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1. Introdu
tionThe obje
tive of the present work is to review some extensions of Partial Least Squaresregression to Partial Least Squares generalized linear regression and to 
ompare themwhen used in the \large p, small n" framework. More pre
isely, we restri
t our atten-tion to binary and multinomial logisti
 regression models and 
onsider appli
ations to
lassi�
ation and feature sele
tion in high-dimensional regression problems.PLS is both a dimension redu
tion method and a regression method in linear models.Roughly speaking, it 
onsists in sequentially 
onstru
ting super-
ovariates i.e. linear
ombinations of the 
ovariates, whi
h are predi
tive of the response variable. Unlikethe Prin
ipal Component Analysis 
omponents, the PLS super-
ovariates depend on theresponse variable (Wold (1975)). An introdu
tion to the stru
ture of PLS 
an be foundin Helland (1988), a statisti
al view in Helland (1990), a study of the PLS geometryin Phatak and De Jong (1997) and some theoreti
al properties (some of them relativeto the shrinkage property of PLS) in De Jong (1995); Goutis (1996); Lingjaerde andChristophersen (2000); Phatak et al. (2002). PLS has been used extensively in 
hemo-metri
s for predi
tion and identi�
ation of latent stru
ture models. Chemometri
s dataare 
hara
terized by highly 
ollinear predi
tor variables and PLS revealed to be robustto deal with these data sets (Naes and Martens (1985); Frank and Friedman (1993)).Gene expression mi
roarray data have a similar data stru
ture : 
ovariates are highly
ollinear and the number of 
ovariates far ex
eed the number of observations. One im-portant appli
ation of mi
roarrays is 
lassi�
ation of samples into 
ategories; ; a reliableand pre
ise 
lassi�
ation of human malignan
ies is essential for su

essful treatment.Statisti
al analysis of these data thus requires the development of new methodologiesor modi�
ation of existing ones. A se
ond question of interest is the identi�
ation ofthe genes that really 
ontribute to the dis
rimination pro
ess. This naturally suggests a
lassi�
ation pro
edure based on regression; in this paper, we will 
onsider the logisti
or poly
hotomous dis
rimination method. Su
h a pro
edure requires an estimate of theregression 
oeÆ
ient, and inferen
e in su
h models is usually solved by Maximum Like-lihood (ML) and in pra
ti
e, relies on the Iteratively Reweighted Least Squares (IRLS)1



algorithm. Unfortunately, when the number of 
ovariates is far larger than the numberof observations, the ML estimate does not exist.To over
ome the 
urse of the dimension and the high 
ollinearity, it has been proposedto substitute the ML estimate by some PLS estimate. This approa
h requires the ex-tension of PLS to generalized regression. The algorithms derived in Nguyen and Ro
ke(2002b), Marx (1996), Bastien et al. (2004) for the binary 
ase and in Nguyen andRo
ke (2002a) for the multi-
lass 
ase, in
orporate PLS in the 
lassi
al IRLS s
heme.The algorithms proposed by Ding and Gentleman (2004) and Fort and Lambert-La
roix(2005) in
orporate both PLS and a regularization te
hnique in the IRLS s
heme.Any inferential method in regression models is a bla
k box, with input arguments theresponse ve
tor and the design matrix, and with output variable, an estimate of theregression 
oeÆ
ients. The interest of a new inferential method is both based (a) onthe te
hni
al ability to return an output variable, whatever the input arguments are,and (b) on the ability to provide an answer to the statisti
al problem.The �rst obje
tive of this 
ontribution is to study the di�erent extensions on a te
hni
alpoint of view. Se
tion 3 (resp. Se
tion 5) is devoted to the extensions of PLS to binarylogisti
 regression (resp. multi-
lass logisti
 regression) : we give the algorithms, dis
uss
omputational aspe
ts, and in some 
ases, we point out that the existen
e and uni
-ity of the estimate, given the input arguments, strongly depend upon some te
hni
alparameters (su
h as the initial point or the maximal number of iterations in iteratives
hemes).The se
ond obje
tive is to 
ompare the di�erent extensions when applied to 
lassi�
a-tion of mi
roarray data. To that goal, we 
ompare the error rate of the logisti
 (resp.poly
hotomous) dis
rimination methods when the estimate of the regression 
oeÆ
ientsraises from the extensions of PLS. This is done through Leave One Out and Resamplinganalyses on real data sets : Colon data (binary 
ase, Se
tion 4), NCI60 data (multi-
lass
ase, Se
tion 6). The regression 
oeÆ
ients allow the identi�
ation of the 
ovariablesthat are de
isive in the predi
tion equation; this information 
an be exploited to builda feature sele
tion pro
edure, in order to identify a small subset of informative geneshighly 
orrelated to the out
ome. Feature sele
tion will be the se
ond approa
h for the
omparison of some extensions of PLS. We will run a feature sele
tion algorithm based2



on Re
ursive Feature Elimination (Guyon et al. (2002)), on the Colon data set.We start with basi
 ingredients : Se
tion 2 is devoted to the des
ription of the logisti
model, the IRLS algorithm, di�erent PLS programs used in this paper, the poly
hoto-mous dis
rimination method and the feature sele
tion algorithm. It also 
ontains ashort des
ription of the data sets.2. Basi
 IngredientsThe unfamiliar reader may refer to Fahrmeir and Tutz (2001) for a general de�nitionand presentation of GLM.Notations. By 
onvention, ve
tors are 
olumn ve
tors; for a ve
tor u, uk denotes itsk-th 
oordinate. 1In is the Rn-valued 
onstant ve
tor with 
oordinates 1, and for twointegers a < b, a : b is the ve
tor with 
omponents (a; a+ 1; � � � ; b� 1; b). For a matrixA, Ai;j is the element (i; j), A:;j is the 
olumn #j, and Ai;: is the row #i. If u is ave
tor, Au;: (resp. A:;u) is the matrix formed by pi
king out the rows of A (resp. the
olumns) indexed by u. If u1; u2 are two ve
tors, Au1;u2 is the matrix [Au1;:℄:;u2 . Ifu1; � � � ; u� are Rn-valued ve
tors, [u1 : : : u�℄ is the (n� �) matrix with j-th 
olumn uj .A0 denotes the transpose matrix, A+ the Moore-Penrose pseudo-inverse matrix. For apositive-de�nite matrix A, pA is its prin
ipal square root and for a square matrix, jAjis the determinant. We denote by Idn the (n� n) identity matrix, and, for some ve
toru, by Diag(u) the diagonal matrix with entries the elements of u. Finally, k � k is theEu
lidean norm and < �; � > the usual s
alar produ
t.2.1. Binary and Multinomial logisti
 regression. Let 
 be a positive integer, Ybe a f0; 1; � � � ; 
g-valued random variable and z be a Rp+1-valued ve
tor of regressors.Let � 2 R
(p+1) be the parameter of the model, and hen
eforth referred to as the ve
torof regression 
oeÆ
ients. � 
an be read as the 
on
atenation of 
 ve
tors �(y) 2 Rp+1,1 � y � 
. The distribution of Y is given by8y 2 f0; 1; � � � ; 
g; P(Y = yjz; �) = �y(�); with 
Xy=0 �y(�) = 1;3



where �y is related to the linear predi
tor �y(�) = z0�(y) through the link fun
tion�y(�) = h(�y(�)) and h(�y) = exp(�y)1 +P
l=1 exp(�l) : (1)By 
onvention, �(0) is the null Rp+1-valued ve
tor. Equivalently, one 
an de�ne a binary-valued random ve
tor ~Y 2 f0; 1g
 by the relations8y 2 f1; � � � ; 
g; h ~Yy = 1 and ~Yl = 0; l 2 f1; � � � ; 
g n fygi ; i� Y = y;h ~Yl = 0; l 2 f1; � � � ; 
gi ; i� Y = 0;By de�nition, we have E� [ ~Yl℄ = �l(�), where E� denotes the 
onditional expe
tation(
onditionally to z) assuming � to be the true value of the parameter.Throughout the paper, the ve
tor of regressors z is of the form [1 x0℄0, i.e. it 
ontainsan inter
ept term and p 
ovariates.2.2. Inferen
e by Maximum Likelihood. The inferen
e approa
h in GLM is usuallybased on the maximum likelihood method.2.2.1. Blo
k matri
es. We observe n independent realizations (~Y(k); z(k))1�k�n of (~Y; z),respe
tively 
olle
ted in a response ve
tor Y 2 f0; 1gn
 and in a design matrix Z 2R
n�
(p+1) de�ned byY0 = [Y1 � � �Yn
℄ where Y�k+j = ~Y (k)j ; and �k = (k � 1)
;Z�k+1:�k+
;: = 26664z(k)0 0 � � � 0� � � � � � � � � � � �0 � � � 0 z(k)037775 2 R
�
(p+1); (2)for all 1 � k � n, 1 � j � 
. All the 
ovariates are 
olle
ted in a data matrixX 2 Rn�p su
h that the i-th row 
ontains x(i). X is assumed to be standardized : ea
h
olumn is 
entered with norm 1. Let �(�) 2 Rn
 de�ned by �k(�) = h((Z�)k) for allk 2 f1; � � � ; n
g, so that �(�) = E� [Y℄. The log-likelihood is given byl(�) = Y0Z� + nXk=1 ln 1� 
Xl=1 ��k+l(�)! : (3)4



