) is an example of adaptive MCMC
algorithm in which θ 7→ πθ is explicit. The results in this paper cover the case when the
expression of πθ is unknown: we rewrite S(2)

n (f) by showing that the leading term of the
difference πθk(f) − πθ?(f) is πθ? (Pθk − Pθ?) Λθ?f where Λθ? is the operator defined by
(2). Our approach covers much more general set-up than the one outlined in Bercu et al.
(2009).

The convergence of S(1)
n (f) is addressed under the following assumptions which are

related to the regularity in the parameter θ ∈ Θ of the ergodic behavior of the kernels
{Pθ, θ ∈ Θ}.

A3 There exist α ∈ (0, 1/2) and a subset of measurable functions MV α ⊆ LV α satis-
fying the two following conditions

(a) for any f ∈MV α ,

n−1/2
n∑
k=1

∣∣PθkΛθkf − Pθk−1Λθk−1f
∣∣
V α

V α(Xk) P−→ 0 .

(b) n−1/2α
∑n−1
k=0 L

2/α
θk

PθkV (Xk) P−→ 0 where Lθ is defined by (8) for the con-
stants Cθ, ρθ given by P[α].

A3-a controls the regularity in the parameter θ of the Poisson solution Λθf . By (Fort
et al., 2012, Lemma 4.2),

‖PθΛθ − Pθ′Λθ′‖V α ≤ 5 (Lθ ∨ Lθ′)6
πθ(V α)DV α(θ, θ′) , (6)

where
DV (θ, θ′) def= ‖Pθ − Pθ′‖V , (7)

Lθ
def= Cθ ∨ (1− ρθ)−1 , (8)

and ‖Pθ − Pθ′‖V is defined by (1) and Cθ and ρθ are introduced in Lemma 2.1. This upper
bound relates the regularity in θ of the function θ 7→ PθΛθf to the ergodicity constants
Cθ and ρθ and to the regularity in θ of the function θ 7→ Pθ from the parameter space Θ to
the space of Markov transition kernels equipped with the V -operator norm. Therefore,
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A3-a corresponds to a diminishing adaptation condition (see Roberts and Rosenthal
(2007)).

A3-b is a kind of containment condition (see Roberts and Rosenthal (2007)): when
the ergodic behavior A2 is uniform in θ so that λθ, bθ and the minorization constant of
the Pθ-smallness condition do not depend on θ, then the constant Lθ does not depend
on θ and by A1 and the drift inequality A2,

n−1/2α
n−1∑
k=0

E [V (Xk+1)] ≤ n1−1/2α
{
E [V (X0)] + (1− λ)−1b

}
→ 0 .

Therefore, condition A3-b holds provided the ergodic constant Lθk is controlled by a
slowly-increasing function of k. Lemma A.2 in Appendix A provides sufficient conditions
to obtain upper bounds of θ 7→ Lθ in terms of the constants appearing in the drift
inequality A2.

We finally introduce a condition allowing to obtain a closed-form expression for the
asymptotic variance of S(1)

n (f). For θ ∈ Θ and f ∈ LV α define

Fθ
def= Pθ(Λθf)2 − [PθΛθf ]2 . (9)

A4 For any f ∈ MV α , n−1
∑n−1
k=0 Fθk(Xk) P−→ σ2(f), where σ2(f) is a deterministic

constant.

Assumption A4 is typically established by using the Law of Large Numbers (LLN) for
adaptive and interacting Markov Chain derived in Fort et al. (2012); see also Theorem B.1
in Appendix B. Under appropriate regularity conditions on the Markov kernels {Pθ, θ ∈
Θ}, it is proved that n−1

∑n−1
k=0{Fθk(Xk) −

∫
πθk(dx)Fθk(x)} converges in probability

to zero. The second step consists in showing that n−1
∑n−1
k=0

∫
πθk(dx)Fθk(x) converges

to a (deterministic) constant σ2(f): when πθ is not explicitly known and the set X is
Polish, Lemma A.3 in Appendix A is useful to check this convergence. In practice, this
may introduce a restriction of the set of functions f ∈ LV α for which this limit holds
(see e.g. the example detailed in Section 3.2 where MV α 6= LV α).

We can now state conditions upon which S
(1)
n (f) is asymptotically normal.

Theorem 2.2. Assume A1 to A4. For any f ∈MV α ,

1√
n

n∑
k=1

{
f(Xk)− πθk−1(f)

} D−→ N (0, σ2(f)) .

The proof is in section 4.1.1. When πθ = π for any θ, Theorem 2.2 provides sufficient
conditions for a CLT for additive functionals to hold.

When πθ is a function of θ ∈ Θ, we need now to obtain a joint CLT for (S(1)
n (f), S(2)

n (f))
(see (4) and (5)). To that goal, we replace A1 by the following assumption which implies
that, conditionally to the process (θk)k∈N, (Xk)k∈N is an inhomogeneous Markov chain
with transition kernels (Pθj , j ≥ 0):
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A5 There exists an initial distribution ν such that for any bounded measurable function
f : Xn+1 → R,

E [f(X0:n) | θ0:n] =
∫
· · ·
∫
ν(dx0)f (x0:n)

n∏
j=1

Pθj−1(xj−1,dxj) .

Assumption A5 is satisfied when {(Xn, θn)}n∈N is an interacting MCMC algorithm. Note
that A5 implies A1.

The first step in the proof of the joint CLT consists in linearizing the difference πθn −
πθ? . Under A2, πθ(g) exists for any g ∈ LV α and θ ∈ Θ (see Lemma 2.1), and we have

πθ(g)− πθ?(g) = πθPθg − πθ?Pθ?g = πθ (Pθ − Pθ?) g + (πθ − πθ?)Pθ?g ,

which implies that (πθ − πθ?) (I− Pθ?) g = πθ (Pθ − Pθ?) g. Let f ∈ LV α . Then Λθ?f ∈
LV α and by applying the previous equality with g = Λθ?f , we have by (3)

πθ(f)− πθ?(f) = πθ (Pθ − Pθ?) Λθ?f . (10)

We can iterate this decomposition, writing

πθ(f)− πθ?(f) = πθ? (Pθ − Pθ?) Λθ?f + πθ ((Pθ − Pθ?) Λθ?f)− πθ? ((Pθ − Pθ?) Λθ?f)

Applying again (10), we obtain

πθ(f)− πθ?(f) = πθ? (Pθ − Pθ?) Λθ?f + πθ (Pθ − Pθ?) Λθ? (Pθ − Pθ?) Λθ?f .

The first term in the RHS of the previous equation is the leading term of the error
πθk − πθ? , whereas the second term is a remainder. This decomposition naturally leads
to the following assumption.

A6 For any function f ∈MV α ,

(a) there exists a positive constant γ2(f) such that

n−1/2
n∑
k=1

πθ? (Pθk − Pθ?) Λθ?f
D−→ N (0, γ2(f)) . (11)

(b) n−1/2
∑n
k=1 πθk (Pθk − Pθ?) Λθ? (Pθk − Pθ?) Λθ?f

P−→ 0.

Theorem 2.3. Assume A2 to A6. For any function f ∈MV α ,

1√
n

n∑
k=1

{f(Xk)− πθ?(f)} D−→ N
(
0, σ2(f) + γ2(f)

)
.

