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CENTRAL LIMIT THEOREMS FOR STOCHASTIC APPROXIMATION

WITH CONTROLLED MARKOV CHAIN DYNAMICS

Gersende Fort1

Abstract. This paper provides a Central Limit Theorem (CLT) for a process {θn, n ≥ 0} satisfying
a stochastic approximation (SA) equation of the form θn+1 = θn + γn+1H(θn, Xn+1); a CLT for the
associated average sequence is also established. The originality of this paper is to address the case of
controlled Markov chain dynamics {Xn, n ≥ 0} and the case of multiple targets. The framework also
accomodates (randomly) truncated SA algorithms.

Sufficient conditions for CLT’s to hold are provided as well as comments on how these conditions
extend previous works (such as independent and identically distributed dynamics, the Robbins-Monro
dynamic or the single target case). The paper gives a special emphasis on how these conditions hold for
SA with controlled Markov chain dynamics and multiple targets; it is proved that this paper improves
on existing works.

Résumé. Cette contribution établit un Théorème de la Limite Centrale pour un processus {θn, n ≥ 0}
vérifiant une équation d’Approximation Stochastique θn+1 = θn + γn+1H(θn, Xn+1); et un Théorème
de la Limite Centrale pour la suite moyennée associée. L’originalité de ce travail est à la fois de traiter
du cas d’une dynamique {Xn, n ≥ 0} donnée par une châıne de Markov contrôlée et, de traiter des
algorithmes multi-cibles. Le cadre d’étude inclut aussi les algorithmes d’approximation stochastique à
troncations aléatoires.

On énonce des conditions suffisantes sur H et {Xn,≥ 0} pour l’existence d’un Théorème Central
Limite, conditions qui étendent les travaux antérieurs ; elles couvrent en particulier le cas de dy-
namiques indépendantes et identiquement distribuées, le cas des algorithmes de Robbins-Monro et, les
algorithmes qui n’ont qu’un seul point limite. On insiste plus particulièrement sur la façon de vérifier
ces conditions dans le cas où {Xn, n ≥ 0} est une châıne de Markov contrôlée : pour ce faire, on
formule des conditions sur les noyaux de transition définissant la loi de la châıne. On montre que nos
conditions améliorent des travaux antérieurs.
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1. Introduction

Stochastic Approximation (SA) algorithms were introduced for finding roots of an unknown
function h (for recent surveys on SA, see e.g. [6,9,20,22,28]). SA defines iteratively a sequence
{θn, n ≥ 0} by the update rule

θn+1 = θn + γn+1Ξn+1 , (1)

where {γn, n ≥ 1} is a sequence of deterministic step-size and Ξn+1 is a random variable (r.v.)
standing for a noisy measurement of the unknown quantity h(θn).

Our aim is to establish the rate of convergence of the sequence {θn, n ≥ 0} to a limiting point
θ? in the following framework.

Let Θ ⊆ Rd; the sequence {θn, n ≥ 0} is a Θ-valued random sequence defined on the filtered
probability space (Ω,A,P, {Fn, n ≥ 0}) and given by

θn+1 = θn + γn+1 (h(θn) + en+1 + rn+1) , θ0 ∈ Θ ;

where h : Θ → Rd is a measurable function, {en, n ≥ 1} is a Fn-adapted P-martingale incre-
ment sequence and {rn, n ≥ 1} is a vanishing Fn-adapted random sequence. Such a general
description covers many SA algorithms: as discussed below (see Section 2.1), it covers the
case when Ξn+1 is of the form H(θn, Xn+1) where {Xn, n ≥ 1} are independent and identically
distributed (i.i.d.) r.v. such that (s.t.) E [H(θ,X)] = h(θ); and the more general case when
{Xn, n ≥ 1} is an adapted (non stationary) Markov chain with transition kernel driven by the
current value of the SA sequence {θn, n ≥ 0}. It also covers the case of fixed truncated and
randomly truncated SA algorithms i.e.situations when given a (possibly random) sequence of
subsets {Kn, n ≥ 0} of Θ, the update rule is given by

θn+1 =

{
θn + γn+1Ξn+1 , if θn + γn+1Ξn+1 ∈ Kn+1

θ0 otherwise .
(2)

Such a truncated algorithm is used for example to solve optimization problem on a constraint set
Θ (in this case, Kn = Θ for any n), or to ensure stability of the random sequence {θn, n ≥ 0} in
situations where the location of the sought-for root is unknown (in this case, Kn is an increasing
sequence of sets, see [10] and [9, Chapter 2]).

Our second aim is to extend the previous results to the case of multiple targets: we provide
asymptotic convergence rates of {θn, n ≥ 0} to a point θ? given the event {limq θq = θ?} for
some θ? in the interior of Θ. Note that this paper is devoted to convergence rates so that
sufficient conditions for the convergence is out of the scope of the paper; for convergence, the
interested reader can refer to [2–4,6, 9, 13].

The originality of this paper consists in deriving rates of convergence in a new framework
characterized by (i) general assumptions on the noisy measurement Ξn+1 of h(θn) which weaken
the conditions in the literature and (ii) the multiple targets problem. In Section 2.2, our
framework will be carefully compared to the literature.

We derive sufficient conditions on the step-size sequence {γn, n ≥ 1}, on the random sequences

{en, rn, n ≥ 1} and on the limiting point θ? so that γ
−1/2
n (θn − θ?) converges in distribution
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under the conditional probability P(·| limq θq = θ?). The limiting distribution is a (mixture
of) centered Gaussian distribution(s) and this distribution is explicitly characterized. We also
address the rate of convergence of the associated averaged process {θ̄n, n ≥ 0} defined by

θ̄n
def
=

1

n+ 1

n∑
k=0

θk . (3)

We prove that this averaged sequence reaches the optimal rate and the optimal variance (in
a sense discussed below); such a result was already established in the literature in a more
restrictive framework.

The paper is organized as follows. Section 2 (resp. Section 3) is devoted to the SA sequence
{θn, n ≥ 0} (resp. the averaged SA sequence {θ̄n, n ≥ 0}). We successively introduce the
assumptions, comment these conditions, compare our framework to the literature and state a
Central Limit Theorem (CLT). In Section 4, our results are applied to a randomly truncated
SA algorithm with controlled Markov chain dynamics; since our conditions are quite weak, we
are able to obtain better convergence rates than the rates obtained in Delyon [11]. All the
proofs are postponed in Section 5.

2. A Central Limit Theorem for Stochastic Approximation

2.1. Assumptions

Let Θ ⊆ Rd. We consider the Rd-valued sequence satisfying for n ≥ 0,

θn+1 = θn + γn+1h(θn) + γn+1en+1 + γn+1rn+1 , θ0 ∈ Θ ; (4)

and we establish a Central Limit Theorem along sequences {θn, n ≥ 0} converging to some
point θ? ∈ Θ which is a root of the function h. We assume the following conditions on the
attractive target θ?.

C1 (a) θ? is in the interior of Θ and h(θ?) = 0.
(b) The mean field h : Θ → Rd is measurable and twice continuously differentiable in

a neighborhood of θ?.
(c) The gradient ∇h(θ?) is a Hurwitz matrix. Denote by −L, L > 0, the largest real

part of its eigenvalues.

Let {en, n ≥ 1} be a Rd-valued random variables defined on the filtered space (Ω,A,P, {Fn, n ≥
0}). We will denote by | · | the Euclidean norm on Rd; and by xT the transpose of a matrix
x. By convention, vectors are column-vectors. For a set A, 1A is the indicator function. It is
assumed

C2 (a) {en, n ≥ 1} is a Fn-adapted P-martingale-increment sequence i.e.E [en|Fn−1] = 0
P-almost surely.

(b) For any m ≥ 1, there exists a sequence of measurable sets {Am,k, k ≥ 0} such that
Am,k ∈ Fk and there exists τ > 0 such that

sup
k≥0

E
[
|ek+1|2+τ

1Am,k
]
<∞ .
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In addition, for any m ≥ 1, limk 1Am,k1limq θq=θ? = 1Am1limq θq=θ? and the limiting
set satisfies limm P(Am| limq θq = θ?) = 1.

(c) E
[
ek+1e

T
k+1|Fk

]
= U?+D

(1)
k +D

(2)
k where U? is a symmetric positive definite matrix

and {
D

(1)
k

a.s.−→ 0 , on the set {limq θq = θ?}
limn γn E

[∣∣∣∑n
k=1D

(2)
k

∣∣∣1limq θq=θ?1Am

]
= 0 ;

(5)

the sequence {Am,m ≥ 1} is defined in C2b.

We will show (see remark 5.3 in Section 5) that the condition on the r.v. {D(2)
k , k ≥ 1} can be

replaced with: D
(2)
k = D

(2,a)
k +D

(2,b)
k

lim
n
γn E

[∣∣∣∣∣
n∑
k=1

D
(2,a)
k 1Am,k1Ak

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=1

D
(2,b)
k

∣∣∣∣∣1Am1limq θq=θ?

