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1. IntrodutionThe objetive of the present work is to review some extensions of Partial Least Squaresregression to Partial Least Squares generalized linear regression and to ompare themwhen used in the \large p, small n" framework. More preisely, we restrit our atten-tion to binary and multinomial logisti regression models and onsider appliations tolassi�ation and feature seletion in high-dimensional regression problems.PLS is both a dimension redution method and a regression method in linear models.Roughly speaking, it onsists in sequentially onstruting super-ovariates i.e. linearombinations of the ovariates, whih are preditive of the response variable. Unlikethe Prinipal Component Analysis omponents, the PLS super-ovariates depend on theresponse variable (Wold (1975)). An introdution to the struture of PLS an be foundin Helland (1988), a statistial view in Helland (1990), a study of the PLS geometryin Phatak and De Jong (1997) and some theoretial properties (some of them relativeto the shrinkage property of PLS) in De Jong (1995); Goutis (1996); Lingjaerde andChristophersen (2000); Phatak et al. (2002). PLS has been used extensively in hemo-metris for predition and identi�ation of latent struture models. Chemometris dataare haraterized by highly ollinear preditor variables and PLS revealed to be robustto deal with these data sets (Naes and Martens (1985); Frank and Friedman (1993)).Gene expression miroarray data have a similar data struture : ovariates are highlyollinear and the number of ovariates far exeed the number of observations. One im-portant appliation of miroarrays is lassi�ation of samples into ategories; ; a reliableand preise lassi�ation of human malignanies is essential for suessful treatment.Statistial analysis of these data thus requires the development of new methodologiesor modi�ation of existing ones. A seond question of interest is the identi�ation ofthe genes that really ontribute to the disrimination proess. This naturally suggests alassi�ation proedure based on regression; in this paper, we will onsider the logistior polyhotomous disrimination method. Suh a proedure requires an estimate of theregression oeÆient, and inferene in suh models is usually solved by Maximum Like-lihood (ML) and in pratie, relies on the Iteratively Reweighted Least Squares (IRLS)1



algorithm. Unfortunately, when the number of ovariates is far larger than the numberof observations, the ML estimate does not exist.To overome the urse of the dimension and the high ollinearity, it has been proposedto substitute the ML estimate by some PLS estimate. This approah requires the ex-tension of PLS to generalized regression. The algorithms derived in Nguyen and Roke(2002b), Marx (1996), Bastien et al. (2004) for the binary ase and in Nguyen andRoke (2002a) for the multi-lass ase, inorporate PLS in the lassial IRLS sheme.The algorithms proposed by Ding and Gentleman (2004) and Fort and Lambert-Laroix(2005) inorporate both PLS and a regularization tehnique in the IRLS sheme.Any inferential method in regression models is a blak box, with input arguments theresponse vetor and the design matrix, and with output variable, an estimate of theregression oeÆients. The interest of a new inferential method is both based (a) onthe tehnial ability to return an output variable, whatever the input arguments are,and (b) on the ability to provide an answer to the statistial problem.The �rst objetive of this ontribution is to study the di�erent extensions on a tehnialpoint of view. Setion 3 (resp. Setion 5) is devoted to the extensions of PLS to binarylogisti regression (resp. multi-lass logisti regression) : we give the algorithms, disussomputational aspets, and in some ases, we point out that the existene and uni-ity of the estimate, given the input arguments, strongly depend upon some tehnialparameters (suh as the initial point or the maximal number of iterations in iterativeshemes).The seond objetive is to ompare the di�erent extensions when applied to lassi�a-tion of miroarray data. To that goal, we ompare the error rate of the logisti (resp.polyhotomous) disrimination methods when the estimate of the regression oeÆientsraises from the extensions of PLS. This is done through Leave One Out and Resamplinganalyses on real data sets : Colon data (binary ase, Setion 4), NCI60 data (multi-lassase, Setion 6). The regression oeÆients allow the identi�ation of the ovariablesthat are deisive in the predition equation; this information an be exploited to builda feature seletion proedure, in order to identify a small subset of informative geneshighly orrelated to the outome. Feature seletion will be the seond approah for theomparison of some extensions of PLS. We will run a feature seletion algorithm based2



on Reursive Feature Elimination (Guyon et al. (2002)), on the Colon data set.We start with basi ingredients : Setion 2 is devoted to the desription of the logistimodel, the IRLS algorithm, di�erent PLS programs used in this paper, the polyhoto-mous disrimination method and the feature seletion algorithm. It also ontains ashort desription of the data sets.2. Basi IngredientsThe unfamiliar reader may refer to Fahrmeir and Tutz (2001) for a general de�nitionand presentation of GLM.Notations. By onvention, vetors are olumn vetors; for a vetor u, uk denotes itsk-th oordinate. 1In is the Rn-valued onstant vetor with oordinates 1, and for twointegers a < b, a : b is the vetor with omponents (a; a+ 1; � � � ; b� 1; b). For a matrixA, Ai;j is the element (i; j), A:;j is the olumn #j, and Ai;: is the row #i. If u is avetor, Au;: (resp. A:;u) is the matrix formed by piking out the rows of A (resp. theolumns) indexed by u. If u1; u2 are two vetors, Au1;u2 is the matrix [Au1;:℄:;u2 . Ifu1; � � � ; u� are Rn-valued vetors, [u1 : : : u�℄ is the (n� �) matrix with j-th olumn uj .A0 denotes the transpose matrix, A+ the Moore-Penrose pseudo-inverse matrix. For apositive-de�nite matrix A, pA is its prinipal square root and for a square matrix, jAjis the determinant. We denote by Idn the (n� n) identity matrix, and, for some vetoru, by Diag(u) the diagonal matrix with entries the elements of u. Finally, k � k is theEulidean norm and < �; � > the usual salar produt.2.1. Binary and Multinomial logisti regression. Let  be a positive integer, Ybe a f0; 1; � � � ; g-valued random variable and z be a Rp+1-valued vetor of regressors.Let � 2 R(p+1) be the parameter of the model, and heneforth referred to as the vetorof regression oeÆients. � an be read as the onatenation of  vetors �(y) 2 Rp+1,1 � y � . The distribution of Y is given by8y 2 f0; 1; � � � ; g; P(Y = yjz; �) = �y(�); with Xy=0 �y(�) = 1;3



where �y is related to the linear preditor �y(�) = z0�(y) through the link funtion�y(�) = h(�y(�)) and h(�y) = exp(�y)1 +Pl=1 exp(�l) : (1)By onvention, �(0) is the null Rp+1-valued vetor. Equivalently, one an de�ne a binary-valued random vetor ~Y 2 f0; 1g by the relations8y 2 f1; � � � ; g; h ~Yy = 1 and ~Yl = 0; l 2 f1; � � � ; g n fygi ; i� Y = y;h ~Yl = 0; l 2 f1; � � � ; gi ; i� Y = 0;By de�nition, we have E� [ ~Yl℄ = �l(�), where E� denotes the onditional expetation(onditionally to z) assuming � to be the true value of the parameter.Throughout the paper, the vetor of regressors z is of the form [1 x0℄0, i.e. it ontainsan interept term and p ovariates.2.2. Inferene by Maximum Likelihood. The inferene approah in GLM is usuallybased on the maximum likelihood method.2.2.1. Blok matries. We observe n independent realizations (~Y(k); z(k))1�k�n of (~Y; z),respetively olleted in a response vetor Y 2 f0; 1gn and in a design matrix Z 2Rn�(p+1) de�ned byY0 = [Y1 � � �Yn℄ where Y�k+j = ~Y (k)j ; and �k = (k � 1);Z�k+1:�k+;: = 26664z(k)0 0 � � � 0� � � � � � � � � � � �0 � � � 0 z(k)037775 2 R�(p+1); (2)for all 1 � k � n, 1 � j � . All the ovariates are olleted in a data matrixX 2 Rn�p suh that the i-th row ontains x(i). X is assumed to be standardized : eaholumn is entered with norm 1. Let �(�) 2 Rn de�ned by �k(�) = h((Z�)k) for allk 2 f1; � � � ; ng, so that �(�) = E� [Y℄. The log-likelihood is given byl(�) = Y0Z� + nXk=1 ln 1� Xl=1 ��k+l(�)! : (3)4



