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SUMMARY

Advances in high-density DNA microarray technology allows monitoring of thousands
of gene expression levels. One important application of gene expression microarray is
classification and feature selection. When classification is based on polychotomous dis-
crimination, the high-dimensional setting and the collinearity of the variables necessitate
the development of robust regression techniques such as methods based on Partial Least
Squares (PLS). The objective of this paper is to review extensions of PLS regression to
generalized linear regression and to compare them when applied to classification and

feature selection in Microarrays.

Keywords. Partial Least Squares, Microarray gene expression, Logistic regression,

Polychotomous discrimination, Feature selection.

Affiliation. G. Fort, CNRS (LMC-IMAG), 51, rue des Mathématiques, BP 53, 38041
Grenoble Cedex 9, France, email: Gersende.Fort@Qimag.fr, tel: (33)476514553, fau:
(33)476631263.

Acknowledgements. | am very grateful to Professor A. Antoniadis for useful discus-

sions, for his insights and his many comments on earlier version of the paper.

Programs. The MATLAB codes on which the numerical results are based, are publicly
available : http://www-1lmc.imag.fr/lmc-sms/Gersende .Fort/GLM/PLSforGLM.html.



1. INTRODUCTION

The objective of the present work is to review some extensions of Partial Least Squares
regression to Partial Least Squares generalized linear regression and to compare them
when used in the “large p, small n” framework. More precisely, we restrict our atten-
tion to binary and multinomial logistic regression models and consider applications to

classification and feature selection in high-dimensional regression problems.

PLS is both a dimension reduction method and a regression method in linear models.
Roughly speaking, it consists in sequentially constructing super-covariates i.e. linear
combinations of the covariates, which are predictive of the response variable. Unlike
the Principal Component Analysis components, the PLS super-covariates depend on the
response variable (Wold (1975)). An introduction to the structure of PLS can be found
in Helland (1988), a statistical view in Helland (1990), a study of the PLS geometry
in Phatak and De Jong (1997) and some theoretical properties (some of them relative
to the shrinkage property of PLS) in De Jong (1995); Goutis (1996); Lingjaerde and
Christophersen (2000); Phatak et al. (2002). PLS has been used extensively in chemo-
metrics for prediction and identification of latent structure models. Chemometrics data
are characterized by highly collinear predictor variables and PLS revealed to be robust
to deal with these data sets (Naes and Martens (1985); Frank and Friedman (1993)).
Gene expression microarray data have a similar data structure : covariates are highly
collinear and the number of covariates far exceed the number of observations. One im-
portant application of microarrays is classification of samples into categories; ; a reliable
and precise classification of human malignancies is essential for successful treatment.
Statistical analysis of these data thus requires the development of new methodologies
or modification of existing ones. A second question of interest is the identification of
the genes that really contribute to the discrimination process. This naturally suggests a
classification procedure based on regression; in this paper, we will consider the logistic
or polychotomous discrimination method. Such a procedure requires an estimate of the
regression coeflicient, and inference in such models is usually solved by Maximum Like-
lihood (ML) and in practice, relies on the Iteratively Reweighted Least Squares (IRLS)
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algorithm. Unfortunately, when the number of covariates is far larger than the number
of observations, the ML estimate does not exist.

To overcome the curse of the dimension and the high collinearity, it has been proposed
to substitute the ML estimate by some PLS estimate. This approach requires the ex-
tension of PLS to generalized regression. The algorithms derived in Nguyen and Rocke
(2002b), Marx (1996), Bastien et al. (2004) for the binary case and in Nguyen and
Rocke (2002a) for the multi-class case, incorporate PLS in the classical IRLS scheme.
The algorithms proposed by Ding and Gentleman (2004) and Fort and Lambert-Lacroix
(2005) incorporate both PLS and a regularization technique in the IRLS scheme.

Any inferential method in regression models is a black boz, with input arguments the
response vector and the design matrix, and with output variable, an estimate of the
regression coefficients. The interest of a new inferential method is both based (a) on
the technical ability to return an output variable, whatever the input arguments are,
and (b) on the ability to provide an answer to the statistical problem.

The first objective of this contribution is to study the different extensions on a technical
point of view. Section 3 (resp. Section 5) is devoted to the extensions of PLS to binary
logistic regression (resp. multi-class logistic regression) : we give the algorithms, discuss
computational aspects, and in some cases, we point out that the existence and unic-
ity of the estimate, given the input arguments, strongly depend upon some technical
parameters (such as the initial point or the maximal number of iterations in iterative
schemes).

The second objective is to compare the different extensions when applied to classifica-
tion of microarray data. To that goal, we compare the error rate of the logistic (resp.
polychotomous) discrimination methods when the estimate of the regression coefficients
raises from the extensions of PLS. This is done through Leave One Out and Resampling
analyses on real data sets : Colon data (binary case, Section 4), NCI60 data (multi-class
case, Section 6). The regression coefficients allow the identification of the covariables
that are decisive in the prediction equation; this information can be exploited to build
a feature selection procedure, in order to identify a small subset of informative genes
highly correlated to the outcome. Feature selection will be the second approach for the

comparison of some extensions of PLS. We will run a feature selection algorithm based
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on Recursive Feature Elimination (Guyon et al. (2002)), on the Colon data set.

We start with basic ingredients : Section 2 is devoted to the description of the logistic
model, the IRLS algorithm, different PLS programs used in this paper, the polychoto-
mous discrimination method and the feature selection algorithm. It also contains a

short description of the data sets.

2. BAsic INGREDIENTS

The unfamiliar reader may refer to Fahrmeir and Tutz (2001) for a general definition

and presentation of GLM.

Notations. By convention, vectors are column vectors; for a vector u, u; denotes its
k-th coordinate. 1I,, is the R™-valued constant vector with coordinates 1, and for two
integers a < b, a : b is the vector with components (a,a+ 1,---,b—1,b). For a matrix
A, A;; is the element (7,j), A.; is the column #j, and A;. is the row #i. If uis a
vector, A, . (resp. A.,) is the matrix formed by picking out the rows of A (resp. the
columns) indexed by w. If wy,uy are two vectors, A, 2 is the matrix [Ay, .]..,. If
Uy, -, U, are R™valued vectors, [ug ... u,] is the (n x x) matrix with j-th column u;.
A’ denotes the transpose matrix, AT the Moore-Penrose pseudo-inverse matrix. For a
positive-definite matrix A, v/A is its principal square root and for a square matrix, |A|
is the determinant. We denote by Id,, the (n x n) identity matrix, and, for some vector
u, by Diag(u) the diagonal matrix with entries the elements of u. Finally, || - || is the

Euclidean norm and < -;- > the usual scalar product.

2.1. Binary and Multinomial logistic regression. Let ¢ be a positive integer, Y
be a {0,1,---,c}-valued random variable and z be a RP* ! -valued vector of regressors.
Let § € Rt be the parameter of the model, and henceforth referred to as the vector
of regression coefficients. 6 can be read as the concatenation of ¢ vectors §%) ¢ RP+!,

1 <y < ¢. The distribution of Y is given by

Vye{0,1,- ¢},  P(Y=ylz0)=m,(0), with Y m,(0) =1,
y=0
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where 7, is related to the linear predictor 7, (#) = 2/6(%) through the link function

mO) =R ) and i) = e 0

By convention, 8(9) is the null RP*1-valued vector. Equivalently, one can define a binary-

valued random vector Y € {0,1}¢ by the relations

Yy e {1,---,c}, {\?yzl and Y;=0,l€{1,---,c}\{y}], iff Y =y,

{ﬂﬁ =0,l¢€ {17"'76} ) iff Y =0,

By definition, we have Eg[Y;] = 71(0), where Ey denotes the conditional expectation
(conditionally to z) assuming @ to be the true value of the parameter.
Throughout the paper, the vector of regressors z is of the form [1 2], i.e. it contains

an intercept term and p covariates.

2.2. Inference by Maximum Likelihood. The inference approach in GLM is usually

based on the maximum likelihood method.

