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CENTRAL LIMIT THEOREMS FOR STOCHASTIC APPROXIMATION
WITH CONTROLLED MARKOV CHAIN DYNAMICS

GERSENDE FoORT!

Abstract. This paper provides a Central Limit Theorem (CLT) for a process {6,,n > 0} satisfying
a stochastic approximation (SA) equation of the form 0,41 = 0n + VYn41H (0n, Xn+1); & CLT for the
associated average sequence is also established. The originality of this paper is to address the case of
controlled Markov chain dynamics {X,,n > 0} and the case of multiple targets. The framework also
accomodates (randomly) truncated SA algorithms.

Sufficient conditions for CLT’s to hold are provided as well as comments on how these conditions
extend previous works (such as independent and identically distributed dynamics, the Robbins-Monro
dynamic or the single target case). The paper gives a special emphasis on how these conditions hold for
SA with controlled Markov chain dynamics and multiple targets; it is proved that this paper improves
on existing works.

Résumé. Cette contribution établit un Théoréme de la Limite Centrale pour un processus {6,,,n > 0}
vérifiant une équation d’Approximation Stochastique 0,41 = 0, + Y41 H (0n, Xnt1); et un Théoréme
de la Limite Centrale pour la suite moyennée associée. L’originalité de ce travail est a la fois de traiter
du cas d’une dynamique {X,,n > 0} donnée par une chaine de Markov controlée et, de traiter des
algorithmes multi-cibles. Le cadre d’étude inclut aussi les algorithmes d’approximation stochastique a
troncations aléatoires.

On énonce des conditions suffisantes sur H et {X,,> 0} pour l'existence d’'un Théoréme Central
Limite, conditions qui étendent les travaux antérieurs ; elles couvrent en particulier le cas de dy-
namiques indépendantes et identiquement distribuées, le cas des algorithmes de Robbins-Monro et, les
algorithmes qui n’ont qu'un seul point limite. On insiste plus particulierement sur la facon de vérifier
ces conditions dans le cas ot {X,,n > 0} est une chaine de Markov contrélée : pour ce faire, on
formule des conditions sur les noyaux de transition définissant la loi de la chaine. On montre que nos
conditions améliorent des travaux antérieurs.
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1. INTRODUCTION

Stochastic Approximation (SA) algorithms were introduced for finding roots of an unknown
function h (for recent surveys on SA, see e.g. [6,9,20,22,28]). SA defines iteratively a sequence
{0,,,n > 0} by the update rule

Oni1 = On + Ynr1Zn41 (1)
where {v,,n > 1} is a sequence of deterministic step-size and =, is a random variable (r.v.)
standing for a noisy measurement of the unknown quantity h(6,,).

Our aim is to establish the rate of convergence of the sequence {6,,,n > 0} to a limiting point
0, in the following framework.

Let © C R the sequence {f,,,n > 0} is a ©-valued random sequence defined on the filtered
probability space (Q2, A, P, {F,,n > 0}) and given by

Ons1 = On 4 Yns1 (W(0n) + €ng1 +Tny1) th € O ;

where h : © — R? is a measurable function, {e,,n > 1} is a F,-adapted P-martingale incre-
ment sequence and {r,,n > 1} is a vanishing F,-adapted random sequence. Such a general
description covers many SA algorithms: as discussed below (see Section 2.1), it covers the
case when =, is of the form H(0,, X,,;1) where {X,,,n > 1} are independent and identically
distributed (i.i.d.) r.v. such that (s.t.) E[H(0,X)] = h(f); and the more general case when
{X,,n > 1} is an adapted (non stationary) Markov chain with transition kernel driven by the
current value of the SA sequence {6,,n > 0}. It also covers the case of fixed truncated and
randomly truncated SA algorithms i.e.situations when given a (possibly random) sequence of
subsets {K,,n > 0} of O, the update rule is given by

8 — gn + ’7n+lEn+1 ) 1f en + 'Vn—l-lEn—l-l S ICn+1 (2)
ntl 0, otherwise .

Such a truncated algorithm is used for example to solve optimization problem on a constraint set
© (in this case, KC,, = © for any n), or to ensure stability of the random sequence {6,,,n > 0} in
situations where the location of the sought-for root is unknown (in this case, K, is an increasing
sequence of sets, see [10] and [9, Chapter 2]).

Our second aim is to extend the previous results to the case of multiple targets: we provide
asymptotic convergence rates of {6,,n > 0} to a point 6, given the event {lim,6, = 6,} for
some 6, in the interior of ©. Note that this paper is devoted to convergence rates so that
sufficient conditions for the convergence is out of the scope of the paper; for convergence, the
interested reader can refer to [2-4,6,9,13].

The originality of this paper consists in deriving rates of convergence in a new framework
characterized by (i) general assumptions on the noisy measurement =, of h(6,) which weaken
the conditions in the literature and (i) the multiple targets problem. In Section 2.2, our
framework will be carefully compared to the literature.

We derive sufficient conditions on the step-size sequence {7,,n > 1}, on the random sequences

{€en,Tn,n > 1} and on the limiting point 6, so that 7, Y *(0,, — 0,) converges in distribution
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under the conditional probability P(-|lim, 6, = 6,). The limiting distribution is a (mixture
of) centered Gaussian distribution(s) and this distribution is explicitly characterized. We also
address the rate of convergence of the associated averaged process {6,,n > 0} defined by

—aer 1 n
6, < > 0. (3)
k=0

n+1

We prove that this averaged sequence reaches the optimal rate and the optimal variance (in
a sense discussed below); such a result was already established in the literature in a more
restrictive framework.

The paper is organized as follows. Section 2 (resp. Section 3) is devoted to the SA sequence
{0,,,m > 0} (resp. the averaged SA sequence {f,,n > 0}). We successively introduce the
assumptions, comment these conditions, compare our framework to the literature and state a
Central Limit Theorem (CLT). In Section 4, our results are applied to a randomly truncated
SA algorithm with controlled Markov chain dynamics; since our conditions are quite weak, we
are able to obtain better convergence rates than the rates obtained in Delyon [11]. All the
proofs are postponed in Section 5.

2. A CENTRAL LIMIT THEOREM FOR STOCHASTIC APPROXIMATION

2.1. Assumptions

Let © C R%. We consider the R%valued sequence satisfying for n > 0,

Ont1 = On 4 Yns1h(0n) + Yng1€n41 + Yng1Tnsr b € O ; (4)

and we establish a Central Limit Theorem along sequences {6,,n > 0} converging to some
point #, € © which is a root of the function h. We assume the following conditions on the
attractive target 6,.
C1 (a) 6, is in the interior of © and h(6,) = 0.
(b) The mean field h : © — R? is measurable and twice continuously differentiable in
a neighborhood of 6,.
(c) The gradient VA(0,) is a Hurwitz matrix. Denote by —L, L > 0, the largest real
part of its eigenvalues.

Let {e,,n > 1} be a R%-valued random variables defined on the filtered space (Q, A, P, { F,,n >
0}). We will denote by |- | the Euclidean norm on R?; and by x? the transpose of a matrix
x. By convention, vectors are column-vectors. For a set A, 14 is the indicator function. It is
assumed
C2 (a) {en, n>1}is a F,-adapted P-martingale-increment sequence i.e.E [e,|F,—1] = 0
P-almost surely.
(b) For any m > 1, there exists a sequence of measurable sets {A,, x, k > 0} such that
A i € Fi and there exists 7 > 0 such that

supE [|eps1[* 14, ] < oo
k>0
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In addition, for any m > 1, limg 1 4,, , Ltim, 0,=0. = L, Liim, 9,—¢, and the limiting
set satisfies lim,, P(A,,|lim, 6, = 6,) = 1.