2.2.2. Case 1 : Z is full olumn-rank. When the ML estimate exists and is unique, thesolution to the normal equation Z0(Y��(�)) is usually omputed by a Newton-Raphsonalgorithm. Let W be a R(n)�(n) blok-diagonal matrix with k-th blok Wk 2 R�,1 � k � n,Wk = 26666664��k+1 (1���k+1) ���k+1 ��k+2 � � � ���k+1 ��k+���k+1 ��k+2 ��k+2 (1� ��k+2) � � � ���k+2 ��k+� � � � � � � � � � � ����k+ ��k+1 ���k+ ��k+2 � � � ��k+ (1���k+)37777775 : (4)Upon noting that the Hessian of the log-likelihood is �Z0W(�)Z, we have �̂ML = limt �twhere the Newton-Raphson sequene (�t)t is produed by the iterative shemeIRLS [Y;Z℄Initialization : hoose �0 2 R(p+1),While kZ0(Y ��(�t))k � threshold, (�t) = Z�t +W(�t)�1 �Y ��(�t)�,�t+1 = �t+�Z0W(�t)Z	�1 Z0 �Y ��(�t)� = �Z0W(�t)Z	�1 Z0W(�t) (�t).End.Eah Newton-Raphson iteration is thus a weighted regression of a pseudo-variable  onto the olumns of Z. This yields the so-alled Iteratively Reweighted Least Squaresalgorithm (IRLS, Green (1984)), a proedure heneforth denoted IRLS [Y;Z℄. The limitlimt �t does not depend upon the initial value; in the binary ase, hoosing �0 suh that�(�0) = (Y+0:5)=2 = 0:25((1In�Y)+3Y) works well (Fahrmeir and Tutz (2001)); inthe multi-lass ase, we suggest to �x �0 suh that �(�0) = (3 + )�1((1In �Y) + 3Y).It is proved in Albert and Anderson (1984); Santner and Du�y (1986); Lesa�re andAlbert (1989) that the ML estimate does not neessarily exist; the existene depends onthe on�guration of the sample points in the observation spae. Three di�erent asesan be distinguished, namely the separation, the quasi-separation and the overlap ase.Separation means that there exists � 2 R(p+1) suh that for 1 � k � n, 1 � j � ,h([1In X℄ �(j))k > ([1In X℄ �(l))k; 8l 2 f0; � � � ; g n fjgi i� Y(k�1)+j = 1; (5)5



where by onvention, �(0) = 0. Quasi-separation means that (5) holds with large in-equalities; overlap is the third situation. In the �rst two ases, the ML estimate doesnot exist sine the likelihood is maximized on the boundary of R(p+1) i.e. when k�ktends to +1. In the third ase, the ML estimate exists and is unique. These situationsare illustrated on Figure 1 in the binary ase, when p = 2 : we plot the n vetor-valuedovariates with oordinates Xk;: in R2 with a �-mark (resp. a Æ-mark) for samples fromthe �rst lass (resp. the seond). Separation means that some hyperplane separates theobservation spae into two half-spaes, the positive (resp. negative) half-spae ontain-ing the samples from lass 1 (resp. lass 0); quasi-separation means that some pointsare on the linear boundary; overlap means that the sample points an not be separatedby a hyperplane. Insert Figure 1 about here2.2.3. Case 2 : Z is not full olumn-rank. This situation always ours when p >> n.The log-likelihood depends on the parameter through the linear preditor Z� so that� is not identi�able. Nevertheless, we an always (a) formulate the model with a fullolumn-rank design matrix Zred and a parameter  2 Rrank(Z) by standard matriialmanipulations; (b) solve the estimation problem and obtain, when it exists, ̂ML; ()return to the initial statistial problem by de�ning �̂ML as the minimal norm vetoramong all the vetors satisfying Zred̂ML = Z�. Observe that when rank(Z) = n,whih is most often the ase when p >> n, the solution to the normal equation veri�es(Zred̂)(k�1)+j = ln� Y(k�1)+j1�Pl=1Y(k�1)+l� ; 81 � k � n; 1 � j � ;whih implies k̂k = +1. Hene �̂ML an not exist, and this naturally alls for adimension redution, i.e. for reduing the high p-dimensional preditor spae to alower �-dimensional spae.2.3. Partial Least Squares (PLS). Partial Least Squares is a regression tool thatombines regression and dimension redution (Wold (1975); Helland (1988)). The mostfamous dimension redution within regression, is ertainly the method of Prinipal Com-ponent Analysis (PCA). In PCA, orthogonal linear ombinations t of the ovariates are6



sequentially onstruted to maximize the variane of the linear ombination (Jolli�e(1986)). In PLS, the idea is to onstrut super-ovariates t whih are preditive of theresponse variable. Orthogonal linear ombinations t of the ovariates are sequentiallyonstruted to maximize the ovariane between t and the response variable (see Phatakand De Jong (1997) and referenes therein).We �rst briey desribe the lassial univariate method whih is, in our opinion, de-voted to the ase when the design matrix is on the form [1In X℄. We then propose anextension of PLS for sparse design matries on the form (2); when  = 1, this extensionand the lassial method oinide. Till now, we onatenated the n response variablesin a vetor of length n; nevertheless, some extensions of PLS to GLM are based onthe array-onatenation of the responses, in a n �  matrix. Hene, we onlude thisdesription by the mention of MPLS (Multivariate PLS), a PLS tehnique derived forarray-valued response variables.2.3.1. Univariate PLS : PLS [Y;X;W; �℄. Let Y 2 Rn be a response variable andX 2 Rn�p be a design matrix, whih is assumed to be standardized in olumns (eaholumn is entered with norm 1). Choose an integer � > 0. PLS proeeds as follows :Initialize :f0 = Y � q0 1In; with q0 = (1I0nY )=(1I0n1In)E0 = X .For k = 1; � � � ; �,tk = Ek�1 !k; with !k = E 0k�1fk�1,fk = fk�1 � tk qk; with qk = (t0kfk�1)(t0ktk)�1,Ek = Ek�1 � tk p0k; with pk = (E 0k�1tk)(t0ktk)�1.End.By onstrution, (t1; � � � ; t�) is an orthogonal family and the PLS omponents tj areorthogonal to the onstant vetor 1In. This yields a deomposition on the formY = (1I0n1In)�1 (1I0nY ) 1In + q1t1 + � � �+ q�t� + f� = [1In X ℄�̂PLS;� + f�;7



where f� is orthogonal to the spae spanned by (1In; t1; � � � ; t�). When Z = [1In X ℄ is offull olumn-rank, �̂PLS;� is uniquely de�ned and �̂PLS;�2:p+1 is given by (see Helland (1988))�̂PLS;�2:p+1 = 
 (P 0 
)�1 Q with 
 = [!1 � � � !�℄; P = [p1 � � � p�℄; Q = [q1 � � �q�℄0; (6)otherwise, appliation of the above algorithm with a non full olumn-rank matrix Zyields an estimate �̂PLS;� whih is the minimal norm vetor among all the � suh thatY � f� = Z�. In addition, � 7! k�̂PLS;�k is non-dereasing. These assertions are provedin Appendix A (the seond one results from De Jong (1995)).There exists a maximal number of PLS omponents, �max, whih is lower or equal torank(X) and depends upon Y ; more preisely, �max is equal to the number of distintpositive eigenvalues of XX 0 suh that for some orresponding eigenvetor �j , �0jY 6=0 (Helland (1990)). When � = �max, Y � f�max is the projetion of Y on the spaespanned by the olumns of Z, and PLS regression is nothing more than Least Squaresregression.In the present desription, projetions and orthogonalities are derived and intendedwith respet to the Eulidean salar produt. The algorithm an be modi�ed to takeinto aount an eventual heterosedastiity of the response variables, by substitutingthe Eulidean salar produt by a W -salar produt where W is a positive-de�nitematrix (Fort and Lambert-Laroix (2005)). Heneforth, we will refer to this proedureas PLS [Y;X;W; �℄. The next two properties, used in the sequel, are trivial to verify(and the proof is omitted for brevity)(i) the estimate �̂PLS;�(1) and the sores (t(1);j)j returned by PLS [Y;X;W;�℄ are relatedto those returned by PLS [pWY;pWX; Idn; �℄ (denoted with the subsript (2))by �̂PLS;�(1) = �̂PLS;�(2) ; pWt(1);j = t(2);j :(ii) for any �, � > 0, the estimate returned by PLS [Y + �1In; X; �Idn; �℄ is equal tothe estimate returned by PLS [Y + �1In; X; Idn; �℄.2.3.2. An extension of univariate PLS : PLS* [Y;Z;W; �℄. Let Y 2 Rn be a responsevariable and Z 2 R(n)�((p+1)) be a design matrix on the form (2). When  > 1, Zontains  olumns with null entries exept n oeÆients equal to 1, namely the olumns8



Z�;1;Z�;p+2 � � � ;Z�;1+(�1)(p+1). We ollet these olumns in the (n� ) matrix �.Despite the speial struture of Z, one an deide to apply the lassial PLS algorithm.Nevertheless, we want the olumns of � to play the same role as the vetor 1In in thelassial algorithm; that is, we want (a) projet Y onto �, (b) onsider the residualdesign matrix obtained by projeting the olumns of Z on the orthogonal of the spaespanned by �; () de�ne the PLS omponents in the spae spanned by the residualdesign matrix. More preisely, our extension proeeds as follows :Regress Y onto the olumns of � :q0 = (�0�)�1�0Y .Deate Y and Z :f0 = Y � �q0,~Z = Z� �(�0�)�1�0Z.Extrat and standardize the new design matrix :let �Z be the n� np matrix formed with the non-null olumns of ~Z.standardize the (entered) olumns of �Z to have norm 1; let E0 be thestandardized matrix.For k = 1; � � � ; �,tk = Ek�1 E0k�1fk�1,fk = fk�1 � tk (t0kfk�1)(t0ktk)�1,Ek = Ek�1 � tk (t0kEk�1)(t0ktk)�1.End.This yields a deomposition of the formY = �q0 + q1t1 + � � �+ q�t� + f� = Z�̂PLS�;� + f�:Here again, �̂PLS�;� is uniquely de�ned if Z is full olumn-rank; otherwise, �̂PLS�;� isthe shortest norm vetor among the admissible ones. The Eulidean geometry an bereplaed by a weighted one, indued by a positive de�nite matrix W 2 Rn�n. Thisproedure is heneforth denoted PLS* [Y;Z;W; �℄.9