]
= 0 , ∀m ≥ 1 , (6)

where {Ak, k ≥ 1} is any Fk-adapted sequence of sets satisfying limk 1Ak = 1limq θq=θ? ; and Am,k
is given by C2b.

For a sequence of Rd-valued r.v. {Zn, n ≥ 0}, we write Zn = Ow.p.1.(1) if supn |Zn| < ∞
w.p.1; and Zn = oLp(1) if limn E[|Zn|p] = 0. Let {rn, n ≥ 1} be a Rd-valued random variables
defined on the filtered space (Ω,A,P, {Fn, n ≥ 0}).

C3 rn is Fn-adapted. rn = r
(1)
n + r

(2)
n with, for any m ≥ 1,{

γ
−1/2
n r

(1)
n 1limq θq=θ?1Am = Ow.p.1(1)oL1(1) ,

√
γn
∑n

k=1 r
(2)
k 1limq θq=θ?1Am = Ow.p.1(1)oL1(1) .

The sequence {Am,m ≥ 1} is defined in C2b.

The last assumption is on the step-size sequence.

C4 One of the following conditions is satisfied:
(a)

∑
k γk = +∞,

∑
k γ

2
k <∞ and log(γk−1/γk) = o(γk).

(b)
∑

k γk = +∞,
∑

k γ
2
k < ∞ and there exists γ? > 1/(2L) such that log(γk−1/γk) ∼

γk/γ?.

2.2. Comments on the assumptions

The framework described by (4) and the conditions C1 to C4 is general enough to cover many
scenarios studied in the literature and to address new ones.

For SA algorithms (1) with Ξn+1 = H(θn, Xn+1), {Xn, n ≥ 1} i.i.d. r.v. (and independent of
θ0) such that h(θ) = E [H(θ,X)], Eq. (4) is satisfied with

en+1 = H(θn, Xn+1)− h(θn) , rn+1 = 0 ;

and E [en+1|Fn] = 0. Our framework also addresses the case when {Xn, n ≥ 1} is a Fn-adapted
controlled Markov chain i.e.when there exists a family of transition kernels {Qθ, θ ∈ Θ} such
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that
P(Xn+1 ∈ ·|Fn) = Qθn(Xn, ·) ,

each kernel possessing an invariant probability distribution πθ and h(θ) =
∫
H(θ, x) πθ(dx) -

hereafter, these algorithms will be called “SA with controlled Markov chain dynamics”. Intro-

duce the solution Ĥθ of the Poisson equation H(θ, ·)−h(θ) = Ĥθ−QθĤθ (see e.g. [18, Chapter
8] or [24, Chapter 17]), and set

en+1 = Ĥθn(Xn+1)−QθnĤθn(Xn) , rn+1 = QθnĤθn(Xn)−QθnĤθn(Xn+1) ;

then E [en+1|Fn] = 0 P-almost surely. We will provide in Section 4 sufficient conditions on the
transition kernels Qθ so that these sequences {en, rn, n ≥ 1} exist and satisfy the conditions C2
and C3. Note that the i.i.d. case is a special case of the controlled Markov chain framework
(set Qθ = πθ = π for any θ); and the so-called Robbins-Monro case corresponds to Qθ = πθ for
any θ.

Truncated SA algorithms (2) can be written as

θn+1 = θn + γn+1Ξn+1 + (θ0 − θn − γn+1Ξn+1)1θn+γn+1Ξn+1 /∈Kn+1 ;

in most (if not any) proof of convergence of this sequence to limiting points in the interior of Θ,
the first step consists in proving that P-almost-surely, the number of truncations is finite (see
e.g. Andrieu et al. [2, Theorem 1]). Therefore, the term (θ0 − θn − γn+1Ξn+1)1θn+γn+1Ξn+1 /∈Kn+1

is null for any large n on the set {limq θq = θ?} thus showing that it is part of γn+1r
(1)
n+1 in the

expansion (4).
The condition C1 considers a limiting target θ? which is assumed to be stable and such

that the linear term in the Taylor’s expansion of h at θ? does not vanish (see condition C1c).
Results for the case of vanishing linear term can be found in Chen [9, Section 3.2]. When h is
a gradient function so that the SA algorithm is a stochastic gradient procedure, the condition
C1a assumes that θ? is a root of the gradient. Therefore, our assumptions do not cover the case
of constrained optimization problem with solutions on the boundaries of the constraint set Θ.
For rates of convergence for these constrained SA algorithms, see e.g. Buche and Kushner [8].

The conditions C2 and C3 are designed to address the case of multiple targets, a framework
which improves on many published results. It is usually assumed in the literature that there is
an unique limiting target (see e.g. Fabian [14], Kushner and Huang [21], Bouton [7], Buche and
Kushner [8], Chen [9, Chapter 3] and Lelong [23]). While we are interested in proving a Central
Limit Theorem given the tail event {limq θq = θ?}, it is assumed in C2a that the r.v. en+1 in
the expansion (4) is a martingale increment with respect to (w.r.t.) the probability P. As
discussed above, such an expansion is easily verified. Note that since the event {limq θq = θ?}
is in the tail σ-field σ(

∨
nFn), it is not true that {en, n ≥ 1} are martingale-increments w.r.t.

the probability P(·| limq θq = θ?). Therefore, our framework is not a special case of the single
target framework.

The main use of C2 is to prove that the sequence {en, n ≥ 1} satisfies a CLT under the
conditional distribution P(·| limq θq = θ?). We could weaken some of the assumptions, for ex-
ample by relaxing the 2+τ -moment condition C2b which is a way to easily check the Lindeberg
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condition for martingale difference array. Nevertheless, our goal is not only to state a theorem
with weaker assumptions but also to provide easy-to-check conditions.

When there exists τ > 0 such that supk≥1 E [|ek|2+τ ] <∞, C2b is satisfied with Am = Am,k =
Ω. When there exist τ, δ > 0 such that

sup
k≥0

E
[
|ek+1|2+τ

1|θk−θ?|≤δ
]
<∞ , (7)

then C2b is satisfied with Am,k =
⋂
m≤j≤k{|θj − θ?| ≤ δ} and Am =

⋂
j≥m{|θj − θ?| ≤ δ}. In

most contributions, rates of convergence are derived under the condition (7) (see e.g. the recent
works by Pelletier [25] and Lelong [23]). This framework is too restrictive to address the case
of SA with controlled Markov chain dynamics when the ergodic properties of the transition
kernels {Qθ, θ ∈ Θ} are not uniform in θ. Our assumption C2b is designed to address this
framework as it will be shown in Section 4.

C2c is an assumption on the conditional variance of the martingale-increment term en, which
is more general than what is usually assumed. In Zhu [29], Pelletier [25], Chen [9] and Lelong [23]

(resp. in Delyon [11]), a CLT is proved under the assumption that E
[
ek+1e

T
k+1|Fk

]
= U? +D

(1)
k

(resp. E
[
ek+1e

T
k+1|Fk

]
= U? + D

(2)
k ) where D

(1)
k , D

(2)
k satisfy (5) and U? is a deterministic

symmetric positive definite matrix. The improvement is in the combination D
(1)
k + D

(2)
k . The

introduction of the term D
(2)
k is a strong improvement since it covers the case of SA with

controlled Markov chain dynamic: observe indeed that in this case E
[
ek+1e

T
k+1|Fk

]
is a function

of (Xk, θk) and it is really unlikely that this term converges almost-surely to a (random) variable

along the set {limq θq = θ?}. Allowing an additional term D
(2)
k such that the sum

∑n
k=1 D

(2)
k

converges in some sense to zero introduces more flexibility (see Section 4 for more details).
We will also show in Section 4 how our framework improves on Delyon [11]. Examples of SA
algorithm where C2c holds with resp. Robbins-Monro and controlled Markov chain dynamics
can be found resp. in Bianchi et al. [5] and Fort et al. [15].

Kushner and Huang [21] establish a CLT (as a consequence of some weak convergence of a
suitable continuous interpolation of the sequence (θn−θ?)/

√
γn) for the algorithm (1) when Ξn+1

is of the form H(θn, Xn+1). Their proof relies on a linearization of the algorithm (1) but with
no explicit introduction of a martingale-increment noise term; nevertheless, their conditions
require that some remainder terms vanish almost-surely, as well as some kind of stationary
assumption on the sequence (Xn)n (see [21, Assumption A.2] which is really restrictive).

Examples of sequences satisfying the condition C4 are the polynomial ones. The step size
γn ∼ γ?n

−a for a ∈ (1/2, 1) satisfies C4a. The step size γn ∼ γ?/n satisfies C4b; note that the
condition on (γ?, L) is well known in the literature (see e.g. Chen [9, Assumption A3.1.4]).