The proof of Theorem 2.3 is postponed to section 4.1.2. It is worthwhile to note that,
as a consequence of A5, the variance is additive. This result extends Bercu et al. (2009)
which addresses the case when Pθ(x,A) = Pθ(A) i.e. the case when conditionally to the
adaptation process (θn)n∈N, the random variables (Xn)n∈N are independent (see (Bercu
et al., 2009, Eq. (1.4))). Our result, applied in this simpler situation, yields the same
asymptotic variance.
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3. Applications

3.1. Adaptive Metropolis (after Saksman and Vihola (2010))

In this example, X = Rd and the densities are assumed to be w.r.t. the Lebesgue measure.
For x ∈ Rd, |x| denotes the Euclidean norm. For κ > 0, let Cdκ be the set of symmetric and
positive definite d×d matrices whose minimal eigenvalue is larger than κ. The parameter
set Θ = Rd × Cdκ is endowed with the norm |θ|2 def= |µ|2 + Tr(ΓTΓ), where θ = (µ,Γ).

At each iteration, Xn+1 ∼ Pθn(Xn, ·), where Pθ is defined by

Pθ(x,A) def=
∫
A

(
1 ∧ π(y)

π(x)

)
qΓ(y − x)dy

+ 1A(x)
[
1−

∫ (
1 ∧ π(y)

π(x)

)
qΓ(y − x)dy

]
, (12)

with qΓ the density of a Gaussian random variable with zero mean and covariance matrix
(2.38)2d−1Γ, and π is a density on Rd. The parameter θn = (µn,Γn) ∈ Θ is the sample
mean and covariance matrix

µn+1 = µn +
1

n+ 1
(Xn+1 − µn) , µ0 = 0 , (13)

Γn+1 =
n

n+ 1
Γn +

1
n+ 1

{
(Xn+1 − µn)(Xn+1 − µn)T + κId

}
, (14)

where Id is the identity matrix, Γ0 ≥ 0 and κ is a positive constant.
By construction, for any θ ∈ Θ, π is the stationary distribution for Pθ so that πθ = π

for any θ. As in Saksman and Vihola (2010), we consider the following assumption:

M1 π is positive, bounded, differentiable and

lim
r→∞

sup
|x|≥r

x

|x|ρ
· ∇ log π(x) = −∞ ,

for some ρ > 1. Moreover, π has regular contours, i.e. for some R > 0,

sup
|x|≥R

x

|x|
· ∇π(x)
|∇π(x)|

< 0 .

Saksman and Vihola (2010, Proposition 15) establishes A2: the drift function V is pro-
protional to π−s, (for any) s ∈ (0, 1); the constant bθ does not depend upon θ; and
any level set of V is 1-small for Pθ. Saksman and Vihola (2010, Propositions 15 ) also
establishes that there exists a non-negative constant C such that for any θ ∈ Θ,

κ−1
θ ∨ (1− λθ)−1 ≤ C|θ|d/2 .

This upper bound combined with (Fort et al., 2012, Lemma 2.3) implies that there exist
finite constants C and γ such that for any θ ∈ Θ,

Lθ ≤ C|θ|γ , (15)
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where Lθ is defined by (8).
We now prove that A3 holds. Let α ∈ (0, 1/2) and setMV α = LV α . By (6) and (15),

there exist positive constants C, γ̄ such that for any f ∈ LV α ,

n−1/2
n∑
k=1

∣∣PθkΛθkf − Pθk−1Λθk−1f
∣∣
V α

V α(Xk)

≤ c n−1/2
n∑
k=1

(1 + |θk|+ |θk−1|)γ̄ DV α(θk, θk−1) V α(Xk) .

In (Saksman and Vihola, 2010, Lemma 12), it is proved that under M1, the rate of growth
of the parameters {θn, n ≥ 0} is controlled. Namely, for any τ > 0,

sup
n≥1

n−τ |θn| < +∞ , P− a.s. (16)

In addition, it is established in (Fort et al., 2012, Eq.(12)) that there exists a constant
C <∞ such that for any n ≥ 1,

DV α(θn, θn−1) ≤ C

n

1 +
lnn
n− 1

n−1∑
j=1

ln2 V (Xj) + lnn
(
ln2 V (Xn) + ln2 V (Xn−1)

)
Combining the above results show that A3-a holds provided

1√
n

n∑
k=2

ln k
k1−τγ̄

 1
k − 1

k−1∑
j=1

ln2 V (Xj) + ln2 V (Xk) + ln2 V (Xk−1)

 V α(Xk) P−→ 0 ,

(17)
for some τ > 0. We prove that such a convergence occurs in L1. To that goal, observe
that the drift inequality PθV ≤ V + b implies that E [V (Xn)] ≤ E[V (X0)] + nb, which
in turn yields, by the Jensen inequality, supj (lnp j)−1 E [lnp V (Xj)] <∞ for any p ≥ 2.
Then, by the Hölder inequality,

sup
k

(ln2 k kα)−1 E

 1
k − 1

k−1∑
j=1

ln2 V (Xj) + ln2 V (Xk) + ln2 V (Xk−1)

 V α(Xk)

 <∞ .

Since α ∈ (0, 1/2) and τ can be chosen arbitrarily small, (17) is established and thus
yields the condition A3-a.

We now consider A3-b. By (16), it is sufficient to prove that for some τ > 0 and any
t > 0,

n−1/2α
n−1∑
k=0

L
2/α
θk

PθkV (Xk)1{sup
`≥1

`−τ |θ`| ≤ t}
P−→ 0 . (18)
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A Central Limit Theorem for iMCMC 11

By (Fort et al., 2012, Lemma 2.5), there exist a constant C (depending upon τ and t)
such that

E
[
V (Xn)1

{
sup
`≤n−1

`−τ |θ`| ≤ t
}]
≤ C (E[V (X0)] + nτγ) ,

where γ is defined in (15). Since 1/(2α) > 1, Eqs. (15) and (16) imply (18). This concludes
the proof of A3-b.

Let us consider A4. The proof of this condition is a consequence of the convergence of
{θn, n ≥ 0} and the regularity in θ of Fθ. Under M1 and the condition E[V (X0)] < ∞,
n−1

∑n
k=1 f(Xk) a.s.−→ π(f) for any f ∈ LV a and a ∈ (0, 1) (see (Fort et al., 2012, Theorem

2.10)). Since under M1 lim inf |x|→∞ lnV (x)/|x| > 0, this implies that the strong Law
of Large Numbers holds for functions f with quadratic growth at infinity. Therefore,
{θn, n ≥ 0} converges w.p.1 to θ? = (µ?,Γ?) given by

µ?
def=
∫
x π(x) dx , Γ?

def=
∫

(x− µ?) (x− µ?)′ π(x)dx+ κI .

Set
σ2(f) def=

∫
Fθ?(x) dx =

∫ (
Pθ?(Λθ?f)2(x)− [Pθ?Λθ?f ]2 (x)

)
dx . (19)

The proof of A4 is given in the material Fort et al. (2011). Combining the results above
yields

Theorem 3.1. Assume M1 and E [V (X0)] < +∞. Then, for any α ∈ (0, 1/2) and any
f ∈ LV α

1√
n

n∑
k=1

{f(Xk)− π(f)} D−→ N (0, σ2
f ) ,

where σ2(f) is given by (19).

3.2. Interacting Tempering algorithm

We consider the simplified version of the equi-energy sampler (Kou et al., 2006) intro-
duced in Andrieu et al. (2011). This version is referred to as the Interacting-tempering
(IT) sampler. Recently, convergence of the marginals and strong law of large numbers
results have been established under general conditions (see Fort et al. (2012)). In this
section, we derive a CLT under similar assumptions.