2.2.2. Case 1 : Z is full 
olumn-rank. When the ML estimate exists and is unique, thesolution to the normal equation Z0(Y��(�)) is usually 
omputed by a Newton-Raphsonalgorithm. Let W be a R(
n)�(
n) blo
k-diagonal matrix with k-th blo
k Wk 2 R
�
,1 � k � n,Wk = 26666664��k+1 (1���k+1) ���k+1 ��k+2 � � � ���k+1 ��k+
���k+1 ��k+2 ��k+2 (1� ��k+2) � � � ���k+2 ��k+
� � � � � � � � � � � ����k+
 ��k+1 ���k+
 ��k+2 � � � ��k+
 (1���k+
)37777775 : (4)Upon noting that the Hessian of the log-likelihood is �Z0W(�)Z, we have �̂ML = limt �twhere the Newton-Raphson sequen
e (�t)t is produ
ed by the iterative s
hemeIRLS [Y;Z℄Initialization : 
hoose �0 2 R
(p+1),While kZ0(Y ��(�t))k � threshold, (�t) = Z�t +W(�t)�1 �Y ��(�t)�,�t+1 = �t+�Z0W(�t)Z	�1 Z0 �Y ��(�t)� = �Z0W(�t)Z	�1 Z0W(�t) (�t).End.Ea
h Newton-Raphson iteration is thus a weighted regression of a pseudo-variable  onto the 
olumns of Z. This yields the so-
alled Iteratively Reweighted Least Squaresalgorithm (IRLS, Green (1984)), a pro
edure hen
eforth denoted IRLS [Y;Z℄. The limitlimt �t does not depend upon the initial value; in the binary 
ase, 
hoosing �0 su
h that�(�0) = (Y+0:5)=2 = 0:25((1In
�Y)+3Y) works well (Fahrmeir and Tutz (2001)); inthe multi-
lass 
ase, we suggest to �x �0 su
h that �(�0) = (3 + 
)�1((1In
 �Y) + 3Y).It is proved in Albert and Anderson (1984); Santner and Du�y (1986); Lesa�re andAlbert (1989) that the ML estimate does not ne
essarily exist; the existen
e depends onthe 
on�guration of the sample points in the observation spa
e. Three di�erent 
ases
an be distinguished, namely the separation, the quasi-separation and the overlap 
ase.Separation means that there exists � 2 R
(p+1) su
h that for 1 � k � n, 1 � j � 
,h([1In X℄ �(j))k > ([1In X℄ �(l))k; 8l 2 f0; � � � ; 
g n fjgi i� Y(k�1)
+j = 1; (5)5



where by 
onvention, �(0) = 0. Quasi-separation means that (5) holds with large in-equalities; overlap is the third situation. In the �rst two 
ases, the ML estimate doesnot exist sin
e the likelihood is maximized on the boundary of R
(p+1) i.e. when k�ktends to +1. In the third 
ase, the ML estimate exists and is unique. These situationsare illustrated on Figure 1 in the binary 
ase, when p = 2 : we plot the n ve
tor-valued
ovariates with 
oordinates Xk;: in R2 with a �-mark (resp. a Æ-mark) for samples fromthe �rst 
lass (resp. the se
ond). Separation means that some hyperplane separates theobservation spa
e into two half-spa
es, the positive (resp. negative) half-spa
e 
ontain-ing the samples from 
lass 1 (resp. 
lass 0); quasi-separation means that some pointsare on the linear boundary; overlap means that the sample points 
an not be separatedby a hyperplane. Insert Figure 1 about here2.2.3. Case 2 : Z is not full 
olumn-rank. This situation always o

urs when p >> n.The log-likelihood depends on the parameter through the linear predi
tor Z� so that� is not identi�able. Nevertheless, we 
an always (a) formulate the model with a full
olumn-rank design matrix Zred and a parameter 
 2 Rrank(Z) by standard matri
ialmanipulations; (b) solve the estimation problem and obtain, when it exists, 
̂ML; (
)return to the initial statisti
al problem by de�ning �̂ML as the minimal norm ve
toramong all the ve
tors satisfying Zred
̂ML = Z�. Observe that when rank(Z) = n
,whi
h is most often the 
ase when p >> n, the solution to the normal equation veri�es(Zred
̂)(k�1)
+j = ln� Y(k�1)
+j1�P
l=1Y(k�1)
+l� ; 81 � k � n; 1 � j � 
;whi
h implies k
̂k = +1. Hen
e �̂ML 
an not exist, and this naturally 
alls for adimension redu
tion, i.e. for redu
ing the high p-dimensional predi
tor spa
e to alower �-dimensional spa
e.2.3. Partial Least Squares (PLS). Partial Least Squares is a regression tool that
ombines regression and dimension redu
tion (Wold (1975); Helland (1988)). The mostfamous dimension redu
tion within regression, is 
ertainly the method of Prin
ipal Com-ponent Analysis (PCA). In PCA, orthogonal linear 
ombinations t of the 
ovariates are6



sequentially 
onstru
ted to maximize the varian
e of the linear 
ombination (Jolli�e(1986)). In PLS, the idea is to 
onstru
t super-
ovariates t whi
h are predi
tive of theresponse variable. Orthogonal linear 
ombinations t of the 
ovariates are sequentially
onstru
ted to maximize the 
ovarian
e between t and the response variable (see Phatakand De Jong (1997) and referen
es therein).We �rst brie
y des
ribe the 
lassi
al univariate method whi
h is, in our opinion, de-voted to the 
ase when the design matrix is on the form [1In X℄. We then propose anextension of PLS for sparse design matri
es on the form (2); when 
 = 1, this extensionand the 
lassi
al method 
oin
ide. Till now, we 
on
atenated the n response variablesin a ve
tor of length n
; nevertheless, some extensions of PLS to GLM are based onthe array-
on
atenation of the responses, in a n � 
 matrix. Hen
e, we 
on
lude thisdes
ription by the mention of MPLS (Multivariate PLS), a PLS te
hnique derived forarray-valued response variables.2.3.1. Univariate PLS : PLS [Y;X;W; �℄. Let Y 2 Rn be a response variable andX 2 Rn�p be a design matrix, whi
h is assumed to be standardized in 
olumns (ea
h
olumn is 
entered with norm 1). Choose an integer � > 0. PLS pro
eeds as follows :Initialize :f0 = Y � q0 1In; with q0 = (1I0nY )=(1I0n1In)E0 = X .For k = 1; � � � ; �,tk = Ek�1 !k; with !k = E 0k�1fk�1,fk = fk�1 � tk qk; with qk = (t0kfk�1)(t0ktk)�1,Ek = Ek�1 � tk p0k; with pk = (E 0k�1tk)(t0ktk)�1.End.By 
onstru
tion, (t1; � � � ; t�) is an orthogonal family and the PLS 
omponents tj areorthogonal to the 
onstant ve
tor 1In. This yields a de
omposition on the formY = (1I0n1In)�1 (1I0nY ) 1In + q1t1 + � � �+ q�t� + f� = [1In X ℄�̂PLS;� + f�;7



where f� is orthogonal to the spa
e spanned by (1In; t1; � � � ; t�). When Z = [1In X ℄ is offull 
olumn-rank, �̂PLS;� is uniquely de�ned and �̂PLS;�2:p+1 is given by (see Helland (1988))�̂PLS;�2:p+1 = 
 (P 0 
)�1 Q with 
 = [!1 � � � !�℄; P = [p1 � � � p�℄; Q = [q1 � � �q�℄0; (6)otherwise, appli
ation of the above algorithm with a non full 
olumn-rank matrix Zyields an estimate �̂PLS;� whi
h is the minimal norm ve
tor among all the � su
h thatY � f� = Z�. In addition, � 7! k�̂PLS;�k is non-de
reasing. These assertions are provedin Appendix A (the se
ond one results from De Jong (1995)).There exists a maximal number of PLS 
omponents, �max, whi
h is lower or equal torank(X) and depends upon Y ; more pre
isely, �max is equal to the number of distin
tpositive eigenvalues of XX 0 su
h that for some 
orresponding eigenve
tor �j , �0jY 6=0 (Helland (1990)). When � = �max, Y � f�max is the proje
tion of Y on the spa
espanned by the 
olumns of Z, and PLS regression is nothing more than Least Squaresregression.In the present des
ription, proje
tions and orthogonalities are derived and intendedwith respe
t to the Eu
lidean s
alar produ
t. The algorithm 
an be modi�ed to takeinto a

ount an eventual heteros
edasti
ity of the response variables, by substitutingthe Eu
lidean s
alar produ
t by a W -s
alar produ
t where W is a positive-de�nitematrix (Fort and Lambert-La
roix (2005)). Hen
eforth, we will refer to this pro
edureas PLS [Y;X;W; �℄. The next two properties, used in the sequel, are trivial to verify(and the proof is omitted for brevity)(i) the estimate �̂PLS;�(1) and the s
ores (t(1);j)j returned by PLS [Y;X;W;�℄ are relatedto those returned by PLS [pWY;pWX; Idn; �℄ (denoted with the subs
ript (2))by �̂PLS;�(1) = �̂PLS;�(2) ; pWt(1);j = t(2);j :(ii) for any �, � > 0, the estimate returned by PLS [Y + �1In; X; �Idn; �℄ is equal tothe estimate returned by PLS [Y + �1In; X; Idn; �℄.2.3.2. An extension of univariate PLS : PLS* [Y;Z;W; �℄. Let Y 2 Rn
 be a responsevariable and Z 2 R(n
)�(
(p+1)) be a design matrix on the form (2). When 
 > 1, Z
ontains 
 
olumns with null entries ex
ept n 
oeÆ
ients equal to 1, namely the 
olumns8



Z�;1;Z�;p+2 � � � ;Z�;1+(
�1)(p+1). We 
olle
t these 
olumns in the (n
� 
) matrix �.Despite the spe
ial stru
ture of Z, one 
an de
ide to apply the 
lassi
al PLS algorithm.Nevertheless, we want the 
olumns of � to play the same role as the ve
tor 1In in the
lassi
al algorithm; that is, we want (a) proje
t Y onto �, (b) 
onsider the residualdesign matrix obtained by proje
ting the 
olumns of Z on the orthogonal of the spa
espanned by �; (
) de�ne the PLS 
omponents in the spa
e spanned by the residualdesign matrix. More pre
isely, our extension pro
eeds as follows :Regress Y onto the 
olumns of � :q0 = (�0�)�1�0Y .De
ate Y and Z :f0 = Y � �q0,~Z = Z� �(�0�)�1�0Z.Extra
t and standardize the new design matrix :let �Z be the n
� np matrix formed with the non-null 
olumns of ~Z.standardize the (
entered) 
olumns of �Z to have norm 1; let E0 be thestandardized matrix.For k = 1; � � � ; �,tk = Ek�1 E0k�1fk�1,fk = fk�1 � tk (t0kfk�1)(t0ktk)�1,Ek = Ek�1 � tk (t0kEk�1)(t0ktk)�1.End.This yields a de
omposition of the formY = �q0 + q1t1 + � � �+ q�t� + f� = Z�̂PLS�;� + f�:Here again, �̂PLS�;� is uniquely de�ned if Z is full 
olumn-rank; otherwise, �̂PLS�;� isthe shortest norm ve
tor among the admissible ones. The Eu
lidean geometry 
an berepla
ed by a weighted one, indu
ed by a positive de�nite matrix W 2 Rn
�n
. Thispro
edure is hen
eforth denoted PLS* [Y;Z;W; �℄.9