2.3. Main result

Theorem 2.1. Choose θ0 ∈ Θ and consider the sequence {θn, n ≥ 0} given by (4). Assume
C1, C2, C3 and C4. Let V be the positive definite matrix satisfying{

V∇h(θ?)
T +∇h(θ?)V = −U? , in case C4a ,

V (Id + 2γ?∇h(θ?)
T ) + (Id + 2γ?∇h(θ?))V = −2γ?U? , in case C4b .
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Under the conditional probability P (·| limq θq = θ?), {γ−1/2
n (θn − θ?) , n ≥ 1} converges in dis-

tribution to a centered multidimensional Gaussian distribution with covariance matrix V .

Given matrices A,E, existence of a solution to the equation V A+ATV = −E is solved
by the Lyapunov theorem (see e.g. Horn and Johnson [19, Theorem 2.2.1.]). When A is a
(negative) stable real matrix and E is positive definite, then there exists an unique positive
definite matrix V satisfying the Lyapunov equation V A+ ATV = −E (see e.g. Horn and
Johnson [19, Theorem 2.2.3.]).
Sketch of the proof of Theorem 2.1. The proof of Theorem 2.1 is detailed in Section 5. The key
ingredient is the Central Limit Theorem for martingale arrays. As commented in Section 2.2, en
is not a martingale-increment w.r.t. the conditional probability P(·| limq θq = θ?). To overcome
this technical difficulty, we use that

en+1 = en+11An + en+1 (1− 1An) (8)

where {An, n ≥ 1} is a Fn-adapted sequence of sets converging to {limq θq = θ?} (such a
sequence always exists, see Lemma 5.6). Along the event {limq θq = θ?}, the second term in
the right hand side (rhs) of (8) is null for any n larger than some almost-surely finite random
time.

We write θn − θ? = µn + ρn, where µn satisfies the equation

µn+1 = (Id + γn+1∇h(θ?))µn + γn+1en+1 ; µ0 = 0 .

Id denotes the d× d identity matrix. Roughly speaking, the sequence {µn, n ≥ 0} captures the
linear approximation of h(θn) and the martingale-increment noise sequence {en, n ≥ 1}.

We prove that γ
−1/2
n ρn1limq θq=θ? converges to zero in probability so that {µn, n ≥ 0} is the

leading term. We then establish that for any t ∈ Rd,

lim
n

E
[
1limq θq=θ? exp

(
iγ−1/2
n tTµn

)]
= E

[
1limq θq=θ? exp

(
−1

2
tTV t

)]
.

3. A Central Limit Theorem for Iterate Averaging

Theorem 2.1 shows that the rate of convergence of the sequence {θn, n ≥ 0} to θ? is O(na/2)
when γn ∼ γ?/n

a for some a ∈ (1/2, 1]. The maximal rate is reached by choosing γn ∼ γ?/n, for
some γ? satisfying the conditions C4b. The main drawback with such a choice of the step-size
sequence {γn, n ≥ 1} is that in practice, −L i.e.the largest real part of the eigenvalues of ∇h(θ?)
is unknown so that the condition C4b is difficult to check.

The second comment is on the limiting covariance matrix when the rate is maximal (i.e.in
the case γn ∼ γ?/n). For any non-singular matrix Γ, we could define the algorithm

θ̃n+1 = θ̃n + γn+1Γh(θ̃n) + γn+1Γen+1 + γn+1Γrn+1 , θ̃0 ∈ Θ .

This equation is of the form (4) with a mean field h̃ = Γh and noises {en, rn, n ≥ 1} replaced
with {Γen,Γrn, n ≥ 1}. Then, Theorem 2.1 gives sufficient conditions so that a CLT for the
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sequence {θ̃n, n ≥ 0} holds: the matrix V is replaced with Ṽ = Ṽ (Γ) satisfying

Ṽ (Id + 2γ?∇h(θ?)
TΓT ) + (Id + 2γ?∇h(θ?)Γ)Ṽ = −2γ?ΓU?Γ

T .

A natural question is the “optimal” choice of the gain matrix Γ, defined as the matrix Γ? such
that for any λ ∈ Rd, λT Ṽ (Γ)λ ≥ λT Ṽ (Γ?)λ. Following the same lines as in Benveniste et
al. [4, Proposition 4, Chapter 3, Part I], it can be proved that Γ? = −γ−1

? ∇h(θ?)
−1 and in this

case,

Ṽ (Γ?) = γ−1
? ∇h(θ?)

−1U?∇h(θ?)
−T .

Theorem 3.2 below shows that by considering the averaged sequence {θ̄n, n ≥ 0}, the optimal
rate of convergence (i.e.the rate

√
n) and the optimal asymptotic covariance matrix (optimal

in the sense discussed above) can be reached whatever the sequence {γn, n ≥ 1} satisfying C4a
used in the basic SA sequence (4). Therefore, such an optimality can be obtained even when
∇h(θ?) is unknown. Note also that on a practical point of view, slow decreasing step-size γn
are better (see e.g. Spall [28, Section 4.4.]) and this simple averaging procedure improves the
rate of convergence of the estimate of θ?.

These properties of the averaged sequence were simultaneously established by Ruppert [27]
and Polyak and Juditsky [26] under more restrictive conditions than those stated below.

3.1. Assumptions

AVER1 (a) {en, n ≥ 1} is a Fn-adapted P-martingale-increment sequence.
(b) There exists a sequence {Am,m ≥ 1} such that limm P(Am| limq θq = θ?) = 1, and

for any m ≥ 1,

sup
k

E
[
|ek|21Am,k−1

]
<∞ ,

where Am,k−1 ∈ Fk−1 and limk 1Am,k = 1Am almost-surely on the set {limq θq = θ?}.
(c) Let

En+1 =
1√
n+ 1

n∑
k=0

ek+1 .

There exists a positive definite deterministic matrix U? such that for any t ∈ Rd,

lim
n

E
[
1limq θq=θ? exp(itTEn+1)

]
= E

[
1limq θq=θ? exp(−1

2
tTU?t)

]
.

We prove in Lemma 5.5 that when limn nγn > 0, assumption C2 implies AVER1. Note also
that since limm P(Am| limq θq = θ?) = 1, AVER1c is equivalent to the condition: for any m ≥ 1,

lim
n

E
[
1limq θq=θ? exp(itTEn+1)1Am

]
= E

[
1limq θq=θ? exp(−1

2
tTU?t)1Am

]
.

For a sequence of Rd-valued r.v. {Zn, n ≥ 0}, we write Zn = OLp(1) if supn E[|Zn|p] <∞.

AVER2 rn is Fn-adapted. rn = r
(1)
n + r

(2)
n with for any m ≥ 1,
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(a) γ
−1/2
n r

(1)
n 1limq θq=θ?1Am = Ow.p.1(1)OL2(1).

(b)
√
γn
∑n

k=1 r
(2)
k 1limq θq=θ?1Am = Ow.p.1(1)OL2(1) .

(c) n−1/2
∑n

k=0 rk+11limq θq=θ?
P−→ 0.

The sequence {Am,m ≥ 1} is defined in AVER1b.

Note that AVER2c is equivalent to n−1/2
∑n

k=0 rk+11limq θq=θ?1Am
P−→ 0 for any m ≥ 1.

AVER3 limn nγn = +∞ and

lim
n

1√
n

n∑
k=1

γ
−1/2
k

∣∣∣∣1− γk
γk+1

∣∣∣∣ = 0 , lim
n

1√
n

n∑
k=1

γk = 0.

The step size γn ∼ γ?n
−a for a ∈ (1/2, 1) satisfies AVER3 but the step size γn ∼ γ?/n does not.

Observe that if the sequence {γn, n ≥ 0} is non-increasing (or ultimately non-increasing) then
(see e.g. Delyon [11, proof of Theorem 26])

lim
n
nγn = +∞ =⇒ lim

n

1√
n

n∑
k=1

γ
−1/2
k

∣∣∣∣1− γk
γk+1

∣∣∣∣ = 0 .

3.2. Main results

We show that the above conditions allow a control of the L2-moment of the errors {θn−θ?, n ≥
0}. This result is a cornerstone for the proof of Theorem 3.2. The proof is given in Section 5.

Proposition 3.1. Assume C1, C4, AVER1a-b and AVER2a-b. Then, for any m ≥ 1

γ−1
n ‖θn − θ?‖

2
1limq θq=θ?1Am = Ow.p.1(1) OL1(1) .

Theorem 3.2. Choose θ0 ∈ Θ and consider the averaged sequence given by (3). Assume C1,
C4a, AVER1, AVER2 and AVER3. Then for any t ∈ Rd,

lim
n

E
[
1limq θq=θ? exp

(
i
√
n tT

(
θ̄n − θ?

))]
= P

(
lim
q
θq = θ?

)
exp

(
−1

2
tT∇h(θ?)

−1 U? (∇h(θ?)
−1)T t

)
.