Let {πβk , k ∈ {1, · · · ,K}} be a sequence of tempered densities on X, where 0 < β1 <
· · · < βK = 1. At the first level, a process (Yk)k∈N with stationary distribution propor-
tional to πβ1 is run. At the second level, a process (Xk)k∈N with stationary distribution
proportional to πβ2 is constructed: at each iteration the next value is obtained from a
Markov kernel depending on the occupation measure of the chain (Yk)k∈N up to the cur-
rent time-step. This 2-stages mechanism is then repeated to design a process targeting
πβk by using the occupation measure of the process targeting πβk−1 .
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12 G. Fort et al.

For ease of exposition, it is assumed that (X,X ) is a Polish space equipped with its
Borel σ-field, and the densities are w.r.t. some σ-finite measure on (X,X ). We address
the case K = 2 and discuss below possible extensions to the case K > 2.

We start with a description of the IT (case K = 2). Denote by Θ the set of the
probability measures on (X,X ) equipped with the Borel sigma-field T associated to the
topology of weak convergence. Let P be a transition kernel on (X,X ) with unique in-
variant distribution π (typically, P is chosen to be a Metropolis-Hastings kernel). Denote
by ε ∈ (0, 1) the probability of interaction. Let (Yk)k∈N be a discrete-time (possibly
non-stationary) process and denote by θn the empirical probability measure:

θn
def=

1
n

n∑
k=1

δYk . (20)

Choose X0 ∼ ν. At the n-th iteration of the algorithm, two actions may be taken:

1. with probability (1−ε), the state Xn+1 is sampled from the Markov kernel P (Xn, ·),
2. with probability ε, a tentative state Zn+1 is drawn uniformly from the past of the

auxiliary process {Yk, k ≤ n}. This move is accepted with probability r(Xn, Zn+1),
where the acceptance ratio r is given by

r(x, z) def= 1 ∧ π(z)π1−β(x)
π1−β(z)π(x)

= 1 ∧ π
β(z)
πβ(x)

. (21)

Define the family of Markov transition kernels {Pθ, θ ∈ Θ} by

Pθ(x,A) def= (1− ε)P (x,A)

+ ε

(∫
A

r(x, y)θ(dy) + 1A(x)
∫
{1− r(x, y)} θ(dy)

)
. (22)

Then, the above algorithmic description implies that the bivariate process {(Xn, θn)}n∈N
is such that for any bounded function h on Xn+1

E [h(X0:n)|θ0:n] =
∫
ν(dx0)Pθ0(x0,dx1) · · ·Pθn−1(xn−1,dxn)h(x0:n) .

We apply the results of Section 2 in order to prove that the IT process (Xk)k∈N satisfies
a CLT. To that goal, it is assumed that the target density π and the transition kernel P
satisfy the following conditions:

I1 π is a continuous positive density on X and |π|∞ < +∞.

I2 (a) P is a phi-irreducible aperiodic Feller transition kernel on (X,X ) such that
πP = π.

(b) There exist τ ∈ (0, 1), λ ∈ (0, 1) and b < +∞ such that

PV (x) ≤ λV (x) + b with V (x) def= (π(x)/|π|∞)−τ . (23)
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A Central Limit Theorem for iMCMC 13

(c) For any p ∈ (0, |π|∞), the sets {π ≥ p} are 1-small (w.r.t. the transition kernel
P ).

(d) For any γ ∈ (0, 1/2) and any equicontinuous set of functions F ⊆ LV γ , the
set of functions {Ph : h ∈ F , |h|V γ ≤ 1} is equicontinuous.

From the expression of the acceptance ratio r (see Eq. (21)) and the assumption I2-a, it
holds

πPθ? = π , (24)

where θ? ∝ π1−β . Therefore, when θn converges to θ?, it is expected that (Xk)k∈N behaves
asymptotically as π; see Fort et al. (2012).

Drift conditions for the symmetric random walk Metropolis (SRWM) algorithm are
discussed in Roberts and Tweedie (1996), Jarner and Hansen (2000) and Saksman and Vi-
hola (2010). Under conditions which imply that the target density π is super-exponential
in the tails and have regular contours, Jarner and Hansen (2000) and Saksman and
Vihola (2010) show that any functions proportional to π−s with s ∈ (0, 1) satisfies a
Foster-Lyapunov drift inequality (Jarner and Hansen, 2000, Theorems 4.1 and 4.3). Un-
der this condition, I2-b is satisfied with any τ in the interval (0, 1). Assumptions I2-c
and I2-d hold for the SRWM kernel under weak conditions on the symmetric proposal
distribution : the minorization condition is verified whenever the proposal is positive
and continuous (see e.g. (Mengersen and Tweedie, 1996, Lemma 1.2)) and the following
lemma gives sufficient conditions for I2-d. The proof is in section 4.2.1.

Lemma 3.2. Assume I1. Let P be a Metropolis kernel with invariant distribution π and
a symmetric proposal distribution q : X × X → R+ such that sup(x,y)∈X2 q(x, y) < +∞
and the function x 7→ q(x, ·) is continuous from (X, | · |) to the set of probability densities
equipped with the total variation norm. Then P satisfies I2-d with any function V ∝ π−τ ,
τ ∈ [0, 1), such that π(V ) < +∞.

For a measurable function f : X → R such that θ?(|f |) < +∞, define the following
sequence of random processes on [0, 1]:

t 7→ Sn(f ; t) = n−1/2

bntc∑
j=1

{f(Yj)− θ?(f)} . (25)

It is assumed that the auxiliary process {Yn , n ≥ 0} converges to the probability distri-
bution θ? in the following sense:

I3 (a) θ?(V ) < +∞ and supn E [V (Yn)] < +∞.

(b) There exists a space N of real-valued measurable functions defined on X such
that V ∈ N and for any function f ∈ N , θn(f) a.s.−→ θ?(f).

(c) For any function f ∈ N , the sequence of processes (Sn(f, t), n ≥ 1, t ∈ [0, 1])
converges in distribution to (γ̃(f)B(t), t ∈ [0, 1]), where γ̃(f) is a non-negative
constant and (B(t) : t ∈ [0, 1]) is a standard Brownian motion.
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14 G. Fort et al.

(d) For any α ∈ (0, 1/2), there exist constants %0 and %1 such that, for any integers
n, k ≥ 1, for any measurable function h : Xk → R satisfying |h(y1, . . . , yk)| ≤∑k
j=1 V

α(yj),

E

∫ · · · ∫ k∏
j=1

[θn(dyj)− θ?(dyj)]h(y1, . . . , yk)

2

≤ Ak n−k ,

with lim supk lnAk/(k ln k) <∞.

I3 is satisfied when (Yk)k∈N is i.i.d. with distribution θ? such that θ?(V ) < +∞. In that
case, I3-b to I3-c hold for any measurable function f such that θ?(|f |2) < +∞. I3-d is
satisfied using (Serfling, 1980, Lemma A, pp. 190).

I3 is also satisfied when (Yk)k∈N is a geometrically ergodic Markov chain with tran-
sition kernel Q. In that case, I3-a to I3-c are satisfied for any measurable function f
such that θ?

(
|f [(I −Q)−1f ]|

)
< +∞ (see e.g. (Meyn and Tweedie, 2009, Chapter 17)).

Condition I3-d for a (non-stationary) geometrically ergodic Markov chain is established
in the supplementary paper (Fort et al., 2012).