2.3.3. Multivariate PLS :MPLS [Y a; X; �℄. Let Y a 2 Rn�
 be an array-valued responsevariable and X be a Rn�p data matrix. MPLS amounts to �nding two sets of weights!; 
 in order to 
reate a linear 
ombination t = X! of the 
olumns of X (resp. a linear
ombination u = Y a
 of the 
olumns of Y a) su
h that the square of their 
ovarian
eis maximal under the 
onstraints, 
0
 = 1, !0! = 1. X and Y a are then de
ated withrespe
t to t; the pro
ess is repeated with the de
ated matri
es. This yields the followingalgorithm : let � be a positive integerLet f0 and E0 be formed by respe
tively standardizing the matri
es Y a and X(the 
olumns of f0 and E0 are 
entered with norm 1).For k = 1; � � � ; �,let !k be an eigenve
tor of E 0k�1fk�1f 0k�1Ek�1, 
orresponding to the largesteigenvalue;tk = Ek�1 !k ;Ek = Ek�1 � tk(t0kEk�1)(t0ktk)�1;fk = fk�1 � tk(t0kfk�1)(t0ktk)�1;End.This yields a de
omposition of the formY = 1Inq00 + t1q01 + � � �+ t�q0� + f� = [1In X ℄ �̂MPLS;� + f�where qj 2 R
 and �̂MPLS;� 2 R(p+1)�
. Column #j of �̂MPLS;� is the MPLS estimateof �(j).The reader may refer to Hoskuldsson (1988); Garthwaite (1994) for an interpretationand pra
ti
al implementations of this algorithm.2.4. Poly
hotomous Dis
rimination. Given an estimate of the regression 
oeÆ-
ients �̂, the 
lass of a new sample 
hara
terized by a ve
tor of 
ovariates x 2 Rp ispredi
ted by Ŷ = argmaxy2f0;��� ;
gP�Y = yjz = [1 x0℄; �̂� ;a rule whi
h is, by (1), equivalent toŶ = y i� hz0 �̂(y) � z0 �̂(l); 8l 2 f0; � � � ; 
gi ;10



where, by 
onvention, �̂(0) = 0. In the binary 
ase, this method is 
alled Logisti
Dis
rimination. Usually, �̂ is the ML estimate. Sin
e, in the present framework n << p,the ML estimate is unlikely to exist, we substitute this estimate by one raising fromextensions of PLS to GLM, detailed in Se
tion 3 for the 
ase 
 = 1, and in Se
tion 5 forthe 
ase 
 > 1.To assess the predi
tion, we will 
onsider aM -fold 
ross-validation and/or a Resamplinganalysis. In aM -fold 
ross-validation, the data set (of size say n) is divided intoM nonoverlapping groups of roughly same size; the model is �tted, using the samples ofM �1groups 
ombined together and is tested on the remaining one. This is repeatedM times.The 
ase M = n is the so-
alled Leave One Out analysis. In a resampling analysis, werun N = 100 out of sample analyses (i.e. the regression model is 
onstru
ted usingthe learning samples and out
omes of the test samples are predi
ted) on N randomsubdivisions of the data set into a learning set and a test set following a 2:1 s
heme; theproportion of samples from ea
h 
lass in the learning set is the proportion of ea
h 
lassin the data set. For a given data set, the same N subdivisions are used to 
ompare thedi�erent algorithms. Furthermore, some methods depend upon an hyperparameter (e.g.the number of PLS 
omponents �); it is determined by Leave One Out 
ross validation(LOOCV) error rate for the learning set.2.5. Feature Sele
tion by iterative thresholding. Guyon et al. (2002) proposea feature sele
tion algorithm in the 
ase of binary output, based on Support Ve
torMa
hine (SVM) with Re
ursive Feature Elimination (RFE). Their ba
kward sele
tionpro
edure starts with all the available genes; the SVM is trained and genes having thehighest ve
tor weights are sele
ted to form the next model. The pro
ess is repeated tillremoving all the genes. The number of dis
arded genes between two su

essive modelsis 
hosen by the user. This algorithm yields a family of nested models, and Guyon etal. provide several metri
s of quality in order to 
ompare them. Classi
ally, a

ura
yof a model is measured by 
ross-validation : a proper way to evaluate the performan
eof a model is to divide the data set into a learning set and a test set, learn the genesele
tion rule on the training samples and measure the performan
e on the left out testsamples. The test samples have to be external to the iterative gene sele
tion pro
ess,11



otherwise one introdu
es a sele
tion bias when evaluating the performan
es (Ambroiseand M
La
hlan (2002)).Based on these 
onsiderations, we propose the following feature sele
tion algorithm. Letthe data set be divided into a learning set and a test set; �t the full model using thelearning samples and measure its performan
e using the test samples. Dis
ard the 2genes with the lowest regression 
oeÆ
ient (in absolute value) and �t this new model,using again the learning set. Observe that sin
e, in our 
onvention, the design matrixis standardized per 
olumns, this ranking 
riterion 
orresponds to the 
riterion adoptedin Zhu and Hastie (2004). Repeat this pro
ess till the obtention of a model of minimalsize. To test the predi
tion a

ura
y of a model, we use 10-fold 
ross-validation. Observethat, sin
e there is no guarantee that the same subset of genes will be extra
ted at ea
hlevel of the 
ross-validation, we test a rule 
hara
terized by a number of features andnot a rule 
hara
terized by a given feature subset.2.6. Real data sets. We will use the Colon data and the NCI60 data, publi
ly availableat Colon : http://mi
roarray.prin
eton.edu/on
ology/a�ydata/index.htmlNCI60: http://dis
over.n
i.nih.gov/datasetsNature2000.jsp.and largely des
ribed resp. in Alon et al. (1999) and S
herf et al. (2000). The Colon dataset 
ontains 62 tissue samples (40 'tumor tissues' and 22 'normal tissues') with 2000genes. The Colon data are pre-pro
essed as des
ribed in Fort and Lambert-La
roix(2005). This step dis
ards some genes based on informations from the learning samples.Hen
e, the list of the dis
arded genes varies when the learning set varies, and the numberof available 
ovariates depends on the subdivision learning set / test set of the data set.The NCI60 data set 
ontains 35 tumor samples from 5 
an
er types (6 
entral nervoussystem, 8 renal, 8 melanoma, 7 
olon and 6 leukemia), with 1415 genes. Missing valuesexist for NCI60 data : we drop out genes some genes and impute missing values asdes
ribed in Ding and Gentleman (2004) so that there remain 1299 genes. Both thedata sets are standardized : for ea
h gene, the ve
tor of expression levels from thelearning samples is 
entered with norm 1. The same linear transformation is applied12



on the ve
tor of expression levels from the test samples (the ve
tor is not ne
essarily
entered with norm 1).3. Extensions of PLS to GLM, in the binary 
aseIn this se
tion, Z 2 Rn�(p+1) is equal to [1In X℄. The k-th 
oordinate of the ve
tor�(�) is (1 + exp(�(Z�)k))�1 and W(�) is a diagonal matrix with k-th entry (�k(1 ��k))(�).3.1. Nguyen and Ro
ke : NR [Y;Z; �℄.3.1.1. The Nguyen & Ro
ke's algorithm. The method proposed by Nguyen and Ro
ke(2002b) pro
eeds into two steps; let � be a positive integer.Run PLS [Y;X; Idn; �℄ and return the �rst � PLS 
omponents t1; � � � ; t�. SetT� = [1In t1 � � � t�℄ 2 Rn�(�+1).Run IRLS [Y;T�℄ and return �̂, the limiting value of the Newton-Raphsonsequen
e (a regression 
oeÆ
ient in terms of the PLS 
omponents (tj)j��).Express the regression in terms of the original explanatory variables and return�̂NR;�.Roughly speaking, a dimension redu
tion is �rst performed in order to repla
e theinitial design matrix Z by a new full 
olumn-rank design matrix T� that 
olle
ts the� PLS 
ovariates most informative on the output variable Y. Then, a 
lassi
al logisti
regression is performed onto the 
olumns of the new design matrix.3.1.2. Computational aspe
ts. Consider the singular value de
omposition ofX = UDV 0where U and V are orthogonal (n� n) and (p� p) matri
es and D is a (n � p) matrixwith null entries ex
ept r = rank(X) entries on the �rst diagonal. Repla
ing Z forZred = [1In U:;1:rD1:r;1:r℄ in the above algorithm yields an unique estimate 
̂NR;� 2 R1+r,when it exists. �̂NR;� is the ve
tor of minimal norm among all the ve
tors satisfying13