Sketch of the proof of Theorem 3.2. The proof is detailed in Section 5. Since limm P(Am| limq θq =
θ?) = 1, we only have to prove that for any m ≥ 1 and t ∈ Rd,

lim
n

E
[
1limq θq=θ?1Am exp

(
i
√
n tT

(
θ̄n − θ?

))]
= E

[
1limq θq=θ?1Am exp

(
−1

2
tT∇h(θ?)

−1 U? (∇h(θ?)
−1)T t

)]
.

We write

θ̄n − θ? = −∇h(θ?)
−1

n+ 1

n∑
k=0

ek+1 + Zn .
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We show that
√
nZn1limq θq=θ?1Am converges to zero in probability for any m ≥ 1; for this step,

the main tool is Proposition 3.1. The proof is then concluded by AVER1c.

4. Application to SA with controlled Markov chain dynamics

Let {Kn, n ≥ 0} be a sequence of compact subsets of Θ ⊆ Rd such that

Kn ⊆ Kn+1 ,
⋃
n≥0

Kn = Θ .

Let {Qθ, θ ∈ Θ} be a family of Markov transition kernels onto (X,X ). We consider the following
SA algorithm with truncation at randomly varying bounds: θ0 ∈ K0, σ0 = 0 and for n ≥ 0,

set θn+1/2 = θn + γn+1H(θn, Xn+1).
update

(θn+1, σn+1) =

{
(θn+1/2, σn) , if θn+1/2 ∈ Kσn ,
(θ0, σn + 1) otherwise,

where {Xn, n ≥ 0} is a controlled Markov chain on (Ω,A,P) with conditional distribution given
by

P(Xn+1 ∈ A|Fn) = Qθn(Xn, A) , Fn = σ(θ0, X0, · · · , Xn) . (9)

The random sequence {σn, n ≥ 0} is a non-negative integer-valued sequence counting the
number of truncations. Such a truncated SA was introduced by Chen et al. [10] (see also
Chen [9, Chapter 2]) to address the boundedness problem of the SA sequence {θn, n ≥ 0}. A
more general truncated SA algorithm with controlled Markov chain dynamics is introduced in
Andrieu et al. [2]: when truncation occurs, both the parameter θn+1/2 and the draw Xn used
to obtain the next point Xn+1 are modified.

The key point of the proof of convergence of this algorithm is to show that the number
of truncations is finite with probability one, so that after some random time, the sequence
{θn, n ≥ 0} is almost-surely bounded and obeys the update rule θn+1 = θn + γn+1H(θn, Xn+1).
Conditions implying almost-sure boundedness and almost-sure convergence of the sequence
{θn, n ≥ 0} when {Xn, n ≥ 0} is a controlled Markov chain can be found in Andrieu et
al. [2, Section 3]. We assume

A1 For any θ ∈ Θ, there exists a probability distribution πθ on (X,X ) such that πθQθ = πθ.

For simplicity, we consider the case when H is bounded and the step-size sequence is polyno-
mially decreasing. Extensions to the case H is unbounded can be done along the same lines as
in Andrieu et al. [2].

A2 (a) for any compact set K ⊆ Θ, supθ∈K supx∈X |H(θ, x)| <∞. Set

h(θ) =

∫
H(θ, x) πθ(dx) . (10)

(b) There exists a ∈ (1/2, 1] such that γn = γ?/n
a. When a = 1, γ? satisfies the

condition C4b.
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Since in this paper we are interested in CLT’s, the stability and the convergence of the algorithm
is also assumed:

A3 the number of truncations is finite with probability one: P(lim supn σn < ∞) = 1; and
there exists θ? ∈ Θ satisfying C1 such that P(limn θn = θ?) > 0.

For a function W : X → [1,∞), define the W -norm of a measurable function f : X → R by
‖f‖W = supX |f |/W . We assume that the transition kernels {Qθ, θ ∈ Θ} satisfy

A4 (a) For any θ ∈ Θ, there exists a measurable function Ĥθ : (X,X )→ (Rd,B(Rd)) such
that

H(θ, x)− h(θ) = Ĥθ(x)−QθĤθ(x) . (11)

There exists a function V1 : X → [1,∞) such that for any compact subset K ⊆ Θ,

sup
θ∈K

(
‖Ĥθ‖V1 + ‖QθĤθ‖V1

)
<∞ . (12)

(b) For any θ ∈ Θ, there exists a measurable function Uθ : (X,X )→ (Rd2 ,B(Rd2)) such
that

Fθ(x)−
∫
Fθ(x) πθ(dx) = Uθ(x)−QθUθ(x) , (13)

where Fθ(x) =
∫
Qθ(x, dy) Ĥθ(y)Ĥθ(y)T − QθĤθ(x)

(
QθĤθ(x)

)T
. There exists a

function V2 : X → [1,∞) such that for any compact subset K ⊆ Θ,

sup
θ∈K

(‖Uθ‖V2 + ‖QθUθ‖V2) <∞ . (14)

(c) There exist δ, τ > 0 and τ̄ > 1/a− 1 such that for any m ≥ 1,

sup
k≥m

E
[(
V 2+τ

1 (Xk+1) + V 1+τ̄
2 (Xk+1)

)
1
⋂
m≤j≤k{|θj−θ?|≤δ}

]
<∞ ,

E
[
V 2+τ

1 (Xm) + V 1+τ̄
2 (Xm)

]
<∞ .

(d) For any compact subset K ⊆ Θ, there exist C > 0 and b > (1/a− 1) ∨ (1/2) such
that ∥∥∥QθĤθ −Qθ′Ĥθ′

∥∥∥
V1

+ ‖Uθ − Uθ′‖V2 ≤ C |θ − θ′|b .

Furthermore, almost-surely

lim
n

(∫
Fθn(x) πθn(dx)−

∫
Fθ?(x) πθ?(dx)

)
1limq θq=θ? = 0 .

Conditions implying the existence of πθ and solutions to the Poisson equations (11) and (13) can
be found e.g. in Hernandez-Lerma and Lasserre [18, Chapter 8] or in Meyn and Tweedie [24,
Chapter 17]. When the transition kernel Qθ is uniformly ergodic, then V1 = V2 and is equal
to the constant function 1. When the kernel is V -geometrically ergodic, we can choose V1 =
V 1/p, V2 = V 2/p for any p ≥ 2. Sufficient conditions for (12) and (14) based on Lyapunov drift
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inequalities when the chain is geometrically ergodic (resp. subgeometrically ergodic) are given
by Fort et al. [16, Lemma 2.3] (resp. Andrieu et al. [1]). Andrieu et al. [2, Proposition 6.1.]
gives sufficient conditions to check A4c (compare this assumption with the condition A3(ii) of
Andrieu et al.) when the kernels are V -geometrically ergodic: in this case, for any p ≥ 2 we
can choose V1 = V 1/p, V2 = V 2/p and τ̄ such that 2(1 + τ̄)/p = 1. The first set of conditions in
A4d is an assumption on the regularity-in-θ of the solution to the Poisson equation. Andrieu et
al. [2, Proposition 6.1.] give sufficient conditions in terms of the regularity-in-θ of the transition
kernels Qθ. When πθ = π for any θ, the second set of conditions can be established by combining
smoothness-in-θ properties of the function Fθ and the dominated convergence theorem. When
πθ depends on θ, Fort et al. [16, Theorem 2.11 and Proposition 4.3] give sufficient conditions
for this condition to hold.

The following proposition provides a set of conditions implying A1 and A4. Its proof is in
Section 5.7.

Proposition 4.1. Assume that

(i) for any θ ∈ Θ, Qθ is phi-irreducible and aperiodic.
(ii) there exists a measurable function V :→ [1,∞) and for any θ ∈ Θ, there exist constants

λθ ∈ (0, 1) and bθ ∈ [1,∞) such that QθV ≤ λθV + bθ.
(iii) there exists α ∈ (0, 1/2) and for any θ ∈ Θ, there exist δθ ∈ (0, 1) and a probability

measure νθ on (X,X ) such that Qθ(x, ·) ≥ δθνθ for any x ∈ {V α ≤ 2bθ/(1− λαθ )− 1}.
(iv) for any compact set K ⊆ Θ, supθ∈K

(
bθ ∨ (1− λαθ )−1 ∨ δ−1

θ

)
<∞.

(v) There exists β ∈ (1/2, 1] and for any compact set K ⊆ Θ there exists a constant C such
that for any θ, θ′ ∈ K,

sup
θ∈K

sup
x∈X
|H(θ, x)| <∞ ,

|H(θ, x)−H(θ′, x)| ≤ C|θ − θ′|β ,
sup

f,‖f‖V α≤1

‖Qθf −Qθ′f‖V α + sup
f,‖f‖V 2α≤1

‖Qθf −Qθ′f‖V 2α ≤ C |θ − θ′|β .

Fix θ0 ∈ Θ. Then the conditions A1 and A4 hold provided γn ∼ γ?/n
a for a > 2α ∨ 1/(1 + β).