The following proposition shows that under I1 and I2, condition A2 holds with the
drift function V given by A2-b. It also provides a control of the ergodicity constants
Cθ, ρθ in Lemma 2.1. The proof is a direct consequence of (Fort et al., 2012, Proposition
3.1, Corollary 3.2), Lemmas 2.1 and A.2, and is omitted.

Proposition 3.3. Assume I1 and I2a-b-c. For any θ ∈ Θ, Pθ is phi-irreducible, aperi-
odic. In addition, there exist λ̃ ∈ (0, 1) and b̃ < +∞ such that, for any θ ∈ Θ,

PθV (x) ≤ λ̃V (x) + b̃ θ(V ) , for all x ∈ X. (26)

The property P[α] holds for any α ∈ (0, 1/2), and there exists C such that for any θ ∈ Θ,
Lθ ≤ Cθ(V ).

Assume in addition I3a and E[V (X0)] < +∞. Then, supn≥0 E [V (Xn)] < +∞.

The next step is to check assumptions A3 and A4.

Proposition 3.4. Assume I1, I2, I3a-b and E[V (X0)] < +∞. For any α ∈ (0, 1/2), set
MV α be the set of continuous functions belonging to LV α∩N . Then, for any α ∈ (0, 1/2),
the conditions A3 and A4 hold with

σ2(f) def=
∫
π(dx)Fθ?(x) , (27)

where Fθ is given by (9).

The proof is postponed to Section 4.2.2. We can now apply Theorem 2.3 and prove a
CLT for the 2-levels IT.
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Theorem 3.5. Assume I1, I2, I3 and E[V (X0)] < +∞. Then, for any α ∈ (0, 1/2)
and any continuous function f ∈ LV α ∩N such that the function Gf given by

Gf (z) def= ε

∫
π(dx)r(x, z) (Λθ?f(z)− Λθ?f(x)) ,

is in N :
1√
n

n∑
k=1

(f(Xk)− π(f)) D−→ N (0, σ2(f) + 2γ̃2(Gf )) ,

where σ2(f) and γ̃2(Gf ) are given by (27) and I3-c.

The proof is postponed to Appendix 4.2.3.
It may be possible to repeat the above argument to show a CLT for theK-level IT when

K > 2 (see Fort et al. (2012) for a similar approach in the proof of the ergodicity and the
LLN for IT). Nevertheless, the main difficulty is to iterate the control of the L2-moment
for the V -statistics (see I3-d) when (Yk)k∈N is not a Markov chain or, more generally,
a process satisfying some mixing conditions. A similar difficulty has been reported in
Andrieu et al. (2011).

Theorem 3.5 shows that the asymptotic variance of sample path averages of the process
{Xn, n ≥ 0} for the functional f is the sum of two terms. The first term σ2(f) is the
asymptotic variance of sample path averages of a Markov chain with transition kernel
Pθ? and functional f (see e.g. (Meyn and Tweedie, 2009, Chapter 17)). The second
term γ̃2(Gf ) is the asymptotic variance of sample path averages of the auxiliary process
{Yn, n ≥ 0} for the functional Gf . The expression of this asymptotic variance can help in
the choice of the probability of interaction ε. For example, given the kernel P , a question
is: is the asymptotic variance reduced when replacing the classical MCMC chain with
kernel P by the interacting process satisfying (1) with Pθ given by (22)? to answer this
question, first note that the derivative with respect to ε of σ2(f) + 2γ̃2(Gf ) at ε = 0 is
equal to the derivative of σ2(f) at ε = 0. In addition, this derivative is of the sign of

−
∫
π(dx) h̄(x) Λθ? (P −Kθ?) Λθ? h̄(x) = −〈Λθ? h̄, (P −Kθ?) Λθ? h̄〉L2(π)

where Kθ is defined by Pθ = (1− ε)P + εKθ and h̄ = h−π(h). Therefore, if P −Kθ? is a
positive operator on L2

0(π) def= {h : π(h) = 0, π(h2) <∞}, the 2-level IT algorithm with ε
small enough will improve on the MCMC sampler P . A sufficient condition for P −Kθ?

to be a positive operator is P ≤ Kθ? in the Peskun ordering of transition kernels (see
e.g. (Tierney, 1998, Lemma 3)). Note that under this Peskun order assumption on P and
Kθ? , the function ε 7→ σ2(f) is non-increasing on [0, 1] for any function f ∈ L2

0(π) (see
the proof of (Tierney, 1998, Theorem 4)). Figure 1 below shows that this non-increasing
property is balanced by the behavior of ε 7→ 2γ̃2(Gf ). Figure 1 displays an estimation
of the variance of

√
N
∑N
k=1{f(Xk)− π(f)}, obtained from 300 independent run of the

process {Xn, n ≥ 0}. In this numerical application, N = 400k; π is a mixture of five
R5-valued Gaussian distribution with means drawn in the range [−3; 3]5 and covariance
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16 G. Fort et al.

matrix identity; f : R5 → R is defined by x = (x1, · · · , x5) 7→ x5; P is a SRWM algorithm
with proposal kernel q(x, ·) ∼ N5(x, I); and {Yk, k ≥ 0} is a SRWM with proposal kernel
q(x, ·) ∼ N5(x, I) and invariant measure π0.2

θ?
. Figure 1 shows that the variance is minimal

for some ε in [0.05; 0.15] and corroborates previous empirical results on the choice of ε
(see e.g. Kou et al. (2006)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
250

300

350

400
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Figure 1. Estimation of the variance of
√
N
∑N

k=1
{f(Xk)− π(f)}, as a function of the probability of

interaction ε. The plots have been obtained with 20 linearly spaced values of ε in the range [0, 0.45]; and
6 linearly spaced values in the range [0.5, 1].

4. Proofs

Note that under A2, for any α ∈ (0, 1], any f ∈ LV α and any θ ∈ Θ,

|Λθf |V α ≤ |f |V α L2
θ (28)

where Lθ is defined by (8).
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4.1. Proofs of the results in Section 2

4.1.1. Proof of Theorem 2.2

Let f ∈MV α . Eq. (3) yields S(1)
n (f) = Ξn(f) +R

(1)
n (f) +R

(2)
n (f) with

Ξn(f) def=
1√
n

n∑
k=1

{Λθk−1f(Xk)− Pθk−1Λθk−1f(Xk−1)} ,

R(1)
n (f) def= n−1/2

n∑
k=1

{PθkΛθkf(Xk)− Pθk−1Λθk−1f(Xk)} ,

R(2)
n (f) def= n−1/2Pθ0Λθ0f(X0)− n−1/2PθnΛθnf(Xn) .

We first show that the two remainders terms R(1)
n (f) and R

(2)
n (f) converge to zero in

probability. We have

|PθΛθf(x)− Pθ′Λθ′f(x)| ≤ |PθΛθf(x)− Pθ′Λθ′f(x)|V α V
α(x) .

Assumption A3 implies that R(1)
n (f) converges to zero in probability. The drift inequality

A2 combined with the Jensen’s inequality imply PθV
α ≤ λαθ V

α + bαθ . By (28) and this
inequality,

|PθΛθf(x)| ≤ |f |V α L
2
θ PθV

α(x) ≤ |f |V α L
2
θ (V α(x) + bαθ ) .