Zred
̂NR;� = Z�, and is related to 
̂NR;� through the relations�̂NR;�1 = 
̂NR;�1 and �̂NR;�2:p+1 = V:;1:r
̂NR;�2:r+1: (7)3.1.3. Existen
e of the estimate �̂NR;�. Whatever (Y;Z), the matrix T� is uniquelyde�ned whenever � � �max. If � > �max, the PLS 
omponents (tj)j>�max are nullve
tors (up to numeri
al approximations).In some 
ases, there exists �� su
h that IRLS [Y;T��℄ 
an not 
onverge : the n samplepoints in the observation spa
e R� are (quasi)-separated and the ML estimate does notexist. Observe that sin
e the 
olumns of the design matrix Tj are pairwise orthogonal,if IRLS [Y;T�� ℄ does not 
onverge, then IRLS [Y;Tj℄ 
an not 
onverge, for any �� �j � �max. In 
ase of non-
onvergen
e, we de
ide to stop the IRLS step when separationis dete
ted; the estimate �̂NR;�� is set to the 
urrent value of the Newton-Raphsonsequen
e �t, a value of the parameter that 
orre
tly separates the learning samples intwo 
lasses. Applying su
h a rule yields an estimate that depends upon the initial valueof the Newton-Raphson sequen
e.3.2. Marx : IRPLS [Y;Z; �; �℄.3.2.1. The Iteratively Reweighted PLS algorithm. The extension proposed by Marx(1996) pro
eeds also into two steps; for some positive integers (�; �), � � �,Initialization :Choose �0.Step A : While non-
onvergen
e,Set  t = Z�t +W(�t)�1 �Y � �(�t)�.Run PLS [ t;X;W(�t); �℄ and set �t+1 = �̂PLS;�, and T� = [1In t1 � � � t� ℄.End.Step B : Run IRLS [Y;T� ℄ and return �̂� , the limiting value of the Newton-Raphson sequen
e (a regression 
oeÆ
ient in terms of the PLS 
omponents).Express the regression in terms of the original explanatory variables, and return�̂M;�;� . 14



Step A is nothing else than IRLS, in whi
h ea
h weighted Least-Squares regression isrepla
ed with a weighted PLS regression with a �xed number of 
omponents �. At
onvergen
e, the �rst � PLS 
ovariates (tj)j�� are 
olle
ted in T� . This new designmatrix T� is then plugged in a ML inferential s
heme (Step B).The author also dis
usses the 
hoi
e of (�; �), and initialize �0 as suggested in Se
tion 2.2.3.2.2. Computational aspe
ts. Here again, we 
an substitute the original design matrixZ for the matrix Zred 2 Rn�(1+rank(X)), de�ned in Se
tion 3.1.2. This yields an estimate
̂M;�;� of the ve
tor of regression with respe
t to the 
olumns of Zred; the ve
tor ofregression in terms of the original explanatory variables �̂M;�;� is then obtained as in(7).3.2.3. Existen
e of the estimate �̂M;�;� . Due to the PLS algorithms, � has to be 
hosenlower or equal to some upper bound �max that, in theory, depends on (Z; ( t)t; (Wt)t).In pra
ti
e, on the 
onsidered data sets, �max is 
onstant and equal to n � 1.When � = �max and Z is full rank, step A never 
onverges; indeed, by de�nition of PLS,Z�t+1 is the W(�t)-proje
tion of  t 2 Rn onto the n-dimensional spa
e spanned by the
olumns of Z. This implies that for all t � 0, Z�t+1 =  t and, 
omponent-wise,(Z�t+1)k = �((Z�t)k) where �(u) = 8<: 1 + u+ exp(u); for all k, su
h that Yk = 1;�1 + u� exp(u) for all k, su
h that Yk = 0.Step A never stops sin
e � does not have a �xed point. This non-
onvergen
e may o

urwhen � < �max too.In addition, IRLS is not guaranteed to 
onverge, but here again, we 
an substitute thestopping rule based on the 
onvergen
e of (�t)t by a stopping rule based on the dete
tionof the separation.3.3. Ding and Gentleman : IRPLSF [Y;Z; �℄.3.3.1. The Iteratively Reweighted PLS-Firth algorithm. Bull et al. (2001) propose analgorithm 
lose the ML inferential approa
h, to make robust the ML estimate in 
asesof small samples, when Z is a full 
olumn-rank matrix. They prone the use of the15



Firth-penalized ML estimate whi
h is de�ned as the unique maximum of the penalizedlog-likelihood fun
tion l�F (�) = l(�)� 0:5 ln jZ0W(�)Zj where l is given by (3), and theregularization term �0:5 ln jZ0W(�)Zj is minimal at � = 0. The maximum is 
omputedby a Newton-Raphson algorithm, and ea
h loop of this iterative algorithm 
an be under-stood as a weighted least squares regression of some so-
alled pseudo-variable  t ontothe 
olumns of Z.Ding and Gentleman (2004) extends this regularization te
hnique to the high-dimensionalregression framework n << p by substituting the weighted least squares regression bya weighted PLS one. This yields the following algorithm. Let � be a positive integer.Initialization :Choose �0.While non 
onvergen
e,Set H t = pW(�t)Z(Z0W(�t)Z)+Z0pW(�t), and let ht be the diagonalmatrix with diagonal entries (H tkk)1�k�n.Set ~W(�t) = (Idn + ht)W(�t).Set  t = Z�t + h ~W(�t)i�1 �(Idn + 0:5ht)Y� (Idn + ht)�(�t)�.Run PLS [ t;X; ~W(�t); �℄ and set �t+1 = �̂PLS;�.End.Return �̂DG;� = limt �t.The authors also provide programs in R, available at http://www.bio
ondu
tor.org/, inwhi
h they initialize their algorithm by setting Z�0 =  0 = 0:75Y+ 0:25(1In �Y).3.3.2. Computational aspe
ts. Here again, we 
an substitute the original design matrixZ for the matrix Zred 2 Rn�(1+rank(X)), de�ned in Se
tion 3.1.2. This yields an estimate
̂DG;� of the regression 
oeÆ
ients with respe
t to the 
olumns of Zred; the ve
tor ofregression in terms of the original explanatory variables is then obtained as in (7).3.3.3. Existen
e of the estimate �̂DG;�. Due to the PLS algorithms, there exists an up-per bound for the value �, denoted �max, whi
h depends upon (Z; ( t)t; (W(�t))t). Inpra
ti
e, �max is 
onstant over the iterations.16



When � = �max, the above algorithmmaximizes the fun
tion � 7! l(�)�0:5 ln jZ0W(�)Zj+,where for some positive semi-de�nite matrix A, jAj+ stands for the produ
t of the pos-itive eigenvalues. Upon noting that ��k ln jAA0j = Tra
e((A0A)�1 A0 ��kA) for anymatrix A su
h that A0A invertible (Bates (1983)), the gradient is given by Z 0((Idn +0:5h)Y � (Idn + h)�(�)) where h is a diagonal matrix with diagonal equal to that ofthe hat matrix H = pWZ(Z0WZ)+Z0pW. When Z is full rank, whi
h is in pra
ti
ethe 
ase when n << p, h is the identity matrix, and the normal equations possess anexpli
it solution : �̂DG;�max = Z+ (ln 3 Y � ln 3 (1In �Y)).When � < �max, the algorithm is a kind of trun
ated Newton-Raphson algorithm :starting from �t, a Newton-Raphson iteration is performed and the new value of the pa-rameter is proje
ted onto a subspa
e of dimension � spanned by the PLS 
omponents, asubspa
e whi
h may be di�erent at ea
h iteration. This algorithm may not 
onverge; onsome examples, we have sometimes observed a 
y
li
 behavior, i.e. the existen
e of, say,two points �1;1; �1;2 su
h that for all suÆ
iently large t, �2t = �1;1 and �2t+1 = �1;2.3.4. Fort and Lambert-La
roix : RPLS [Y;Z; �; �℄.3.4.1. The Ridge-PLS algorithm. The algorithm proposed in Fort and Lambert-La
roix(2005) divides into two steps. Let Rs be a diagonal s � s matrix with diagonal entries[0 1 � � � 1℄, and �; � be resp. a positive real number and a positive integer.Initialization :Choose �0.Step A : While non 
onvergen
e,set  t = Z�t +W(�t)�1 �Y ��(�t)�,set �t+1 = �Z0W(�t)Z+ �Rp+1��1 Z0W(�t) t.End.Step B : Run PLS [ 1;X;W(�1); �℄ and return �̂FL;�;� = �̂PLS;�.Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML 
riterionl�R(�) = l(�) � 0:5�kRp+1 �k2. The pseudo-variable at 
onvergen
e of this iterativepro
edure,  1 has a linear stru
ture on the form Z�1 + �, where 
onditionally on �117



being the true value of the parameter, � is a zero-mean noise with dispersion matrixW(�1)�1. PLS is then 
alled with input response variables  1 and a weight matrixW(�1) whi
h takes into a