¢) E |epsrel | Fil = U*+D(1) —|—D(2) where U, is a symmetric positive definite matrix
+1€k+1 k k
and

{ D,(:) 250, on the set {lim, 6, = 6,} (5)

lima 30 E ||y DY
the sequence {A,,,m > 1} is defined in C2b.

We will show (see remark 5.3 in Section 5) that the condition on the r.v. {D,(f), k > 1} can be
replaced with: Dl(f) = D,(f’a) + D,(f’b)

Dimg 0,=0, L4, | =0

D]E?,b)
k=1

Z Dl(<:2’a) ]lAm,k La,
k=1

+ T 4, Thim, aqze*] =0, Ym>1, (6)

lim~, E

where {A;, k > 1} is any Fj-adapted sequence of sets satisfying limy, 14, = Liim, g,—0, ; and Ap, x
is given by C2b.

For a sequence of Ri-valued r.v. {Z,,n > 0}, we write Z, = O, ,1.(1) if sup, |Z,| < oo
w.p.1; and Z,, = or»(1) if lim, E[|Z,[P] = 0. Let {r,,n > 1} be a R%valued random variables
defined on the filtered space (2, A, P, {F,,n > 0}).

C3 r, is F,-adapted. r, = rg) +r® with, for any m > 1,

v 2D ﬂnglq 04=0,1.4,, = Owpa1(1)or(1)
NG T;(C ) Liimg 0,0, LA, = Owpa(1)opi(1) .

The sequence {A,,, m > 1} is defined in C2b.
The last assumption is on the step-size sequence.

C4 One of the following conditions is satisfied:

(8) 2o = 400, 24 Vi < 00 and log(ye—1/7) = o()-
(D) Sop e = 400, >, 7% < oo and there exists v, > 1/(2L) such that log(yx—1/7%) ~

’Vk/%

2.2. Comments on the assumptions

The framework described by (4) and the conditions C1 to C4 is general enough to cover many
scenarios studied in the literature and to address new ones.

For SA algorithms (1) with =, 11 = H(0,, Xs11), {Xn,n > 1} ii.d. r.v. (and independent of
0p) such that h(0) = E[H(0, X)], Eq. (4) is satisfied with

€n+1 = H(@n, Xn+1) - h(en) ) Tne1 =0

and E [e,,41|F,] = 0. Our framework also addresses the case when {X,,,n > 1} is a F,,-adapted
controlled Markov chain i.e.when there exists a family of transition kernels {Qy,0 € O} such
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that

P(Xn+1 € | Fn) = Qo,(Xn, ")
each kernel possessing an invariant probability distribution 7y and h(6) = [ H(0,z) mp(dz) -
hereafter, these algorithms will be called “SA with controlled Markov chain dynamics”. Intro-
duce the solution Hy of the Poisson equation H(0,-) —h(0) = Hy— Qgﬁg (see e.g. [18, Chapter
8] or [24, Chapter 17]), and set

ent1 = ﬁen (Xpt1) — Q@nﬁ0n<Xn) ; Tntl = Qenﬁan(Xn) - Qenﬁen(XnH) ;

then E [e,,41]F,] = 0 P-almost surely. We will provide in Section 4 sufficient conditions on the
transition kernels @y so that these sequences {e,, r,,n > 1} exist and satisfy the conditions C2
and C3. Note that the i.i.d. case is a special case of the controlled Markov chain framework
(set Qg = my = 7 for any #); and the so-called Robbins-Monro case corresponds to Qg = my for
any 6.

Truncated SA algorithms (2) can be written as

en—i-l - gn + /yn—ﬁ-lEn—‘rl + (90 - en - ’7n+1En+1) ]]-0n+'yn+15n+1¢lCn+1 ;

in most (if not any) proof of convergence of this sequence to limiting points in the interior of ©,
the first step consists in proving that P-almost-surely, the number of truncations is finite (see

e.g. Andrieu et al. [2, Theorem 1]). Therefore, the term (g — 65, — Yn+1Zn+41) Lo, 4vyns1Z0s1¢Knin

is null for any large n on the set {lim, 6, = 0, } thus showing that it is part of 7n+17“7(11421 in the
expansion (4).

The condition C1 considers a limiting target €, which is assumed to be stable and such
that the linear term in the Taylor’s expansion of h at 6, does not vanish (see condition Clc).
Results for the case of vanishing linear term can be found in Chen [9, Section 3.2]. When A is
a gradient function so that the SA algorithm is a stochastic gradient procedure, the condition
Cla assumes that 6, is a root of the gradient. Therefore, our assumptions do not cover the case
of constrained optimization problem with solutions on the boundaries of the constraint set ©.
For rates of convergence for these constrained SA algorithms, see e.g. Buche and Kushner [8].

The conditions C2 and C3 are designed to address the case of multiple targets, a framework
which improves on many published results. It is usually assumed in the literature that there is
an unique limiting target (see e.g. Fabian [14], Kushner and Huang [21], Bouton [7], Buche and
Kushner [8], Chen [9, Chapter 3] and Lelong [23]). While we are interested in proving a Central
Limit Theorem given the tail event {lim, 6, = 6.}, it is assumed in C2a that the r.v. e, in
the expansion (4) is a martingale increment with respect to (w.r.t.) the probability P. As
discussed above, such an expansion is easily verified. Note that since the event {lim, 6, = 6, }
is in the tail o-field o(\/,, F»), it is not true that {e,,n > 1} are martingale-increments w.r.t.
the probability P(-|lim, 6, = 6,). Therefore, our framework is not a special case of the single
target framework.

The main use of C2 is to prove that the sequence {e,,n > 1} satisfies a CLT under the
conditional distribution P(-|lim, 8, = 6,). We could weaken some of the assumptions, for ex-
ample by relaxing the 2+ 7-moment condition C2b which is a way to easily check the Lindeberg
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condition for martingale difference array. Nevertheless, our goal is not only to state a theorem
with weaker assumptions but also to provide easy-to-check conditions.

When there exists 7 > 0 such that sup,~, E [|ex|*T"] < oo, C2b is satisfied with A,, = A, =
Q). When there exist 7,6 > 0 such that

sup E [[es1 |1, 0, 1<s] < 00, (7)
k>0
then C2b is satisfied with A, 5 = (,,<;<, 1105 — 0i < 0} and A, =5, {10; — 04| < 6} In
most contributions, rates of convergence are derived under the condition (7) (see e.g. the recent
works by Pelletier [25] and Lelong [23]). This framework is too restrictive to address the case
of SA with controlled Markov chain dynamics when the ergodic properties of the transition
kernels {Qp,0 € O} are not uniform in #. Our assumption C2b is designed to address this
framework as it will be shown in Section 4.

(C2c is an assumption on the conditional variance of the martingale-increment term e,,, which
is more general than what is usually assumed. In Zhu [29], Pelletier [25], Chen [9] and Lelong [23]

(resp. in Delyon [11]), a CLT is proved under the assumption that E |:6k+16£+1|fk;j| =U,+ D,gl)
(vesp. E [expret,|Fi] = U + D,(f)) where D,(Cl),D,(f) satisfy (5) and U, is a deterministic

symmetric positive definite matrix. The improvement is in the combination D,(;) + D,(f). The
introduction of the term D,(f) is a strong improvement since it covers the case of SA with
controlled Markov chain dynamic: observe indeed that in this case E [ekﬂef 41 |]:k} is a function

of (X, ;) and it is really unlikely that this term converges almost-surely to a (random) variable

along the set {lim,6, = 0,}. Allowing an additional term D,(f) such that the sum > ;_, D,(f)
converges in some sense to zero introduces more flexibility (see Section 4 for more details).
We will also show in Section 4 how our framework improves on Delyon [11]. Examples of SA
algorithm where C2c¢ holds with resp. Robbins-Monro and controlled Markov chain dynamics
can be found resp. in Bianchi et al. [5] and Fort et al. [15].