Let us now prove how the assumptions A1 to A4 imply the conditions C1 to C4. Under
A3, the condition C1 holds; note also that the conditional probability P(·| limq θq = θ?) is well
defined. By using (10) and (11), we write the truncated SA algorithm on the form (4) by setting

en+1 = Ĥθn(Xn+1)−QθnĤθn(Xn) ,

rn+1 = QθnĤθn(Xn)−QθnĤθn(Xn+1) + (θ0 − θn+1/2)1θn+1/2 /∈Kσn .

Let us prove that the condition C2 holds. Since θn ∈ Fn, Eq. (9) implies C2a. Fix δ such that
B(θ?, δ) = {θ ∈ Rd, |θ − θ?| ≤ δ} ⊆ Θ. Set

Am,k =

{
∅ if k < m,⋂
m≤j≤k{|θj − θ?| ≤ δ, θj = θj−1/2} otherwise.
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Then for any k,m, Am,k ∈ Fk; limkAm,k = Am where Am =
⋂
j≥m{|θj − θ?| ≤ δ, θj = θj−1/2};

and limm P(Am| limq θq = θ?) = 1 by A3. Fix m ≥ 1; by (12) applied with K = B(θ?, δ), there
exists a constant C such that for any k ≥ m

E
[
|ek+1|2+τ

1Am,k
]
≤ C E

[(
V 2+τ

1 (Xk) + V 2+τ
1 (Xk+1)

)
1Am,k

]
.

A4c concludes the proof of C2b. Observe that E
[
ek+1e

T
k+1|Fk

]
= Fθk(Xk). By using (13), we

write E
[
ek+1e

T
k+1|Fk

]
= U? +D

(1)
k +D

(2,a)
k +D

(2,b)
k with

U? =

∫
Fθ?(x) πθ?(dx) ,

D
(1)
k =

∫
Fθk(x) πθk(dx)−

∫
Fθ?(x) πθ?(dx) ,

D
(2,a)
k = Uθk(Xk+1)−QθkUθk(Xk) ,

D
(2,b)
k = Uθk(Xk)− Uθk(Xk+1) .

By A4d, D
(1)
k

a.s.−→ 0 on the set {limq θq = θ?}. By (9), E
[
D

(2,a)
k |Fk−1

]
= 0; by application of the

Burkholder inequality (see e.g. Hall and Heyde [17, Theorem 2.10]), it holds for any Ak ∈ Fk
such that limk Ak = {limq θq = θ?}

E

[∣∣∣∣∣
n∑
k=1

D
(2,a)
k

∣∣∣∣∣1Ak1Am,k
]
≤

E

∣∣∣∣∣
n∑
k=1

D
(2,a)
k

∣∣∣∣∣
1+τ̄

1Ak1Am,k

1/(1+τ̄)

≤ C n1/((1+τ̄)∧2) .

The constant C is finite since under (14) and A4c, supk E
[
|D(2,a)

k |1+τ̄
1Am,k

]
<∞. Furthermore,

n∑
k=m

D
(2,b)
k = Uθm(Xm)− Uθn(Xn+1) +

n∑
k=m+1

(
Uθk(Xk)− Uθk−1

(Xk)
)

so that by A4c-d, there exists a constant C such that

E

[∣∣∣∣∣
n∑
k=1

D
(2,b)
k

∣∣∣∣∣1Am1limq θq=θ?

]
≤ C

(
1 +

n∑
k=m+1

γbk

)
.

The above discussion shows that C2c is verified since τ̄ > 1/a− 1 and b > 1/a− 1.

Finally, let us study rn. We write rn+1 = r
(1)
n+1 + r

(2)
n+1 with

r
(1)
n+1 =

(
θ0 − θn+1/2

)
1θn+1/2 /∈Kσn +Qθn+1Ĥθn+1(Xn+1)−QθnĤθn(Xn+1) .
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By A3 and A4d, γ
−1/2
n r

(1)
n 1limq θq=θ?1Am = ow.p.1(1) + oL1(1) for any fixed m ≥ 1. In addition,

by (12), there exists a constant C such that

C E

[∣∣∣∣∣
n∑
k=1

r
(2)
k

∣∣∣∣∣1Am
]
≤ E [V1(X1)] + E [V1(Xn+1)1Am ] ;

it follows by A4c that the condition C3 is verified.
The above discussion is summarized in the following proposition

Proposition 4.2. Assume A1, A2, A3 and A4. Then, the conditions C1 to C4 are satisfied
and

U? =

∫
πθ?(dx)

(
Ĥθ?(x) Ĥθ?(x)T −Qθ?Ĥθ?(x)

(
Qθ?Ĥθ?(x)

)T)
.

By application of Theorem 2.1, we obtain a CLT for randomly truncated SA with controlled
Markov chain dynamics.

Our result improves on Delyon [11, Theorem 25]. Under stronger conditions (for example, it
is assumed that V1 and V2 are bounded functions; there is a single target θ? and b = 1 in the
regularity-in-θ assumption Cbd), Delyon [11] establishes a CLT in the case γn = γ?/n

a with
the condition a ∈ (2/3, 1]. Note that if V1, V2 are bounded then A4c holds with any τ̄ > 0 and
if b = 1 then b > (1/2) ∨ (1/a− 1); hence, our approach only requires a ∈ (1/2, 1] which is the
usual range of values for SA algorithms.

Our result also improves on Bouton [7, Corollary of Theorem 2]: our assumptions only
require Hölder-continuity of some quantities with respect to θ, and the Lipschitz-continuity
of θ 7→ πθ(Fθ) is not required as in Bouton (see [7, Assumption (H.7)]) which is a strong
improvement especially in situations when we do not have an explicit expression of πθ.

Using similar tools, the conditions of Theorem 3.2 can be verified; details are left to the
interested reader.

5. Proof

5.1. Definitions and Notations

Let {An, n ≥ 0} be a sequence of sets such that

An ∈ Fn , lim
n
1An = 1limq θq=θ? w.p.1 . (15)

Such a sequence exists by Lemma 5.6. Define recursively two sequences

µn+1 = (Id + γn+1∇h(θ?))µn + γn+1en+1 , µ0 = 0 ; (16)

ρn+1 = θn+1 − θ? − µn+1 , ρ0 = θ0 − θ? ; (17)

and the matrices ψ?(n, k) for 1 ≤ k ≤ n,

ψ?(n, k) =
n∏
j=k

(Id + γj∇h(θ?)) . (18)
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By convention, ψ?(n, n + 1) = Id. Under C1a-b, there exist a set of random d × d symmetric

matrices {R(n)
i , i ≤ d} such that the entry i of the column vector {h(θn)−∇h(θ?)(θn − θ?)} is

equal to (θn − θ?)TR(n)
i (θn − θ?) . More precisely,

R
(n)
i (k, l) =

∫ 1

0

1

2
(1− t)2 ∂2hi

∂θk∂θl
(θn + t(θn − θ?)) dt . (19)

Let R
(n)
• be the tensor such that

h(θn) = ∇h(θ?)(θn − θ?) + (θn − θ?)TR(n)
• (θn − θ?) . (20)

Finally, for 1 ≤ k ≤ n, define the d× d matrices

ψ(n, k) =
n∏
j=k

(Id + γj{∇h(θ?) + 2µTj−1R
(j−1)
• + ρTj−1R

(j−1)
• }) , (21)

with the convention that ψ(n, n+ 1) = Id.

5.2. Preliminary results on the sequence {µn, n ≥ 0}

By iterating (16), we have by definition of ψ? (see (18))

µn+1 =
n+1∑
k=1

γkψ?(n+ 1, k + 1)ek . (22)

Proposition 5.1. Assume C1b-c, C2a-b and C4. Then

(i) µn1limq θq=θ?
a.s.−→ 0 when n→∞.

(ii) for any m ≥ 1, γ−1
k |µk|2 1limq θq=θ?1Am = OL1(1) + ow.p.1(1).

The proof is on the same lines as the proof of [12, Lemma 6] and is omitted here; a detailed
proof is given in the supplementary material.

5.3. Preliminary results on the sequence {ρn, n ≥ 0}

By (17) and (20),

ρn+1 = (Id + γn+1∇h(θ?))ρn + γn+1rn+1 + γn+1(θn − θ?)TR(n)
• (θn − θ?)

= (Id + γn+1∇h(θ?))ρn + γn+1rn+1 + γn+1(µn + ρn)TR(n)
• (µn + ρn)

=
(
Id + γn+1∇h(θ?) + 2γn+1µ

T
nR

(n)
• + γn+1ρ

T
nR

(n)
•
)
ρn

+ γn+1rn+1 + γn+1µ
T
nR

(n)
• µn .

By induction, this yields

ρn = ψ(n, 1)ρ0 +
n∑
k=1

γkψ(n, k + 1)
(
rk + µTk−1R

(k−1)
• µk−1

)
, (23)
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where ψ(n, k) is given by (21).