ount the heteros
edasti
ity of the noise �.The authors also provide programs in MATLAB and R (resp. available at http://www-lm
.imag.fr/lm
-sms/Gersende.Fort,Sophie.Lambert), in whi
h the algorithm is initial-ized as in Se
tion 2.2, by setting �(�0) = 0:75Y+ 0:25(1In �Y).3.4.2. Computational aspe
ts. Set ~�1 = �1 and ~�2:p+1 = V 0�2:p+1, where V is de�ned inSe
tion 3.1.2. We have l�R(�) = l�;redR (~�1:r+1)� 0:5Pp+1k=r+2(~�k)2 where for 
 2 Rr+1,l�;redR (
) = Y0Zred
 + nXk=1 ln(1��redk (
))� 0:5�kRr+1
k2;Zred and r are de�ned in Se
tion 3.1.2 and �redk (
) = (1 + exp(�(Zred
)k))�1. Thisimplies that � maximizes l�R if and only if ~�1:r+1 maximizes l�;redR and ~�k = 0, r + 2 �k � p+1. As a 
onsequen
e, in Step A, we 
an repla
e Z for Zred. At 
onvergen
e, thisyields 
1 2 Rr+1, a ve
tor of regression with respe
t to the 
olumns of Zred; the ve
torof regression in terms of the original explanatory variables is the shortest norm ve
toramong all the � satisfying Zred
1 = Z� and is thus obtained as in (7). Sin
e the samesubstitution 
an be done in the PLS step, all the steps of the above algorithm 
an berun with Zred instead of Z; we obtain 
̂FL;�;� and dedu
e �̂FL;�;� as in (7).3.4.3. Existen
e of �̂FL;�;�. The fun
tion l�;red is stri
tly 
on
ave and tends to �1 whenk
k ! +1 (
oer
ivity); the maximum exists and is unique. This means that, in StepA, any 
onverging sequen
e has the same limit whatever �0; sin
e the PLS estimate isuniquely de�ned given the entries ( 1;X;W; �), 
̂FL;�;� exists and is unique. And so�̂FL;�;� is.When � = 0, limt �t is the ML estimate, and as dis
ussed in Se
tion 2.2, it never existsif rank(Z) = n whi
h is in pra
ti
e the 
ase when n << p. Step A never 
onverges thusexplaining the 
ondition � > 0. When �! +1, limt �t tends to [ln(�y=(1� �y)); 0; � � � ; 0℄0where �y = n�1Pnk=1Yk; i.e. limt�(�t) is the ML estimate of the probability of su

esswhen the observations are independent and identi
ally distributed Bernoulli variables.The weight matrix tends to ! = �y(1 � �y)Idn and �̂FL;+1;� is related to �̂PLS;�, the18



estimate returned by PLS [Y;X; Idn; �℄ by�̂FL;+1;� = 1�y(1� �y) �̂PLS;� + �ln( �y1� �y )� !�1�y� [1; 0; � � � ; 0℄0:This dis
ussion eviden
es that � has to be 
hosen suÆ
iently large, but not too large.3.4.4. Choi
e of �. The weakness of the method RPLS, 
ompared to some previousones, is that it depends on two parameters (�; �), while the previous methods onlydepend on �. Fort and Lambert-La
roix (2005) propose to determine � at the end ofStep A (independently of �), by 
hoosing the value that minimizes the BIC 
riterionBIC(�; �) = �2l(�) + log(n) Tra
e�pW(�)Z(Z0W(�)Z+ �Rp+1)�1Z0pW(�)� ;evaluated at � = limt �t, a limit depending on �. In pra
ti
e, the 
riterion is minimizedon a range 
hosen by the user; we observed that, in some 
ases, the BIC 
riterion isminimal when �! +1 so that � is set to the upper limit of the range. In the followingappli
ations, the BIC 
riterion is evaluated on 61 log10-linearly spa
ed points within therange [10�3; 103℄. In the literature, the 
hoi
e of � by minimization of a GCV 
riterionis often advo
ated; in the present 
ase, this 
riterion is equal to Pnk=1f��2k 1IYk=1 +(1��k)�21IYk=0g, whi
h is minimal when �k = 1IYk=1 + (1� 1IYk=0). When Z is fullrow-rank, this o

urs by 
hoosing � = 0 (i.e. when � = �̂ML whi
h is of in�nite norm)so that the GCV 
riterion is not pertinent for the present framework.3.5. Bastien, Esposito Vinzi and Tenenhaus : PLSGLR [Y;Z; �℄.3.5.1. The PLS Generalized Linear Regression algorithm. Bastien et al. (2004) develop amethod in the 
ase n > p, for a full 
olumn-rank design matrix Z = [1In X℄. The methodis based on the following observation : PLS de�nes t1 by the relationPpj=1X:;j hX:;j ;Yiwhere hX:;j;Yi is, up to the multipli
ative term kX:;jk2, the ordinary Least Squaresregression 
oeÆ
ient of Y on X:;j. The idea is to extend PLS to GLM by repla
ing thisordinary regression by a generalized linear regression, and to iterate the me
hanism to
onstru
t (tj)1�j��. 19



Bastien (2004) apply their algorithm to Cox model in the 
ontext of highly multidimen-sional data (n << p). We apply their algorithm to the design matrix Z. Their methoddivides into two steps; let � be a positive integer.qInitialization :Set E0 2 Rn�p be the 
entered 
ovariate matrix (E0 = X� n�11In1I0nX).Step A : Constru
tion of the PLS 
omponentsFor k = 0; � � � ; �� 1,For j = 1; � � � ; p,Run IRLS [Y; [1In t1 � � � tk Ek:;j℄℄ and return ak+1;j , the limitingvalue of the Newton-Raphson sequen
e.Set wk+1;j = ak+1;jkEk:;jk2.End.Set tk+1 = Ekwk+1;:kwk+1;:k�1 and Ek+1 = Ek� tk+1t0k+1Ekktk+1k�2.End.Step B : Run IRLS [Y; [1In t1 � � � t�℄℄ and return �̂� the limiting value of theNewton-Raphson sequen
e, a regression 
oeÆ
ient in terms of the PLS 
ompo-nents (tj)1�j��.Express the regression in terms of the original explanatory variables, and return�̂B;�.By 
onvention, the matrix [t1 � � � t0 E0:;j℄ is the 
olumn matrix E0:;j . Bastien et al.also dis
uss the 
hoi
e of �, and propose a simpli�
ation of the 
omputation of the PLS
omponents whi
h 
onsists in setting to zero the non-signi�
ant 
oeÆ
ients ak;j .Contrary to the four previous methods, this method is not invariant by re-parameterization;substituting Z for Zred in the above pro
edure, yields 
̂B;� su
h that Z�̂B;� 6= Zred
̂B;�.3.5.2. Existen
e of the estimate �̂B;�. Here again, the di�erent IRLS algorithms are notguaranteed to 
onverge; they 
an be stopped when separation is dete
ted. Observethat if for some �, the 
onvergen
e problems only o

ur in Step B when regressing Yon T� = [1In t1 � � � t�℄, then none of the IRLS pro
edures of Step A with k > � 
an
onverge. Indeed, if there exists � 2 R�+1 su
h that for all k = 1; � � � ; n, (T��)k � 020



i� Yk = 1, then there exists ~� 2 R�+2 su
h that for all k, ([T� E�:;j ℄~�)k � 0 i� Yk = 1.This phenomenon naturally exhibits an upper bound for the set of the admissible valuesof the hyperparameter �.4. Appli
ation : binary 
lassifi
ation of Mi
roarraysThis se
tion is devoted to the 
omparison of the di�erent estimates in terms of the
lassi�
ation rule on the Colon data set. All the genes remaining after the pre-pro
essingstep are in
luded in the model.We run the di�erent extensions of PLS for some values of � : due to the dimensionof the data sets, we think that � has to be 
hosen small enough in order to perform adimension redu
tion; this is the reason why we 
hoose � lower or equal to 6.4.1. A Leave One Out analysis. We report in Table 1 the total number of mis
las-si�ed samples over the 62 su

essive test sets (
olumns T), and the mean number ofmis
lassi�ed samples in the 62 learning sets of size 61 (
olumns L). We indi
ate by thesign (�) results whi
h have to be 
arefully 
onsidered for some reasons detailed below.In the last row of the table, we report the number of mis
lassi�ed samples when forea
h of the 62 analysis, we 
hoose � 2 f1; � � � ; 6g that minimizes the number of mis
las-si�ed test samples. In other words, the last row gives the number of samples that aresystemati
ally mis
lassi�ed, whatever � 2 f1; � � � ; 6g.Insert Table 1 about hereThe number of 
ovariates in
luded in the regression model depends on the subdivisionlearning set/ test set, due to the pre-pro
essing pro
edure; in pra
ti
e, it is in the rangef1200; � � � ; 1224g, with mean 1221:40.The NR algorithm. For � = 1; 2; 3, all the IRLS 
alls 
onverge; for � = 4, separation isdete
ted for one subdivision (namely, when the test set 
ontains sample #55 or N36);for � = 5; 6, all the IRLS steps are stopped when separation is dete
ted. The resultsgiven for � = 4; 5; 6 thus depend on the initialization of IRLS and in that sense are notsigni�
ative. Samples N34; 36 and T33; 36 are systemati
ally mis
lassi�ed, whatever21



the value of � is.The IRPLS algorithm. For � = 1; 2, we observe on the 62 subdivisions, a 
y
li
 behaviorin Step A and 
onvergen
e of IRLS in Step B. For � = 3, some of the paths in Step A donot 
onverge; for � = 4; 5; 6, none of the paths in Step A 
onverge. As a 
onsequen
e, weonly report the results obtained for � = 1; 2, when Step A is stopped after tmax = 200iterations, but insist on the fa
t that these results depend on tmax. Samples N34; 36and T33; 36 are systemati
ally mis
lassi�ed, whatever the value of � is.The IRPLSF algorithm. For � = 1, we observe a periodi
 behavior in 28 
ases : �̂DG;�thus depends on the maximal number of iterations tmax allowed in the iterative part ofthe pro
edure. The results reported in Table 1 are obtained with tmax = 200: For � =2; � � � ; 6, the iterative part 
onverges. Samples N34; 36 and T33; 36 are systemati
allymis
lassi�ed, whatever the value of � is.The RPLS algorithm. The mean value of the hyper-parameter � over the 62 analysisis 24:70. Samples N8; 34; 36 and T33; 36 are systemati
ally mis
lassi�ed, whatever thevalue of � is.The PLSGLR algorithm. The PLS super-
ovariates t1, t2, t3 are perfe
tly de�ned,sin
e the IRLS algorithms all 
onverge; for t4, some regressions in Step A are stoppedbe
ause separation is dete
ted; for t5; t6, separation systemati
ally o

urs. Step Balways 
onverges for � = 1; 2, and for � = 3, it is stopped due to dete
tion of separationin one 
ase (namely, when the test set 
ontains sample #55 i.e. N36). For � = 4; 5; 6,separation is systemati
ally dete
ted. The results given for � = 4; 5; 6 thus depend onthe initialization of IRLS and in that sense are not signi�
ative. Samples N34; 36 andT33; 36; 37 are systemati
ally mis
lassi�ed, whatever the value of � is.4.2. A Resampling analysis. For PLSGLR, when determining the value of the hyper-parameter � by LOOCV training set error rate, the minimum is found over the valuesof � su
h that separation never o

urs in all the IRLS 
alls of Step A; and when this isnever the 
ase, the default value is 1. For IRPLSF, this minimum is over the values of� su
h that Step A 
onverges.Figure 2[left℄ shows the boxplot of the test set error rate based on the 100 subdivisions,for the NR, IRPLSF, RPLS and PLSGLR algorithms; and for four other methods :22