Kushner and Huang [21] establish a CLT (as a consequence of some weak convergence of a
suitable continuous interpolation of the sequence (6,,—6,)/,/7x) for the algorithm (1) when Z,,;,
is of the form H(#,, X,.1). Their proof relies on a linearization of the algorithm (1) but with
no explicit introduction of a martingale-increment noise term; nevertheless, their conditions
require that some remainder terms vanish almost-surely, as well as some kind of stationary
assumption on the sequence (X,,), (see [21, Assumption A.2] which is really restrictive).

Examples of sequences satisfying the condition C4 are the polynomial ones. The step size
Yo ~ Y~ for a € (1/2,1) satisfies C4a. The step size 7, ~ ~,/n satisfies C4b; note that the
condition on (7, L) is well known in the literature (see e.g. Chen [9, Assumption A3.1.4]).

2.3. Main result

Theorem 2.1. Choose 0y € © and consider the sequence {6,,n > 0} given by (4). Assume
C1, C2, C3 and C4. Let'V be the positive definite matriz satisfying

VVh(9,)T + Vh(0,)V = U, , in case Cla,
V(Id + 27, Vh(0,)T) + (Id + 27, Vh(0,))V = =27, U, , in case C4b .
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Under the conditional probability P (-] lim, 6, = 0,), {7{1/2 (0, — 0,) ,n > 1} converges in dis-
tribution to a centered multidimensional Gaussian distribution with covariance matriz V.

Given matrices A, E, existence of a solution to the equation V A+ ATV = —F  is solved

by the Lyapunov theorem (see e.g. Horn and Johnson [19, Theorem 2.2.1.]). When A is a
(negative) stable real matrix and E is positive definite, then there exists an unique positive
definite matrix V satisfying the Lyapunov equation VA + ATV = —F  (see e.g. Horn and
Johnson [19, Theorem 2.2.3.]).
Sketch of the proof of Theorem 2.1. The proof of Theorem 2.1 is detailed in Section 5. The key
ingredient is the Central Limit Theorem for martingale arrays. As commented in Section 2.2, e,
is not a martingale-increment w.r.t. the conditional probability P(:| lim, 6, = 6,). To overcome
this technical difficulty, we use that

€n+l1 = En+1 I[An + €nt1 (1 - ]‘An) (8)

where {A,,n > 1} is a F,-adapted sequence of sets converging to {lim,6, = 60,} (such a
sequence always exists, see Lemma 5.6). Along the event {lim, 6, = 6.}, the second term in
the right hand side (rhs) of (8) is null for any n larger than some almost-surely finite random
time.

We write 6,, — 0, = p, + pn, where pu,, satisfies the equation

Hn+1 = (Id + '7n+1vh(9*)) Hn + Yn+1€n+1 3 Ho = 0.

Id denotes the d x d identity matrix. Roughly speaking, the sequence {u,,n > 0} captures the
linear approximation of h(6,,) and the martingale-increment noise sequence {e,,n > 1}.

We prove that ~, 1/2 PrLiim, 6,0, converges to zero in probability so that {yu,,n > 0} is the
leading term. We then establish that for any ¢ € R,
L7
Liimg 0,26, €XD _§t Vi)l .

3. A CENTRAL LIMIT THEOREM FOR ITERATE AVERAGING

lim [Lia, 0,0, exp (i, " t'p)] = E

Theorem 2.1 shows that the rate of convergence of the sequence {#,,n > 0} to 6, is O(n%/?)
when 7,, ~ 7, /n® for some a € (1/2,1]. The maximal rate is reached by choosing ~,, ~ v, /n, for
some 7, satisfying the conditions C4b. The main drawback with such a choice of the step-size
sequence {7,,n > 1} is that in practice, — L i.e.the largest real part of the eigenvalues of Vh(6,)
is unknown so that the condition C4b is difficult to check.

The second comment is on the limiting covariance matrix when the rate is maximal (i.e.in
the case v, ~ 7,/n). For any non-singular matrix I, we could define the algorithm

Oni1 = On + Y1 Dh(0n) + Vo1 lenss + Yup1 Dt 0 €O .

This equation is of the form (4) with a mean field h = T'h and noises {en, n,n > 1} replaced
with {Te,,'r,,,n > 1}. Then, Theorem 2.1 gives sufficient conditions so that a CLT for the
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sequence {f,,n > 0} holds: the matrix V is replaced with V = V(T') satisfying
V({Id + 27, Vh(6,)"TT) + (Id + 27, VA(0,)T)V = —29,TUTT .

A natural question is the “optimal” choice of the gain matrix I', defined as the matrix I', such
that for any A € R4, ATV(T)A > ATV([',)X. Following the same lines as in Benveniste et
al. [4, Proposition 4, Chapter 3, Part I], it can be proved that T’y = —y *Vh(0,)~! and in this
case,
V(T,) =7, 'Vh(6,) ' U VR(B,) T .

Theorem 3.2 below shows that by considering the averaged sequence {f,,,n > 0}, the optimal
rate of convergence (i.e.the rate y/n) and the optimal asymptotic covariance matrix (optimal
in the sense discussed above) can be reached whatever the sequence {v,,n > 1} satisfying C4a
used in the basic SA sequence (4). Therefore, such an optimality can be obtained even when
Vh(6,) is unknown. Note also that on a practical point of view, slow decreasing step-size 7,
are better (see e.g. Spall [28, Section 4.4.]) and this simple averaging procedure improves the
rate of convergence of the estimate of 6,.

These properties of the averaged sequence were simultaneously established by Ruppert [27]
and Polyak and Juditsky [26] under more restrictive conditions than those stated below.

3.1. Assumptions

AVER1 (a) {e,, n > 1} is a F,-adapted P-martingale-increment sequence.
(b) There exists a sequence {A,,, m > 1} such that lim,, P(A,,|lim, 6, = 6,) = 1, and
for any m > 1,
s%pIE [lex*1a,,, ] < oo,

where Ay, ;-1 € Fi—1 and limy, 1 4,,, = 1 4,, almost-surely on the set {lim, 0, = 0,}.
(c) Let

1 n
Epil = —— e .
i \/n——i—lkz:% hl

There exists a positive definite deterministic matrix U, such that for any ¢ € R,
. T L 7
h}ln]E [ﬂhmngzg* exp(it Snﬂ)} = E | Liim, 0,—6. exp(—é tUt)| .

We prove in Lemma 5.5 that when lim, nvy, > 0, assumption C2 implies AVER]1. Note also
that since lim,, P(A,,|lim, 8, = 6,) = 1, AVERIc is equivalent to the condition: for any m > 1,

. ) 1
hinE [Ilhmq - exp(thgnH)llAm} =E []Llimq - exp(—§ tTU*t)ILAm] )

For a sequence of Ré%-valued r.v. {Z,,n > 0}, we write Z, = Op»(1) if sup, E[|Z,|] < cc.
AVER2 r, is F,-adapted. r, = 7“21) + 1"7(3) with for any m > 1,
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(@) v 7 Ly 0,20, 14, = Ouwpa(1)O0p2(1).
(b) V Tn ZZ:1 T](f)]llimq 0q="0x IL,Am = Ow.p.1<1)OL2<1) .
_ n P
(c) n 1/2 > k=0 741 Ltimg 0,0, — 0.
The sequence {A,,,m > 1} is defined in AVER1b.
Note that AVER2c is equivalent to n="/2 3"} 741 Liim, 0,0, 14, 250 for any m > 1.
AVERS3 lim, nvy, = +oo and

hmT Z ~1/2

The step size 7, ~ v.n~* for a € (1/2, 1) satisfies AVER3 but the step size v, ~ 7, /n does not.
Observe that if the sequence {v,,n > 0} is non-increasing (or ultimately non-increasing) then
(see e.g. Delyon [11, proof of Theorem 26])

Yk
Vik+1

1—

.1
=0, 117511%2%20.