Proposition 5.2. Assume C1, C2a-b and C4. Let θ0 ∈ Θ. Then, for any m ≥ 1,{
ρn −

n∑
k=1

γkψ(n, k + 1)rk

}
1limq θq=θ?1Am = γ1∧(1/2+κ)

n Ow.p.1(1)OL1(1) ,

with κ = 1/2 under C4a and κ ∈ (0, Lγ? − 1/2) under C4b.
Assume in addition C3. Then, for any m ≥ 1,

n∑
k=1

γkψ(n, k + 1)rk1limq θq=θ?1Am = γ1/2
n Ow.p.1(1)oL1(1) .

The proof is on the same lines as the proof of [12, Lemma 6] and is omitted here; a detailed
proof is given in the supplementary material.

5.4. Proof of Theorem 2.1

By (17), γ
−1/2
n (θn − θ?) = γ

−1/2
n µn + γ

−1/2
n ρn. We first prove that on {limq θq = θ?}, the

second term tends to zero in probability. By C2b, for any ε > 0 there exists m ≥ 1 such
that P(Am| limq θq = θ?) ≥ 1 − ε. Therefore, it is sufficient to prove that for any m ≥ 1,

γ
−1/2
n ρn1Am1limq θq=θ?

P−→ 0 when n→∞. This property holds by Proposition 5.2.

We now prove a CLT for the sequence {γ−1/2
n µn, n ≥ 0}. It is readily seen that

lim
n

E
[
exp(iγ−1/2

n tTµn)1limq θq=θ?

]
= E

[
exp(−0.5tTV t)1limq θq=θ?

]
if and only if

lim
n

E
[
exp(iγ−1/2

n tTµn1limq θq=θ?)
]

= E
[
exp(−0.5tTV t1limq θq=θ?)

]
Furthermore, by C4 and Lemma 5.7, for any fixed ` ≥ 1, limn γ

−1/2
n |ψ?(n, `)| = 0 (where ψ? is

given by (18)); this property, together with (22) and (15) imply that

lim
n

E
[
exp(iγ−1/2

n tTµn1limq θq=θ?)
]

= lim
n

E

[
exp

(
itT

n∑
k=1

Xn+1,k1Ak−1

)]

where Xn+1,k = γ
−1/2
n+1 γkψ?(n + 1, k + 1)ek. By C2a and (15), E

[
Xn+1,k1Ak−1

|Fk−1

]
= 0 and

the limit in distribution is obtained by standard results on CLT for martingale-arrays (see e.g.
Hall and Heyde [17, Corollary 3.1.]).
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Lindeberg condition. We have to prove that for any ε > 0,

n∑
k=1

E
[
|Xn+1,k|21|Xn+1,k|≥ε |Fk−1

]
1Ak−1

P−→ 0 .

Following the same lines as above, it can be proved that equivalently, we have to prove for any
m ≥ 1,

1Am1limq θq=θ?

n∑
k=1

E
[
|Xn+1,k|21|Xn+1,k|≥ε |Fk−1

] P−→ 0 .

Let m ≥ 1 be fixed and set Xn+1,k = X
(1)
n+1,k +X

(2)
n+1,k with

X
(1)
n+1,k = Xn+1,k1Am,k−1

, X
(2)
n+1,k = Xn+1,k

(
1− 1Am,k−1

)
.

We can assume without loss of generality that τ given by C2b is small enough so that (2 +
τ)Lγ? > 1 + τ . Then,

n+1∑
k=1

E
[
|X(1)

n+1,k|
2+τ
]

=
n+1∑
k=1

E
[
|γ−1/2
n+1 γkψ?(n+ 1, k + 1)ek1Am,k−1

|2+τ
]

≤ sup
k

E
[
|ek1Am,k−1

|2+τ
]
γ
−1−τ/2
n+1

n+1∑
k=1

γ2+τ
k |ψ?(n+ 1, k + 1)|2+τ .

Under C1b-c, C2b and C4, Lemmas 5.7 and 5.8 imply

lim sup
n

γ
−(1+τ)
n+1

n+1∑
k=1

γ2+τ
k |ψ?(n+ 1, k + 1)|2+τ < +∞

since (2 + τ)Lγ? > 1 + τ , Lemma 5.8 applies even in the case C4b). Hence,

n+1∑
k=1

E
[
|X(1)

n+1,k|
2+τ
]

= o(γτ/2n ) .
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Consider nowX
(2)
n+1,k. Since there exists a random variableK such that 1Am(1−1Am,k−1

)1limq θq=θ? =
0 for any k ≥ K, it holds for any n ≥ K,

1limq θq=θ?1Am

n∑
k=1

E
[
|X(2)

n+1,k|
2
1|Xn+1,k|≥ε |Fk−1

]
= 1limq θq=θ?1Am

K∑
k=1

E
[
|Xn+1,k|21|Xn+1,k|≥ε |Fk−1

] (
1− 1Am,k−1

)
≤ 1limq θq=θ?1Amγ

−1
n

K∑
k=1

γ2
k|ψ?(n+ 1, k + 1)|2E

[
|ek|2 |Fk−1

] (
1− 1Am,k−1

)
.

Under C4, this term is ow.p.1(1). Therefore, the first condition of [17, Corollary 3.1.] is satisfied.
Limiting variance. We prove the second condition of [17, Corollary 3.1.]. Set

V (1)
n

def
= γ−1

n

n∑
k=1

γ2
kψ?(n, k + 1)U?ψ?(n, k + 1)T1limq θq=θ? ,

V
(2)

n
def
= γ−1

n

n∑
k=1

γ2
kψ?(n, k + 1)

(
E[eke

T
k |Fk−1]1Ak−1

− U?1limq θq=θ?

)
ψ?(n, k + 1)T ;

We prove that V
(1)
n

P−→ V 1limq θq=θ? and V
(2)

n
P−→ 0. It holds on {limq θq = θ?},

V
(1)
n+1 = γn+1U? +

γn
γn+1

(Id + γn+1∇h(θ?)) V (1)
n (Id + γn+1∇h(θ?))

T

= V (1)
n + γn(U? +∇h(θ?)V

(1)
n + V (1)

n ∇h(θ?)
T ) +

γn − γn+1

γn+1

V (1)
n

+ (γn+1 − γn)U? + γnγn+1∇h(θ?)V
(1)
n ∇h(θ?)

T

and by Lemma 5.9, limn V
(1)
n = V 1limq θq=θ? almost-surely. Following the same lines as above,

it can be proved that V
(2)

n and V
(2)
n given by

V (2)
n = 1limq θq=θ? γ

−1
n

n∑
k=1

γ2
kψ?(n, k + 1)

(
E[eke

T
k |Fk−1]− U?

)
ψ?(n, k + 1)T

have the same limit in probability. By C2c, we write V
(2)
n =

(
V

(2,a)
n + V

(2,b)
n

)
1limq θq=θ? with

V (2,a)
n = γ−1

n

n∑
k=1

γ2
kψ?(n, k + 1)D

(1)
k−1ψ?(n, k + 1)T

V (2,b)
n = γ−1

n

n∑
k=1

γ2
kψ?(n, k + 1)D

(2)
k−1ψ?(n, k + 1)T .
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We have
∣∣∣V (2,a)
n

∣∣∣ ≤ γ−1
n

∑n
k=1 γ

2
k |ψ?(n, k + 1)|2 |D(1)

k−1|. By Lemma 5.8, there exists a constant

C such that on {limq θq = θ?}

lim sup
n

∣∣V (2,a)
n

∣∣ ≤ C lim sup
k

∣∣∣D(1)
k

∣∣∣ ,
where we used (15). The rhs tends to zero w.p.1. by C2c. We now consider V

(2,b)
n . Since

limm P(Am| limq θq = θ?) = 1, it is sufficient to prove that for anym ≥ 1, V
(2,b)
n 1limq θq=θ?1Am

P−→
0 when n→∞. Let m ≥ 1. Set

Ξn
def
=

n∑
j=0

D
(2)
j 1limq θq=θ?1Am .

By the Abel transform, we have

V
(2,b)
n+1 1Am1limq θq=θ? = γn+1Ξn + γ−1

n+1

n−1∑
k=0

{γ2
k+1ψ?(n+ 1, k + 2)Ξkψ?(n+ 1, k + 2)T

− γ2
k+2ψ?(n+ 1, k + 3)Ξkψ?(n+ 1, k + 3)T}

Under C2c, γnΞn
P−→ 0. For the second term, following the same lines as in Delyon [11, Proof

of Theorem 24, Chapter 4], it can be proved that the expectation of the second term is upper
bounded by

C γ−1
n+1

n−1∑
k=0

γ2
k+1 |ψ?(n+ 1, k + 2)|2 (γkE [|Ξk|]) .

Since limk γkE [|Ξk|] = 0, Lemma 5.8 implies that V
(2,b)
n 1Am1limq θq=θ?