2.2.1. Block matrices. We observe n independent realizations (Y, z(®); 1<, of (Y,7),

respectively collected in a response vector Y € {0,1}"¢ and in a design matrix Z €

Rexe(p+1) defined by

Y =[Yy Yo where Y, +; = )N/j(k), and ¢ = (k- 1,
B 0 ...
Doy ptipges = | on eee eee oo | @ REXEPHD) (2)
0 ... 0 ®
forall 1 < k < n, 1 < j < ¢ All the covariates are collected in a data matrix
X € R™ P guch that the i-th row contains (). X is assumed to be standardized : each

column is centered with norm 1. Let II(f) € R™ defined by I15(6) = h((Z6);) for all
ke {1,---,nc}, so that 11(#) = Eg[Y]. The log-likelihood is given by

1(6) = Y'Z6 + znzln (1 - inw,(e)) . (3)
k=1 =1
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2.2.2. Case 1 : Z is full column-rank. When the ML estimate exists and is unique, the
solution to the normal equation Z'(Y —I1()) is usually computed by a Newton-Raphson
algorithm. Let W be a R(*(") plock-diagonal matrix with k-th block W, € R*¢,

1<k <n,
ku-l-l (1 - ku-l-l) _ku-l-l ku-l-? U _ku-l-l ku-l-c
11, II, II, 1-1I, .- 11, | I P
Wk _ 1 k2 k2 ( k+2) k2 kt . (4)
e LIPS | A e 2 o Myqe (1= Tge)

Upon noting that the Hessian of the log-likelihood is —Z'W (8)Z, we have M = lim 6*

where the Newton-Raphson sequence (8"); is produced by the iterative scheme

IRLS [Y,Z]
Initialization : choose §° € Re(+1),
While ||Z/(Y — T1(6%))|| > threshold,
B(0) = 26"+ W (') (Y — 11(9")),
ot = ' {Z'W (0N Z) T Z/ (Y — TI(8Y)) = {Z'W(§)Z) ™" Z'W (8")4:(6").
End.

Each Newton-Raphson iteration is thus a weighted regression of a pseudo-variable
onto the columns of Z. This yields the so-called Iteratively Reweighted Least Squares
algorithm (IRLS, Green (1984)), a procedure henceforth denoted IRLS [Y, Z]. The limit
lim; #" does not depend upon the initial value; in the binary case, choosing #° such that
(6% = (Y +0.5)/2 = 0.25((1L,. — Y) +3Y) works well (Fahrmeir and Tutz (2001)); in
the multi-class case, we suggest to fix §° such that I1(8°) = (3 +¢)™' (1L, — Y) + 3Y).
It is proved in Albert and Anderson (1984); Santner and Duffy (1986); Lesaffre and
Albert (1989) that the ML estimate does not necessarily exist; the existence depends on
the configuration of the sample points in the observation space. Three different cases
can be distinguished, namely the separation, the quasi-separation and the overlap case.

Separation means that there exists # € R+ such that for 1 < k< n, 1< j<e,

([, X]09) > ([, X]60)g, VI {0,--- e} \ {j} it Yonyer; =1 (5)



where by convention, 8(9) = 0. Quasi-separation means that (5) holds with large in-
equalities; overlap is the third situation. In the first two cases, the ML estimate does
not exist since the likelihood is maximized on the boundary of R%**+1) i.e. when ||4||
tends to +o00. In the third case, the ML estimate exists and is unique. These situations
are illustrated on Figure 1 in the binary case, when p = 2 : we plot the n vector-valued
covariates with coordinates Xy . in R* with a x-mark (resp. a o-mark) for samples from
the first class (resp. the second). Separation means that some hyperplane separates the
observation space into two half-spaces, the positive (resp. negative) half-space contain-
ing the samples from class 1 (resp. class 0); quasi-separation means that some points
are on the linear boundary; overlap means that the sample points can not be separated

by a hyperplane.

Insert Figure 1 about here

2.2.3. Case 2 : 7 is not full column-rank. This situation always occurs when p >> n.
The log-likelihood depends on the parameter through the linear predictor Z# so that
6 is not identifiable. Nevertheless, we can always (a) formulate the model with a full
column-rank design matrix Z'? and a parameter v € R™ %) by standard matricial
manipulations; (b) solve the estimation problem and obtain, when it exists, #M%; (c)
return to the initial statistical problem by defining ML as the minimal norm vector
among all the vectors satisfying Z"44M = Z#. Observe that when rank(Z) = nc,

which is most often the case when p >> n, the solution to the normal equation verifies

Y (h-1)ct; :
@) oyens =0 (5 . Vi<ksmi<i<e
(k= Dets 1 - 2121 Y(k—l)c-H
which implies ||9]| = +oc. Hence M can not exist, and this naturally calls for a

dimension reduction, i.e. for reducing the high p-dimensional predictor space to a

lower x-dimensional space.

2.3. Partial Least Squares (PLS). Partial Least Squares is a regression tool that
combines regression and dimension reduction (Wold (1975); Helland (1988)). The most
famous dimension reduction within regression, is certainly the method of Principal Com-

ponent Analysis (PCA). In PCA, orthogonal linear combinations ¢ of the covariates are
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sequentially constructed to maximize the variance of the linear combination (Jolliffe
(1986)). In PLS, the idea is to construct super-covariates ¢ which are predictive of the
response variable. Orthogonal linear combinations ¢ of the covariates are sequentially
constructed to maximize the covariance between ¢ and the response variable (see Phatak
and De Jong (1997) and references therein).

We first briefly describe the classical univariate method which is, in our opinion, de-
voted to the case when the design matrix is on the form [1,, X]. We then propose an
extension of PLS for sparse design matrices on the form (2); when ¢ = 1, this extension
and the classical method coincide. Till now, we concatenated the n response variables
in a vector of length ne; nevertheless, some extensions of PLS to GLM are based on
the array-concatenation of the responses, in a n X ¢ matrix. Hence, we conclude this
description by the mention of MPLS (Multivariate PLS), a PLS technique derived for

array-valued response variables.

2.3.1. Univariate PLS : PLS [Y, X, W,k]. Let Y € R"™ be a response variable and
X € R™ P be a design matrix, which is assumed to be standardized in columns (each

column is centered with norm 1). Choose an integer x > 0. PLS proceeds as follows :

Initialize :
Fy=X.

Fork=1,--- K,
by = Ep_y wg,  with  wp = F_| fiz1,
fe = fom1 =t qr,  with  qr = (¢ fromr) (thte) 1,
Ey=Ey —tg ph, with pp = (E]_ ty) (tte) "
End.

By construction, (t1,---,tx) is an orthogonal family and the PLS components ¢; are

orthogonal to the constant vector 1I,,. This yields a decomposition on the form

Y = (]I%]In)_l (]I%Y) ]In + (]1t1 + .4 qﬁtﬁ + fH — []In X]éPLS,H + f)17
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where f, is orthogonal to the space spanned by (1,1, --,¢:). When Z = [1I,, X]is of

full column-rank, 8°15% is uniquely defined and ég):I;_Sl_’f is given by (see Helland (1988))

BSr = (P )T Q with Q=[w - w,P=[p - psQ=1[a1- a5 (6)

otherwise, application of the above algorithm with a non full column-rank matrix 7
yields an estimate 8715 which is the minimal norm vector among all the # such that
Y — f. = Z6. In addition, s — ||°"5"|| is non-decreasing. These assertions are proved
in Appendix A (the second one results from De Jong (1995)).

There exists a maximal number of PLS components, k., which is lower or equal to
rank(X') and depends upon Y; more precisely, Kmax is equal to the number of distinct
positive eigenvalues of X X’ such that for some corresponding eigenvector v;, I/;Y #*
0 (Helland (1990)). When & = Kmax, ¥ — fen., 1S the projection of Y on the space
spanned by the columns of Z, and PLS regression is nothing more than Least Squares
regression.

In the present description, projections and orthogonalities are derived and intended
with respect to the Euclidean scalar product. The algorithm can be modified to take
into account an eventual heteroscedasticity of the response variables, by substituting
the Euclidean scalar product by a W-scalar product where W is a positive-definite
matrix (Fort and Lambert-Lacroix (2005)). Henceforth, we will refer to this procedure
as PLS [Y, X, W, k]. The next two properties, used in the sequel, are trivial to verify
(and the proof is omitted for brevity)

(i) the estimate é(PII;S’H and the scores (¢(1) ;); returned by PLS [Y, X, W, ] are related

to those returned by PLS [VWY,vW X, 1d,, k] (denoted with the subscript (2))

by

‘PLS,x _ ;PLS,x
Oy =00

(ii) for any o, 8 > 0, the estimate returned by PLS [V + oll,,, X, 5ld,, k] is equal to

VWi, =t@),-

the estimate returned by PLS [V + oll,,, X, Id,, &].

2.3.2. An extension of univariate PLS : PLS* [Y,Z, W, k]. Let Y € R" be a response
variable and Z € R()*((?+1) he a design matrix on the form (2). When ¢ > 1, Z

contains ¢ columns with null entries except n coefficients equal to 1, namely the columns
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Z.1,Z py2 s Ly (c—1)(p41)- We collect these columns in the (ne X ¢) matrix =.

Despite the special structure of Z, one can decide to apply the classical PLS algorithm.
Nevertheless, we want the columns of = to play the same role as the vector 1, in the
classical algorithm; that is, we want (a) project Y onto =, (b) consider the residual
design matrix obtained by projecting the columns of Z on the orthogonal of the space
spanned by Z; (c) define the PLS components in the space spanned by the residual

design matrix. More precisely, our extension proceeds as follows :

Regress Y onto the columns of = :
g = (Z'Z)71Z'Y.
Deflate Y and Z :
Jo=Y — Eqo,
Z=17-=(Z'=2)"12'Z.
Extract and standardize the new design matrix :
let Z be the ne X np matrix formed with the non-null columns of Z.
standardize the (centered) columns of Z to have norm 1; let Ejy be the
standardized matrix.
Fork=1,--- K,
th = Er—y E_ fr—1,
fro= fomr =ty (8 frm1) (tn)
Ey = Fj_1 — tg (6 Ex—1) (thtr) ™"
End.