1— =0.

limny, = +o00 = hmT Z /2 5
n k+1

3.2. Main results

We show that the above conditions allow a control of the L2-moment of the errors {6, —0,,n >
0}. This result is a cornerstone for the proof of Theorem 3.2. The proof is given in Section 5.

Proposition 3.1. Assume C1, C4, AVER1a-b and AVER2a-b. Then, for any m > 1
Yo 100 = 0.]1% Lim, 0,20, 14, = Ourpa(1) Opi (1)

Theorem 3.2. Choose 6y € © and consider the averaged sequence given by (3). Assume C1,
C4a, AVER1, AVER2 and AVERS. Then for any t € RY,

limE [ﬂlimq 0q="0x exp (Z\/ﬁ tT (én - 9*))}
=P (lim 0, = 9*) exp (—%tTVh(Q*)_l U, (Vh(Q*)_l)Tt) :
q

Sketch of the proof of Theorem 3.2. The proof is detailed in Section 5. Since lim,,, P(A,,|lim, 6, =
0,) = 1, we only have to prove that for any m > 1 and ¢t € R,

IimE []lhmq 9,=0,1.4,, €xp (z\/ﬁ tr (én - 9*))}
1
~ & [tin a0 La, exp (—507 VRO U (R0 |
We write

. Vh(6,)™ ' &
en_e*: _n—_HkZ:()ek+1+Zn .
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We show that \/ﬁZn]lhmq 9,—0, L4, converges to zero in probability for any m > 1; for this step,
the main tool is Proposition 3.1. The proof is then concluded by AVERIc.

4. APPLICATION TO SA WITH CONTROLLED MARKOV CHAIN DYNAMICS

Let {K,,n > 0} be a sequence of compact subsets of © C R such that

Kn  Kut Uk.=o.

n>0

Let {Qp, 0 € ©} be a family of Markov transition kernels onto (X, X’). We consider the following
SA algorithm with truncation at randomly varying bounds: 6y € Ky, 09 = 0 and for n > 0,

set 9n+1/2 = en + 7n+1H(9n7 XnJrl)'
update
_ (0n+1/27 Un) ) if 9n+1/2 € ICO'” )
(Oni1, 1) = { (0,0, +1)  otherwise,
where {X,,,n > 0} is a controlled Markov chain on (€2, A, P) with conditional distribution given
by
P(Xn+1 € A|~Fn) - Qen(XnaA) ) ]:n - 0-<00;X0a e 7Xn) . (9)

The random sequence {o,,n > 0} is a non-negative integer-valued sequence counting the
number of truncations. Such a truncated SA was introduced by Chen et al. [10] (see also
Chen [9, Chapter 2]) to address the boundedness problem of the SA sequence {f,,,n > 0}. A
more general truncated SA algorithm with controlled Markov chain dynamics is introduced in
Andrieu et al. [2]: when truncation occurs, both the parameter 6,1/, and the draw X, used
to obtain the next point X, are modified.

The key point of the proof of convergence of this algorithm is to show that the number
of truncations is finite with probability one, so that after some random time, the sequence
{6,,n > 0} is almost-surely bounded and obeys the update rule 6,,,1 = 0,, + V1 H (0n, Xn11)-
Conditions implying almost-sure boundedness and almost-sure convergence of the sequence
{0n,n > 0} when {X,,n > 0} is a controlled Markov chain can be found in Andrieu et
al. [2, Section 3]. We assume

A1 For any 6 € O, there exists a probability distribution 7y on (X, X') such that m9Qy = .

For simplicity, we consider the case when H is bounded and the step-size sequence is polyno-
mially decreasing. Extensions to the case H is unbounded can be done along the same lines as
in Andrieu et al. [2].

A2 (a) for any compact set I C O, supyex SUP,ex | H (0, 2)| < 0o. Set

ho) = / H(O,7) m(dz) . (10)

(b) There exists a € (1/2,1] such that 7, = 7/n* When a = 1, ~, satisfies the
condition C4b.
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Since in this paper we are interested in CLT’s, the stability and the convergence of the algorithm
is also assumed:

A3 the number of truncations is finite with probability one: P(limsup,, 0,, < 00) = 1; and
there exists 6, € O satisfying C1 such that P(lim,, 6, = 6,) > 0.

For a function W : X — [1,00), define the W-norm of a measurable function f : X — R by
| fllw = supx | f|/W. We assume that the transition kernels {Qy, 0 € O} satisfy

A4 (a) For any 6 € O, there exists a measurable function Hy : (X, X) — (R% B(R?)) such
that

H(0,z) — h(0) = Ho(x) — QopHy(x) . (11)

There exists a function V; : X — [1,00) such that for any compact subset I C ©,

sup (| Hollv, + Qo Hollv; ) < o0 (12)
S

(b) For any 6 € ©, there exists a measurable function U : (X, X) — (R%, B(R")) such
that

FQ(ZL‘) - /F@(ZL‘) W@(dlb) = UQ(ZE) - Q@U@(l’) s (13)

N N N . T
where Fy(z) = [ Qo(x,dy) Ho(y)Ho(y)" — QoHy(x) (QgHg([L‘)) . There exists a
function V5 : X — [1, 00) such that for any compact subset K C O,

sup (||Upllv; + [[QoUsllv,) < o0 . (14)
ek
(¢) There exist 0,7 > 0 and T > 1/a — 1 such that for any m > 1,

sup E [(‘/12+T(Xk+1) + V37 (Xkt)) I, < cdlo;—0.1<6y | < 00,

k>m

E [V (X)) + V3 77 (Xo)] < 00

(d) For any compact subset K C O, there exist C' > 0 and b > (1/a — 1) V (1/2) such
that

QBﬁI@ - QO’E[@’

Furthermore, almost-surely

v +[|Us — Up ||y, < clo—o.

lim ( / Fy (2) o, (dz) — / Fo(x) M(dx)) Vi 0,0, = 0.

Conditions implying the existence of my and solutions to the Poisson equations (11) and (13) can
be found e.g. in Hernandez-Lerma and Lasserre [18, Chapter 8] or in Meyn and Tweedie [24,
Chapter 17]. When the transition kernel @y is uniformly ergodic, then V; = V5 and is equal
to the constant function 1. When the kernel is V-geometrically ergodic, we can choose V; =
VPV, = V2/P for any p > 2. Sufficient conditions for (12) and (14) based on Lyapunov drift
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inequalities when the chain is geometrically ergodic (resp. subgeometrically ergodic) are given
by Fort et al. [16, Lemma 2.3] (resp. Andrieu et al. [1]). Andrieu et al. [2, Proposition 6.1.]
gives sufficient conditions to check A4c (compare this assumption with the condition A3(ii) of
Andrieu et al.) when the kernels are V-geometrically ergodic: in this case, for any p > 2 we
can choose V; = V1/? V, = V2?/? and 7 such that 2(1 4+ 7)/p = 1. The first set of conditions in
A4d is an assumption on the regularity-in-6 of the solution to the Poisson equation. Andrieu et
al. [2, Proposition 6.1.] give sufficient conditions in terms of the regularity-in- of the transition
kernels Q9. When 1y = 7 for any 6, the second set of conditions can be established by combining
smoothness-in-0 properties of the function Fy and the dominated convergence theorem. When
7o depends on 0, Fort et al. [16, Theorem 2.11 and Proposition 4.3] give sufficient conditions
for this condition to hold.