DLDA (Diagonal Linear Dis
riminant Analysis), DQDA (Diagonal Quadrati
 DA), k-nearest neighbors (k-NN) and weighted k-NN (k-WNN). For the last two algorithms, thedistan
e is the Eu
lidean one, the number of neighbors k is 
hosen by LOOCV trainingset error rate in the grid f1; 3; � � � ; 19g, and for k-WNN, the weight of ea
h gene is givenby the square of the t-statisti
 
omputed on the learning samples (whi
h is equal to theratio of the between-groups to within-groups sum of squares). This t-test s
ore ranksgenes based on their individual predi
tive ability. Table 2 shows the mean error rateand its standard deviation, and the mean value of � (k for k-NN and k-WNN).Insert Figure 2 and 2 about here4.3. Con
lusion. These analyses show that DLDA, DQDA and k-NN behave poorly :they really su�er from the dimensionality of the problem, from the multi
ollinearity ofthe design matrix, and from the noise due to the presen
e of irrelevant genes. They donot perform neither dimension redu
tion nor regularization. Comparison of k-NN andk-WNN shows that introdu
tion of all genes with an equal importan
e greatly disturbthe 
lassi�er; smoothing out the role of the genes with weak t-test s
ore drops noise andimproves the performan
es of the k-NN 
lassi�er. The boxplot shows that k-WNN, NR,IRPLSF and RPLS have an equivalent behavior. The last three methods have the greatadvantage of providing an estimate of the regression 
oeÆ
ients, a 
ru
ial knowledgefor the identi�
ation of genes that really 
ontribute to the 
lassi�
ation pro
ess, and forfeature sele
tion. In Se
tion 7, we 
ompare NR, IRPLSF and RPLS when applied tothe feature sele
tion s
heme presented in Se
tion 2.5.The Colon data set is often studied in the Mi
roarrays literature; we point out that theabove results of the Leave One Out analysis 
orroborate earlier observations. In Alonet al. (1999), 
lassi�
ation is based on a deterministi
-annealing algorithm and samplesN8; 12; 34 and T2; 30; 33; 36; 37 are mis
lassi�ed. In Furey et al. (2000), the 
lassi�
ationis based on SVM and samples N8; 34; 36 and T30; 33; 36 are mis
lassi�ed.5. Extension of PLS to GLM, in the multi-
lass 
ase5.1. Nguyen and Ro
ke : MNR [Y;Z; �℄.23



5.1.1. The Multiple NR algorithm. The method proposed by Nguyen and Ro
ke (2002a)pro
eeds into two steps; let � be a positive integer. Denote byYa the array-
on
atenationof the response variables : Yak;: is ~Y(k), 1 � k � n.Run MPLS [Ya;X; �℄ and return the �rst � PLS 
omponents t1; � � � ; t�. SetT� = [1In t1 � � � t�℄ 2 Rn�(�+1).Run IRLS [Y;T�℄ and return �̂, the limiting value of the Newton-Raphsonsequen
e (a regression 
oeÆ
ient in terms of the PLS 
omponents (tj)j��).Express the regression in terms of the original explanatory variables and return�̂NR;�.As for the binary 
ase, a dimension redu
tion is �rst performed in order to repla
e theinitial design matrix X by a new full 
olumn-rank design matrix T� that 
olle
ts the �PLS 
ovariates most informative on the output variable Ya. Then, a 
lassi
al logisti
regression is performed onto the 
olumns of the new design matrix.5.1.2. Computational aspe
ts. Consider the singular value de
omposition ofX = UDV 0where U and V are unitary matri
es and D is a (n� p) matrix with null entries ex
eptr = rank(X) entries on the �rst diagonal. Repla
ing X for Xred = U:;1:rD1:r;1:r in theabove algorithm yields an unique estimate 
̂NR;� 2 R
(1+r), when exists. �̂NR;� is relatedto 
̂NR;� through the relations[�̂NR;�℄(j)1 = [
̂NR;�℄(j)1 and [�̂NR;�℄(j)2:(p+1) = V:;1:r[
̂NR;�℄(j)2:(r+1);for all j 2 f1; � � � ; 
g.5.1.3. Existen
e of the estimate �̂NR;�. The 
omments for the binary 
ase (Se
tion 3.1.3)remain valid for the multi-
lass 
ase.5.2. Ding and Gentleman : MIRPLSF [Y;Z; �℄.5.2.1. The Multiple IRPLSF algorithm. The multi-
lass algorithm follows the same linesas the two-
lass algorithm, and is based on a PLS within IRLS s
heme, till 
onver-gen
e (Ding and Gentleman (2004)). We point out that the implementation of PLS24



di�ers from the di�erent programs given in Se
tion 2.3 (univariate PLS, its extensionPLS* and the multivariate PLS). Brie
y, they use a univariate PLS in whi
h the ini-tialization step is omitted, i.e. they set f0 = Y and E0 = Z. This means that atea
h PLS iteration, the PLS s
ore is 
hosen in the spa
e spanned by all the 
olumnsof Z (in
luding the binary-valued 
olumns due to the addition of an inter
ept term inthe model); usually, the PLS s
ore is in the spa
e spanned by the 
olumns of Z andorthogonal to the subspa
e spanned by the binary-valued 
olumns. We refer to thisimplementation as PLSdg.The derivations are detailed in Ding and Gentleman (2004). Let � be a positive integer.Initialization :Choose �0.While non 
onvergen
e,Set H t = pW(�t)Z(Z0W(�t)Z)+Z0pW(�t), and let ht be the diagonalmatrix with diagonal entries (H tkk)1�k�n.De�ne �ht, a diagonal (n
�n
) matrix with ((k� 1)
+ j)-th diagonal entryP
l=1 ht(k�1)
+l, 1 � k � n and 1 � j � 
.Set ~W(�t) =W(�t)(Idn
 + 0:5(ht + �ht)).Set  t = Z�t + h ~W(�t)i�1 �(Idn
 + 0:5ht)Y � (Idn
 + 0:5(ht + �ht))�(�t)�.Run PLSdg [ t;Z; ~W(�t); �℄ and set �t+1 = �̂PLSdg;�.End.Return �̂DG;� = limt �t.The authors also provide programs in R (available at http://www.bio
ondu
tor.org/), inwhi
h the algorithm is initialized by setting  0 = 0:75Y+0:25(1I�Y), and by drawingat random a diagonal matrix for the initial value of ~W.5.2.2. Computational aspe
ts. To speed up the implementation of this method, 
onsiderthe singular value de
omposition of Z, Z = UDV 0 where U and V are unitary matri
esand D is a diagonal matrix of the same dimension as Z. Let r = rank(Z). We 
ansubstitute the original design matrix Z for the matrix Zred = U:;1:rD1:r;1:r. This yieldsan estimate 
̂DG;� of the regression 
oeÆ
ients with respe
t to the 
olumns of Zred; the25



ve
tor of regression in terms of the original explanatory variables is then obtained by�̂DG;� = V:;1:r
̂DG;�.5.2.3. Existen
e of the estimate �̂DG;�. Due to the PLS algorithms, there exists an up-per bound for the value �, whi
h theoreti
ally depends upon (Z; ( t)t; (W(�t))t), but,in the 
onsidered appli
ations, �max is 
onstant over the iterations.When � = �max, the above algorithmmaximizes the fun
tion � 7! l(�)�0:5 ln jZ0W(�)Zj+.By following the same lines as in Se
tion 3.3.3, it may be shown that when Z is full
olumn rank, whi
h is in pra
ti
e the 
ase when n << p, the maximum has an expli
itexpression given bŷ�DG;�max = ln(3) Z+ �Y � (1In
 �Y): � (1In
 � �Y)	 ;where �Y is a f0; 1g-valued ve
tor de�ned by �Y(k�1)
+j = P
l=1Y(k�1)
+l, 1 � k � n,1 � j � 
; and :� denotes the element-by-element multipli
ation.When � < �max, the algorithm is a kind of trun
ated Newton-Raphson algorithm whi
his not guaranteed to 
onverge.5.3. Fort and Lambert-La
roix : MRPLS [Y;Z; �; �℄.5.3.1. The Multiple RPLS algorithm. The following algorithm follows that same linesas RPLS for the binary 
ase, ex
ept that, due to the spe
ial form of the design matrixZ, we use PLS* instead of the usual univariate PLS. Let ~R
s be a diagonal 
s � 
smatrix with diagonal obtained by 
 repli
ations of the ve
tor [0 1 � � � 1℄ 2 Rs; and �; �be resp. a positive real number and a positive integer.Initialization :Choose �0.Step A : While non 
onvergen
e,set  t = Z�t +W(�t)�1 �Y ��(�t)�,set �t+1 = �Z0W(�t)Z+ � ~R
(p+1)��1Z0W(�t) t.End.Step B : Run PLS* [ 1;Z;W(�1); �℄ and return �̂FL;�;� = �̂PLS�;�.26