2.3.3. Multivariate PLS :MPLS [Y a; X; �℄. Let Y a 2 Rn� be an array-valued responsevariable and X be a Rn�p data matrix. MPLS amounts to �nding two sets of weights!;  in order to reate a linear ombination t = X! of the olumns of X (resp. a linearombination u = Y a of the olumns of Y a) suh that the square of their ovarianeis maximal under the onstraints, 0 = 1, !0! = 1. X and Y a are then deated withrespet to t; the proess is repeated with the deated matries. This yields the followingalgorithm : let � be a positive integerLet f0 and E0 be formed by respetively standardizing the matries Y a and X(the olumns of f0 and E0 are entered with norm 1).For k = 1; � � � ; �,let !k be an eigenvetor of E 0k�1fk�1f 0k�1Ek�1, orresponding to the largesteigenvalue;tk = Ek�1 !k ;Ek = Ek�1 � tk(t0kEk�1)(t0ktk)�1;fk = fk�1 � tk(t0kfk�1)(t0ktk)�1;End.This yields a deomposition of the formY = 1Inq00 + t1q01 + � � �+ t�q0� + f� = [1In X ℄ �̂MPLS;� + f�where qj 2 R and �̂MPLS;� 2 R(p+1)�. Column #j of �̂MPLS;� is the MPLS estimateof �(j).The reader may refer to Hoskuldsson (1988); Garthwaite (1994) for an interpretationand pratial implementations of this algorithm.2.4. Polyhotomous Disrimination. Given an estimate of the regression oeÆ-ients �̂, the lass of a new sample haraterized by a vetor of ovariates x 2 Rp ispredited by Ŷ = argmaxy2f0;��� ;gP�Y = yjz = [1 x0℄; �̂� ;a rule whih is, by (1), equivalent toŶ = y i� hz0 �̂(y) � z0 �̂(l); 8l 2 f0; � � � ; gi ;10



where, by onvention, �̂(0) = 0. In the binary ase, this method is alled LogistiDisrimination. Usually, �̂ is the ML estimate. Sine, in the present framework n << p,the ML estimate is unlikely to exist, we substitute this estimate by one raising fromextensions of PLS to GLM, detailed in Setion 3 for the ase  = 1, and in Setion 5 forthe ase  > 1.To assess the predition, we will onsider aM -fold ross-validation and/or a Resamplinganalysis. In aM -fold ross-validation, the data set (of size say n) is divided intoM nonoverlapping groups of roughly same size; the model is �tted, using the samples ofM �1groups ombined together and is tested on the remaining one. This is repeatedM times.The ase M = n is the so-alled Leave One Out analysis. In a resampling analysis, werun N = 100 out of sample analyses (i.e. the regression model is onstruted usingthe learning samples and outomes of the test samples are predited) on N randomsubdivisions of the data set into a learning set and a test set following a 2:1 sheme; theproportion of samples from eah lass in the learning set is the proportion of eah lassin the data set. For a given data set, the same N subdivisions are used to ompare thedi�erent algorithms. Furthermore, some methods depend upon an hyperparameter (e.g.the number of PLS omponents �); it is determined by Leave One Out ross validation(LOOCV) error rate for the learning set.2.5. Feature Seletion by iterative thresholding. Guyon et al. (2002) proposea feature seletion algorithm in the ase of binary output, based on Support VetorMahine (SVM) with Reursive Feature Elimination (RFE). Their bakward seletionproedure starts with all the available genes; the SVM is trained and genes having thehighest vetor weights are seleted to form the next model. The proess is repeated tillremoving all the genes. The number of disarded genes between two suessive modelsis hosen by the user. This algorithm yields a family of nested models, and Guyon etal. provide several metris of quality in order to ompare them. Classially, aurayof a model is measured by ross-validation : a proper way to evaluate the performaneof a model is to divide the data set into a learning set and a test set, learn the geneseletion rule on the training samples and measure the performane on the left out testsamples. The test samples have to be external to the iterative gene seletion proess,11



otherwise one introdues a seletion bias when evaluating the performanes (Ambroiseand MLahlan (2002)).Based on these onsiderations, we propose the following feature seletion algorithm. Letthe data set be divided into a learning set and a test set; �t the full model using thelearning samples and measure its performane using the test samples. Disard the 2genes with the lowest regression oeÆient (in absolute value) and �t this new model,using again the learning set. Observe that sine, in our onvention, the design matrixis standardized per olumns, this ranking riterion orresponds to the riterion adoptedin Zhu and Hastie (2004). Repeat this proess till the obtention of a model of minimalsize. To test the predition auray of a model, we use 10-fold ross-validation. Observethat, sine there is no guarantee that the same subset of genes will be extrated at eahlevel of the ross-validation, we test a rule haraterized by a number of features andnot a rule haraterized by a given feature subset.2.6. Real data sets. We will use the Colon data and the NCI60 data, publily availableat Colon : http://miroarray.prineton.edu/onology/a�ydata/index.htmlNCI60: http://disover.ni.nih.gov/datasetsNature2000.jsp.and largely desribed resp. in Alon et al. (1999) and Sherf et al. (2000). The Colon dataset ontains 62 tissue samples (40 'tumor tissues' and 22 'normal tissues') with 2000genes. The Colon data are pre-proessed as desribed in Fort and Lambert-Laroix(2005). This step disards some genes based on informations from the learning samples.Hene, the list of the disarded genes varies when the learning set varies, and the numberof available ovariates depends on the subdivision learning set / test set of the data set.The NCI60 data set ontains 35 tumor samples from 5 aner types (6 entral nervoussystem, 8 renal, 8 melanoma, 7 olon and 6 leukemia), with 1415 genes. Missing valuesexist for NCI60 data : we drop out genes some genes and impute missing values asdesribed in Ding and Gentleman (2004) so that there remain 1299 genes. Both thedata sets are standardized : for eah gene, the vetor of expression levels from thelearning samples is entered with norm 1. The same linear transformation is applied12



on the vetor of expression levels from the test samples (the vetor is not neessarilyentered with norm 1).3. Extensions of PLS to GLM, in the binary aseIn this setion, Z 2 Rn�(p+1) is equal to [1In X℄. The k-th oordinate of the vetor�(�) is (1 + exp(�(Z�)k))�1 and W(�) is a diagonal matrix with k-th entry (�k(1 ��k))(�).3.1. Nguyen and Roke : NR [Y;Z; �℄.3.1.1. The Nguyen & Roke's algorithm. The method proposed by Nguyen and Roke(2002b) proeeds into two steps; let � be a positive integer.Run PLS [Y;X; Idn; �℄ and return the �rst � PLS omponents t1; � � � ; t�. SetT� = [1In t1 � � � t�℄ 2 Rn�(�+1).Run IRLS [Y;T�℄ and return �̂, the limiting value of the Newton-Raphsonsequene (a regression oeÆient in terms of the PLS omponents (tj)j��).Express the regression in terms of the original explanatory variables and return�̂NR;�.Roughly speaking, a dimension redution is �rst performed in order to replae theinitial design matrix Z by a new full olumn-rank design matrix T� that ollets the� PLS ovariates most informative on the output variable Y. Then, a lassial logistiregression is performed onto the olumns of the new design matrix.3.1.2. Computational aspets. Consider the singular value deomposition ofX = UDV 0where U and V are orthogonal (n� n) and (p� p) matries and D is a (n � p) matrixwith null entries exept r = rank(X) entries on the �rst diagonal. Replaing Z forZred = [1In U:;1:rD1:r;1:r℄ in the above algorithm yields an unique estimate ̂NR;� 2 R1+r,when it exists. �̂NR;� is the vetor of minimal norm among all the vetors satisfying13