The following proposition provides a set of conditions implying A1 and A4. Its proof is in
Section 5.7.

Proposition 4.1. Assume that

(i) for any 0 € ©, Qy is phi-irreducible and aperiodic.
(i1) there exists a measurable function V :— [1,00) and for any 6 € O, there exist constants
Ao € (0,1) and by € [1,00) such that QaV < A\gV + by.
(iii) there exists a € (0,1/2) and for any 0 € O, there exist 69 € (0,1) and a probability
measure vy on (X, X') such that Qq(x,-) > dgvp for any x € {V* < 2by/(1 — Ay) — 1}.
(iv) for any compact set K C O, supgex (bo V (1 — A§)™H V6, ") < o0.
(v) There exists € (1/2,1] and for any compact set K C © there exists a constant C such
that for any 6,60 € IC,

supsup |H (6, x)| < oo,
0ek zeX

|H(071‘) - H(Qlax” < C|9 - 9,|B )
sup  [|Qof = Qo fllva+ sup [Qof = Qo fllyaa < Cl1O—017.

Hllfllve<t Fllflly2a <1

Fiz 0y € ©. Then the conditions A1 and A4 hold provided v, ~ ~,/n® for a >2aV 1/(1+ f).

Let us now prove how the assumptions Al to A4 imply the conditions C1 to C4. Under
A3, the condition C1 holds; note also that the conditional probability P(-|lim, 6, = 6,) is well
defined. By using (10) and (11), we write the truncated SA algorithm on the form (4) by setting

ens1 = Ho, (Xns1) — Qo, Ho, (X,) .
Tpel = QGnﬁ0n<Xn) — Qenﬁen (Xog1) + (60 — 9n+1/2)]10n+1/2¢1c0n .

Let us prove that the condition C2 holds. Since 6,, € F,,, Eq. (9) implies C2a. Fix § such that
B(6,,6) ={0 € R4 |0 — 0, <5} CO. Set

A = 0 it k <m,
ke mmgjgk;{Wj —0,] <0,0; =0;_1,2} otherwise.
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Then for any k,m, A, x € Fi; limg A, = A, where A, = ﬂjZm{wj —0,] <0,0; =0;_1)2};
and lim,, P(A,,|lim, 6, = 0,) = 1 by A3. Fix m > 1; by (12) applied with L = B(0,,¢), there
exists a constant C' such that for any &k > m

E [lers1|* L, ] < CE (VP (Xk) + VP (Xet1)) La,] -

Adc concludes the proof of C2b. Observe that E [eyi1ef, | Fi] = Fy,(X)). By using (13), we
write [ekﬂefﬂ\.ﬂ} =U, + D,(:) + D,(f’a) + D,(f’b) with

m:/mmmumm

D) = [ Fule) ma,(de) - [ Funle) mo(d)

Dl(f’a) = Up, (Xi41) — Qo Up, (X)
D = Uy, (Xy) = Up, (Xi11) -

By A4d, D,(gl) =% 0 on the set {lim, 0, = 6,}. By (9), E [D,E:Z’a)|]:k_1} = 0; by application of the
Burkholder inequality (see e.g. Hall and Heyde [17, Theorem 2.10]), it holds for any A, € Fj
such that limy, A, = {lim, 0, = 60, }

14+7 1/(+7)

E ]lAk]lA . S Cnl/((lJr?)/\Z) )

lAkﬂ-Am,k] <|E

- D(Z“) - D(Q»a)

The constant C'is finite since under (14) and A4c, sup, E [\D,(f’a) 171 Am,k] < oo. Furthermore,

n

i Dl(€2,b) = Ugm(Xm) - U9n (XTL+1) + Z (Uek (Xk) - U9k71 (Xk))

k=m-+1

so that by Adc-d, there exists a constant C' such that

ZD’(f,b) ]LAmllhmng:g*] <C <1 + Z 7;2) .
k=1

k=m+1
The above discussion shows that C2c is verified since 7 > 1/a — 1 and b > 1/a — 1.

Finally, let us study 7,,. We write 7,11 = 7"7(11421 + 7”5521 with

E

7“21421 = (00 — Ont1)2) Lo, 1 jo¢kon T Qonyi Hoo o (Xng1) — Qo, Ho, (Xnt1) -
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By A3 and A4d, 7;1/27”7(11)]111% 0,=0, L 4,, = Owp1(1) 4+ o0r1(1) for any fixed m > 1. In addition,
by (12), there exists a constant C' such that

n

>l

k=1
it follows by A4c that the condition C3 is verified.
The above discussion is summarized in the following proposition

Proposition 4.2. Assume A1, A2, A3 and A4. Then, the conditions C1 to C} are satisfied
and

CE La, | SEM(X)]+EVi(Xn1)La,] ;

U, = [ o) (B ) o (0" — Q. B ) (@0, )" )

By application of Theorem 2.1, we obtain a CLT for randomly truncated SA with controlled
Markov chain dynamics.

Our result improves on Delyon [11, Theorem 25]. Under stronger conditions (for example, it
is assumed that V; and V5 are bounded functions; there is a single target 6, and b = 1 in the
regularity-in-6 assumption Cbd), Delyon [11] establishes a CLT in the case 7, = 7,/n® with
the condition a € (2/3,1]. Note that if V3, V5 are bounded then A4c holds with any 7 > 0 and
if b =1 then b > (1/2) V (1/a — 1); hence, our approach only requires a € (1/2,1] which is the
usual range of values for SA algorithms.

Our result also improves on Bouton [7, Corollary of Theorem 2]: our assumptions only
require Holder-continuity of some quantities with respect to #, and the Lipschitz-continuity
of 0 — my(Fy) is not required as in Bouton (see [7, Assumption (H.7)]) which is a strong
improvement especially in situations when we do not have an explicit expression of 7.

Using similar tools, the conditions of Theorem 3.2 can be verified; details are left to the
interested reader.

5. PrROOF

5.1. Definitions and Notations

Let {A,,n > 0} be a sequence of sets such that
A, € F,, h£n 14, = Liim, 6,—6. w.p.l. (15)
Such a sequence exists by Lemma 5.6. Define recursively two sequences
ot = (Id+ 711 VR(0.))pn + Yntr€nt po =0 (16)
Prnt1 = Ony1 — Ok — g, po = 0o — 0, ; (17)

and the matrices 1, (n, k) for 1 < k <mn,

n

Yuln k) = [[(1d + 5 VR(6,)) - (18)

J=k
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By convention, 1,(n,n + 1) = Id. Under Cla-b, there exist a set of random d x d symmetric
matrices {RE”), i < d} such that the entry ¢ of the column vector {h(6,,) — Vh(0,)(0,, — 6,)} is
equal to (6, — 6’*)TR§R)(0,1 —46,) . More precisely,

(n) A 9%h;
R (k, l)—/o 5(1—t) aekael(e +t(6, — 6,)) dt . (19)

Let Rsn) be the tensor such that
h(6,) = Vh(0,) (0, —6,) + (6, —0,) " RM™ (6, —6,) . (20)

Finally, for 1 < k < n, define the d x d matrices

n

p(n,k) = [ [+ v {Vh(0.) + 2u] RV + p | RI™D}) (21)
j=k

with the convention that ¥ (n,n + 1) = Id.
5.2. Preliminary results on the sequence {u,,n > 0}

By iterating (16), we have by definition of ¢, (see (18))

n+1

pnsr = > We(n + 1k + 1)y . (22)
k=1

Proposition 5.1. Assume C1b-c, C2a-b and C4. Then
(i) tnLiim, 6,0, — 0 when n — co.
(i) for any m > 1, 'yk_l|uk|2 Liim, 6,6, L 4,, = Or1(1) 4 0y p.1(1).
The proof is on the same lines as the proof of [12, Lemma 6] and is omitted here; a detailed
proof is given in the supplementary material.