This yields a decomposition of the form

Y = qu +qt1 4+ -+ et + fH — ZéPLS*,H + f/{-

Here again, grLS*r ig uniquely defined if Z is full column-rank; otherwise, grLS*r ig
the shortest norm vector among the admissible ones. The Euclidean geometry can be
replaced by a weighted one, induced by a positive definite matrix W € R™*"¢. This

procedure is henceforth denoted PLS* [V, Z, W, k].
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2.3.3. Multivariate PLS : MPLS [Y*, X, k]. Let Y* € R"*¢be an array-valued response
variable and X be a R™"*P data matrix. MPLS amounts to finding two sets of weights
w, ¢ in order to create a linear combination ¢ = Xw of the columns of X (resp. a linear
combination u = Y“c of the columns of Y*) such that the square of their covariance
is maximal under the constraints, ¢c = 1, w'w = 1. X and Y* are then deflated with
respect to t; the process is repeated with the deflated matrices. This yields the following

algorithm : let k be a positive integer

Let fo and FEy be formed by respectively standardizing the matrices Y and X
(the columns of fy and Fy are centered with norm 1).
Fork=1,--- K,
let wy be an eigenvector of E,’g_lfk_lf,’g_lEk_l, corresponding to the largest
eigenvalue;
th = Egp—1 wr;
By = Eyr = (6 i) (t06)
Sr = Feor = tr (8 frmn) (E1t1) ™1
End.

This yields a decomposition of the form
Y = ogh+tiq, + -+ togl + fo = [I,, X]OMPLSA 1 ¢

where ¢; € R and OMPLS » ¢ R(p+1)%Xc Column #y of OMPLS 5 is the MPLS estimate
of §U).
The reader may refer to Hoskuldsson (1988); Garthwaite (1994) for an interpretation

and practical implementations of this algorithm.

2.4. Polychotomous Discrimination. Given an estimate of the regression coeffi-
cients é, the class of a new sample characterized by a vector of covariates z € RP is
predicted by

Y = argmax,cqo.... o F (Y = ylz =[12']; é) ;
a rule which is, by (1), equivalent to

Y=y iff {z’ oW > 5 60, WE{O,---,C}}7
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where, by convention, 9(©) = 0. In the binary case, this method is called Logistic
Discrimination. Usually, g is the ML estimate. Since, in the present framework n << p,
the ML estimate is unlikely to exist, we substitute this estimate by one raising from
extensions of PLS to GLM, detailed in Section 3 for the case ¢ = 1, and in Section 5 for
the case ¢ > 1.

To assess the prediction, we will consider a M-fold cross-validation and /or a Resampling
analysis. In a M-fold cross-validation, the data set (of size say n) is divided into M non
overlapping groups of roughly same size; the model is fitted, using the samples of M — 1
groups combined together and is tested on the remaining one. This is repeated M times.
The case M = n is the so-called Leave One Out analysis. In a resampling analysis, we
run N = 100 out of sample analyses (i.e. the regression model is constructed using
the learning samples and outcomes of the test samples are predicted) on N random
subdivisions of the data set into a learning set and a test set following a 2:1 scheme; the
proportion of samples from each class in the learning set is the proportion of each class
in the data set. For a given data set, the same N subdivisions are used to compare the
different algorithms. Furthermore, some methods depend upon an hyperparameter (e.g.
the number of PLS components k); it is determined by Leave One Out cross validation

(LOOCYV) error rate for the learning set.

2.5. Feature Selection by iterative thresholding. Guyon et al. (2002) propose
a feature selection algorithm in the case of binary output, based on Support Vector
Machine (SVM) with Recursive Feature Elimination (RFE). Their backward selection
procedure starts with all the available genes; the SVM is trained and genes having the
highest vector weights are selected to form the next model. The process is repeated till
removing all the genes. The number of discarded genes between two successive models
is chosen by the user. This algorithm yields a family of nested models, and Guyon et
al. provide several metrics of quality in order to compare them. Classically, accuracy
of a model is measured by cross-validation : a proper way to evaluate the performance
of a model is to divide the data set into a learning set and a test set, learn the gene
selection rule on the training samples and measure the performance on the left out test

samples. The test samples have to be external to the iterative gene selection process,
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otherwise one introduces a selection bias when evaluating the performances (Ambroise
and McLachlan (2002)).

Based on these considerations, we propose the following feature selection algorithm. Let
the data set be divided into a learning set and a test set; fit the full model using the
learning samples and measure its performance using the test samples. Discard the 2
genes with the lowest regression coefficient (in absolute value) and fit this new model,
using again the learning set. Observe that since, in our convention, the design matrix
is standardized per columns, this ranking criterion corresponds to the criterion adopted
in Zhu and Hastie (2004). Repeat this process till the obtention of a model of minimal
size. To test the prediction accuracy of a model, we use 10-fold cross-validation. Observe
that, since there is no guarantee that the same subset of genes will be extracted at each
level of the cross-validation, we test a rule characterized by a number of features and

not a rule characterized by a given feature subset.

2.6. Real data sets. We will use the Colon data and the NCI60 data, publicly available

at

Colon : hitp://microarray.princeton.edu/oncology/affydata/index. html
NCI60: http://discover.nci.nih.gov/datasets Nature2000.jsp.

and largely described resp. in Alon et al. (1999) and Scherf et al. (2000). The Colon data
set contains 62 tissue samples (40 'tumor tissues’ and 22 'normal tissues’) with 2000
genes. The Colon data are pre-processed as described in Fort and Lambert-Lacroix
(2005). This step discards some genes based on informations from the learning samples.
Hence, the list of the discarded genes varies when the learning set varies, and the number
of available covariates depends on the subdivision learning set / test set of the data set.
The NCI60 data set contains 35 tumor samples from 5 cancer types (6 central nervous
system, 8 renal, 8 melanoma, 7 colon and 6 leukemia), with 1415 genes. Missing values
exist for NCI60 data : we drop out genes some genes and impute missing values as
described in Ding and Gentleman (2004) so that there remain 1299 genes. Both the
data sets are standardized : for each gene, the vector of expression levels from the

learning samples is centered with norm 1. The same linear transformation is applied
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on the vector of expression levels from the test samples (the vector is not necessarily

centered with norm 1).

3. EXTENSIONS OF PLS To GLM, IN THE BINARY CASE

In this section, Z € R™(P*+1) is equal to [N, X]. The k-th coordinate of the vector
11(0) is (1 + exp(—(Z8)x))~! and W () is a diagonal matrix with k-th entry (II(1 —
1)) (6).

3.1. Nguyen and Rocke : NR [Y, Z, k].

3.1.1. The Nguyen & Rocke’s algorithm. The method proposed by Nguyen and Rocke
(2002b) proceeds into two steps; let k be a positive integer.

Run PLS [Y,X,1d,, k] and return the first K PLS components ¢y, ---,t,. Set
T, =[l, t; - t,] € RP¥+D,

Run IRLS [Y,T,] and return é, the limiting value of the Newton-Raphson
sequence (a regression coefficient in terms of the PLS components (¢;);<y).

Express the regression in terms of the original explanatory variables and return
éNR,H‘

Roughly speaking, a dimension reduction is first performed in order to replace the
initial design matrix Z by a new full column-rank design matrix T, that collects the
k PLS covariates most informative on the output variable Y. Then, a classical logistic

regression is performed onto the columns of the new design matrix.

3.1.2. Computational aspects. Consider the singular value decomposition of X = UDV’
where U and V' are orthogonal (n X n) and (p X p) matrices and D is a (n x p) matrix
with null entries except r = rank(X) entries on the first diagonal. Replacing Z for

Zred — (1, U. 1., D110 in the above algorithm yields an unique estimate ’yNR’“ e R,

éNR,H

when it exists. is the vector of minimal norm among all the vectors satisfying
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ZredgNRr — 70 and is related to #NF* through the relations

éNR,H _ ~NR,x
1 "1

’NR,x ~NR,x
and 02:p+1 - ‘/17117’72:7’{—1‘ (7)

3.1.3. Euzistence of the estimate gNE5 - Whatever (Y,Z), the matrix T, is uniquely
defined whenever £ < Kmax. If £ > Kmax, the PLS components (¢;);sx,... are null
vectors (up to numerical approximations).