P−→ 0. This concludes
the proof.

Remark 5.3. From the proof above, it can be seen that the assumption on the r.v. D
(2)
n can be

relaxed in

lim
n
γnE [|

n∑
k=1

D
(2)
k 1Ak1Am,k |] = 0 .

Observe indeed that in probability,

lim
n
V (2,b)
n 1Am1limq θq=θ? = lim

n
γ−1
n

n∑
k=1

γ2
kψ?(n, k + 1)D

(2)
k−1ψ?(n, k + 1)T1Am,k−1

1Ak−1
.

5.5. Proof of Proposition 3.1

The proof is prefaced with a preliminary lemma.
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Lemma 5.4. Let {γn, n ≥ 1} is a (deterministic) positive sequence satisfying C4a and A be a
(deterministic) d×d Hurwitz matrix. Let {xn, n ≥ 0} be a sequence of Rd-valued r.v. satisfying

xn+1 = xn + γn+1Axn + γn+1ζ
(1)
n+1 + γn+1ζ

(2)
n+1 , n ≥ 0 ,

where

n∑
k=1

γk

(
n+1∏
j=k+1

(Id + γjA)

)
ζ

(1)
k 1limq xq=0 =

√
γnOw.p.1(1)OL2(1) ,

|ζ(2)
n |1limq xq=0 = |xn|2 Ow.p.1.(1) .

Then

γ−1
n |xn|21limq xq=0 = Ow.p.1.(1)OL1(1) .

The proof can be easily adapted from Delyon [11, Theorems 20 and 23] and is omitted here.
Proof of Proposition 3.1. By (20)

θn+1 − θ? = θn − θ? + γn+1∇h(θ?) (θn − θ?)

+ γn+1 (en+1 + rn+1) + γn+1 (θn − θ?)T R(n)
• (θn − θ?)

Let m ≥ 1. We apply Lemma 5.4 with xn ← (θn − θ?)1Am , A ← ∇h(θ?), ζ
(1)
n+1 = (en+1 +

rn+1)1Am and ζ
(2)
n+1 = (θn − θ?)T R(n)

• (θn − θ?)1Am . Under C1c, A is a Hurwitz matrix and

|ζ(2)
n+1|1limq θq=θ? = Ow.p.1(1) |xn|2.

We write ζ
(1)
n+1 =

(
en+11Am,n + en+1

(
1− 1Am,n

)
+ rn+1

)
1Am . Under C4, AVER1a-b, Lemmas

5.7 and 5.8 imply
n∑
k=1

γkψ?(n+ 1, k + 1) ek1Am,k−1
=
√
γnOL2(1) .

Upon noting that 1Am
(
1− 1Am,k

)
= 0 for all k ≥ K where K is a r.v. finite w.p.1.

(
n∑
k=1

γkψ?(n+ 1, k + 1) ek
(
1− 1Am,k−1

))
1Am

=

(
K∑
k=1

γkψ?(n+ 1, k + 1) ek
(
1− 1Am,k−1

))
1Am .

Therefore, by Lemma 5.8, this second term is
√
γnOw.p.1(1). Finally, Lemma 5.8 and AVER2a-b

imply that the last term is
√
γnOw.p.1(1)OL2(1) (the proof is on the same lines as the proof of

Proposition 5.2 and details are omitted).
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5.6. Proof of Theorem 3.2

The proof is adapted from the proof of Delyon [11, Theorem 26]. Under C1c, ∇h(θ?) is
invertible. By (4) and Lemma 5.10 applied with xk ← θk − θ? and A← ∇h(θ?), we have

√
n
(
θ̄n − θ?

)
= −∇h(θ?)

−1

√
n

n+ 1

n∑
k=0

ek+1 +
√
nZn

where

∇h(θ?)Zn
def
= − 1

n+ 1

n∑
k=0

rk+1 −
1

n+ 1

n∑
k=0

(h(θk)−∇h(θ?)(θk − θ?))

+
1

n+ 1

(
θn+1 − θ?
γn+1

− θ0 − θ?
γ1

)
+

1

n+ 1

n∑
k=1

(
1

γk
− 1

γk+1

)
(θk − θ?) .

We prove that
√
nZn1limq θq=θ?

P−→ 0; combined with AVER1c, this will conclude the proof.

Since limm P(Am| limq θq = θ?) = 1, it is sufficient to prove that for anym ≥ 1,
√
nZn1Am1limq θq=θ?

P−→
0. Let m ≥ 1. By AVER2c, it holds n−1/2

∑n
k=0 rk+11Am1limq θq=θ?

P−→ 0. By (20),

1

n+ 1

n∑
k=0

(h(θk)−∇h(θ?)(θk − θ?)) =
1

n+ 1

n∑
k=0

(θk − θ?)T R(k)
• (θk − θ?) ,

and by C1b, R
(k)
• 1limq θq=θ? = Ow.p.1(1). Therefore, by Proposition 3.1,

√
n

n+ 1

n∑
k=0

(h(θk)−∇h(θ?)(θk − θ?))1Am1limq θq=θ? =

( √
n

n+ 1

n∑
k=0

γkWkW k

)
,

where Wk = Ow.p.1.(1) and W k = OL1(1). AVER3 implies that this term tends to zero in
probability. Proposition 3.1 and AVER3 imply that

1Am1limq θq=θ?

√
n

n+ 1

(
θn+1 − θ?
γn+1

− θ0 − θ?
γ1

)
=
OL1(1)Ow.p.1.(1)√

(n+ 1)γn+1

+ ow.p.1.(1)
P−→ 0 .

Finally, Proposition 3.1 and AVER3 also imply that

1Am1limq θq=θ?

√
n

n+ 1

n∑
k=1

(
1

γk
− 1

γk+1

)
(θk − θ?) =

(
1√
n

n∑
k=1

∣∣∣∣ 1

γk
− 1

γk+1

∣∣∣∣ γ1/2
k Wk

√
W k

)

where Wk = Ow.p.1.(1) and W k = OL1(1). This term tends to zero in probability.

Lemma 5.5. C2 and limn nγn > 0 imply AVER1.
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Proof. C2 implies trivially AVER1a-b. We only have to check AVER1c, or equivalently, prove
that for any m ≥ 1,

lim
n

E
[

exp
(
itTEn+11limq θq=θ?1Am

)]
= E

[
exp

(
itTU?t1limq θq=θ?1Am

)]
.

Write En+11limq θq=θ?1Am = T1,n + T2,n with T1,n = (n + 1)−1/2
∑n

k=0 ek+11Am,k1Ak . By (15)

and C2b, T2,n = ow.p.1.(1). Observe that E
[
ek+11Am,k1Ak |Fk

]
= 0 so that the convergence in

distribution of T1,n will be established by applying results on martingale-arrays: we check the
assumptions of Hall and Heyde [17, Corollary 3.1.]. By C2b, it is easily checked that for any
ε > 0, there exists a constant C such that for any n,

E

[
1

n

n∑
k=0

E
[
|ek+1|21|ek+1|≥ε

√
n|Fk

]
1Am,k

]
≤ C

nτ/2
.

Hence, n−1
∑n

k=0 E
[
|ek+1|21|ek+1|≥ε

√
n|Fk

]
1Am,k1Ak

P−→ 0. We now prove that

1

n+ 1

n∑
k=0

E
[
ek+1e

T
k+1|Fk

]
1Am,k1Ak

P−→ U?1Am1limq θq=θ? . (24)

As above, we claim that this is equivalent to the proof that for any m ≥ 1,

1limq θq=θ?1Am
1

n+ 1

n∑
k=0

(
E
[
ek+1e

T
k+1|Fk

]
− U?

) P−→ 0 .

C2c and the Cesaro lemma imply that w.p.1, on the setAm∩{limq θq = θ?}, (n+1)−1
∑n

k=0D
(1)
k

a.s.−→
0. Finally, under C2c,

1

n+ 1
E

[∣∣∣∣∣
n∑
k=0

D
(2)
k 1limq θq=θ?1Am

∣∣∣∣∣
]

=
o(1)

nγn

and the rhs tends to zero since limn nγn > 0. This concludes the proof of (24) and the proof of
the Lemma. �

5.7. Proof of Proposition 4.1

Let α ∈ (0, 1/2) be given by the assumption (iii). By the Jensen inequality, for any θ ∈ Θ
and γ ∈ [α, 1], it holds

QθV
γ ≤ λαθV

γ + bθ . (25)

In addition, since V ≥ 1, {V γ ≤ 2bθ/(1 − λαθ ) − 1} ⊂ {V α ≤ 2bθ/(1 − λαθ ) − 1}. Therefore,
by [16, Lemma 2.3.], there exists an unique probability measure πθ invariant for Qθ, thus
implying A1.
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By [16, Lemma 2.3.] again, there exist constants Cθ, ρθ ∈ (0, 1) such that for any γ ∈ [α, 1],
x ∈ X, θ ∈ Θ and any compact set K ⊂ Θ,

sup
{f :‖f‖V γ≤1}

|Qn
θf(x)− πθ(f)| ≤ Cθ ρ

n
θV

γ(x) ; (26)

sup
θ∈K

(
Cθ ∨ (1− ρθ)−1 ∨ πθ(V )

)
<∞ . (27)

Set Ĥθ(x) =
∑

n≥0 (Qn
θH(θ, ·)(x)− h(θ)). By (26), upon noting that ‖H(θ, ·)‖V α ≤ supx∈X |H(θ, x)|

which is finite by assumption (v)∣∣∣Ĥθ(x)
∣∣∣ ∨ ∣∣∣QθĤθ(x)

∣∣∣ ≤ ‖H(θ, ·)‖V α Cθ(1− ρθ)−1V α(x) .