Then, Pθ0Λθ0f(X0) is finite w.p.1. and n−1/2Pθ0Λθ0f(X0) a.s.−→ 0. By A3-b and (28),
n−1/2PθnΛθnf(Xn) P−→ 0. Hence, R(2)

n (f) P−→ 0.
We now consider Ξn(f). Set Dk(f) def= Λθk−1f(Xk) − Pθk−1Λθk−1f(Xk−1). Observe

that under A1, Dk(f) is a martingale-increment w.r.t. the filtration {Fk, k ≥ 0}. The
limiting distribution for Ξn(f) follows from martingale CLT (see e.g. (Hall and Heyde,
1980, Corollary 3.1.)). We check the conditional Lindeberg condition. Let ε > 0. Under
A2, we have by (28)

Dk(f) ≤ |f |V α
∣∣∣L2
θk−1

{
V α(Xk) + Pθk−1V

α(Xk−1)
}∣∣∣ .

Set τ def= 1/α− 2 > 0.

1
n

n∑
k=1

E
[
D2
k(f)1|Dk(f)|≥ε

√
n

∣∣Fk−1

]
≤
(

1
ε
√
n

)τ 1
n

n∑
k=1

E
[
D2+τ
k (f)

∣∣Fk−1

]
≤ |f |2+τ

V α

(
1

ε
√
n

)τ 1
n

n∑
k=1

E
[
L

2(2+τ)
θk−1

{
V α(Xk) + Pθk−1V

α(Xk−1)
}2+τ

∣∣∣Fk−1

]
≤ 22+τ |f |2+τ

V α

(
1

ε
√
n

)τ 1
n

n−1∑
k=0

L
2(2+τ)
θk

PθkV (Xk) .
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Under A3-b, the RHS converges to zero in probability thus concluding the proof of the
conditional Lindeberg condition. For the limiting variance condition, observe that

1
n

n∑
k=1

E
[
D2
k(f)

∣∣Fk−1

]
=

1
n

n−1∑
k=0

Fθk(Xk) ,

where Fθ is given by (9) and, under A4, n−1
∑n
k=1 E

[
D2
k

∣∣Fk−1

] P−→ σ2(f). This con-
cludes the proof.

4.1.2. Proof of Theorem 2.3

We start by establishing a joint CLT for (S(1)
n (f), S(2)

n (f)), where S(1)
n (f) and S

(2)
n (f)

are defined in (4) and (5), respectively. Similar to the proof of Theorem 2.2, we write
S

(1)
n (f) = Ξn(f) + R

(1)
n (f) + R

(2)
n (f) and prove that R(1)

n (f) + R
(2)
n (f) P−→ 0. We thus

consider the convergence of Ξn(f) + S
(2)
n (f). Set Fθn

def= σ(θk, k ≤ n). Under A5,

E
[
ei(u1Ξn(f)+u2S

(2)
n (f))

]
= E

[
E
[

eiu1Ξn(f)
∣∣∣Fθn] eiu2S

(2)
n (f)

]
.

Applying the conditional CLT (Douc and Moulines, 2008, Theorem A.3.) with the filtra-
tion Fn,k

def= σ(Y1, · · · , Yn, X1, · · · , Xk), yields:

lim
n→∞

E
[

eiu1Ξn(f)
∣∣∣Fθn] P−→ e−u

2
1σ

2(f)/2 ; (29)

observe that under A5, the conditions (31) and (32) in Douc and Moulines (2008) can
be proved following the same lines as in the proof of Theorem 2.2; details are omitted.
Therefore,

E
[
ei(u1Ξn(f)+u2S

(2)
n (f))

]
= E

[(
E
[

eiu1Ξn(f)
∣∣∣Fθn]− e−u

2
1σ

2(f)/2
)

eiu2S
(2)
n (f)

]
+ e−u1σ

2(f)/2E
[
eiu2S

(2)
n (f)

]
.

By (29), the first term in the RHS of the previous equation converges to zero. Under A6,
limn→∞ E

[
eiu2S

(2)
n (f)

]
= e−u

2
2γ

2(f)/2 and this concludes the proof.

4.2. Proofs of Section 3.2

Note that by (24), πθ? = π.

4.2.1. Proof of Lemma 3.2

Let γ ∈ (0, 1/2) and F be an equicontinuous set of functions in LV γ . Let h ∈ F , |h|V γ ≤ 1.
By construction, the transition kernel of a symmetric random walk Metropolis with
proposal transition density q(x, ·) and target density π may be expressed as

Ph(x) =
∫
r(x, y)h(y)q(x, y) dy + h(x)

∫
{1− r(x, y)} q(x, y)dy ,
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where r(x, y) def= 1∧(π(y)/π(x)) is the acceptance ratio. Therefore, the difference Ph(x)−
Ph(x′) may be bounded by

|Ph(x)− Ph(x′)| ≤ 2 |h(x)− h(x′)|

+
∫
|h(y)− h(x′)| |r(x, y)− r(x′, y)| q(x, y)dy

+
∣∣∣∣∫ (h(y)− h(x′)) r(x′, y) (q(x, y)− q(x′, y)) dy

∣∣∣∣ .
Since |r(x, y)− r(x′, y)| ≤ π(y)|π−1(x)− π−1(x′)|,∫

|h(y)− h(x′)| |r(x, y)− r(x′, y)| q(x, y)dy

≤
∣∣π−1(x)− π−1(x′)

∣∣ ∫ |h(y)− h(x′)|π(y) q(x, y) dy

≤

(
sup

(x,y)∈X2
q(x, y)

) ∣∣π−1(x)− π−1(x′)
∣∣ (π(V γ) + V γ(x′)) .

In addition, ∣∣∣∣∫ (h(y)− h(x′)) r(x′, y) (q(x, y)− q(x′, y)) dy
∣∣∣∣

=

∣∣∣∣∣
∫
{y:π(y)≤π(x′)}

(h(y)− h(x′))
π(y)
π(x′)

(q(x, y)− q(x′, y)) dy

∣∣∣∣∣
+

∣∣∣∣∣
∫
{y:π(y)>π(x′)}

(h(y)− h(x′)) (q(x, y)− q(x′, y)) dy

∣∣∣∣∣
≤ 4 π−1(x′) ‖q(x, ·)− q(x′, ·)‖TV sup

y∈X
|h(y) π(y)| .

Since V ∝ π−τ and τ ∈ (0, 1), supX |h|π ≤ 1 under I1. Therefore, there exists a constant
C such that for any h ∈ {h ∈ F , |h|V γ ≤ 1} and any x, x′ ∈ X,

|Ph(x)− Ph(x′)| ≤ 2 |h(x)− h(x′)|
+ C

(∣∣π−1(x)− π−1(x′)
∣∣+ ‖q(x, ·)− q(x′, ·)‖TV

) (
V γ(x′) + π−1(x′)

)
,

thus concluding the proof.

4.2.2. Proof of Proposition 3.4

The proof is prefaced by several lemmas. The proof of Lemma 4.1 is omitted for brevity
and can be found in the supplementary paper (Fort et al. (2011)) The proof of Lemma 4.2
is adapted from (Fort et al., 2012, Lemma 5.1.) and is omitted.
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Lemma 4.1. Let α ∈ (0, 1). Assume I1, I2a-b-c, I3a-b, and E[V (X0)] < +∞. Then
for any γ, γ′ ∈ (0, 1) and any δ > γ,

n−δ
n∑
k=1

DV γ (θk, θk−1)V γ
′
(Xk) P−→ 0 .

Lemma 4.2. For any θ ∈ Θ, any measurable function f : X → R in LV α and any
x, x′ ∈ X such that π(x) ≤ π(x′)

|Pθf(x)− Pθf(x′)| ≤ |Pf(x)− Pf(x′)|+ |f(x)− f(x′)|
+ sup

X
π |f |V α

∣∣π−β(x)− π−β(x′)
∣∣ (V α(x′) + θ(V α)) .