5.3. Preliminary results on the sequence {p,,n > 0}
By (17) and (20),
p1 = (1d + 71 VE(0:)pn + Yns17ni1 + g1 (6n — 0) RV (6, — 6,)
= (Id 4+ Y1 VA(0.)) o + Yns1ns1 + Yost (o + o) RS (i + pr)
(Id + Y1 VR(O,) 4+ 2Vnq1 11y, PRI + 4, +1Pn TR )
+ Vo 1Tt + Ynar g RS i,

By induction, this yields

pn =, Vpo+ D> wb(n b+ 1) (ri+ g B Ve a) (23)
k=1
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where ¥ (n, k) is given by (21).
Proposition 5.2. Assume C1, C2a-b and C4. Let 8y € ©. Then, for any m > 1,

{Pn - Z Y (n, k + 1)7’k} Liim, 0,20, La,, = 722 041 (1O (1)
k=1

with k = 1/2 under C4a and k € (0, Ly, — 1/2) under C4b.
Assume in addition C3. Then, for any m > 1,

Z ’ykw(n, k + 1)Tk]111mq 0q="0x ﬂAm = ")/71/2 Ow.p.l<1)0L1 (1) .
k=1

The proof is on the same lines as the proof of [12, Lemma 6] and is omitted here; a detailed
proof is given in the supplementary material.

5.4. Proof of Theorem 2.1

By (17), "> (6 — 0,) = 7o pin + v /> pn. We first prove that on {lim, 0, = 6.}, the
second term tends to zero in probability. By C2b, for any € > 0 there exists m > 1 such

that P(A,,|lim,0, = 0,) > 1 —e. Therefore, it is sufficient to prove that for any m > 1,

'7{1/2pn]lAmILlimq 0,=0, -5 0 when n — co. This property holds by Proposition 5.2.

We now prove a CLT for the sequence {v, Y ®ln,n > 0}. Tt is readily seen that
limE [exp(i%;lmtT,un)ILhmq 6,=0.] = E [exp(—0.5t" V') Lji, 6,0, |
if and only if

limE [exp(iyrjlmtT,unILhmq ngg*)] =E [exp(—0.5tTVﬂLhmq 9(119*)]
Furthermore, by C4 and Lemma 5.7, for any fixed ¢ > 1, lim,, 7;1/2|w*(n,€)] = 0 (where 1, is
given by (18)); this property, together with (22) and (15) imply that

exp (itT Z Xn—i—l,k]lAk_l)]

limE [exp(z’v,:l/QtT,unILhmq 0,=0. )] =limE
k=1

where X, 11 = ’y;iffykw*(n + 1, k+ 1)ex. By C2a and (15), E [XnH’k]lAkfl]}"k,l} =0 and
the limit in distribution is obtained by standard results on CLT for martingale-arrays (see e.g.
Hall and Heyde [17, Corollary 3.1.]).
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Lindeberg condition. We have to prove that for any € > 0,

- P
Y B [|Xns1kl*Lix, 1 pfze [Fro1] Ta,, — 0.
k=1

Following the same lines as above, it can be proved that equivalently, we have to prove for any
m > 1,

n
P
1 A, Tim, 6,=0, ZE (XL 5 2 [Frma] — 0.
k=1

Let m > 1 be fixed and set X, 11 = Xﬁl,k + Xﬁglvk with
1 2
X = Xoala, oy X =Xow (1= 1a,,.,) -

We can assume without loss of generality that 7 given by C2b is small enough so that (2 +
7)L7y, > 1+ 7. Then,

n+1 n+1

S [IXU Y] = SO [Pt + Lk + Derla,, 7]
k=1 k=1
n+1
< supEE lewTan, s P57) s 2 9 [ + 1,k + 1)
k=1
Under Clb-c, C2b and C4, Lemmas 5.7 and 5.8 imply
n+1
lim sup 7;91”) 2'713+T’¢*(” + 1LE+ 1D < 400
" k=1

since (2 + 7)Lv, > 1+ 7, Lemma 5.8 applies even in the case C4b). Hence,

n+1

SE [0, = o

k=1
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Consider now X 7(12421/% Since there exists a random variable K such that 1 4, (1—1 Am,k—l)]‘hmq 0,=0, =
0 for any k > K, it holds for any n > K,

Liimg 0,0, L A, ZE [|Xn2+)1 B 11X e |fk—1]

K
= Ltimg 0,6, 1 4, ZE [’Xn-i-l,k’gﬂ\Xnﬂ,k\Zé “’Tk’—l} (1 o ﬂAm,k—l)
k=1
K
< Ltimg 0,0, LA Yy | Z%%W*(" + 1k + DPE [Jex]® |Fima] (1= Tapes) -
k=1

Under C4, this term is 0,,,1(1). Therefore, the first condition of [17, Corollary 3.1.] is satisfied.
Limiting variance. We prove the second condition of [17, Corollary 3.1.]. Set

VO LS, k4 DU (0, b+ 1) T, 0,0, -

k=1

J— 2 e _ "
V2SN 2y (n, k4 1) (Bleed | FioaLa,, — UsLiimgo,-0,) (& +1)7
k=1

We prove that v B, V Liim, 9,—0, and 71(12) 24, 0. Tt holds on {lim, 0, = 6.},

Vi = iU + = (1d + 7001 VR(0,) VY (1d+ 7051 VA(0))"

’Yn—&—l

=V 4+ 7(Us + VROV + VIOVR(0,)T) + %Vm
n+1

+ (7n+1 - PYn)U* + 7n7n+1Vh(9*)V7~b(1)Vh<9*)

and by Lemma 5.9, hmn V V]lhmq 0,—0, almost-surely. Following the same lines as above,

it can be proved that Vn and V,\? given by
Vi = Lim, 0, ' > ithu(n, k+1) (Eleref | Foma] = Us) i(n, k+1)"
k=1

have the same limit in probability. By C2c, we write Vn(2 (V(2a Vn(Q’b)) Liim, 6,—0, With

V) = 4 kal/)*n k+1)D k, 11/1*(n E+ 17
k=1

VY = 1S 20 (0, k4 1D (n, k+1)"
k=1
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We have ‘Vn@’“) <A A2 [ (n, k+ 1) |DY,|. By Lemma 5.8, there exists a constant
C such that on {lim, 6, =6, }

Y

lim sup ‘Vn(z’“)| < C' limsup ’D,(cl)
n k

where we used (15). The rhs tends to zero w.p.1. by C2c. We now consider V&b,

lim,,, P(A,|lim, 6, = 6,) = 1, it is sufficient to prove that for any m > 1, TSQ’b)Ilhmq 0,=0, LA, LN

0 when n — oco. Let m > 1. Set

Since

— def &
Zn = ZD]('2)1]-limq 0,=0, LA, -
=0
By the Abel transform, we have
n—1
VAL Diimg 6,-6. = Yn+1Zn + i1 O A0k p1e(n+ Lk +2) b (n+ 1,k +2)7
k=0