Zred̂NR;� = Z�, and is related to ̂NR;� through the relations�̂NR;�1 = ̂NR;�1 and �̂NR;�2:p+1 = V:;1:r̂NR;�2:r+1: (7)3.1.3. Existene of the estimate �̂NR;�. Whatever (Y;Z), the matrix T� is uniquelyde�ned whenever � � �max. If � > �max, the PLS omponents (tj)j>�max are nullvetors (up to numerial approximations).In some ases, there exists �� suh that IRLS [Y;T��℄ an not onverge : the n samplepoints in the observation spae R� are (quasi)-separated and the ML estimate does notexist. Observe that sine the olumns of the design matrix Tj are pairwise orthogonal,if IRLS [Y;T�� ℄ does not onverge, then IRLS [Y;Tj℄ an not onverge, for any �� �j � �max. In ase of non-onvergene, we deide to stop the IRLS step when separationis deteted; the estimate �̂NR;�� is set to the urrent value of the Newton-Raphsonsequene �t, a value of the parameter that orretly separates the learning samples intwo lasses. Applying suh a rule yields an estimate that depends upon the initial valueof the Newton-Raphson sequene.3.2. Marx : IRPLS [Y;Z; �; �℄.3.2.1. The Iteratively Reweighted PLS algorithm. The extension proposed by Marx(1996) proeeds also into two steps; for some positive integers (�; �), � � �,Initialization :Choose �0.Step A : While non-onvergene,Set  t = Z�t +W(�t)�1 �Y � �(�t)�.Run PLS [ t;X;W(�t); �℄ and set �t+1 = �̂PLS;�, and T� = [1In t1 � � � t� ℄.End.Step B : Run IRLS [Y;T� ℄ and return �̂� , the limiting value of the Newton-Raphson sequene (a regression oeÆient in terms of the PLS omponents).Express the regression in terms of the original explanatory variables, and return�̂M;�;� . 14



Step A is nothing else than IRLS, in whih eah weighted Least-Squares regression isreplaed with a weighted PLS regression with a �xed number of omponents �. Atonvergene, the �rst � PLS ovariates (tj)j�� are olleted in T� . This new designmatrix T� is then plugged in a ML inferential sheme (Step B).The author also disusses the hoie of (�; �), and initialize �0 as suggested in Setion 2.2.3.2.2. Computational aspets. Here again, we an substitute the original design matrixZ for the matrix Zred 2 Rn�(1+rank(X)), de�ned in Setion 3.1.2. This yields an estimatêM;�;� of the vetor of regression with respet to the olumns of Zred; the vetor ofregression in terms of the original explanatory variables �̂M;�;� is then obtained as in(7).3.2.3. Existene of the estimate �̂M;�;� . Due to the PLS algorithms, � has to be hosenlower or equal to some upper bound �max that, in theory, depends on (Z; ( t)t; (Wt)t).In pratie, on the onsidered data sets, �max is onstant and equal to n � 1.When � = �max and Z is full rank, step A never onverges; indeed, by de�nition of PLS,Z�t+1 is the W(�t)-projetion of  t 2 Rn onto the n-dimensional spae spanned by theolumns of Z. This implies that for all t � 0, Z�t+1 =  t and, omponent-wise,(Z�t+1)k = �((Z�t)k) where �(u) = 8<: 1 + u+ exp(u); for all k, suh that Yk = 1;�1 + u� exp(u) for all k, suh that Yk = 0.Step A never stops sine � does not have a �xed point. This non-onvergene may ourwhen � < �max too.In addition, IRLS is not guaranteed to onverge, but here again, we an substitute thestopping rule based on the onvergene of (�t)t by a stopping rule based on the detetionof the separation.3.3. Ding and Gentleman : IRPLSF [Y;Z; �℄.3.3.1. The Iteratively Reweighted PLS-Firth algorithm. Bull et al. (2001) propose analgorithm lose the ML inferential approah, to make robust the ML estimate in asesof small samples, when Z is a full olumn-rank matrix. They prone the use of the15



Firth-penalized ML estimate whih is de�ned as the unique maximum of the penalizedlog-likelihood funtion l�F (�) = l(�)� 0:5 ln jZ0W(�)Zj where l is given by (3), and theregularization term �0:5 ln jZ0W(�)Zj is minimal at � = 0. The maximum is omputedby a Newton-Raphson algorithm, and eah loop of this iterative algorithm an be under-stood as a weighted least squares regression of some so-alled pseudo-variable  t ontothe olumns of Z.Ding and Gentleman (2004) extends this regularization tehnique to the high-dimensionalregression framework n << p by substituting the weighted least squares regression bya weighted PLS one. This yields the following algorithm. Let � be a positive integer.Initialization :Choose �0.While non onvergene,Set H t = pW(�t)Z(Z0W(�t)Z)+Z0pW(�t), and let ht be the diagonalmatrix with diagonal entries (H tkk)1�k�n.Set ~W(�t) = (Idn + ht)W(�t).Set  t = Z�t + h ~W(�t)i�1 �(Idn + 0:5ht)Y� (Idn + ht)�(�t)�.Run PLS [ t;X; ~W(�t); �℄ and set �t+1 = �̂PLS;�.End.Return �̂DG;� = limt �t.The authors also provide programs in R, available at http://www.bioondutor.org/, inwhih they initialize their algorithm by setting Z�0 =  0 = 0:75Y+ 0:25(1In �Y).3.3.2. Computational aspets. Here again, we an substitute the original design matrixZ for the matrix Zred 2 Rn�(1+rank(X)), de�ned in Setion 3.1.2. This yields an estimatêDG;� of the regression oeÆients with respet to the olumns of Zred; the vetor ofregression in terms of the original explanatory variables is then obtained as in (7).3.3.3. Existene of the estimate �̂DG;�. Due to the PLS algorithms, there exists an up-per bound for the value �, denoted �max, whih depends upon (Z; ( t)t; (W(�t))t). Inpratie, �max is onstant over the iterations.16



When � = �max, the above algorithmmaximizes the funtion � 7! l(�)�0:5 ln jZ0W(�)Zj+,where for some positive semi-de�nite matrix A, jAj+ stands for the produt of the pos-itive eigenvalues. Upon noting that ��k ln jAA0j = Trae((A0A)�1 A0 ��kA) for anymatrix A suh that A0A invertible (Bates (1983)), the gradient is given by Z 0((Idn +0:5h)Y � (Idn + h)�(�)) where h is a diagonal matrix with diagonal equal to that ofthe hat matrix H = pWZ(Z0WZ)+Z0pW. When Z is full rank, whih is in pratiethe ase when n << p, h is the identity matrix, and the normal equations possess anexpliit solution : �̂DG;�max = Z+ (ln 3 Y � ln 3 (1In �Y)).When � < �max, the algorithm is a kind of trunated Newton-Raphson algorithm :starting from �t, a Newton-Raphson iteration is performed and the new value of the pa-rameter is projeted onto a subspae of dimension � spanned by the PLS omponents, asubspae whih may be di�erent at eah iteration. This algorithm may not onverge; onsome examples, we have sometimes observed a yli behavior, i.e. the existene of, say,two points �1;1; �1;2 suh that for all suÆiently large t, �2t = �1;1 and �2t+1 = �1;2.3.4. Fort and Lambert-Laroix : RPLS [Y;Z; �; �℄.3.4.1. The Ridge-PLS algorithm. The algorithm proposed in Fort and Lambert-Laroix(2005) divides into two steps. Let Rs be a diagonal s � s matrix with diagonal entries[0 1 � � � 1℄, and �; � be resp. a positive real number and a positive integer.Initialization :Choose �0.Step A : While non onvergene,set  t = Z�t +W(�t)�1 �Y ��(�t)�,set �t+1 = �Z0W(�t)Z+ �Rp+1��1 Z0W(�t) t.End.Step B : Run PLS [ 1;X;W(�1); �℄ and return �̂FL;�;� = �̂PLS;�.Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML riterionl�R(�) = l(�) � 0:5�kRp+1 �k2. The pseudo-variable at onvergene of this iterativeproedure,  1 has a linear struture on the form Z�1 + �, where onditionally on �117



being the true value of the parameter, � is a zero-mean noise with dispersion matrixW(�1)�1. PLS is then alled with input response variables  1 and a weight matrixW(�1) whih takes into aount the heterosedastiity of the noise �.The authors also provide programs in MATLAB and R (resp. available at http://www-lm.imag.fr/lm-sms/Gersende.Fort,Sophie.Lambert), in whih the algorithm is initial-ized as in Setion 2.2, by setting �(�0) = 0:75Y+ 0:25(1In �Y).3.4.2. Computational aspets. Set ~�1 = �1 and ~�2:p+1 = V 0�2:p+1, where V is de�ned inSetion 3.1.2. We have l�R(�) = l�;redR (~�1:r+1)� 0:5Pp+1k=r+2(~�k)2 where for  2 Rr+1,l�;redR () = Y0Zred + nXk=1 ln(1��redk ())� 0:5�kRr+1k2;Zred and r are de�ned in Setion 3.1.2 and �redk () = (1 + exp(�(Zred)k))�1. Thisimplies that � maximizes l�R if and only if ~�1:r+1 maximizes l�;redR and ~�k = 0, r + 2 �k � p+1. As a onsequene, in Step A, we an replae Z for Zred. At onvergene, thisyields 1 2 Rr+1, a vetor of regression with respet to the olumns of Zred; the vetorof regression in terms of the original explanatory variables is the shortest norm vetoramong all the � satisfying Zred1 = Z� and is thus obtained as in (7). Sine the samesubstitution an be done in the PLS step, all the steps of the above algorithm an berun with Zred instead of Z; we obtain ̂FL;�;� and dedue �̂FL;�;� as in (7).3.4.3. Existene of �̂FL;�;�. The funtion l�;red is stritly onave and tends to �1 whenkk ! +1 (oerivity); the maximum exists and is unique. This means that, in StepA, any onverging sequene has the same limit whatever �0; sine the PLS estimate isuniquely de�ned given the entries ( 1;X;W; �), ̂FL;�;� exists and is unique. And so�̂FL;�;� is.When � = 0, limt �t is the ML estimate, and as disussed in Setion 2.2, it never existsif rank(Z) = n whih is in pratie the ase when n << p. Step A never onverges thusexplaining the ondition � > 0. When �! +1, limt �t tends to [ln(�y=(1� �y)); 0; � � � ; 0℄0where �y = n�1Pnk=1Yk; i.e. limt�(�t) is the ML estimate of the probability of suesswhen the observations are independent and identially distributed Bernoulli variables.The weight matrix tends to ! = �y(1 � �y)Idn and �̂FL;+1;� is related to �̂PLS;�, the18