Proof of Proposition 3.4. Let α ∈ (0, 1/2). By Proposition 3.3, A2 and P[α] hold.
By I3-b,

lim sup
n

Lθn < +∞ , P− a.s. (30)

where Lθ is given by (8) with Cθ, ρθ defined by P[α].
We first check A3-a. Let f ∈ N ∩ LV α . By Lemma A.1,∣∣PθkΛθkf − Pθk−1Λθk−1f

∣∣
V α
≤ 5

(
Lθk ∨ Lθk−1

)6
πθk(V α)DV α(θk, θk−1) |f |V α .

By Lemma 2.1, Proposition 3.3 and Assumptions I1, I2 and I3-b,

lim sup
n→∞

πθn(V ) ≤ b̃ (1− λ̃)−1 lim sup
n→∞

θn(V ) <∞ , P− a.s. . (31)

Therefore, by (30) and (31), it suffices to prove that

n−1/2
n∑
k=1

DV α(θk, θk−1)V α(Xk) P−→ 0 ,

which follows from Lemma 4.1. We now check A3-b. By Proposition 3.3, it holds

n−1/(2α)
n∑
k=1

L
2/α
θk

PθkV (Xk) ≤ n−1/(2α)
n∑
k=1

L
2/α
θk

[
V (Xk) + b̃θk(V )

]
.

Under the stated assumptions, lim supn [θn(V ) + Lθn ] < +∞ w.p.1. and by Proposi-
tion 3.3, supk E [V (Xk)] < +∞. Since 2α < 1, this concludes the proof.

The proof of A4 is in two steps: it is first proved that

1
n

n−1∑
k=0

Fθk(Xk)− 1
n

n−1∑
k=0

∫
πθk(dx)Fθk(x) P−→ 0 , (32)

and then it is established that∫
πθk(dx)Fθk(x) a.s.−→

∫
πθ?(dx)Fθ?(x) . (33)
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Theorem B.1 in Appendix B applied with γ = 2α implies (32). The main tools for
checking the assumptions of Theorem B.1 are (30), (31), Lemma 4.1 and Lemmas A.1
and A.3. A detailed proof can be found in the supplementary paper, see Fort et al. (2011).

The second step is to prove (33). To that goal, we have to strengthen the conditions
on f by assuming that f is continuous. For any θ ∈ Θ,

∫
πθ(dx)Fθ(x) =

∫
πθ(dx)Hθ(x)

with
Hθ(x) def= (Λθf)2 (x)− (PθΛθf)2 (x) . (34)

We have to prove that there exists Ω? with P(Ω?) = 1 and for any ω ∈ Ω?,

(I) for any continuous bounded function h, limn πθn(ω)(h) = πθ?(h),
(II) the set {Hθn(ω), n ≥ 0} is equicontinuous,

(III) supn πθn(ω)

(
|Hθn(ω)|1/(2α)

)
< +∞,

(IV) limnHθn(ω)(x) = Hθ?(x) for any x ∈ X,
(V) πθ?(|Hθ? |) < +∞.

The proof is then concluded by application of Lemma A.3. Details of these steps are
omitted for brevity and can be found in the supplementary paper, see Fort et al. (2011).

4.2.3. Proof of Theorem 3.5

We check the conditions of Theorem 2.3. A2 to A5 hold (see Propositions 3.3 and 3.4)
and we now prove A6. We first check condition A6-a. For any function f ∈ LV α ∩ N ,
define

Gf (z) def= ε

∫∫
(δz(dz′)− θ?(dz′))πθ?(dx)r(x, z′) (Λθ?f(z′)− Λθ?f(x)) . (35)

Let f ∈ LV α ∩ N ; note that Gf ∈ LV α . Recall that by Eq. (22), for any θ such that
θ(V α) < +∞,

Pθf(x)− Pθ?f(x) = ε

∫
[θ(dy)− θ?(dy)] r(x, y) (f(y)− f(x)) . (36)

Then, using (35),

πθ? (Pθk − Pθ?) Λθ?f

= ε

∫∫
πθ?(dx) [θk(dz)− θ?(dz)] r(x, z) [Λθ?f(z)− Λθ?f(x)] = θk(Gf ) .

Therefore,

1√
n

n∑
k=1

πθ? (Pθk − Pθ?) Λθ?f =
1
n

n∑
k=1

n

k

1√
n

k∑
j=1

Gf (Yj)

=
∫ 1

0

t−1Sn(Gf , t)dt+
n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1
t

)
Sn(Gf , t)dt+

1
n
Sn(Gf , 1) ,
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with Sn(Gf , t)
def= n−1/2

∑bntc
j=1 Gf (Yj). Note that

E

[∣∣∣∣∣
n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1
t

)
Sn(Gf , t)dt

∣∣∣∣∣
]
≤ 1√

n

n∑
k=1

1
k + 1

1
k

k∑
j=1

E [|Gf (Yj)|] .

Since Gf ∈ LV α , I3-a implies that supk≥0 E[|Gf |(Yk)] <∞. Therefore,

n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1
t

)
Sn(Gf , t)dt+

1
n
Sn(Gf , 1) P−→ 0 .

Using I3-c, I3-d and the Continuous mapping Theorem ((van der Vaart and Wellner,
1996, Theorem 1.3.6)), we obtain

1√
n

n∑
k=1

πθ? (Pθk − Pθ?) Λθ?f
D−→ γ̃2(f)

∫ 1

0

t−1Btdt .

Since
∫ 1

0
t−1Btdt =

∫ 1

0
log(t)dBt,

∫ 1

0
t−1Btdt is a Gaussian random variable with zero

mean and variance
∫ 1

0
log2(t)dt = 2.

We now check condition A6-b. Note that

n−1/2
n∑
k=1

πθk (Pθk − Pθ?) Λθ? (Pθk − Pθ?) Λθ?f = n−1/2
n∑
k=1

πθk(Gfθk) ,

where
Gfθ (x) def= (Pθ − Pθ?) Λθ? (Pθ − Pθ?) Λθ?f(x) . (37)

We write for any x ∈ X and any `k ∈ N,

πθk(Gfθk) =
(
πθk − P

`k
θk

)
Gfθk(x) +

(
P `kθk − P

`k
θ?

)
Gfθk(x) + P `kθ?G

f
θk

(x) .

By Proposition 3.3, P[α] holds and there exist Cθ, ρθ such that ‖Pnθ − πθ‖V α ≤ Cθρ
n
θ .

Furthermore, Lemma A.2 and I3b imply that lim supn Cθn < +∞ w.p.1. and there exists
a constant ρ ∈ (0, 1) such that lim supn ρθn ≤ ρ, w.p. 1. Set `k

def= b` ln kc with ` such
that 1/2 + ` ln ρ < 0. Let x ∈ X be fixed.

By Lemma 4.3 and I3-b, there exists an almost surely finite random variable C1 s.t.∣∣∣∣∣ 1√
n

n∑
k=1

(
πθk − P

`k
θk

)
Gfθk(x)

∣∣∣∣∣ ≤ C1V
α(x)n−1/2

n∑
k=1

ρ`k .