In some cases, there exists k, such that IRLS [Y, Tx,] can not converge : the n sample
points in the observation space R” are (quasi)-separated and the ML estimate does not
exist. Observe that since the columns of the design matrix T; are pairwise orthogonal,
if IRLS [Y,T,,] does not converge, then IRLS [Y, T;] can not converge, for any s, <
J < Kmax- In case of non-convergence, we decide to stop the IRLS step when separation
is detected; the estimate gNR.Ax is set to the current value of the Newton-Raphson
sequence #', a value of the parameter that correctly separates the learning samples in
two classes. Applying such a rule yields an estimate that depends upon the initial value

of the Newton-Raphson sequence.

3.2. Marx : IRPLS [Y,Z,v,K].

3.2.1. The [Neratively Reweighted PLS algorithm. The extension proposed by Marx

1996) proceeds also into two steps; for some positive integers (v, ), v < &,
g

Initialization :

Choose 6°.
Step A : While non-convergence,

Set ¢! = Z§' + W(¢")~1 (Y — I1(¢")).

Run PLS [¢!, X, W ('), ] and set 91 = gFPLS# and T, =[1, t; --- t,].
End.
Step B : Run IRLS [Y,T,] and return 6”. the limiting value of the Newton-
Raphson sequence (a regression coefficient in terms of the PLS components).

Express the regression in terms of the original explanatory variables, and return
éM,H,lI .
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Step A is nothing else than IRLS, in which each weighted Least-Squares regression is
replaced with a weighted PLS regression with a fixed number of components x. At
convergence, the first v PLS covariates (t;);<, are collected in T,. This new design
matrix T, is then plugged in a ML inferential scheme (Step B).

The author also discusses the choice of (, ), and initialize 6° as suggested in Section 2.2.

3.2.2. Computational aspects. Here again, we can substitute the original design matrix

Z for the matrix Z'ed € R™*(1+rank(X)) " defined in Section 3.1.2. This yields an estimate

2 M, kv
v

regression in terms of the original explanatory variables

(7).

of the vector of regression with respect to the columns of Z™9; the vector of

M5 i then obtained as in

3.2.3. Euwistence of the estimate M52 Due to the PLS algorithms, & has to be chosen
lower or equal to some upper bound Kpay that, in theory, depends on (Z, (¢%), (W?),).
In practice, on the considered data sets, Kmax 18 constant and equal to n — 1.

When k£ = kmax and Z is full rank, step A never converges; indeed, by definition of PLS,
Z0'+1 is the W (6')-projection of ! € R™ onto the n-dimensional space spanned by the

columns of Z. This implies that for all ¢ > 0, Z#!T! = +* and, component-wise,

(Z67), = 6((Z0')) where o(u) = 14+ u+exp(u), forall k, such that Yy, =1,
—1+u—exp(u) for all k, such that Y, =0.

Step A never stops since ¢ does not have a fixed point. This non-convergence may occur
when kK < Kpax t00.

In addition, IRLS is not guaranteed to converge, but here again, we can substitute the
stopping rule based on the convergence of (6%); by a stopping rule based on the detection

of the separation.

3.3. Ding and Gentleman : IRPLSF [Y,Z, x].

3.3.1. The lteratively Reweighted PLS-Firth algorithm. Bull et al. (2001) propose an
algorithm close the ML inferential approach, to make robust the ML estimate in cases

of small samples, when Z is a full column-rank matrix. They prone the use of the
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Firth-penalized ML estimate which is defined as the unique maximum of the penalized
log-likelihood function (5(6) = {(#) — 0.51n|Z"W () Z| where [ is given by (3), and the
regularization term —0.51n|Z"W (#)Z| is minimal at # = 0. The maximum is computed
by a Newton-Raphson algorithm, and each loop of this iterative algorithm can be under-
stood as a weighted least squares regression of some so-called pseudo-variable ¢! onto
the columns of Z.

Ding and Gentleman (2004) extends this regularization technique to the high-dimensional
regression framework n << p by substituting the weighted least squares regression by

a weighted PLS one. This yields the following algorithm. Let x be a positive integer.

Initialization :
Choose 6°.
While non convergence,
Set H! = /W(0)Z(Z'W (6')Z)TZ'/W (87), and let h' be the diagonal
matrix with diagonal entries (H}, )i<k<n-
Set W (') = (Id,, + h')W (6?).
Set ¢ = Z' + {W(ef)} T d, + 0580 — (1d, + KHIIEY].
Run PLS [¢, X,VNV(HLL)7 k] and set §'t! = grLs.s,
End.

Return PG+ = lim, 6°.

The authors also provide programs in R, available at http://www.bioconductor.org/, in

which they initialize their algorithm by setting Z#° = ¢ = 0.75Y + 0.25(1, — Y).

3.3.2. Computational aspects. Here again, we can substitute the original design matrix

Z for the matrix Z'ed € R™*(1+rank(X)) " defined in Section 3.1.2. This yields an estimate

,’)\/DG,H

regression in terms of the original explanatory variables is then obtained as in (7).

of the regression coefficients with respect to the columns of Z"™9; the vector of

3.3.3. FEuxistence of the estimate PG %, Due to the PLS algorithms, there exists an up-
per bound for the value &, denoted Ky, which depends upon (Z, (¢');, (W(8%))s). In

practice, Kmayx 18 constant over the iterations.
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When k& = Kmax, the above algorithm maximizes the function 6 + [(6)—0.51n |Z'W (0)Z| ™,
where for some positive semi-definite matrix A, |A|T stands for the product of the pos-
itive eigenvalues. Upon noting that dp, In|AA’| = Trace((A’A)~" A’ 9y, A) for any
matrix A such that A’A invertible (Bates (1983)), the gradient is given by Z'((Id,, +
0.5R)Y — (Id,, + R)I1(#)) where h is a diagonal matrix with diagonal equal to that of
the hat matrix H = \/WZ(Z’WZ)"’Z’\/V_V. When Z is full rank, which is in practice
the case when n << p, h is the identity matrix, and the normal equations possess an
explicit solution : PG #mex = Z+ (In3Y —In3 (1, — Y)).

When k < Kmax, the algorithm is a kind of truncated Newton-Raphson algorithm :
starting from €', a Newton-Raphson iteration is performed and the new value of the pa-
rameter is projected onto a subspace of dimension x spanned by the PLS components, a
subspace which may be different at each iteration. This algorithm may not converge; on
some examples, we have sometimes observed a cyclic behavior, i.e. the existence of, say,

two points #°>1, #°2 such that for all sufficiently large ¢, 2! = #°! and §21+1 = §°>:2,
3.4. Fort and Lambert-Lacroix : RPLS [Y,Z, A, x].

3.4.1. The Ridge-PLS algorithm. The algorithm proposed in Fort and Lambert-Lacroix
(2005) divides into two steps. Let R be a diagonal s x s matrix with diagonal entries

[01 --- 1], and A, k be resp. a positive real number and a positive integer.

Initialization :
Choose 6°.
Step A : While non convergence,
set o' = Z6" + W (0") 7! (Y — T1(6")),
set 9L = (Z'W(0)Z + ARpy1 )~ Z/'W (1)1,
End.
Step B : Run PLS [¢*°, X, W (8>), k] and return gFLAr — GPLS x|

Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML criterion
I5(0) = 1(6) — 0.5)||Ry41 0]|>. The pseudo-variable at convergence of this iterative

procedure, ¥ has a linear structure on the form Z#° + ¢, where conditionally on 6
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being the true value of the parameter, € is a zero-mean noise with dispersion matrix
W (6>)~1. PLS is then called with input response variables ¥*° and a weight matrix
W (0°°) which takes into account the heteroscedasticity of the noise e.

The authors also provide programs in MATLAB and R (resp. available at http://www-
Ime.imag. fr/lmc-sms/Gersende. Fort,Sophie. Lambert), in which the algorithm is initial-
ized as in Section 2.2, by setting I1(fy) = 0.75Y + 0.25(1,, — Y).

3.4.2. Computational aspects. Set 0~1 = #, and 0~2.p_|_1 = V'0;.p41, where V is defined in

Section 3.1.2. We have I%5(8) = (5 (61.41) — 0.5 Zi-l_:,_m( k)% where for v € R™T1,

Ge) = zmdwzln 11 (7)) — 05X Ry,

Z**d and r are defined in Section 3.1.2 and II54(v) = (1 + exp(—(Z"¥y)g))~L. This
implies that 6 maximizes [}, if and only if §1:r+1 maximizes l]*%’red and ék =0,r+2<
k < p+1. As a consequence, in Step A, we can replace Z for Z™9. At convergence, this
yields v € R"t1, a vector of regression with respect to the columns of Z™9; the vector
of regression in terms of the original explanatory variables is the shortest norm vector
among all the § satisfying Z™9y> = Z@ and is thus obtained as in (7). Since the same
substitution can be done in the PLS step, all the steps of the above algorithm can be

run with Z' instead of Z; we obtain 4% and deduce 87N as in (7).