Step A is a Newton-Raphson algorithm to optimize the ridge-penalized ML 
riterionl�R(�) = l(�) � 0:5�k ~R
(p+1) �k2. Programs in MATLAB are available (available athttp://www-lm
.imag.fr/lm
-sms/Gersende.Fort), in whi
h the algorithm is initializedby setting �(�0) = (3 + 
)�1((1In
 �Y)� 3Y).5.3.2. Computational aspe
ts. To speed up the algorithm, one 
an repla
e the (n
 �
(p+ 1)) matrix Z for a (n
� 
(r+ 1)) matrix Zred where r = rank(X). To that goal,let UDV 0 be the singular value de
omposition of X (see Se
tion 3.1.2); 
onstru
t Zredas in (2) from the rows of [1In U:;1:rD1:r;1:r℄ instead of the rows of [1In X℄. Running thealgorithm with Zred yields 
̂FL;�;� 2 R
(r+1), a ve
tor of regression with respe
t to the
olumns of Zred. The ve
tor of regression in terms of the original explanatory variablesis the shortest norm ve
tor among all the � satisfying Zred
̂FL;�;� = Z� and is obtainedby [�̂FL;�;�℄(j)1 = [
̂FL;�;�℄(j)1 ; [�̂FL;�;�℄(j)2:(p+1) = V:;1:r [
̂FL;�;�℄(j)2:(r+1);for all j 2 f1; � � � ; 
g.5.3.3. Existen
e of �̂FL;�;�. Here again, it may be proved that given (Y;Z), �̂FL;�;� isunique; the proof is on the same lines as the proof in the binary 
ase (Se
tion 3.4.3).When � = 0, and rank(Z) = n
, Step A never 
onverges thus explaining the 
ondition� > 0. When �!1, limt �t tends to a ve
tor with 
 non-null entries su
h that8j 2 f1; � � � ; 
g; [limt �t℄(j�1)(p+1)+1 = ln� �yj1�P
l=1 �yl� ; �yj = n�1 nXk=1Y(k�1)
+j ;so thatW(�1) tends to a blo
k diagonal matrix with k-th blo
k given by ! = diag(�y)��y�y0 where �y0 = [�y1 � � � �y
℄. Hen
e [�̂FL;+1;�℄(j), the estimate of the j-th blo
k of theparameter �(j) is given by[�̂FL;+1;�℄(j) = [�̂PLS�;�℄(j) +�ln� �yj1�P
l=1 �yl�� f!�1�ygj� [1; 0; � � � ; 0℄0where �̂PLS�;� is the PLS estimate returned by PLS* [W(�1)�1Y;Z;W(�1); �℄. Inpra
ti
e, one 
an �x � to the value that minimizes the BIC 
riterionBIC(�; �) = �2l(�) + log(n
) Tra
e�pW(�)Z(Z0W(�)Z+ � ~R
(p+1))�1Z0pW(�)� ;27



evaluated at � = limt �t, a limit depending on �. We will do so in the following appli-
ations, and will minimize the 
riterion on 61 log10-linearly spa
ed points within therange [10�3; 103℄.6. Appli
ation : Multi-
lass 
lassifi
ation of Mi
roarraysWe 
ompare MNR, MIRPLSF and MRPLS when applied to poly
hotomous dis
rim-ination, on the NCI60 data set. We �rst run a leave one out analysis based on MNR,MIRPLSF, MRPLS; we report the number of mis
lassi�ed test samples (
olumn T),and the mean number over the n loops of mis
lassi�ed learning samples (
olumn L) byMNR, MRPLS and MIRPLSF, for di�erent values of �. The last 
olumn indi
ates thenumber of samples that are systemati
ally mis
lassi�ed, whatever the value of � is.We then run a resampling analysis based on MNR, MIRPLSF, MRPLS and on k-NNand k-WNN. For the nearest neighbor methods, we 
hoose the Eu
lidean distan
e; ink-WNN, the weight of a gene is equal to its between-groups to within-groups sum ofsquares. For MNR, MIRPLSF and MRPLS, (resp. NN methods), the hyper-parameter� (resp. k) is 
hosen by LOOCV training set error rate, within the range f1; � � � ; 6g(resp. f1; 3; � � � ; 19g). For MIRPLSF, the minimum is over the values of � su
h thatStep A 
onverges. We report the mean value and the standard deviation of the test seterror rate, and the mean value of the hyper-parameter (� or k). We also give a measureof a

ura
y of the predi
tion based on the 
ontrast. For a ve
tor � = (�0; �1; � � � ; �
) ofthe 
lass probability, we de�ne the 
ontrast byP
+1j=2(�[1℄��[j℄) = (
+1)f�[1℄�(
+1)�1gwhere �[j℄ denotes the sorted 
omponents : �[1℄ � � � � � �[
+1℄. A large value of the
ontrast means that the probability of being from the 
lass asso
iated to �[1℄ is farlarger than the probability of the other 
lasses. Sin
e the predi
ted 
lass is the 
lassasso
iated to �[1℄, the quantity Contrast is indi
ative of the 
lassi�
ation 
on�den
e :the larger it is, the more 
on�dent the 
lassi�
ation is. We report the mean value off�̂[1℄� (
+ 1)�1g, when the mean is over all the estimated ve
tors per subdivision, andover the 100 subdivisions.Table 3 shows the result of the leave one out analysis, when all the available genes arein
luded in the model (p = 1299). Step A of MIRPLSF always 
onverges for this data28



set. Sample Me LOXIMVI is systemati
ally mis
lassi�ed, whatever the algorithm andthe value of �. Insert Table 3 about hereWe run a resampling analysis and in
lude all the available genes in the model. Theresults are displayed on Figure 3 and Table 4.Insert Figures 3 and Table 4 about hereOn Figure 3, the boxes have a large line at the median value. (Quasi)-separation ofteno

urs in the IRLS step of MNR; to illustrate the sensibility of the results to the initialvalue of IRLS, we re-run the resampling analyses, by initializing IRLS at �0 = 0. Themean test set error rate is 0:047, with standard deviation 0:063, the mean value of �and of the 
ontrast are resp. equal to 3:21 and 0:639.6.1. Con
lusion. Classi�
ation in the NCI data set is a diÆ
ult task, due to the pres-en
e of many 
lasses and very few samples from ea
h 
lass. In the resampling analysis,the test set error rate in k-NN is minimized for small values of k (k 
lose to 1); this is a
onsequen
e of the de�nition of the learning set, whi
h 
ontains a very small number ofsamples from ea
h 
lass. In these unfavorable 
onditions, methods based on dimensionredu
tion by PLS seem to provide better results, and among them, MIRPLSF looksmore stable. The value of Contrast show that the 
lassi�
ation 
on�den
e is far moreimportant for MNR and MRPLS than it is for MIRPLSF.7. Appli
ation : Feature sele
tion for binary-valued response variableWe run the RFE algorithm des
ribed in Se
tion 2.5 when the extensions are based onNR, IRPLSF and RPLS. This yields NR-RFE, IRPLSF-RFE and RPLS-RFE. Startingfrom the full model, we apply RFE and produ
e a model of size 1024 followed bythe nested models of size 1022, 1020, � � � , pmin. The PLS extensions are applied withdi�erent values of � on whi
h pmin depends; pmin = 2 when � = 1; 2, pmin = 4 when� = 3; 4 and pmin = 6 when � = 5; 6. Ea
h model is evaluated with three metri
s29



proposed by Guyon et al. (2002) : (i) the test set su

ess rate Su
; (ii) the a

eptationrate A

, that 
omplements the reje
tion rate de�ned as the fra
tion of samples thathave to be dis
arded to obtain zero error; (iii) the extremal margin Ext, di�eren
ebetween the smallest linear predi
tor over the 1-
lass samples and the largest linearpredi
tor over the 0-
lass samples, res
aled by the largest di�eren
e between the linearpredi
tors. By de�nition, 0 < Su
 < 1, 0 < A

 < 1 and Ext < 1. Figure 4 is agraphi
al representation of A

 and Ext. A value of any of this 
riterion 
lose to 1 isindi
ative of the quality, in terms of a low 
on�den
e of wrong predi
tion (A

) and alarge 
on�den
e of 
orre
t predi
tion (Ext).Insert Figure 4 about hereWe sort the models based on di�erent signed quantities : Su
, 0:5 Su
 Ext, 0:5 Su
 A

,and Q whi
h 
orresponds to the signed surfa
e of a triangle de�ned by the points with
oordinatesE = (Ext; 0) S = Su
 (
os(2�=3); sin(2�=3)) A = A

 (
os(4�=3); sin(4�=3));more pre
isely, Q is the sum of the 'surfa
e' of the triangles SOE, EOA, AOS where by
onvention, the 'surfa
e' of SOE and EOA is negative i� Ext < 0. Hen
e, Q > 0 i� Ext> �Su
 A

 (Su
+ A

)�1, as illustrated on Figure 5.Insert Figure 5 about hereTable 5 displays the results of a 10-fold 
ross-validation: for the four 
riteria, and thedi�erent algorithms, we report the best value of the mean 
riterion among all the 
on-sidered models (
olumn 'value'), the size of the best model (
olumn 'p') and the value ofthe hyperparameter � for whi
h it is rea
hed (
olumn '(�)'). The mean of the 
riterion isover the 10 values obtained at ea
h step of the 
ross-validation. We 
onsider RFE basedon the NR estimate when NR is initialized from �0 given in Se
tion 2.2; the results areon row 'NR (init1)'. When learning the NR estimate for the di�erent nested models with� = 2 (resp. 3; 4; 5; 6), separation o

urs in 0:33% (resp. 43:91%; 87:25%; 100%; 100%)of the analyses; for � = 1, it never o

urs. To test the robustness of the NR-RFEto the initial value, we start the NR algorithms from �0 = 0; the results are on row30