Since n−1/2
∑n
k=1 ρ

`k ≤ ρ−1n−1/2
∑n
k=1 k

` ln ρ →n→∞ 0, it holds

1√
n

n∑
k=1

(
πθk − P

`k
θk

)
Gfθk(x) a.s.−→ 0 .
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By Lemma 4.5, there exist some positive constants C2, κ?, a such that

E

( n∑
k=1

{P `kθk − P
`k
θ?
}Gfθk(x)

)2
1/2

≤ C2 |f |V α V
α(x)

n∑
k=1

1
k

`k−1∑
t=1

(
κ?`k
k1/(2a)

)at
.

Since limk `
a
k/k

1/2 = 0, there exists k? such that for k ≥ k?, (κ?`k)a/k1/2 ≤ 1/2. Then,

1√
n

n∑
k=1

1
k

`k∑
t=1

(
κ?`k
k1/(2a)

)at
≤ 1√

n

k?∑
k=1

1
k

d` ln ke∑
t=1

(
κ?`k
k1/(2a)

)at
+

2√
n

n∑
k=k?+1

1
k
.

The RHS tends to zero when n→ +∞, which proves that n−1/2
∑n
k=1{P

`k
θk
−P `kθ? }G

f
θk

(x) P−→
0.

Finally, by Lemma 4.6, there exists a constant C3 such that

E

( 1√
n

n∑
k=1

P `kθ?G
f
θk

(x)

)2
1/2

≤ C3V
α(x)

1√
n

n∑
k=1

`αk
k
→n→∞ 0 ,

thus implying that n−1/2
∑n
k=1 P

`k
θ?
Gfθk(x) P−→ 0.

Lemma 4.3. Assume I1 and I2a-b-c. Let α ∈ (0, 1/2). For any f ∈ LV α and θ ∈ Θ,

Gfθ (x) =
∫

(θ − θ?)⊗2(dz1:2) F (0)(x, z1, z2) ,

where Gfθ is defined by (37); and there exists a constant C such that for any x ∈ X,∣∣∣F (0)(x, z1, z2)
∣∣∣ ≤ C |f |V α V α∧(β/τ)(x) (V α(z1) + V α(z2)) .

In addition, there exists some constant C ′ such that for any ` ∈ N, any θ ∈ Θ and any
f ∈ LV α , ∣∣∣(πθ − P `θ )Gfθ ∣∣∣

V α
≤ C ′ |f |V α

∥∥P `θ − πθ∥∥V α θ(V α) .

Proof. Set γ def= α∧ (β/τ). Throughout this proof, let Lθ be the constant given by P[γ].
We have

F (0)(x, z1, z2) def= ε2r(x, z2)
[∫

Λθ?(z2,dy)r(y, z1) (Λθ?f(z1)− Λθ?f(y))

−
∫

Λθ?(x, dy)r(y, z1) (Λθ?f(z1)− Λθ?f(y))
]
.

imsart-bj ver. 2009/08/13 file: fmpv_clt_short_soumis.tex date: July 24, 2012



24 G. Fort et al.

Note that |r(·, z1)|V γ ≤ 1 for any z1 so that by (28),∣∣∣∣∫ Λθ?(z2,dy)r(y, z1)Λθ?f(z1)
∣∣∣∣ ≤ L4

θ? |f |V α V
α(z1) V γ(z2) .

In addition, since γ − β/τ ≤ 0, we have by definition of the acceptance ratio r (see (21))

r(x, z2)V γ(z2) ≤ V γ(x) .

Then, there exists a constant C such that

ε2r(x, z2)
∣∣∣∣∫ Λθ?(z2,dy)r(y, z1)Λθ?f(z1)

∣∣∣∣ ≤ C |f |V α V α(z1) V γ(x) .

Similar upper bounds can be obtained for the three remaining terms in F (0), thus showing
the upper bounds on F (0).

In addition, by P[γ]∣∣∣(πθ − P `θ )Gfθf(x)
∣∣∣
V α
≤
∥∥πθ − P `θ∥∥V α ∣∣∣Gfθf ∣∣∣

V α
V α(x) .

The proof is concluded upon noting that |Gfθ (x)| ≤ C |f |V α θ(V α).

Lemma 4.4. Assume I1 and I2a-b-c. Let α ∈ (0, 1/2). There exist some constants
C, κ? and ρ? ∈ (0, 1) such that for any t ≥ 1, any integers u1, · · · , ut and any f ∈ LV α ,

(Pθ − Pθ?)
(
Putθ? − πθ?

)
· · · (Pθ − Pθ?)

(
Pu1
θ?
− πθ?

)
Gfθ (x)

=
∫
· · ·
∫

(θ − θ?)⊗(t+2) (dz1:t+2) F (t)
u1:t

(x, z1, · · · , zt+2)

where Gfθ is defined in (37), and

∣∣∣F (t)
u1:t

(x, z1, · · · , zt+2)
∣∣∣ ≤ C |f |V α κt? ρ∑t

j=1
uj

? V α∧(β/τ)(x)
t+2∑
j=1

V α(zj) . (38)

Proof. By repeated applications of Eq. (36), it can be proved that the functions F (t)
u1:t

are recursively defined as follows

F (t)
u1:t

(x, z1, · · · , zt+2) def= εr(x, zt+2)×∫ (
Putθ? (zt+2,dy)− Putθ? (x,dy)

)
F (t−1)
u1:t−1

(y, z1, · · · , zt+1) , (39)

where F (0)
u1:0 = F (0) and F (0) is given by Lemma 4.3.
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The proof of the upper bound is by induction. The property holds for t = 1. Assume
it holds for t ≥ 2. Set γ def= α ∧ (β/τ); by Proposition 3.3 and the property P[γ], there
exist some constants C? and ρ? ∈ (0, 1) such that

∥∥P `θ? − πθ?∥∥V γ ≤ Cθ?ρ`θ? . Then,

∣∣∣F (t)
u1:t

(x, z1:t+2)
∣∣∣ ≤ C |f |V α κt−1

? ρ

∑t−1

j=1
uj

θ?

t+1∑
j=1

V α(zj)


× r(x, zt+2)

[∥∥Putθ? − πθ?∥∥V γ V γ(zt+2) +
∥∥Putθ? − πθ?∥∥V γ V γ(x)

]
≤ C |f |V α κt−1

? ε Cθ? ρ

∑t

j=1
uj

θ?
r(x, zt+2) {V γ(zt+2) + V γ(x)} .

Since γ ≤ β/τ , r(x, zt+2)V γ(zt+2) ≤ V γ(x) thus showing (38) with κ? = 2Cθ?ε.

Lemma 4.5. Assume I1, I2a-b-c and I3. Let α ∈ (0, 1/2). There exist positive constants
C, κ, a such that for any f ∈ LV α , any k, ` ≥ 1 and any x ∈ X,

E
[({

P `θk − P
`
θ?

}
Gfθk(x)

)2
]1/2

≤ C |f |V α
V α(x)
k

`−1∑
t=1

(
tκk−1/(2a)

)at
,

where Gfθ is given by (37).

Proof. For any g ∈ LV α , k, ` ≥ 1 and x ∈ X,

P `θkg(x)− P `θ?g(x)

=
`−1∑
t=1

∑
u1:t∈Ut

P
`−t−

∑t

j=1
uj

θ?
(Pθk − Pθ?)Putθ? · · · (Pθk − Pθ?)Pu1

θ?
g(x) ,

=
`−1∑
t=1

∑
u1:t∈Ut

P
`−t−

∑t

j=1
uj

θ?
(Pθk − Pθ?)

(
Putθ? − πθ?

)
× · · · (Pθk − Pθ?)

(
Pu1
θ?
− πθ?