3.4.3. FEuxistence of gFLAR - The function 1*7d is strictly concave and tends to —oo when
|7]l = +o0 (coercivity); the maximum exists and is unique. This means that, in Step
A, any converging sequence has the same limit whatever 6°; since the PLS estimate is
uniquely defined given the entries (>, X, W, k), 4FM% exists and is unique. And so
OFL,/\,H is

When A = 0, lim, 6 is the ML estimate, and as discussed in Section 2.2, it never exists
if rank(Z) = n which is in practice the case when n << p. Step A never converges thus
explaining the condition A > 0. When A\ — 400, lim; # tends to [In(y/(1—%)),0,---,0]
where y = n™1 3", Yy; i.e. lim; I1(6") is the ML estimate of the probability of success
when the observations are independent and identically distributed Bernoulli variables.

The weight matrix tends to w = y(1 — y)ld,, and gFLtoor g related to F1S# the
18



estimate returned by PLS [Y, X, Id,, k] by

R 1 ] 1
0FL,+OO,H = — _ OPLS,H _I_ (ln ) —w ly) 17 07 cee 0 /‘

This discussion evidences that A has to be chosen sufficiently large, but not too large.

3.4.4. Choice of A. The weakness of the method RPLS, compared to some previous
ones, is that it depends on two parameters (A, x), while the previous methods only
depend on k. Fort and Lambert-Lacroix (2005) propose to determine A at the end of
Step A (independently of k), by choosing the value that minimizes the BIC criterion

BIC(), 8) = —21(8) + log(n) Trace (\/W(O)Z(Z’W(O)Z + /\Rp+1)‘1Z’\/V_V(0)) ,

evaluated at # = lim; 6', a limit depending on A. In practice, the criterion is minimized
on a range chosen by the user; we observed that, in some cases, the BIC criterion is
minimal when A — 400 so that A is set to the upper limit of the range. In the following
applications, the BIC criterion is evaluated on 61 log,-linearly spaced points within the
range [1073,10%]. In the literature, the choice of A by minimization of a GCV criterion
is often advocated; in the present case, this criterion is equal to Zzzl{ﬂlzzﬂykﬂ +
(1 — )~ %My, =0}, which is minimal when Iy = Ty, =1 + (1 — Ty,=0). When Z is full
6 — éML

row-rank, this occurs by choosing A =0 (i.e. when which is of infinite norm)

so that the GCV criterion is not pertinent for the present framework.
3.5. Bastien, Esposito Vinzi and Tenenhaus : PLSGLR [Y,Z, k].

3.5.1. The PLS Generalized Linear Regression algorithm. Bastien et al. (2004) develop a
method in the case n > p, for a full column-rank design matrix Z = [1l,, X]. The method
is based on the following observation : PLS defines ¢; by the relation Zle X.;(X.;,Y)
where (X, ;,Y) is, up to the multiplicative term ||.X.;||?, the ordinary Least Squares
regression coefficient of Y on X, ;. The idea is to extend PLS to GLM by replacing this
ordinary regression by a generalized linear regression, and to iterate the mechanism to

construct (¢;)1<;<x-
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Bastien (2004) apply their algorithm to Cox model in the context of highly multidimen-
sional data (n << p). We apply their algorithm to the design matrix Z. Their method

divides into two steps; let k be a positive integer.q

Initialization :
Set EY € R™*? be the centered covariate matrix (Eg = X — 7 1,1/, X).
Step A : Construction of the PLS components
Fork=0,---, k-1,
For 3 =1,---,p,
Run IRLS [Y, [, t1 --- t E’f]]] and return ajyq ;, the limiting
value of the Newton-Raphson sequence.
Set wiy1,; = agq1,4]/EF |
End.
Set try1 = EFwpqy J[wgyr ]|t and EFHE = EF —tk+1t2+1EkHtk+1H_2.
End.
Step B : Run IRLS [Y, [N, ¢y --- t.]] and return 8% the limiting value of the
Newton-Raphson sequence, a regression coeflicient in terms of the PLS compo-
nents (£;)i<;<x-

Express the regression in terms of the original explanatory variables, and return

éB,H

By convention, the matrix [t; --- t E?j] is the column matrix E?j. Bastien et al.
also discuss the choice of x, and propose a simplification of the computation of the PLS
components which consists in setting to zero the non-significant coefficients ay ;.
Contrary to the four previous methods, this method is not invariant by re-parameterization;

substituting Z for Z*9 in the above procedure, yields 42 such that A £ Zreds B,

3.5.2. Euxistence of the estimate 68+, Here again, the different IRLS algorithms are not
guaranteed to converge; they can be stopped when separation is detected. Observe
that if for some x, the convergence problems only occur in Step B when regressing Y
on T, = [1, t; --- tx], then none of the IRLS procedures of Step A with k& > k can

converge. Indeed, if there exists # € R**! such that for all K = 1,--- n, (T.0); > 0
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iff Yi =1, then there exists § € R"t2 such that for all k, ([T, E’f]]é)k >0iff Y, = 1.
This phenomenon naturally exhibits an upper bound for the set of the admissible values

of the hyperparameter k.

4. APPLICATION : BINARY CLASSIFICATION OF MICROARRAYS

This section is devoted to the comparison of the different estimates in terms of the
classification rule on the Colon data set. All the genes remaining after the pre-processing
step are included in the model.

We run the different extensions of PLS for some values of x : due to the dimension
of the data sets, we think that x has to be chosen small enough in order to perform a

dimension reduction; this is the reason why we choose x lower or equal to 6.

4.1. A Leave One Out analysis. We report in Table 1 the total number of misclas-
sified samples over the 62 successive test sets (columns T), and the mean number of
misclassified samples in the 62 learning sets of size 61 (columns L). We indicate by the
sign () results which have to be carefully considered for some reasons detailed below.
In the last row of the table, we report the number of misclassified samples when for
each of the 62 analysis, we choose k € {1,---,6} that minimizes the number of misclas-
sified test samples. In other words, the last row gives the number of samples that are

systematically misclassified, whatever x € {1,---,6}.
Insert Table 1 about here

The number of covariates included in the regression model depends on the subdivision
learning set/ test set, due to the pre-processing procedure; in practice, it is in the range
{1200, - --, 1224}, with mean 1221.40.

The NR algorithm. For k = 1,2, 3, all the IRLS calls converge; for x = 4, separation is
detected for one subdivision (namely, when the test set contains sample #55 or N36);
for k = 5,6, all the IRLS steps are stopped when separation is detected. The results
given for Kk = 4,5, 6 thus depend on the initialization of IRLS and in that sense are not

significative. Samples N34,36 and 733,36 are systematically misclassified, whatever
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the value of & is.

The IRPLS algorithm. For k = 1,2, we observe on the 62 subdivisions, a cyclic behavior
in Step A and convergence of IRLS in Step B. For k = 3, some of the paths in Step A do
not converge; for k = 4,5, 6, none of the paths in Step A converge. As a consequence, we
only report the results obtained for k = 1,2, when Step A is stopped after ty,.x = 200
iterations, but insist on the fact that these results depend on ty,,c. Samples N34,36
and T33, 36 are systematically misclassified, whatever the value of & is.

The IRPLSF algorithm. For k = 1, we observe a periodic behavior in 28 cases : LG
thus depends on the maximal number of iterations ¢, allowed in the iterative part of
the procedure. The results reported in Table 1 are obtained with ¢y, = 200. For x =
2,---,6, the iterative part converges. Samples N34,36 and 7’33, 36 are systematically
misclassified, whatever the value of k is.

The RPLS algorithm. The mean value of the hyper-parameter A over the 62 analysis
is 24.70. Samples N8, 34,36 and 733, 36 are systematically misclassified, whatever the
value of k is.

The PLSGLR algorithm. The PLS super-covariates ty, to, t3 are perfectly defined,
since the IRLS algorithms all converge; for t4, some regressions in Step A are stopped
because separation is detected; for ts,tg, separation systematically occurs. Step B
always converges for k = 1,2, and for k = 3, it is stopped due to detection of separation
in one case (namely, when the test set contains sample #55 i.e. N36). For x = 4,5, 6,
separation is systematically detected. The results given for x = 4, 5,6 thus depend on
the initialization of IRLS and in that sense are not significative. Samples N34, 36 and

T33, 36,37 are systematically misclassified, whatever the value of & is.

4.2. A Resampling analysis. For PLSGLR, when determining the value of the hyper-
parameter x by LOOCYV training set error rate, the minimum is found over the values
of x such that separation never occurs in all the IRLS calls of Step A; and when this is
never the case, the default value is 1. For IRPLSF, this minimum is over the values of
k such that Step A converges.

Figure 2[left] shows the boxplot of the test set error rate based on the 100 subdivisions,

for the NR, IRPLSF, RPLS and PLSGLR algorithms; and for four other methods :
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DLDA (Diagonal Linear Discriminant Analysis), DQDA (Diagonal Quadratic DA), k-
nearest neighbors (k-NN) and weighted k-NN (k-WNN). For the last two algorithms, the
distance is the Fuclidean one, the number of neighbors k is chosen by LOOCYV training
set error rate in the grid {1,3,---,19}, and for k-WNN, the weight of each gene is given
by the square of the t-statistic computed on the learning samples (which is equal to the
ratio of the between-groups to within-groups sum of squares). This ¢-test score ranks
genes based on their individual predictive ability. Table 2 shows the mean error rate

and its standard deviation, and the mean value of k (k for k-NN and k-WNN).