'NR (init2)'. This study points out the sensibility of NR-RFE to the initial value, andmore generally, the weakness of the Nguyen & Ro
ke's approa
h. We then study theperforman
es of the IRPLSF-RFE algorithm; when learning the IRPLSF estimate forthe di�erent nested models with � = 1 (resp. 2; 3; 4; 5; 6), the algorithm 
onverges for91:19% (resp. 99:82%; 90:80%; 99:90%; 99:98%) of the analyses. Here again, we testthe robustness to the initial value by modifying the maximal number of iterations inthe iterative part of IRPLSF. The results are similar (see row 'IRPLSF (init2)'), thusillustrating the stability of IRPLSF-RFE with respe
t to its non-
onvergen
e pathology.Ranking the models by the Su
-value sele
t quite large models; ranking the models bythe Q-value yields small models. The model that maximizes Q results from a 
ompro-mise between the quantities Su
, A

 and Ext, that is, it takes into a

ount the 
orre
tpredi
tion, the large 
on�den
e in the 
orre
t predi
tions and the low 
on�den
e inthe wrong predi
tions. When sorted by the Q-value, the optimal model sele
ted byIRPLSF-RFE has a su

ess rate Su
 = 0:8738, an a

eptation and an extremal ratesequal to A

 = 0:6452 and Ext = 0:0646. For the optimal model sele
ted by RPLS-RFE,we have Su
 = 0:8881, A

 = 0:6071 and Ext = 0:0163. These optimal models are resp.among the top 10% (resp. top 2:5%) when models are sorted by the Su
-value, thusshowing that the 
onsideration of the more general 
riterion Q does not greatly penalizethe predi
tive quality of the sele
ted model (see Figures 6 and 7[right℄).Insert Table 5 and Figures 6 and 7 about here8. Con
lusionWe dis
ussed the di�erent PLS extensions to GLM on a te
hni
al point of view, and
ompare them when applied to 
lassi�
ation and feature sele
tion in Mi
roarrays. Theextensions proposed by Marx (1996) and Bastien et al. (2004) really present te
hni
alproblems and do not perform well when applied to mi
roarray data. The extensionsproposed by Nguyen and Ro
ke (2002b,a) su�er from the separation problem : 
lassi�-
ation and feature sele
tion greatly depend upon the initialization of some maximizationpro
edure on whi
h their methods rely. The extensions by Ding and Gentleman (2004)and Fort and Lambert-La
roix (2005) seem to be the most promising extensions : the31



simulations demonstrate their very interesting performan
es when applied to binary
lassi�
ation and feature sele
tion for binary output variables; the interest of the meth-ods is less evident when applied to multi-
lass 
lassi�
ation, but this may be explainedby the fa
t that the number of samples from some 
lasses is very small (three, four, � � �).We observed that the 
lassi�
ation and the feature sele
tion methods are not sensibleto the asymptoti
al 
y
li
 behavior of the iterative algorithm proposed by Ding andGentleman.The robustness of the methods by Ding and Gentleman (2004) and Fort and Lambert-La
roix (2005) stresses the pertinen
e of 
ombining a regularization step and a dimen-sion redu
tion step, when dealing with high dimensional regression problem with highly
ollinear regressors. The Firth penalty and the Ridge penalty are both maximal atthe origin, thus attra
ting the estimate of the regression 
oeÆ
ient to the null ve
tor.When feature sele
tion is the question of interest, one is interested in sparse models.This naturally suggests the use of a more sele
tive regularization step : for example,the Ridge-penalization step and a thresholding penalization 
ould be 
ombined in orderto �ght the high-
ollinearity of the design matrix, and to do shrinkage and automati
variable sele
tion simultaneously. This will be the next step of our work.Appendix A. PLS with a non full 
olumn-rank data matrixLetX be a non full 
olumn-rank standardized (n�p) matrix (ea
h 
olumn is 
enteredwith norm 1). Let Y 2 Rn and W be a n� n symmetri
 positive de�nite matrix.Consider the singular value de
omposition of X, X = UDV 0, where, by 
onvention, Uand V are unitary matri
es. De�ner = rank(X); ~U = U:;1:r; ~D = D1:r;1:r; ~V = V:;1:r;so that X = UDV 0 = ~U ~D ~V 0, ~U 0 ~U = Idr and ~V 0 ~V = Idr. Finally, denote by Ek; fk; tk,!k , pk, qk (resp. ~Ek; ~fk; ~tk, ~!k , ~pk, ~qk) the quantities produ
ed by PLS [Y;X;W; �℄ (resp.by PLS [Y; ~U ~V ;W; �℄).Lemma 1. E0 = ~E0 ~V 0, f0 = ~f0 and for all 1 � k � �,Ek = ~Ek ~V 0; fk = ~fk; tk = ~tk ; !k = ~V ~!k ; pk = ~V ~pk qk = ~qk :32



The proof is trivial and is omitted for brevity; it 
onsists in repla
ing X for ~U ~D ~V 0and in using the relations ~U 0 ~U = Idr and ~V 0 ~V = Idr.Proposition 2. When X is a non full 
olumn-rank matrix, 
entered in 
olumns, thePLS estimate �̂PLS;� is the shortest (Eu
lidean) norm ve
tor among all the solutionssatisfying Y � f� = [1In X℄ �.Proof. By lemma 1, 
 (P 0 
)�1 Q = ~V ~
 ( ~P 0 ~
)�1 ~Q where ~
, ~P and ~Q are de�ned as
; P; Q (see Eq.(6)), from the quantities ~!k; ~pk; ~qk. Hen
e,�̂PLS;�2:p+1 = ~V ~�PLS;�2:r+1 ; (8)where �̂PLS;� and ~�PLS;� denote resp. the PLS estimates returned by PLS [Y;X;W; �℄and by PLS [Y; ~U ~V ;W; �℄. Sin
e X is 
entered i.e. 1I0nX = 0, all the solutions tothe equation Y � f� = [1In X℄ � have the same �rst 
omponent �1. The remaining p
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ases.NR IRPLS PLSGLR IRPLSF RPLS� T L T L T L T L T L1 20 13.90 12 8.27 (�) 19 13.71 9 6.77 (�) 18 10.292 8 7.85 8 6.60 (�) 9 7.84 8 7.93 8 7.973 7 4.01 - - 13 2.42 7 5.00 7 5.004 10 1.92 (�) - - 14 0 (�) 7 2.00 8 2.025 8 0 (�) - - 10 0 (�) 7 0 9 06 11 0 (�) - - 13 0 (�) 11 0 11 0min 4 - - - 5 - 4 - 5 -Table 1. Colon data. For di�erent methods and di�erent values of �,number of mis
lassi�ed samples in the test set (
olumn T) and meannumber of mis
lassi�ed samples in the learning set (
olumn L).37



NR IRPLSF RPLS PLSGLR k-WNN k-NN DLDA DQDAmean 0.163 0.148 0.153 0.290 0.160 0.241 0.286 0.338std 0.064 0.062 0.060 0.112 0.072 0.067 0.140 0.141� 3.27 3 2.82 1.01 5.64 7.37 - -Table 2. Colon data. Test set error rate : mean value and standarddeviation (std). The last row shows the mean value of � (or k for k-NNand k-WNN)
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NR IRPLSF RPLS PLSGLR k−WNN k−NN DLDA DQDA Figure 2. Colon data. Test set error rate in the resampling Analysis.MNR MIRPLSF MRPLS� T L T L T L1 12 10.4 7 6.80 7 6.772 4 0 (�) 2 0 3 03 5 0 (�) 2 0 2 04 1 0 (�) 2 0 2 05 2 0 (�) 2 0 2 06 2 0 (�) 2 0 2 0min 1 - 1 - 1 -Table 3. NCI data p = 1299. For di�erent methods and di�erent valuesof �, number of mis
lassi�ed samples in the test set (
olumn T) and meannumber of mis
lassi�ed samples in the learning set (
olumn L).38



MNR MIRPLSF MRPLS k-NN k-WNNmean 0.054 0.043 0.046 0.056 0.055std 0.062 0.055 0.058 0.060 0.062� 3.03 3.25 3.34 1.14 1.34C 0.578 0.146 0.553 - -Table 4. NCI data p = 1299. Test set error rate : mean value andstandard deviation (std). The last two rows give the mean value of theparameter � (or k for k-NN and k-WNN), and of the 
ontrast C.
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Q 0.5 (Su
 Ext) 0.5 (Su
 A

) Su
value p (�) value p (�) value p (�) value p (�)NR (init 1) 0.3354 12 (4) 0.0569 12 (4) 0.3021 28 (6) 0.9048 64 (2)NR (init 2) 0.3047 18 (3) 0.0577 8 (4) 0.2952 78 (6) 0.8929 422 (3)IRPLSF (init 1) 0.2867 14 (4) 0.0378 20 (4) 0.2868 158 (1) 0.9048 44 (2)IRPLSF (init 2) 0.2867 14 (4) 0.0378 20 (4) 0.2868 158 (1) 0.9048 32 (2)RPLS 0.2440 8 (1) 0.0072 8 (1) 0.2814 140 (1) 0.8905 70 (2)Table 5. Colon data. Feature sele
tion : optimal model exhibited byNR-RFE, IRPLSF-RFE and RPLS-RFE for di�erent measures of thequality : we report the value of the quality 'value', the size of the model'p' and the value of the hyper-parameter '�' with whi
h the optimum isrea
hed.
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