Then, (27) and the assumptions (iv-v) imply that A4a holds with V1(x)← V α(x).
Set Uθ(x) =

∑
n≥0 (Qn

θFθ(x)− πθ(Fθ)). Observe that there exists a constant C ′θ such that

|Fθ(x)| ≤ C ′θ
(
QθV

2α(x) + (QθV
α(x))2) ,

so that by (25), ‖Fθ‖V 2α <∞. As above, it can be proved that A4b holds with V2(x)← V 2α(x).
Choose a compact K of Θ such that K ⊇ {θ ∈ Θ : |θ − θ?| ≤ δ}; τ ∈ (0, 1/α− 2) and τ̄ = τ/2.
Since V1 = V α and V2 = V 2α, it holds by iterating the drift condition (25) that

sup
k≥m

E
[(
V 2+τ

1 (Xk+1) + V 1+τ̄
2 (Xk+1)

)
1
⋂
m≤j≤k{θj∈K}

]
≤ 2E

[
V 2α+τα(Xm)

]
+ 2 sup

θ∈K
bθ(1− λθ)−1 .

Under the assumption (iv), the second term in the RHS is finite. Since θ0 is fixed and H(θ, x)
is bounded uniformly in θ for θ in a compact set, it can be proved by a simple induction that
the random variables θ1, · · · , θm−1 are in a (non random) compact subset K′ of Θ. Therefore,
by iterating the drift again, we prove that E [V 2α+τα(Xm)] < ∞. This concludes the proof of
A4c.

Following the same lines as in the proof of [2, Proposition 6.1.], it can be proved by using
(25) and the assumption (v) that for any compact K ⊆ Θ and any β′ < β, there exists C such
that for any θ, θ′ ∈ K,

|h(θ)− h(θ)|+ ‖Ĥθ − Ĥθ′‖V α + ‖QθĤθ −Qθ′Ĥθ′‖V α ≤ C |θ − θ′|β′ . (28)

Similarly, it can be proved along the same lines as the proof of [2, Proposition 6.1.] that
‖Uθ − Uθ′‖V 2α ≤ C|θ − θ′|β′ provided one has

sup
θ,θ′∈K

|θ − θ′|−β ‖Fθ − Fθ′‖V 2α <∞ . (29)
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Let us prove this property. Note that Fθ(x) − Fθ′(x) is of the form µ1H1H
T
1 − µ2H2H

T
2 −

(µ1H1)(µ1H1)T + (µ2H2)(µ2H2)T for some probability measures µ1, µ2. Writing

µ1H1H
T
1 − µ2H2H

T
2 = (µ1 − µ2)(H1H

T
1 ) + µ2H1(H1 −H2)T + µ2(H1 −H2)HT

2 ,

(µ1H1)(µ1H
T
1 )− (µ2H2)(µ2H

T
2 ) = µ1H1 (µ1H1 − µ2H2)T + (µ1H1 − µ2H2)µ2H

T
2 ,

and using the assumption (v) and (28), the property (29) holds. This concludes the proof of
the first statement of A4d with b = β′.
Finally, let us consider the second statement. Since supθ∈K πθ(V ) < ∞ for any compact K of
Θ (see (27)), the dominated convergence theorem and (29) imply that with probability one,

1limq θq=θ? lim
n

∫
πθ?(dy) (Fθn(y)− Fθ?(y)) = 0 . (30)

In addition, for any k ≥ 1, x ∈ X and δ > 0,

|πθnFθn − πθ?Fθn|1|θn−θ?|≤δ ≤
∣∣Qk

θnFθn(x)−Qk
θ?Fθn(x)

∣∣1|θn−θ?|≤δ+2V 2α(x) sup
|θ−θ?|≤δ

Cθ‖Fθ‖V 2αρkθ .

(31)
By assumption (v), for any δ > 0, there exists a constant C1 such that for any x,

|QθnFθn(x)−Qθ?Fθn(x)|1|θn−θ?|≤δ ≤ C1 sup
|θ−θ?|≤δ

‖Fθ‖V 2αV 2α(x)|θn − θ?|β ;

and by a trivial induction on k, there exists a constant Ck such that for any x,∣∣Qk
θnFθn(x)−Qk

θ?Fθn(x)
∣∣1|θn−θ?|≤δ ≤ Ck sup

|θ−θ?|≤δ
‖Fθ‖V 2αV 2α(x)|θn − θ?|β . (32)

The controls (30) to (32) imply limn πθnFθn = πθ?Fθ? almost-surely, on the set {limq θq = θ?}.

5.8. Technical lemmas

Results below are classical and the proofs are omitted here; they are provided in the supple-
mentary material.

Lemma 5.6. Let (Ω,A,P, {Fn, n ≥ 0}) be a filtered probability space and set F∞ = σ(Fn, n ≥
1). Let B ∈ F∞. There exists a Fn-adapted sequence {An, n ≥ 0} such that limn 1An = 1B

P-a.s.

Lemma 5.7. Let | · | be any matrix norm. Let {Ak, k ≥ 0} be a sequence of square matrix
such that limk |Ak − A| = 0 where A is a Hurwitz matrix. Denote by −L, L > 0, the largest
real part of its eigenvalues. Let {γk, k ≥ 0} be a positive sequence such that limk γk = 0. For
any 0 < L′ < L, there exists a positive constant C such that for any k ≤ n

|(Id + γnAn) · · · (Id + γk+1Ak+1)(Id + γkAk)| ≤ C exp(−L′
n∑
j=k

γj) .
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Lemma 5.8. Let γk be a positive sequence such that limk γk = 0 and
∑

k γk =∞. Let {ek, k ≥
0} be a non-negative sequence. Then

lim sup
n

γ−pn

n∑
k=1

γp+1
k ek exp(−b

n∑
j=k+1

γj) ≤
1

C(b, p)
lim sup

n
en ,

(i) with C(b, p) = b, for any b > 0, p ≥ 0 if log(γk−1/γk) = o(γk).
(ii) with C(b, p) = b−p/γ?, for any bγ? > p ≥ 0 if there exists γ? > 0 such that log(γk−1/γk) ∼

γk/γ?.

By convention,
∑n

j=n+1 γj = 0.

Lemma 5.9. Let U? be a positive definite matrix.

(a) Assume C1b-c and C4a. Consider the equation

vn+1 = vn + γnf(vn) +
γn − γn+1

γn+1

vn + (γn+1 − γn)U? + γnγn+1∇h(θ?)vn∇h(θ?)
T ,

where f(v)
def
= U? + ∇h(θ?)v + v∇h(θ?)

T . Then there exists an unique positive definite
matrix V such that f(V ) = 0 and limn vn = V .

(b) Assume C1b-c and C4b. Consider the equation

vn+1 = vn + γnf(vn) + (γn+1 − γn)U? + γnγn+1∇h(θ?)vn∇h(θ?)
T ,

where f(v)
def
= U?+∇h(θ?)v+v∇h(θ?)

T +γ−1
? v. Then there exists an unique positive definite

matrix V such that f(V ) = 0 and limn vn = V .

Lemma 5.10. Define the sequence {xn, n ≥ 0} by

xn+1 = xn + γn+1Axn + γn+1ζn+1 , x0 ∈ Rd ,

where {γn, n ≥ 1} is a positive sequence, {ζn, n ≥ 1} is a Rd-valued sequence and A is a d× d
matrix. Then

A
n∑
k=0

xk = −
n∑
k=0

ζk+1 +

(
xn+1

γn+1

− x0

γ1

)
+

n∑
k=1

(
1

γk
− 1

γk+1

)
xk .
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ume 1709 of Lecture Notes in Math., pages 1–68. Springer, Berlin, 1999.

[4] A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic Approximations. Springer-
Verlag, 1987.

[5] P. Bianchi, G. Fort, and W. Hachem. Performance of a Distributed Stochastic Approximation Algorithm.
IEEE Trans. Inform. Theory, 2013. To appear.

[6] V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press,
2008.

[7] C. Bouton. Approximation gaussienne d’algorithmes stochastiques à dynamique markovienne. Ann. Inst.
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