Insert Figure 2 and 2 about here

4.3. Conclusion. These analyses show that DLDA, DQDA and &-NN behave poorly :
they really suffer from the dimensionality of the problem, from the multicollinearity of
the design matrix, and from the noise due to the presence of irrelevant genes. They do
not perform neither dimension reduction nor regularization. Comparison of k-NN and
k-WNN shows that introduction of all genes with an equal importance greatly disturb
the classifier; smoothing out the role of the genes with weak ¢-test score drops noise and
improves the performances of the k-NN classifier. The boxplot shows that k-WNN, NR,
IRPLSF and RPLS have an equivalent behavior. The last three methods have the great
advantage of providing an estimate of the regression coefficients, a crucial knowledge
for the identification of genes that really contribute to the classification process, and for
feature selection. In Section 7, we compare NR, IRPLSF and RPLS when applied to
the feature selection scheme presented in Section 2.5.

The Colon data set is often studied in the Microarrays literature; we point out that the
above results of the Leave One Out analysis corroborate earlier observations. In Alon
et al. (1999), classification is based on a deterministic-annealing algorithm and samples
N8, 12,34 and T2, 30, 33, 36, 37 are misclassified. In Furey et al. (2000), the classification
is based on SVM and samples N8, 34,36 and T30, 33, 36 are misclassified.

5. EXTENSION OF PLS To GLM, IN THE MULTI-CLASS CASE

5.1. Nguyen and Rocke : MNR [Y, Z, x].
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5.1.1. The Multiple NR algorithm. The method proposed by Nguyen and Rocke (2002a)
proceeds into two steps; let & be a positive integer. Denote by Y® the array-concatenation

of the response variables : Y}  is YR 1 <k<n.

Run MPLS [Y?, X, k] and return the first k PLS components ty,--- .. Set
T, =[l, t; - t,] € RP¥+D,

Run IRLS [Y,T,] and return é, the limiting value of the Newton-Raphson
sequence (a regression coefficient in terms of the PLS components (¢;);<y).

Express the regression in terms of the original explanatory variables and return
éNR,H‘

As for the binary case, a dimension reduction is first performed in order to replace the
initial design matrix X by a new full column-rank design matrix T, that collects the s
PLS covariates most informative on the output variable Y. Then, a classical logistic

regression is performed onto the columns of the new design matrix.

5.1.2. Computational aspects. Consider the singular value decomposition of X = UDV”’
where U and V are unitary matrices and D is a (n X p) matrix with null entries except
r = rank(X) entries on the first diagonal. Replacing X for Xred — U.1:D1:1: in the
above algorithm yields an unique estimate 4N ¢ Re(H7) | when exists. gNR# s related
to 4NR# through the relations

[éNR,H] (1]) — [A NR,H] (1])

4 [éNR,H](j) ANR,H](])

and 2:(p+1) = ‘/:71:7’[7 2:(r+1)?

forall j € {1,---,c}.

5.1.3. Ezistence of the estimate 8N%%, The comments for the binary case (Section 3.1.3)

remain valid for the multi-class case.
5.2. Ding and Gentleman : MIRPLSF [Y, Z, x].

5.2.1. The Multiple IRPLSF algorithm. The multi-class algorithm follows the same lines
as the two-class algorithm, and is based on a PLS within IRLS scheme, till conver-

gence (Ding and Gentleman (2004)). We point out that the implementation of PLS
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differs from the different programs given in Section 2.3 (univariate PLS, its extension
PLS* and the multivariate PLS). Briefly, they use a univariate PLS in which the ini-
tialization step is omitted, i.e. they set fy = Y and Ey = Z. This means that at
each PLS iteration, the PLS score is chosen in the space spanned by all the columns
of Z (including the binary-valued columns due to the addition of an intercept term in
the model); usually, the PLS score is in the space spanned by the columns of Z and
orthogonal to the subspace spanned by the binary-valued columns. We refer to this
implementation as PLSqg.

The derivations are detailed in Ding and Gentleman (2004). Let s be a positive integer.

Initialization :
Choose 6°.

While non convergence,
Set H' = /W(0)Z(Z'W (6")Z)TZ'\/W (87), and let h' be the diagonal
matrix with diagonal entries (H}, )i<k<n-
Define k!, a diagonal (ne x ne) matrix with ((k — 1)c+ j)-th diagonal entry
Yooy hfk—l)c—l—l’ 1<k<nand1l<j<e.
Set W(6") = W(8")(Id,,. + 0.5(h" 4 h')).
Set ¢ = 26" + [W(O)| ™ [(1dye +0.5h)Y — (Id e + 051" + F))1(61)].
Run PLSyq [¢f, Z, W(8?), ] and set 11! = gFLSeg:

End.

Return PG+ = lim, 6°.

The authors also provide programs in R (available at http://www.bioconductor.org/), in
which the algorithm is initialized by setting ¢° = 0.75Y +0.25(1 — Y), and by drawing

at random a diagonal matrix for the initial value of W.

5.2.2. Computational aspects. To speed up the implementation of this method, consider
the singular value decomposition of Z, Z = UDV’ where U and V are unitary matrices
and D is a diagonal matrix of the same dimension as Z. Let r = rank(Z). We can
substitute the original design matrix Z for the matrix Zred = U.1:D1:y 1. This yields

DG of the regression coefficients with respect to the columns of Z™9; the
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vector of regression in terms of the original explanatory variables is then obtained by

ODG,H — V:,l:r:YDG’H-

5.2.3. FEuzistence of the estimate PG %, Due to the PLS algorithms, there exists an up-
per bound for the value k, which theoretically depends upon (Z, (¢%);, (W(8")):), but,
in the considered applications, Kmayx is constant over the iterations.

When k& = Kmax, the above algorithm maximizes the function 6 + [(6)—0.51n |Z'W (0)Z| ™.
By following the same lines as in Section 3.3.3, it may be shown that when Z is full
column rank, which is in practice the case when n << p, the maximum has an explicit

expression given by

DG rmax = In(3) ZF (Y - —Y).* (L.-Y)},

where Y is a {0, 1}-valued vector defined by Y (h=1)eti = 2oi=1 Y (h=tyett, L <k <o,
1 < 7 < ¢; and .x denotes the element-by-element multiplication.
When £ < Kmax, the algorithm is a kind of truncated Newton-Raphson algorithm which

is not guaranteed to converge.
5.3. Fort and Lambert-Lacroix : MRPLS [Y,Z, A\, k].

5.3.1. The Multiple RPLS algorithm. The following algorithm follows that same lines
as RPLS for the binary case, except that, due to the special form of the design matrix
Z. we use PLS* instead of the usual univariate PLS. Let RCS be a diagonal ¢s X ¢s
matrix with diagonal obtained by ¢ replications of the vector [0 1 --- 1] € R® and A,k

be resp. a positive real number and a positive integer.

Initialization :

Choose 6°.
Step A : While non convergence,

set ¢! = Z6' + W(9") =1 (Y — 11(6")),

set B! = (Z'W(of)z T ARc(p+1))_ Z'W (61) .
End.

Step B : Run PLS* [, Z, W (), k] and return §¥1Ar = gPLS<r,
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Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML criterion
I5(0) = 1(0) — 0.5/\H1:~{c(p_|_1) f||*>. Programs in MATLAB are available (available at
http://www-lme.imag. fr/lmc-sms/Gersende. Fort), in which the algorithm is initialized
by setting [1(6p) = (3 + ¢)~* (1, — Y) — 3Y).

5.3.2. Computational aspects. To speed up the algorithm, one can replace the (nc x
c(p+ 1)) matrix Z for a (nc x ¢(r + 1)) matrix Z™4 where r = rank(X). To that goal,
let UDV' be the singular value decomposition of X (see Section 3.1.2); construct Z"4
as in (2) from the rows of [, U. 1., D1, 1.r] instead of the rows of [, X]. Running the
algorithm with Z'd yields 4¥Ar ¢ ReU+1), a vector of regression with respect to the
columns of Z*4. The vector of regression in terms of the original explanatory variables
is the shortest norm vector among all the 8 satisfying Z*¢d4F A% = 76 and is obtained
by

R = Y Ty = Vi BTy

forall j € {1,---,c}.