estimate returned by PLS [Y;X; Idn; �℄ by�̂FL;+1;� = 1�y(1� �y) �̂PLS;� + �ln( �y1� �y )� !�1�y� [1; 0; � � � ; 0℄0:This disussion evidenes that � has to be hosen suÆiently large, but not too large.3.4.4. Choie of �. The weakness of the method RPLS, ompared to some previousones, is that it depends on two parameters (�; �), while the previous methods onlydepend on �. Fort and Lambert-Laroix (2005) propose to determine � at the end ofStep A (independently of �), by hoosing the value that minimizes the BIC riterionBIC(�; �) = �2l(�) + log(n) Trae�pW(�)Z(Z0W(�)Z+ �Rp+1)�1Z0pW(�)� ;evaluated at � = limt �t, a limit depending on �. In pratie, the riterion is minimizedon a range hosen by the user; we observed that, in some ases, the BIC riterion isminimal when �! +1 so that � is set to the upper limit of the range. In the followingappliations, the BIC riterion is evaluated on 61 log10-linearly spaed points within therange [10�3; 103℄. In the literature, the hoie of � by minimization of a GCV riterionis often advoated; in the present ase, this riterion is equal to Pnk=1f��2k 1IYk=1 +(1��k)�21IYk=0g, whih is minimal when �k = 1IYk=1 + (1� 1IYk=0). When Z is fullrow-rank, this ours by hoosing � = 0 (i.e. when � = �̂ML whih is of in�nite norm)so that the GCV riterion is not pertinent for the present framework.3.5. Bastien, Esposito Vinzi and Tenenhaus : PLSGLR [Y;Z; �℄.3.5.1. The PLS Generalized Linear Regression algorithm. Bastien et al. (2004) develop amethod in the ase n > p, for a full olumn-rank design matrix Z = [1In X℄. The methodis based on the following observation : PLS de�nes t1 by the relationPpj=1X:;j hX:;j ;Yiwhere hX:;j;Yi is, up to the multipliative term kX:;jk2, the ordinary Least Squaresregression oeÆient of Y on X:;j. The idea is to extend PLS to GLM by replaing thisordinary regression by a generalized linear regression, and to iterate the mehanism toonstrut (tj)1�j��. 19



Bastien (2004) apply their algorithm to Cox model in the ontext of highly multidimen-sional data (n << p). We apply their algorithm to the design matrix Z. Their methoddivides into two steps; let � be a positive integer.qInitialization :Set E0 2 Rn�p be the entered ovariate matrix (E0 = X� n�11In1I0nX).Step A : Constrution of the PLS omponentsFor k = 0; � � � ; �� 1,For j = 1; � � � ; p,Run IRLS [Y; [1In t1 � � � tk Ek:;j℄℄ and return ak+1;j , the limitingvalue of the Newton-Raphson sequene.Set wk+1;j = ak+1;jkEk:;jk2.End.Set tk+1 = Ekwk+1;:kwk+1;:k�1 and Ek+1 = Ek� tk+1t0k+1Ekktk+1k�2.End.Step B : Run IRLS [Y; [1In t1 � � � t�℄℄ and return �̂� the limiting value of theNewton-Raphson sequene, a regression oeÆient in terms of the PLS ompo-nents (tj)1�j��.Express the regression in terms of the original explanatory variables, and return�̂B;�.By onvention, the matrix [t1 � � � t0 E0:;j℄ is the olumn matrix E0:;j . Bastien et al.also disuss the hoie of �, and propose a simpli�ation of the omputation of the PLSomponents whih onsists in setting to zero the non-signi�ant oeÆients ak;j .Contrary to the four previous methods, this method is not invariant by re-parameterization;substituting Z for Zred in the above proedure, yields ̂B;� suh that Z�̂B;� 6= Zred̂B;�.3.5.2. Existene of the estimate �̂B;�. Here again, the di�erent IRLS algorithms are notguaranteed to onverge; they an be stopped when separation is deteted. Observethat if for some �, the onvergene problems only our in Step B when regressing Yon T� = [1In t1 � � � t�℄, then none of the IRLS proedures of Step A with k > � anonverge. Indeed, if there exists � 2 R�+1 suh that for all k = 1; � � � ; n, (T��)k � 020



i� Yk = 1, then there exists ~� 2 R�+2 suh that for all k, ([T� E�:;j ℄~�)k � 0 i� Yk = 1.This phenomenon naturally exhibits an upper bound for the set of the admissible valuesof the hyperparameter �.4. Appliation : binary lassifiation of MiroarraysThis setion is devoted to the omparison of the di�erent estimates in terms of thelassi�ation rule on the Colon data set. All the genes remaining after the pre-proessingstep are inluded in the model.We run the di�erent extensions of PLS for some values of � : due to the dimensionof the data sets, we think that � has to be hosen small enough in order to perform adimension redution; this is the reason why we hoose � lower or equal to 6.4.1. A Leave One Out analysis. We report in Table 1 the total number of mislas-si�ed samples over the 62 suessive test sets (olumns T), and the mean number ofmislassi�ed samples in the 62 learning sets of size 61 (olumns L). We indiate by thesign (�) results whih have to be arefully onsidered for some reasons detailed below.In the last row of the table, we report the number of mislassi�ed samples when foreah of the 62 analysis, we hoose � 2 f1; � � � ; 6g that minimizes the number of mislas-si�ed test samples. In other words, the last row gives the number of samples that aresystematially mislassi�ed, whatever � 2 f1; � � � ; 6g.Insert Table 1 about hereThe number of ovariates inluded in the regression model depends on the subdivisionlearning set/ test set, due to the pre-proessing proedure; in pratie, it is in the rangef1200; � � � ; 1224g, with mean 1221:40.The NR algorithm. For � = 1; 2; 3, all the IRLS alls onverge; for � = 4, separation isdeteted for one subdivision (namely, when the test set ontains sample #55 or N36);for � = 5; 6, all the IRLS steps are stopped when separation is deteted. The resultsgiven for � = 4; 5; 6 thus depend on the initialization of IRLS and in that sense are notsigni�ative. Samples N34; 36 and T33; 36 are systematially mislassi�ed, whatever21



the value of � is.The IRPLS algorithm. For � = 1; 2, we observe on the 62 subdivisions, a yli behaviorin Step A and onvergene of IRLS in Step B. For � = 3, some of the paths in Step A donot onverge; for � = 4; 5; 6, none of the paths in Step A onverge. As a onsequene, weonly report the results obtained for � = 1; 2, when Step A is stopped after tmax = 200iterations, but insist on the fat that these results depend on tmax. Samples N34; 36and T33; 36 are systematially mislassi�ed, whatever the value of � is.The IRPLSF algorithm. For � = 1, we observe a periodi behavior in 28 ases : �̂DG;�thus depends on the maximal number of iterations tmax allowed in the iterative part ofthe proedure. The results reported in Table 1 are obtained with tmax = 200: For � =2; � � � ; 6, the iterative part onverges. Samples N34; 36 and T33; 36 are systematiallymislassi�ed, whatever the value of � is.The RPLS algorithm. The mean value of the hyper-parameter � over the 62 analysisis 24:70. Samples N8; 34; 36 and T33; 36 are systematially mislassi�ed, whatever thevalue of � is.The PLSGLR algorithm. The PLS super-ovariates t1, t2, t3 are perfetly de�ned,sine the IRLS algorithms all onverge; for t4, some regressions in Step A are stoppedbeause separation is deteted; for t5; t6, separation systematially ours. Step Balways onverges for � = 1; 2, and for � = 3, it is stopped due to detetion of separationin one ase (namely, when the test set ontains sample #55 i.e. N36). For � = 4; 5; 6,separation is systematially deteted. The results given for � = 4; 5; 6 thus depend onthe initialization of IRLS and in that sense are not signi�ative. Samples N34; 36 andT33; 36; 37 are systematially mislassi�ed, whatever the value of � is.4.2. A Resampling analysis. For PLSGLR, when determining the value of the hyper-parameter � by LOOCV training set error rate, the minimum is found over the valuesof � suh that separation never ours in all the IRLS alls of Step A; and when this isnever the ase, the default value is 1. For IRPLSF, this minimum is over the values of� suh that Step A onverges.Figure 2[left℄ shows the boxplot of the test set error rate based on the 100 subdivisions,for the NR, IRPLSF, RPLS and PLSGLR algorithms; and for four other methods :22