)
g(x) ,

where Ut = {u1:t, uj ∈ N,
∑t
j=1 uj ≤ ` − t}. Fix t ∈ {1, · · · , ` − 1} and u1:t ∈ Ut. Then

by Lemma 4.4,

P
`−t−

∑t

j=1
uj

θ?
(Pθk − Pθ?)

(
Putθ? − πθ?

)
· · · (Pθk − Pθ?)

(
Pu1
θ?
− πθ?

)
Gfθk(x)

=
∫

(θk − θ?)⊗(t+2) (dz1:t+2)
∫
P
`−t−

∑t

j=1
uj

θ?
(x, dy)F (t)

u1:t
(y, z1, · · · , zt+2) .
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Assumptions I3-b and I3-d and Lemma 4.4 show that there exist constants C, κ?, ρ? ∈
(0, 1) such that∥∥∥∥∫ (θk − θ?)⊗(t+2) (dz1:t+2)

∫
P
`−t−

∑t

j=1
uj

θ?
(x, dy)F (t)

u1:t
(y, z1, · · · , zt+2)

∥∥∥∥
2

≤ C

k1+t/2
At |f |V α κ

t
? ρ

∑t

j=1
uj

? P
`−t−

∑t

j=1
uj

θ?
V α(x) .

Finally, Proposition 3.3 implies that supj≥0

∣∣∣P jθ?V α∣∣∣V α < +∞. By combining these re-
sults, we have for some constant C∥∥∥P `θkGfθk(x)− P `θ?G

f
θk

(x)
∥∥∥

2
≤ Ck−1 |f |V α V

α(x)
`−1∑
t=1

Atκ
t
? k
−t/2

∑
u1:t∈Ut

ρ

∑t

j=1
uj

? .

Note that
∑
u1:t∈Ut ρ

∑t

j=1
uj

? ≤ (1 − ρ?)−t. Furthermore, there exists a > 0 such that
At ≤ tat. Therefore,∥∥∥P `θkGfθk(x)− P `θ?G

f
θk

(x)
∥∥∥

2

≤ Ck−1 |f |V α V
α(x)

`−1∑
t=1

(
tκ1/a(1− ρ?)−1/a k−1/(2a)

)at
.

This concludes the proof.

Lemma 4.6. Assume I1, I2a-b-c and I3. Let α ∈ (0, 1/2) and f ∈ LV α . Then, there
exists a constant C such that for any k, ` ≥ 1 and any x ∈ X,

E
[(
P `θ?G

f
θk

(x)
)2
]1/2

≤ C `α |f |V α k−1V α(x) .

Proof. We have

P `θ?G
f
θk

(x) =
∫∫

(θk − θ?)⊗2 (dz1:2)H`(x, z1, z2) ,

with H`(x, z1, z2) def= P `θ?(x, F (0)(·, z1, z2)) where F (0) is given by Lemma 4.3. Lemma 4.3
also implies that there exists a constant C such that

|H`(x, z1, z2)| ≤ C |f |V α (V α(z1) + V α(z2)) P `θ?V
α(x) . (40)

By I3, the variance of P `θ?G
f
θk

(x) is upper bounded by

C |f |2V α (P `θ?V
α(x))2k−2 .

The proof is concluded by application of the drift inequality (26) and I3-a.
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Appendix A: Technical lemmas

The following lemma is (slightly) adapted from (Fort et al., 2012, Lemma 4.2.)

Lemma A.1. Assume A2. For any α ∈ (0, 1) and θ, θ′ ∈ Θ,

‖πθ − πθ′‖V α ≤ 2(Lθ′ ∨ Lθ)4πθ(V α) DV α(θ, θ′) ,

‖Λθ − Λθ′‖V α ≤ 3 (Lθ ∨ Lθ′)6
πθ(V α)DV α(θ, θ′)

‖PθΛθ − Pθ′Λθ′‖V α ≤ 5 (Lθ ∨ Lθ′)6
πθ(V α)DV α(θ, θ′) .

where Lθ and Λθ are given by (8) and (2).

The following lemma can be obtained from Roberts and Rosenthal (2004), Fort and
Moulines (2003), Douc et al. (2004) or Baxendale (2005) (see also the proof of (Saksman
and Vihola, 2010, Lemma 3) for a similar result).

Lemma A.2. Let {Pθ, θ ∈ Θ} be a family of phi-irreducible and aperiodic Markov
kernels. Assume that there exist a function V : X → [1,+∞), and for any θ ∈ Θ there
exist some constants bθ < +∞, δθ > 0, λθ ∈ (0, 1) and a probability measure νθ on X
such that for any x ∈ X

PθV (x) ≤ λθV (x) + bθ ,

Pθ(x, ·) ≥ δθ νθ(·) 1{V≤cθ}(x) cθ
def= 2bθ(1− λθ)−1 − 1 .

Then there exists γ > 0 and for any θ, there exist some finite constants Cθ and ρθ ∈ (0, 1)
such that

‖Pnθ (x, ·)− πθ‖V ≤ Cθ ρ
n
θ V (x)

and
Cθ ∨ (1− ρθ)−1 ≤ C

{
bθ ∨ δ−1

θ ∨ (1− λθ)−1
}γ

.

Lemma A.3 is proved in (Fort et al., 2012, Section 4).

Lemma A.3. Let X be a Polish space endowed with its Borel σ-field X . Let µ and
(mun)n∈N be probability distributions on (X,X ). Let (hn)n∈N be an equicontinuous family
of functions from X to R. Assume

(i) the sequence (µn)n∈N converges weakly to µ,
(ii) for any x ∈ X, limn→∞ hn(x) exists, and there exists γ > 1 such that supn µn(|hn|γ)+

µ(| limn hn|) < +∞.

Then, µn(hn)→ µ(limn hn).
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Appendix B: Weak law of large numbers for adaptive
and interacting MCMC algorithms

The proof of the theorem below is along the same lines as the proof of (Fort et al., 2012,
Theorem 2.7), which addresses the strong law of large numbers and details are omitted.
Note that in this generalization, we relax the condition supθ |F (·, θ)|V < +∞ of Fort
et al. (2012). The proof is provided in the supplementary paper (Fort et al., 2012).

Theorem B.1. Assume A1, A2 and let a ∈ (0, 1). Let F : X×Θ→ R be a measurable
function. Assume that there exists a sequence of stopping-times {τm,m ≥ 1} such that
P(
⋃
m{τm = +∞}) = 1 and

(i) lim supn→∞ Lθn < ∞, P-a.s. where Lθ is defined in Lemma 2.1 applied with the
closed interval [a, 1].

(ii) lim supn→∞ πθn(V a) <∞, P-a.s.
(iii) lim supn→∞ |Fθn |V a < +∞, P-a.s.
(iv) for any m ≥ 1, there exists t < 1/a−1 such that supn≥1 n−t E

[
V (Xn)1{n−1<τm}

]
<

∞.
(v) n−1

∑n
k=1DV a(θk, θk−1)V a(Xk) P−→ 0.

(vi) n−1
∑n−1
k=1

∣∣Fθk − Fθk−1

∣∣
V a
V a(Xk) P−→ 0.

Then,
1
n

n−1∑
k=0

Fθk(Xk)− 1
n

n−1∑
k=0

∫
πθk(dx)Fθk(x) P−→ 0 .
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Atchadé, Y. (2011). Kernel Estimators of asymptotic variance for adaptive Markov Chain
Monte Carlo. Ann. Statist. 39 (2), 990–1011.
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