5.3.3. Euzistence of gFLA s Here again, it may be proved that given (Y, Z), grLAF ig
unique; the proof is on the same lines as the proof in the binary case (Section 3.4.3).
When A =0, and rank(Z) = ne, Step A never converges thus explaining the condition

A > 0. When A — oo, lim; #' tends to a vector with ¢ non-null entries such that

.. m 01, % Pl .
Vj € {17 76}7 [h{ne ](]—1)(p-l—1)-|—1 In (1 — Z[czl yl) ; Yy n ;Y(k—l)c-l—]v

so that W (6°) tends to a block diagonal matrix with k-th block given by w = diag(y) —
yy' where y' = [y --- y.]. Hence [éFL’+°°’“](j), the estimate of the j-th block of the

parameter 8(9) is given by

GFLA00.m1(7) — [gPLS*)(5) 4 {1 ( Yi ) -l } 1, 0,---, 0]
[ =] ] iITy {w iy}l ]

where APLS*5 is the PLS estimate returned by PLS* [W(8°)=1Y,Z, W (6>),x]. In

practice, one can fix A to the value that minimizes the BIC criterion

BIC(), 8) = —20(8) + log(nc) Trace (\/W(O)Z(Z’W(O)Z + /\RC(pH))‘lZ’\/W(O)) ,



evaluated at 6 = lim; ', a limit depending on A\. We will do so in the following appli-
cations, and will minimize the criterion on 61 log,-linearly spaced points within the

range [1073, 107].

6. APPLICATION : MULTI-CLASS CLASSIFICATION OF MICROARRAYS

We compare MNR, MIRPLSF and MRPLS when applied to polychotomous discrim-
ination, on the NCI60 data set. We first run a leave one out analysis based on MNR,
MIRPLSFEF, MRPLS; we report the number of misclassified test samples (column T),
and the mean number over the n loops of misclassified learning samples (column L) by
MNR, MRPLS and MIRPLSEF, for different values of k. The last column indicates the
number of samples that are systematically misclassified, whatever the value of  is.
We then run a resampling analysis based on MNR, MIRPLSF, MRPLS and on k-NN
and k-WNN. For the nearest neighbor methods, we choose the Euclidean distance; in
kE-WNN, the weight of a gene is equal to its between-groups to within-groups sum of
squares. For MNR, MIRPLSF and MRPLS, (resp. NN methods), the hyper-parameter
K (resp. k) is chosen by LOOCV training set error rate, within the range {1,---,6}
(resp. {1,3,---,19}). For MIRPLSF, the minimum is over the values of x such that
Step A converges. We report the mean value and the standard deviation of the test set
error rate, and the mean value of the hyper-parameter (k or k). We also give a measure
of accuracy of the prediction based on the contrast. For a vector 7 = (wg, 71, -+, 7.) of
the class probability, we define the contrast by Z;i; (=) = (e D {mp—(e+1)71}
where 7[;; denotes the sorted components : 7y > +++ > 7 4q7. A large value of the
contrast means that the probability of being from the class associated to 7y is far
larger than the probability of the other classes. Since the predicted class is the class
associated to 7y}, the quantity Contrast is indicative of the classification confidence :
the larger it is, the more confident the classification is. We report the mean value of
{7y — (c+ 1)~!}, when the mean is over all the estimated vectors per subdivision, and
over the 100 subdivisions.

Table 3 shows the result of the leave one out analysis, when all the available genes are

included in the model (p = 1299). Step A of MIRPLSE always converges for this data
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set. Sample Me LOXIMVIis systematically misclassified, whatever the algorithm and

the value of k.
Insert Table 3 about here

We run a resampling analysis and include all the available genes in the model. The

results are displayed on Figure 3 and Table 4.
Insert Figures 3 and Table 4 about here

On Figure 3, the boxes have a large line at the median value. (Quasi)-separation often
occurs in the IRLS step of MNR; to illustrate the sensibility of the results to the initial
value of IRLS, we re-run the resampling analyses, by initializing IRLS at #° = 0. The
mean test set error rate is 0.047, with standard deviation 0.063, the mean value of &

and of the contrast are resp. equal to 3.21 and 0.639.

6.1. Conclusion. Classification in the NCI data set is a difficult task, due to the pres-
ence of many classes and very few samples from each class. In the resampling analysis,
the test set error rate in k-NN is minimized for small values of k (k close to 1); this is a
consequence of the definition of the learning set, which contains a very small number of
samples from each class. In these unfavorable conditions, methods based on dimension
reduction by PLS seem to provide better results, and among them, MIRPLSF looks
more stable. The value of Contrast show that the classification confidence is far more

important for MNR, and MRPLS than it is for MIRPLSF.

7. APPLICATION : FEATURE SELECTION FOR BINARY-VALUED RESPONSE VARIABLE

We run the RFE algorithm described in Section 2.5 when the extensions are based on
NR, IRPLSF and RPLS. This yields NR-RFE, IRPLSF-RFE and RPLS-RFE. Starting
from the full model, we apply RFE and produce a model of size 1024 followed by
the nested models of size 1022, 1020, ---, pmin- The PLS extensions are applied with
different values of x on which punin depends; pmin = 2 when £ = 1,2, pmin = 4 when

k = 3,4 and pupy, = 6 when &k = 5,6. Each model is evaluated with three metrics
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proposed by Guyon et al. (2002) : (i) the test set success rate Suc; (i) the acceptation
rate Acc, that complements the rejection rate defined as the fraction of samples that
have to be discarded to obtain zero error; (7ii) the extremal margin Ext, difference
between the smallest linear predictor over the 1-class samples and the largest linear
predictor over the 0-class samples, rescaled by the largest difference between the linear
predictors. By definition, 0 < Suc < 1, 0 < Acc < 1 and Ext < 1. Figure 4 is a
graphical representation of Acc and Ext. A value of any of this criterion close to 1 is
indicative of the quality, in terms of a low confidence of wrong prediction (Acc) and a

large confidence of correct prediction (Ext).
Insert Figure 4 about here

We sort the models based on different signed quantities : Suc, 0.5 Suc Ext, 0.5 Suc Acc,
and @ which corresponds to the signed surface of a triangle defined by the points with

coordinates
E = (Ext,0) S = Suc (cos(27/3),sin(27/3)) A = Acc (cos(47/3),sin(47/3));

more precisely, Q is the sum of the ’surface’ of the triangles SOE, EOA, AOS where by
convention, the ’surface’ of SOE and EOA is negative iff Ext < 0. Hence, Q > 0 iff Ext

> —Suc Acc (Suc+ Acc)™!, as illustrated on Figure 5.
Insert Figure 5 about here

Table 5 displays the results of a 10-fold cross-validation: for the four criteria, and the
different algorithms, we report the best value of the mean criterion among all the con-
sidered models (column ’value’), the size of the best model (column ’p’) and the value of
the hyperparameter s for which it is reached (column ’(k)’). The mean of the criterion is
over the 10 values obtained at each step of the cross-validation. We consider RFE based
on the NR estimate when NR is initialized from 6° given in Section 2.2; the results are
on row 'NR (init1)’. When learning the NR estimate for the different nested models with
Kk =2 (resp. 3,4,5,6), separation occurs in 0.33% (resp. 43.91%, 87.25%, 100%, 100%)
of the analyses; for k = 1, it never occurs. To test the robustness of the NR-RFE

to the initial value, we start the NR algorithms from #° = 0; the results are on row
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'NR (init2)’. This study points out the sensibility of NR-RFE to the initial value, and
more generally, the weakness of the Nguyen & Rocke’s approach. We then study the
performances of the IRPLSF-RFE algorithm; when learning the IRPLSF estimate for
the different nested models with k = 1 (resp. 2,3,4,5,6), the algorithm converges for
91.19% (resp. 99.82%,90.80%, 99.90%, 99.98%) of the analyses. Here again, we test
the robustness to the initial value by modifying the maximal number of iterations in
the iterative part of IRPLSF. The results are similar (see row 'IRPLSF (init2)’), thus
illustrating the stability of IRPLSF-RFE with respect to its non-convergence pathology.
Ranking the models by the Suc-value select quite large models; ranking the models by
the Q-value yields small models. The model that maximizes Q results from a compro-
mise between the quantities Suc, Acc and Ext, that is, it takes into account the correct
prediction, the large confidence in the correct predictions and the low confidence in
the wrong predictions. When sorted by the Q-value, the optimal model selected by
IRPLSF-RFE has a success rate Suc = 0.8738, an acceptation and an extremal rates
equal to Acc = 0.6452 and Ext = 0.0646. For the optimal model selected by RPLS-RFE,
we have Suc = 0.8881, Acc = 0.6071 and Ext = 0.0163. These optimal models are resp.
among the top 10% (resp. top 2.5%) when models are sorted by the Suc-value, thus
showing that the consideration of the more general criterion @ does not greatly penalize

the predictive quality of the selected model (see Figures 6 and 7[right]).