DLDA (Diagonal Linear Disriminant Analysis), DQDA (Diagonal Quadrati DA), k-nearest neighbors (k-NN) and weighted k-NN (k-WNN). For the last two algorithms, thedistane is the Eulidean one, the number of neighbors k is hosen by LOOCV trainingset error rate in the grid f1; 3; � � � ; 19g, and for k-WNN, the weight of eah gene is givenby the square of the t-statisti omputed on the learning samples (whih is equal to theratio of the between-groups to within-groups sum of squares). This t-test sore ranksgenes based on their individual preditive ability. Table 2 shows the mean error rateand its standard deviation, and the mean value of � (k for k-NN and k-WNN).Insert Figure 2 and 2 about here4.3. Conlusion. These analyses show that DLDA, DQDA and k-NN behave poorly :they really su�er from the dimensionality of the problem, from the multiollinearity ofthe design matrix, and from the noise due to the presene of irrelevant genes. They donot perform neither dimension redution nor regularization. Comparison of k-NN andk-WNN shows that introdution of all genes with an equal importane greatly disturbthe lassi�er; smoothing out the role of the genes with weak t-test sore drops noise andimproves the performanes of the k-NN lassi�er. The boxplot shows that k-WNN, NR,IRPLSF and RPLS have an equivalent behavior. The last three methods have the greatadvantage of providing an estimate of the regression oeÆients, a ruial knowledgefor the identi�ation of genes that really ontribute to the lassi�ation proess, and forfeature seletion. In Setion 7, we ompare NR, IRPLSF and RPLS when applied tothe feature seletion sheme presented in Setion 2.5.The Colon data set is often studied in the Miroarrays literature; we point out that theabove results of the Leave One Out analysis orroborate earlier observations. In Alonet al. (1999), lassi�ation is based on a deterministi-annealing algorithm and samplesN8; 12; 34 and T2; 30; 33; 36; 37 are mislassi�ed. In Furey et al. (2000), the lassi�ationis based on SVM and samples N8; 34; 36 and T30; 33; 36 are mislassi�ed.5. Extension of PLS to GLM, in the multi-lass ase5.1. Nguyen and Roke : MNR [Y;Z; �℄.23



5.1.1. The Multiple NR algorithm. The method proposed by Nguyen and Roke (2002a)proeeds into two steps; let � be a positive integer. Denote byYa the array-onatenationof the response variables : Yak;: is ~Y(k), 1 � k � n.Run MPLS [Ya;X; �℄ and return the �rst � PLS omponents t1; � � � ; t�. SetT� = [1In t1 � � � t�℄ 2 Rn�(�+1).Run IRLS [Y;T�℄ and return �̂, the limiting value of the Newton-Raphsonsequene (a regression oeÆient in terms of the PLS omponents (tj)j��).Express the regression in terms of the original explanatory variables and return�̂NR;�.As for the binary ase, a dimension redution is �rst performed in order to replae theinitial design matrix X by a new full olumn-rank design matrix T� that ollets the �PLS ovariates most informative on the output variable Ya. Then, a lassial logistiregression is performed onto the olumns of the new design matrix.5.1.2. Computational aspets. Consider the singular value deomposition ofX = UDV 0where U and V are unitary matries and D is a (n� p) matrix with null entries exeptr = rank(X) entries on the �rst diagonal. Replaing X for Xred = U:;1:rD1:r;1:r in theabove algorithm yields an unique estimate ̂NR;� 2 R(1+r), when exists. �̂NR;� is relatedto ̂NR;� through the relations[�̂NR;�℄(j)1 = [̂NR;�℄(j)1 and [�̂NR;�℄(j)2:(p+1) = V:;1:r[̂NR;�℄(j)2:(r+1);for all j 2 f1; � � � ; g.5.1.3. Existene of the estimate �̂NR;�. The omments for the binary ase (Setion 3.1.3)remain valid for the multi-lass ase.5.2. Ding and Gentleman : MIRPLSF [Y;Z; �℄.5.2.1. The Multiple IRPLSF algorithm. The multi-lass algorithm follows the same linesas the two-lass algorithm, and is based on a PLS within IRLS sheme, till onver-gene (Ding and Gentleman (2004)). We point out that the implementation of PLS24



di�ers from the di�erent programs given in Setion 2.3 (univariate PLS, its extensionPLS* and the multivariate PLS). Briey, they use a univariate PLS in whih the ini-tialization step is omitted, i.e. they set f0 = Y and E0 = Z. This means that ateah PLS iteration, the PLS sore is hosen in the spae spanned by all the olumnsof Z (inluding the binary-valued olumns due to the addition of an interept term inthe model); usually, the PLS sore is in the spae spanned by the olumns of Z andorthogonal to the subspae spanned by the binary-valued olumns. We refer to thisimplementation as PLSdg.The derivations are detailed in Ding and Gentleman (2004). Let � be a positive integer.Initialization :Choose �0.While non onvergene,Set H t = pW(�t)Z(Z0W(�t)Z)+Z0pW(�t), and let ht be the diagonalmatrix with diagonal entries (H tkk)1�k�n.De�ne �ht, a diagonal (n�n) matrix with ((k� 1)+ j)-th diagonal entryPl=1 ht(k�1)+l, 1 � k � n and 1 � j � .Set ~W(�t) =W(�t)(Idn + 0:5(ht + �ht)).Set  t = Z�t + h ~W(�t)i�1 �(Idn + 0:5ht)Y � (Idn + 0:5(ht + �ht))�(�t)�.Run PLSdg [ t;Z; ~W(�t); �℄ and set �t+1 = �̂PLSdg;�.End.Return �̂DG;� = limt �t.The authors also provide programs in R (available at http://www.bioondutor.org/), inwhih the algorithm is initialized by setting  0 = 0:75Y+0:25(1I�Y), and by drawingat random a diagonal matrix for the initial value of ~W.5.2.2. Computational aspets. To speed up the implementation of this method, onsiderthe singular value deomposition of Z, Z = UDV 0 where U and V are unitary matriesand D is a diagonal matrix of the same dimension as Z. Let r = rank(Z). We ansubstitute the original design matrix Z for the matrix Zred = U:;1:rD1:r;1:r. This yieldsan estimate ̂DG;� of the regression oeÆients with respet to the olumns of Zred; the25



vetor of regression in terms of the original explanatory variables is then obtained by�̂DG;� = V:;1:r̂DG;�.5.2.3. Existene of the estimate �̂DG;�. Due to the PLS algorithms, there exists an up-per bound for the value �, whih theoretially depends upon (Z; ( t)t; (W(�t))t), but,in the onsidered appliations, �max is onstant over the iterations.When � = �max, the above algorithmmaximizes the funtion � 7! l(�)�0:5 ln jZ0W(�)Zj+.By following the same lines as in Setion 3.3.3, it may be shown that when Z is fullolumn rank, whih is in pratie the ase when n << p, the maximum has an expliitexpression given bŷ�DG;�max = ln(3) Z+ �Y � (1In �Y): � (1In � �Y)	 ;where �Y is a f0; 1g-valued vetor de�ned by �Y(k�1)+j = Pl=1Y(k�1)+l, 1 � k � n,1 � j � ; and :� denotes the element-by-element multipliation.When � < �max, the algorithm is a kind of trunated Newton-Raphson algorithm whihis not guaranteed to onverge.5.3. Fort and Lambert-Laroix : MRPLS [Y;Z; �; �℄.5.3.1. The Multiple RPLS algorithm. The following algorithm follows that same linesas RPLS for the binary ase, exept that, due to the speial form of the design matrixZ, we use PLS* instead of the usual univariate PLS. Let ~Rs be a diagonal s � smatrix with diagonal obtained by  repliations of the vetor [0 1 � � � 1℄ 2 Rs; and �; �be resp. a positive real number and a positive integer.Initialization :Choose �0.Step A : While non onvergene,set  t = Z�t +W(�t)�1 �Y ��(�t)�,set �t+1 = �Z0W(�t)Z+ � ~R(p+1)��1Z0W(�t) t.End.Step B : Run PLS* [ 1;Z;W(�1); �℄ and return �̂FL;�;� = �̂PLS�;�.26



Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML riterionl�R(�) = l(�) � 0:5�k ~R(p+1) �k2. Programs in MATLAB are available (available athttp://www-lm.imag.fr/lm-sms/Gersende.Fort), in whih the algorithm is initializedby setting �(�0) = (3 + )�1((1In �Y)� 3Y).5.3.2. Computational aspets. To speed up the algorithm, one an replae the (n �(p+ 1)) matrix Z for a (n� (r+ 1)) matrix Zred where r = rank(X). To that goal,let UDV 0 be the singular value deomposition of X (see Setion 3.1.2); onstrut Zredas in (2) from the rows of [1In U:;1:rD1:r;1:r℄ instead of the rows of [1In X℄. Running thealgorithm with Zred yields ̂FL;�;� 2 R(r+1), a vetor of regression with respet to theolumns of Zred. The vetor of regression in terms of the original explanatory variablesis the shortest norm vetor among all the � satisfying Zred̂FL;�;� = Z� and is obtainedby [�̂FL;�;�℄(j)1 = [̂FL;�;�℄(j)1 ; [�̂FL;�;�℄(j)2:(p+1) = V:;1:r [̂FL;�;�℄(j)2:(r+1);for all j 2 f1; � � � ; g.5.3.3. Existene of �̂FL;�;�. Here again, it may be proved that given (Y;Z), �̂FL;�;� isunique; the proof is on the same lines as the proof in the binary ase (Setion 3.4.3).When � = 0, and rank(Z) = n, Step A never onverges thus explaining the ondition� > 0. When �!1, limt �t tends to a vetor with  non-null entries suh that8j 2 f1; � � � ; g; [limt �t℄(j�1)(p+1)+1 = ln� �yj1�Pl=1 �yl� ; �yj = n�1 nXk=1Y(k�1)+j ;so thatW(�1) tends to a blok diagonal matrix with k-th blok given by ! = diag(�y)��y�y0 where �y0 = [�y1 � � � �y℄. Hene [�̂FL;+1;�℄(j), the estimate of the j-th blok of theparameter �(j) is given by[�̂FL;+1;�℄(j) = [�̂PLS�;�℄(j) +�ln� �yj1�Pl=1 �yl�� f!�1�ygj� [1; 0; � � � ; 0℄0where �̂PLS�;� is the PLS estimate returned by PLS* [W(�1)�1Y;Z;W(�1); �℄. Inpratie, one an �x � to the value that minimizes the BIC riterionBIC(�; �) = �2l(�) + log(n) Trae�pW(�)Z(Z0W(�)Z+ � ~R(p+1))�1Z0pW(�)� ;27



evaluated at � = limt �t, a limit depending on �. We will do so in the following appli-ations, and will minimize the riterion on 61 log10-linearly spaed points within therange [10�3; 103℄.6. Appliation : Multi-lass lassifiation of MiroarraysWe ompare MNR, MIRPLSF and MRPLS when applied to polyhotomous disrim-ination, on the NCI60 data set. We �rst run a leave one out analysis based on MNR,MIRPLSF, MRPLS; we report the number of mislassi�ed test samples (olumn T),and the mean number over the n loops of mislassi�ed learning samples (olumn L) byMNR, MRPLS and MIRPLSF, for di�erent values of �. The last olumn indiates thenumber of samples that are systematially mislassi�ed, whatever the value of � is.We then run a resampling analysis based on MNR, MIRPLSF, MRPLS and on k-NNand k-WNN. For the nearest neighbor methods, we hoose the Eulidean distane; ink-WNN, the weight of a gene is equal to its between-groups to within-groups sum ofsquares. For MNR, MIRPLSF and MRPLS, (resp. NN methods), the hyper-parameter� (resp. k) is hosen by LOOCV training set error rate, within the range f1; � � � ; 6g(resp. f1; 3; � � � ; 19g). For MIRPLSF, the minimum is over the values of � suh thatStep A onverges. We report the mean value and the standard deviation of the test seterror rate, and the mean value of the hyper-parameter (� or k). We also give a measureof auray of the predition based on the ontrast. For a vetor � = (�0; �1; � � � ; �) ofthe lass probability, we de�ne the ontrast byP+1j=2(�[1℄��[j℄) = (+1)f�[1℄�(+1)�1gwhere �[j℄ denotes the sorted omponents : �[1℄ � � � � � �[+1℄. A large value of theontrast means that the probability of being from the lass assoiated to �[1℄ is farlarger than the probability of the other lasses. Sine the predited lass is the lassassoiated to �[1℄, the quantity Contrast is indiative of the lassi�ation on�dene :the larger it is, the more on�dent the lassi�ation is. We report the mean value off�̂[1℄� (+ 1)�1g, when the mean is over all the estimated vetors per subdivision, andover the 100 subdivisions.Table 3 shows the result of the leave one out analysis, when all the available genes areinluded in the model (p = 1299). Step A of MIRPLSF always onverges for this data28



set. Sample Me LOXIMVI is systematially mislassi�ed, whatever the algorithm andthe value of �. Insert Table 3 about hereWe run a resampling analysis and inlude all the available genes in the model. Theresults are displayed on Figure 3 and Table 4.Insert Figures 3 and Table 4 about hereOn Figure 3, the boxes have a large line at the median value. (Quasi)-separation oftenours in the IRLS step of MNR; to illustrate the sensibility of the results to the initialvalue of IRLS, we re-run the resampling analyses, by initializing IRLS at �0 = 0. Themean test set error rate is 0:047, with standard deviation 0:063, the mean value of �and of the ontrast are resp. equal to 3:21 and 0:639.6.1. Conlusion. Classi�ation in the NCI data set is a diÆult task, due to the pres-ene of many lasses and very few samples from eah lass. In the resampling analysis,the test set error rate in k-NN is minimized for small values of k (k lose to 1); this is aonsequene of the de�nition of the learning set, whih ontains a very small number ofsamples from eah lass. In these unfavorable onditions, methods based on dimensionredution by PLS seem to provide better results, and among them, MIRPLSF looksmore stable. The value of Contrast show that the lassi�ation on�dene is far moreimportant for MNR and MRPLS than it is for MIRPLSF.7. Appliation : Feature seletion for binary-valued response variableWe run the RFE algorithm desribed in Setion 2.5 when the extensions are based onNR, IRPLSF and RPLS. This yields NR-RFE, IRPLSF-RFE and RPLS-RFE. Startingfrom the full model, we apply RFE and produe a model of size 1024 followed bythe nested models of size 1022, 1020, � � � , pmin. The PLS extensions are applied withdi�erent values of � on whih pmin depends; pmin = 2 when � = 1; 2, pmin = 4 when� = 3; 4 and pmin = 6 when � = 5; 6. Eah model is evaluated with three metris29



proposed by Guyon et al. (2002) : (i) the test set suess rate Su; (ii) the aeptationrate A, that omplements the rejetion rate de�ned as the fration of samples thathave to be disarded to obtain zero error; (iii) the extremal margin Ext, di�erenebetween the smallest linear preditor over the 1-lass samples and the largest linearpreditor over the 0-lass samples, resaled by the largest di�erene between the linearpreditors. By de�nition, 0 < Su < 1, 0 < A < 1 and Ext < 1. Figure 4 is agraphial representation of A and Ext. A value of any of this riterion lose to 1 isindiative of the quality, in terms of a low on�dene of wrong predition (A) and alarge on�dene of orret predition (Ext).Insert Figure 4 about hereWe sort the models based on di�erent signed quantities : Su, 0:5 Su Ext, 0:5 Su A,and Q whih orresponds to the signed surfae of a triangle de�ned by the points withoordinatesE = (Ext; 0) S = Su (os(2�=3); sin(2�=3)) A = A (os(4�=3); sin(4�=3));more preisely, Q is the sum of the 'surfae' of the triangles SOE, EOA, AOS where byonvention, the 'surfae' of SOE and EOA is negative i� Ext < 0. Hene, Q > 0 i� Ext> �Su A (Su+ A)�1, as illustrated on Figure 5.Insert Figure 5 about hereTable 5 displays the results of a 10-fold ross-validation: for the four riteria, and thedi�erent algorithms, we report the best value of the mean riterion among all the on-sidered models (olumn 'value'), the size of the best model (olumn 'p') and the value ofthe hyperparameter � for whih it is reahed (olumn '(�)'). The mean of the riterion isover the 10 values obtained at eah step of the ross-validation. We onsider RFE basedon the NR estimate when NR is initialized from �0 given in Setion 2.2; the results areon row 'NR (init1)'. When learning the NR estimate for the di�erent nested models with� = 2 (resp. 3; 4; 5; 6), separation ours in 0:33% (resp. 43:91%; 87:25%; 100%; 100%)of the analyses; for � = 1, it never ours. To test the robustness of the NR-RFEto the initial value, we start the NR algorithms from �0 = 0; the results are on row30