— Viralu(n + Lk +3)Z5(n + 1k +3)7}

Under C2¢, 7,2, 25 0. For the second term, following the same lines as in Delyon [11, Proof
of Theorem 24, Chapter 4], it can be proved that the expectation of the second term is upper
bounded by

n—1
C vt D i [+ LE+2)1 (E[IE4) -
k=0
Since limg v:E [|Z¢|] = 0, Lemma 5.8 implies that V,fg’b)]lAm]llimq - %4 0. This concludes

the proof.
Remark 5.3. From the proof above, it can be seen that the assumption on the r.v. D,(LZ) can be
relazed in

lim 7, B[]y D714, 1a,,, ) =0.
k=1

Observe indeed that in probability,

lim V;#Y 14, L, 0,20, = limy, 'Y A2eu(n, k+ 1)DZ h(n, k+1)71a,, 14, .
k=1

5.5. Proof of Proposition 3.1

The proof is prefaced with a preliminary lemma.
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Lemma 5.4. Let {vy,,n > 1} is a (deterministic) positive sequence satisfying C4a and A be a
(deterministic) d x d Hurwitz matriz. Let {z,,n > 0} be a sequence of R%-valued r.v. satisfying

Tpt1 = T + P)/n+1Axn + ’Yn+1C,(11421 + ’Yn+1§§2421 s n >0 )
where
n n+1
(Id+vA) | M, o0 = vAnOwp1(1)012(1)
Tk Vi k limg zg=0 TnUw.p.1 L )
k=1 j=k+1
|<1(12)‘I]-1imq zq=0 — |J;n|2 Ow.p.l.(l) .
Then

T |wn|2]1hmq:cq:0 = Oup1.(1)0n1(1) .

The proof can be easily adapted from Delyon [11, Theorems 20 and 23| and is omitted here.
Proof of Proposition 3.1. By (20)

9n+1 - 9* = en - 6* + 7n+1Vh(6*) (977, - 6*)
+ Y1 (€n+1 + Tn+1) + Yn+1 <9n - 9*>T RE”) (Gn - 6*)

Let m > 1. We apply Lemma 5.4 with z,, «+ (0, — 0,)14,, A < Vh(6,), C,(Zlﬁl = (ent1 +
Tn+1)l4,, and C,(ﬁzl = (0, —0,)" R (6, —0,) 14, . Under Clc, A is a Hurwitz matrix and
‘Cﬁzlmlimq Og=0, — Ow.p.l(l) |3’;n|2

We write Cﬁzl = (enﬂ]lAmm + ent1 (1 — ﬂAm,n) + 7’n+1) 14,,. Under C4, AVER1a-b, Lemmas
5.7 and 5.8 imply

Z Fykw*(n + 17 k + 1) ekiﬂ‘AnL,kfl = Vv f)/nOLQ(l) °
k=1

Upon noting that 1 4,, (1 — ]]'-Am,,k) =0 for all £ > K where K is a r.v. finite w.p.1.

(Z 7k¢*<n + 1, k + 1) €L (1 — ]]'Am,kl)> IlAm

k=1

K
— (Z'ykw*(n-f- Lk+1)e,(1- ]lAm’k_l)> Iy, .

k=1

Therefore, by Lemma 5.8, this second term is /7,04 p.1(1). Finally, Lemma 5.8 and AVER2a-b
imply that the last term is \/7,0u.,.1(1)O12(1) (the proof is on the same lines as the proof of
Proposition 5.2 and details are omitted).



22 TITLE WILL BE SET BY THE PUBLISHER

5.6. Proof of Theorem 3.2

The proof is adapted from the proof of Delyon [11, Theorem 26]. Under Clc, Vh(6,) is
invertible. By (4) and Lemma 5.10 applied with z, < 0, — 6, and A < Vh(0,), we have

Vi (B, — 0.) = —Vh(6.) YL Z ekt + V7,

n—i—lk:O

where

n

Vh0)Z0 Y~ i = — 37 (W) — VA(.) (0 — 6.))

n+1k= k=0
1 (Op1—0, 0—0, I [1 1
+ ( === )+ Z(—— )(ek—e*).
n+1 Ynt1 gl n+le=\m M

We prove that \/ﬁanlhmq 0,=0. LN 0; combined with AVERIc, this will conclude the proof.
Since lim,,, P(A,| lim, 0, = 6,) = 1, it is sufficient to prove that for any m > 1, \/nZ,1 4, Liim, 9,~0. N
0. Let m > 1. By AVER2¢, it holds 723" 7411 4, Ty, 6,0, — 0. By (20),

n

i > (h(0) = VA(0.) (6~ 0.)) =

n

1
— > (6~ 60T RY (6. 0.)
k=0

and by Clb, ng)ﬂhmq 9,=0, = Owp.1(1). Therefore, by Proposition 3.1,

n+1 Z (0.)(Or — 0.)) La, Liim, 6,0, = (n\i_l Z’ykaWk) ,

k=

where Wy, = O, 1.(1) and Wi = Opi(1). AVER3 implies that this term tends to zero in
probability. Proposition 3.1 and AVER3 imply that

i (9n+1 — 6, 0 — 9*> _ 05 (1)Oupa. (1) +oupn(1) 25 0.
n+1 Yn+1 g (7 + 1)+

L4, Ltim, 0,0,

Finally, Proposition 3.1 and AVERS3 also imply that

L, Ly, 6,— — - O —0,) = W PWier/ W
Ay Liim, 0, 0*n+1z<% 7k+1>(k ) (\/—Z Ve Wi\ W

where Wy, = O,,,1.(1) and Wy, = Or:(1). This term tends to zero in probability.
Lemma 5.5. C2 and lim,, ny, > 0 imply AVERI.

Yk %+1



TITLE WILL BE SET BY THE PUBLISHER 23

Proof. C2 implies trivially AVER1a-b. We only have to check AVERIc, or equivalently, prove
that for any m > 1,

HmE [ exp (" Ensi Lim, 0,0, 14,,) | = E [ exp (it UstLyim, 0,0, 1a,,)] -

Write 5n+1]llimq ngg*]lAm = Tl,n + T27n with Tl,n = (TL + 1)_1/2 ZZ:() ek+11Am,k1Ak' By (15)
and C2b, Ty, = 0yp1.(1). Observe that E [ekﬂ 1a,,, lAk\]ﬂ = 0 so that the convergence in
distribution of 77, will be established by applying results on martingale-arrays: we check the
assumptions of Hall and Heyde [17, Corollary 3.1.]. By C2b, it is easily checked that for any
€ > 0, there exists a constant C' such that for any n,

C

n‘r/2 :

1 n
E EZE [|ek+1|21|6k+1|26\/ﬁ|fk} llAm-r’“ <
k=0

Hence, n™ 30 (B [lexst|* Ly, s 15 evm [ Fr] LanLa, L5 0. We now prove that

1
n—+1

- P
D E [exei| Fe] 1a,, 14, — Uil Tiimg 0,0, - (24)
k=0

As above, we claim that this is equivalent to the proof that for any m > 1,

n

1
n+1

Z (E [€k+1€£+1|Fk] - U*) i> 0.

k=0

Liimg 0,=0, L 4,5,
C2c and the Cesaro lemma imply that w.p.1, on the set A,,N{lim, 0, = 6, }, (n+1)"' >}, D,(Cl) =

0. Finally, under C2c,
_o(1)
o

and the rhs tends to zero since lim, n7y, > 0. This concludes the proof of (24) and the proof of
the Lemma. O

1
n—+1

E

2
> D Vi, 8,-0. 1,
k=0

5.7. Proof of Proposition 4.1
Let a € (0,1/2) be given by the assumption (iii). By the Jensen inequality, for any 6 € ©
and 7 € [a, 1], it holds
QoV7 < XNgV7 + by . (25)
In addition, since V' > 1, {V7 < 2by/(1 — Ay) — 1} C {V* < 2by/(1 — Ag) — 1}. Therefore,

by [16, Lemma 2.3.], there exists an unique probability measure 7y invariant for @y, thus
implying Al.