Insert Table 5 and Figures 6 and 7 about here

8. CONCLUSION

We discussed the different PLS extensions to GLM on a technical point of view, and
compare them when applied to classification and feature selection in Microarrays. The
extensions proposed by Marx (1996) and Bastien et al. (2004) really present technical
problems and do not perform well when applied to microarray data. The extensions
proposed by Nguyen and Rocke (2002b,a) suffer from the separation problem : classifi-
cation and feature selection greatly depend upon the initialization of some maximization
procedure on which their methods rely. The extensions by Ding and Gentleman (2004)

and Fort and Lambert-Lacroix (2005) seem to be the most promising extensions : the
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simulations demonstrate their very interesting performances when applied to binary
classification and feature selection for binary output variables; the interest of the meth-
ods is less evident when applied to multi-class classification, but this may be explained
by the fact that the number of samples from some classes is very small (three, four, ---).
We observed that the classification and the feature selection methods are not sensible
to the asymptotical cyclic behavior of the iterative algorithm proposed by Ding and
Gentleman.

The robustness of the methods by Ding and Gentleman (2004) and Fort and Lambert-
Lacroix (2005) stresses the pertinence of combining a regularization step and a dimen-
sion reduction step, when dealing with high dimensional regression problem with highly
collinear regressors. The Firth penalty and the Ridge penalty are both maximal at
the origin, thus attracting the estimate of the regression coefficient to the null vector.
When feature selection is the question of interest, one is interested in sparse models.
This naturally suggests the use of a more selective regularization step : for example,
the Ridge-penalization step and a thresholding penalization could be combined in order
to fight the high-collinearity of the design matrix, and to do shrinkage and automatic

variable selection simultaneously. This will be the next step of our work.

APPENDIX A. PLS WITH A NON FULL COLUMN-RANK DATA MATRIX

Let X be a non full column-rank standardized (n x p) matrix (each column is centered
with norm 1). Let Y € R” and W be a n X n symmetric positive definite matrix.
Consider the singular value decomposition of X, X = UDV' where, by convention, U

and V are unitary matrices. Define

r= rank(X), (7 = U:,l:r’v D = Dl:r,l:m V= ‘/:,1:7’7

so that X = UDV’' = UDV’, U'U = 1d, and V'V = Id,.. Finally, denote by Ej, fr, ts,
Wk, Pk, Gk (resp. Ey, fiy tes @k, Prs gr) the quantities produced by PLS [Y, X, W, k] (resp.
by PLS [Y, UV, W, k]).

Lemma 1. Ey = FoV', fo = fo and for all 1 < k < &,

Ev=EV') fi=fi, =1, wr=Vor, p=Vi @ = Q.
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The proof is trivial and is omitted for brevity; it consists in replacing X for UDV’
and in using the relations U'U = Id, and V'V = 1d,.
Proposition 2. When X is a non full column-rank matriz, centered in columns, the

PLS estimate §°5% is the shortest (Euclidean) norm vector among all the solutions

satisfying Y — f. = [1,, X] 6.

Proof. By lemma 1, Q (P’ Q)1 Q =V Q (P’ Q)~! Q where Q, P and Q are defined as
Q, P,Q (see Eq.(6)), from the quantities W, px, ¢x. Hence,

ZPLS,x _ v aPLS,x
02:p+1 - V 02:7’—|—1 9 (8)

where §PL5% and 6FLS% denote resp. the PLS estimates returned by PLS [Y, X, W, k]
and by PLS [Y,UV,W,k]. Since X is centered i.e. 1T/ X = 0, all the solutions to
the equation Y — f, = [, X] 6 have the same first component #;. The remaining p

components differ; the shortest Euclidean norm solution satisfies [V’ 63.,41]1. = ONE:I;_SI_T
and [V/ 0g.p41]; = 0 for all r+1 < j < p. Hence, 41 =V éil;_sl_’f and from (8), ég):I;_Sl_’f
is the shortest norm solution. [l

Proposition 3. k — ||§755|| is non decreasing.

Proof. For a full column-rank matrix X, this result is proved by De Jong (1995). For

a non full column-rank matrix, using the same notations as in the proof above, the

De Jong’s result states that x — 8PS is non decreasing; since the columns of V are

pairwise orthogonal with norm 1, we have ||§"L5%|| = ||§PL3#|| thus concluding the

proof. O
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FIGURE 1. n points with coordinates (ng), ng)) and label Y;, = 0 (with
a X-mark) or label Y; =1 (with a o mark). [Top] Separation : 39, vk,
(Z6)r > 0if Y =1 and (Z8); < 0if Y, = 0. [Middle] Quasi-separation
: 30, Yk, (Z6);, > 0if Yy = 1 and (Z8); < 0 if Yy = 0. [Bottom]

Overlap : none of the two previous cases.

NR IRPLS PLSGLR IRPLSF RPLS
K T L T L T L T L T L
1 20 13.90 12 827 (%) |19 13.71 9 6.77 (%) |18 10.29
2 8 7.85 8 6.60 (x)| 9 7.84 8 7.93 8 7.97
3 7 4.01 - - 13 2.42 7 5.00 7 5.00
4 10 1.92 (%) | - - 14 0 (%) | 7 2.00 8  2.02
5 8 0 () | - - 10 0 (%) | 7 0 9 0
6 11 0 () | - - 13 0 (#) [11 0 11 0
min | 4 - - - 5 - 4 - 5 -

TABLE 1. Colon data. For different methods and different values of x,

number of misclassified samples in the test set (column T) and mean

number of misclassified samples in the learning set (column L).
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NR | IRPLSF | RPLS | PLSGLR || -WNN | k-NN | DLDA | DQDA

mean | 0.163 | 0.148 0.153 0.290 0.160 | 0.241 | 0.286 | 0.338
std 0.064 | 0.062 0.060 0.112 0.072 | 0.067 | 0.140 | 0.141
K 3.27 3 2.82 1.01 5.64 7.37 - -

TABLE 2. Colon data. Test set error rate : mean value and standard

deviation (std). The last row shows the mean value of k (or k for k-NN

and k-WNN)

-

- ' -

w%ﬂ

of - i

Ficure 2. Colon data. Test set error rate in the resampling Analysis.

MNR MIRPLSF | MRPLS
K T L T L T L
1 12 10.4 7 680 |7 6.77
2 4 0 (%)]2 0 3 0
3 5 0 (%)]2 0 2 0
4 1 0 (%)]2 0 2 0
5 2 0 (%)]2 0 2 0
6 2 0 (%)]2 0 2 0
min | 1 1 - 1
TABLE 3. NCIdata p = 1299. For different methods and different values

of k, number of misclassified samples in the test set (column T) and mean

number of misclassified samples in the learning set (column L).
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MNR | MIRPLSF | MRPLS | k-NN | k-WNN
mean | 0.054 0.043 0.046 | 0.056 | 0.055
std 0.062 0.055 0.058 | 0.060 | 0.062
3.03 3.25 3.34 1.14 1.34

0.578 0.146 0.553 - -
TABLE 4. NCI data p = 1299. Test set error rate : mean value and

standard deviation (std). The last two rows give the mean value of the

parameter x (or k for k-NN and k-WNN), and of the contrast C.

EXt=E/D 1L EXt=E/D
Acc=1- (3/10)

Ficure 4. Estimate of the linear predictor for 10 samples, with true
class ’0” (drawn with a x mark) and true class 1’ (drawn with a o mark):
a sample is classified ’class 1 7 iff the linear predictor is positive. [left] No
errors : Suc=1, Ext > 0 and Acc =1. [right] Two errors : Suc=1-(2/10),
Ext < 0 and Acc =1-(3/10) since there are 3 points in the Rejection

area.
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FIGURE 5. Q corresponds to the (signed) surface of the triangle with

solid lines. In the first two cases, the surface is positive; in the last one,

it is negative.

Q-quantiy

Ficure 6. Colon data. Q-quantity and test set success rate, for the

different nested models selected by IRPLSF-RFE.

Number of genes

Ficure 7. Colon data. Q-quantity and test set success rate, for the

different nested models selected by RPLS-RFE.
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0.5 (Suc Ext) | 0.5 (Suc Acc) Suc
value p (k) | value p (k) | value p (k) | value p (k)
NR (init 1) 0.3354 12 (4) | 0.0569 12 (4) | 0.3021 28 (6) | 0.9048 64 (2)
NR (init 2) 0.3047 18 (3) | 0.0577 8 (4) |0.2952 78 (6) | 0.8929 422 (3)
IRPLSF (init 1) | 0.2867 14 (4) | 0.0378 20 (4) | 0.2868 158 (1) | 0.9048 44 (2)
IRPLSF (init 2) | 0.2867 14 (4) | 0.0378 20 (4) | 0.2868 158 (1) | 0.9048 32 (2)
0.2440 8 (1) | 0.0072 8 (1) | 0.2814 140 (1) | 0.8905 70 (2)

TABLE 5. Colon data. Feature selection :

NR-RFE, IRPLSF-RFE and RPLS-RFE for different measures of the

optimal model exhibited by

quality : we report the value of the quality 'value’, the size of the model

'p” and the value of the hyper-parameter 'x’ with which the optimum is

reached.
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