'NR (init2)'. This study points out the sensibility of NR-RFE to the initial value, andmore generally, the weakness of the Nguyen & Roke's approah. We then study theperformanes of the IRPLSF-RFE algorithm; when learning the IRPLSF estimate forthe di�erent nested models with � = 1 (resp. 2; 3; 4; 5; 6), the algorithm onverges for91:19% (resp. 99:82%; 90:80%; 99:90%; 99:98%) of the analyses. Here again, we testthe robustness to the initial value by modifying the maximal number of iterations inthe iterative part of IRPLSF. The results are similar (see row 'IRPLSF (init2)'), thusillustrating the stability of IRPLSF-RFE with respet to its non-onvergene pathology.Ranking the models by the Su-value selet quite large models; ranking the models bythe Q-value yields small models. The model that maximizes Q results from a ompro-mise between the quantities Su, A and Ext, that is, it takes into aount the orretpredition, the large on�dene in the orret preditions and the low on�dene inthe wrong preditions. When sorted by the Q-value, the optimal model seleted byIRPLSF-RFE has a suess rate Su = 0:8738, an aeptation and an extremal ratesequal to A = 0:6452 and Ext = 0:0646. For the optimal model seleted by RPLS-RFE,we have Su = 0:8881, A = 0:6071 and Ext = 0:0163. These optimal models are resp.among the top 10% (resp. top 2:5%) when models are sorted by the Su-value, thusshowing that the onsideration of the more general riterion Q does not greatly penalizethe preditive quality of the seleted model (see Figures 6 and 7[right℄).Insert Table 5 and Figures 6 and 7 about here8. ConlusionWe disussed the di�erent PLS extensions to GLM on a tehnial point of view, andompare them when applied to lassi�ation and feature seletion in Miroarrays. Theextensions proposed by Marx (1996) and Bastien et al. (2004) really present tehnialproblems and do not perform well when applied to miroarray data. The extensionsproposed by Nguyen and Roke (2002b,a) su�er from the separation problem : lassi�-ation and feature seletion greatly depend upon the initialization of some maximizationproedure on whih their methods rely. The extensions by Ding and Gentleman (2004)and Fort and Lambert-Laroix (2005) seem to be the most promising extensions : the31



simulations demonstrate their very interesting performanes when applied to binarylassi�ation and feature seletion for binary output variables; the interest of the meth-ods is less evident when applied to multi-lass lassi�ation, but this may be explainedby the fat that the number of samples from some lasses is very small (three, four, � � �).We observed that the lassi�ation and the feature seletion methods are not sensibleto the asymptotial yli behavior of the iterative algorithm proposed by Ding andGentleman.The robustness of the methods by Ding and Gentleman (2004) and Fort and Lambert-Laroix (2005) stresses the pertinene of ombining a regularization step and a dimen-sion redution step, when dealing with high dimensional regression problem with highlyollinear regressors. The Firth penalty and the Ridge penalty are both maximal atthe origin, thus attrating the estimate of the regression oeÆient to the null vetor.When feature seletion is the question of interest, one is interested in sparse models.This naturally suggests the use of a more seletive regularization step : for example,the Ridge-penalization step and a thresholding penalization ould be ombined in orderto �ght the high-ollinearity of the design matrix, and to do shrinkage and automativariable seletion simultaneously. This will be the next step of our work.Appendix A. PLS with a non full olumn-rank data matrixLetX be a non full olumn-rank standardized (n�p) matrix (eah olumn is enteredwith norm 1). Let Y 2 Rn and W be a n� n symmetri positive de�nite matrix.Consider the singular value deomposition of X, X = UDV 0, where, by onvention, Uand V are unitary matries. De�ner = rank(X); ~U = U:;1:r; ~D = D1:r;1:r; ~V = V:;1:r;so that X = UDV 0 = ~U ~D ~V 0, ~U 0 ~U = Idr and ~V 0 ~V = Idr. Finally, denote by Ek; fk; tk,!k , pk, qk (resp. ~Ek; ~fk; ~tk, ~!k , ~pk, ~qk) the quantities produed by PLS [Y;X;W; �℄ (resp.by PLS [Y; ~U ~V ;W; �℄).Lemma 1. E0 = ~E0 ~V 0, f0 = ~f0 and for all 1 � k � �,Ek = ~Ek ~V 0; fk = ~fk; tk = ~tk ; !k = ~V ~!k ; pk = ~V ~pk qk = ~qk :32



The proof is trivial and is omitted for brevity; it onsists in replaing X for ~U ~D ~V 0and in using the relations ~U 0 ~U = Idr and ~V 0 ~V = Idr.Proposition 2. When X is a non full olumn-rank matrix, entered in olumns, thePLS estimate �̂PLS;� is the shortest (Eulidean) norm vetor among all the solutionssatisfying Y � f� = [1In X℄ �.Proof. By lemma 1, 
 (P 0 
)�1 Q = ~V ~
 ( ~P 0 ~
)�1 ~Q where ~
, ~P and ~Q are de�ned as
; P; Q (see Eq.(6)), from the quantities ~!k; ~pk; ~qk. Hene,�̂PLS;�2:p+1 = ~V ~�PLS;�2:r+1 ; (8)where �̂PLS;� and ~�PLS;� denote resp. the PLS estimates returned by PLS [Y;X;W; �℄and by PLS [Y; ~U ~V ;W; �℄. Sine X is entered i.e. 1I0nX = 0, all the solutions tothe equation Y � f� = [1In X℄ � have the same �rst omponent �1. The remaining pomponents di�er; the shortest Eulidean norm solution satis�es [V 0 �2:p+1℄1:r = ~�PLS;�2:r+1and [V 0 �2:p+1℄j = 0 for all r+1 � j � p. Hene, �2:p+1 = ~V ~�PLS;�2:r+1 and from (8), �̂PLS;�2:p+1is the shortest norm solution. �Proposition 3. � 7! k�̂PLS;�k is non dereasing.Proof. For a full olumn-rank matrix X, this result is proved by De Jong (1995). Fora non full olumn-rank matrix, using the same notations as in the proof above, theDe Jong's result states that � 7! ~�PLS;� is non dereasing; sine the olumns of ~V arepairwise orthogonal with norm 1, we have k~�PLS;�k = k�̂PLS;�k thus onluding theproof. �ReferenesAlbert, A. and Anderson, J. (1984). On the Existene of Maximum Likelihood Estimatesin Logisti Regression Models. Biometrika, 71(1):1{10.Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mak, D., and Levine, A.(1999). Broad patterns of gene expression revealed by lustering analysis of tumorand normal olon tissues probed by oligonuleotide arrays. Pro. Natl. Aad. Si.USA, 96(12):6745{6750. 33
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NR IRPLSF RPLS PLSGLR k-WNN k-NN DLDA DQDAmean 0.163 0.148 0.153 0.290 0.160 0.241 0.286 0.338std 0.064 0.062 0.060 0.112 0.072 0.067 0.140 0.141� 3.27 3 2.82 1.01 5.64 7.37 - -Table 2. Colon data. Test set error rate : mean value and standarddeviation (std). The last row shows the mean value of � (or k for k-NNand k-WNN)
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NR IRPLSF RPLS PLSGLR k−WNN k−NN DLDA DQDA Figure 2. Colon data. Test set error rate in the resampling Analysis.MNR MIRPLSF MRPLS� T L T L T L1 12 10.4 7 6.80 7 6.772 4 0 (�) 2 0 3 03 5 0 (�) 2 0 2 04 1 0 (�) 2 0 2 05 2 0 (�) 2 0 2 06 2 0 (�) 2 0 2 0min 1 - 1 - 1 -Table 3. NCI data p = 1299. For di�erent methods and di�erent valuesof �, number of mislassi�ed samples in the test set (olumn T) and meannumber of mislassi�ed samples in the learning set (olumn L).38



MNR MIRPLSF MRPLS k-NN k-WNNmean 0.054 0.043 0.046 0.056 0.055std 0.062 0.055 0.058 0.060 0.062� 3.03 3.25 3.34 1.14 1.34C 0.578 0.146 0.553 - -Table 4. NCI data p = 1299. Test set error rate : mean value andstandard deviation (std). The last two rows give the mean value of theparameter � (or k for k-NN and k-WNN), and of the ontrast C.
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Q 0.5 (Su Ext) 0.5 (Su A) Suvalue p (�) value p (�) value p (�) value p (�)NR (init 1) 0.3354 12 (4) 0.0569 12 (4) 0.3021 28 (6) 0.9048 64 (2)NR (init 2) 0.3047 18 (3) 0.0577 8 (4) 0.2952 78 (6) 0.8929 422 (3)IRPLSF (init 1) 0.2867 14 (4) 0.0378 20 (4) 0.2868 158 (1) 0.9048 44 (2)IRPLSF (init 2) 0.2867 14 (4) 0.0378 20 (4) 0.2868 158 (1) 0.9048 32 (2)RPLS 0.2440 8 (1) 0.0072 8 (1) 0.2814 140 (1) 0.8905 70 (2)Table 5. Colon data. Feature seletion : optimal model exhibited byNR-RFE, IRPLSF-RFE and RPLS-RFE for di�erent measures of thequality : we report the value of the quality 'value', the size of the model'p' and the value of the hyper-parameter '�' with whih the optimum isreahed.
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