24 TITLE WILL BE SET BY THE PUBLISHER

By [16, Lemma 2.3.] again, there exist constants Cy, pg € (0,1) such that for any v € [a, 1],
r € X, # € © and any compact set K C O,

g Q5 f(z) = mo ()] < CopgV7 () ; (26)
sup (Cp V (1 — pg) ' Vm(V)) < 00 . (27)
ek

Set Hy() = Y0 (Q4H(6,-)() — h(8)). By (26), upon noting that [|H (6, -)[[ye < sup,ex |[H(6, )]

which is finite by assumption (v)
| Hol@)| v |QoHo(@)| < I1H (B, )lve Coll = po) V(@)

Then, (27) and the assumptions (iv-v) imply that A4a holds with Vi (x) < V(x).
Set Up(x) = 3,50 (Qf Fo(z) — ma(Fp)). Observe that there exists a constant Cj such that

|Fy(z)| < Cj (QoV**(2) + (QoV*(2))*)

so that by (25), || Fy|ly2e < 0o. As above, it can be proved that A4b holds with Va(z) < V2%(x).
Choose a compact IC of © such that X D {# € ©:10—0,] <d}; 7€ (0,1/a—2) and 7 = 7/2.
Since V; = V and V5 = V2 it holds by iterating the drift condition (25) that

sup E [(Vf”(XkH) VT (X)) ﬂnm<j<k{9je,c}} < 2B [VT(X0)] + 2sup by(1— M)
>m - (S

Under the assumption (iv), the second term in the RHS is finite. Since 6, is fixed and H (0, z)
is bounded uniformly in 6 for € in a compact set, it can be proved by a simple induction that
the random variables 6y, - ,0,,_1 are in a (non random) compact subset K of ©. Therefore,
by iterating the drift again, we prove that E [V2*T7*(X,,)] < co. This concludes the proof of
Adc.

Following the same lines as in the proof of [2, Proposition 6.1.], it can be proved by using
(25) and the assumption (v) that for any compact K C © and any ' < 3, there exists C' such
that for any 6,6 € KC,

\h(6) — h(0)| + ||Hy — Hy ||ve + ||QoHy — Qo Hy||ya < C16— 6|7 . (28)

Similarly, it can be proved along the same lines as the proof of [2, Proposition 6.1.] that
|Up — Upr||vy20 < C|0 — @)% provided one has

sup |0 — 0|7 || Fy — Folly2e < 0. (29)
0,0'ck
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Let us prove this property. Note that Fy(z) — Fp(z) is of the form py HiHY — puoHoHT —
(urHy ) (py Hy)T + (o Ho) (o Ho)T for some probability measures pug, po. Writing

pn HiH — poHo HY = (py — po) (HLHY ) + po Hy (Hy — Hy)" + po(Hy — Hy)Hj
(uHY) (un HY) = (o Ho) (poHy ) = i Hy (i Hy — poHo) ' + (o Hy — poHo) poHy

and using the assumption (v) and (28), the property (29) holds. This concludes the proof of
the first statement of Add with b = 3’

Finally, let us consider the second statement. Since supyex (V) < oo for any compact IC of
© (see (27)), the dominated convergence theorem and (29) imply that with probability one,

im0l [ 70, (d5) (B, () = o (5)) = 0. (30)
In addition, for any £ > 1, x € X and § > 0,

|70, Fo,, — T0. Fo| Lo,—o.1<6 < |Q5, Fo, (x) — Q6 Fo, ()| Ljp,—0.1<s+2V>**(x) sup  Cyl|Fpllvzapp -

16—6.|<6
(31)
By assumption (v), for any § > 0, there exists a constant C; such that for any z,
Qo,, Fo, (x) — Qo Fo, (x)| Ljg,—0,1<5 < 01‘ Sup [ Follv2e V()16 — 0.7 ;
0—0,<6
and by a trivial induction on k, there exists a constant C}, such that for any =z,
|Q5, Fo. () — QF, Fo, ()| Lig,—0.1<5 < Cr_sup || Fpllv2aV?*(2)[6, — 6.7 . (32)

16—6.|<5
The controls (30) to (32) imply lim,, 7y, Fp, = 7, Fp, almost-surely, on the set {lim, 6, = 6,}.
5.8. Technical lemmas

Results below are classical and the proofs are omitted here; they are provided in the supple-
mentary material.

Lemma 5.6. Let (0, A, P, {F,,n > 0}) be a filtered probability space and set Foo = o(Fp,n >
1). Let B € Fu. There exists a F,-adapted sequence {A,,n > 0} such that lim, 1,, = 1p
P-a.s.

Lemma 5.7. Let | - | be any matriz norm. Let {Ay, k > 0} be a sequence of square matriz
such that limy |Ay, — A| = 0 where A is a Hurwitz matriz. Denote by —L, L > 0, the largest
real part of its eigenvalues. Let {7y, k > 0} be a positive sequence such that limy ~y, = 0. For
any 0 < L' < L, there exists a positive constant C' such that for any k <n

[(1d + 30 An) -+ (1 + s Apan) 1+ 7 A0)] < Cexp(—L' > 7).

J=k
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Lemma 5.8. Let vy, be a positive sequence such that limy v, = 0 and ), v, = 0o. Let {e, k >
0} be a non-negative sequence. Then

n n 1
lim sup fy;pZ’yﬁ’Ll er exp(—b Z Vi) < mlimsupen ,
" k=1 j=k+1 P "

(i) with C(b,p) = b, for any b>0,p > 0 if log(ve—1/) = 0(7x)-
(i1) with C(b,p) = b—p/74, for any by, > p > 0 if there exists v, > 0 such that log(yx—1/7k) ~

Vi) Vs
By convention, Y7 7 = 0.
Lemma 5.9. Let U, be a positive definite matrix.
(a) Assume C1b-c and C4a. Consider the equation

Yn — Vn+1

~ (%% + ("Yn—i—l - ’)/n)U* + 7n7n+1Vh(9*)Uth(6’*)T 3
n+1

Unt1 = Up + 'Ynf(vn) +

where f(v) U, + Vh(6,)v + vVh(0,)T. Then there erists an unique positive definite
matriz V' such that f(V) =0 and lim, v, = V.
(b) Assume C1b-c and C4b. Consider the equation

Un+1 = Un + 'Ynf(vn) + (%H—l - ’Yn)U* + 7n7n+th(9*)Uth(9*)T )

where f(v) o Ui+ Vh(0,)v+0Vh(0,)T +~y v, Then there exists an unique positive definite
matriz V- such that f(V) =0 and lim, v, = V.

Lemma 5.10. Define the sequence {x,,n > 0} by
Tpt1 = Tp + ’YnJrlen + ’Vn+1€n+1 ) Zo € Rd )

where {v,,n > 1} is a positive sequence, {C,,m > 1} is a Re-valued sequence and A is a d x d
matriz. Then

Azka—ZCk+1+ (an —@) +Z (i— ! )SBk
k=0 k=0 7

ntl N w1 \Tk o Tkl
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