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This version is close to the final version of the paper.

ABSTRACT. Fluid limit techniques have become a central tool to analyze queueing net-
works over the last decade, with applications to performance analysis, simulation, and
optimization.

In this paper some of these techniques are extended to a general class of skip-free
Markov chains. As in the case of queueing models, a fluid approximation is obtained
by scaling time, space, and the initial condition by a large constant. The resulting fluid
limit is the solution of an ordinary differential equation (ODE) in “most” of the state
space. Stability and finer ergodic properties for the stochastic model then follow from
stability of the set of fluid limits. Moreover, similar to the queueing context where fluid
models are routinely used to design control policies, the structure of the limiting ODE
in this general setting provides an understanding of the dynamics of the Markov chain.

These results are illustrated through application to Markov Chain Monte Carlo.
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The use of ordinary differential equations (ODE) to analyse Markov chain has been first
suggested by Kurtz (1970). This idea was later refined by (Newell, 1982), who introduced
the so-called fluid approximations with applications to queueing networks. Beginning in
the 1990s fluid models have been used to address delay in complex networks (Cruz, 1991)
and bottleneck analysis in (Chen and Mandelbaum, 1991). The latter work followed an al-
ready extensive research program on diffusion approximations for networks (see (Harrison,
2000; Whitt, 2002; Chen and Yao, 2001) and the references therein).

The purpose of this paper is to extend the fluid-limit techniques to a general class of
discrete-time Markov chains {®;} on d-dimensional Euclidean state-space X. Recall that
a Markov chain is called skip-free if the increments (®xy1 — @) are uniformly bounded
in norm by a deterministic constant for each k and each initial condition. For example,
Markov chain models of queueing systems are typically skip-free. Here we consider a
relaxation of this assumption in which the increments are assumed bounded in an LP-
sense. Consequently, we find that the chain can be represented by the following additive

noise model,
Ppy1 = P+ A(Pr) + €xg1 (1)

where {¢} is a martingale increment sequence w.r.t. the natural filtration of the process
{®x}, and A: X — X is bounded. Associated to this chain, we consider the following

sequence of continuous time processes
o def —1 le% -1
ny(tx) = @pava), 9 (40)=r" @9 =2, r>0a>0z€eX, (2)

obtained by interpolating and scaling the Markov chain in space and time. A fluid limit
is obtained as a sub-sequential weak-limit of a sequence {ny (-;xy)}, where {r,} and {z,}
are two sequences such that lim,, .7, = oo and lim,_ .. z, = x. The set of all such
limits is called the fluid limit model. In queueing network applications, a fluid limit is easy
to interpret in terms of mean flows; in most situations it is a solution of a deterministic
set of equations depending on network characteristics as well as the control policy (see e.g.
Chen and Mandelbaum (1991); Dai (1995); Dai and Meyn (1995); Chen and Yao (2001);
Meyn (2007)). The existence of limits and the continuity of the fluid limit model may be
established under general conditions on the increments (see Theorem 1.2).

The fact that stability of the fluid limit model implies stability of the stochastic network
was established in a limited setting in Malysev and Menc’sikov (1979). This was extended
to a very broad class of multiclass networks by Dai (1995). A key step in the proof of
these results is a multi-step state-dependent version of Foster’s criterion introduced in
Malysev and Menc’sikov (1979) for countable state space models, and later extended to
general state-space in Meyn and Tweedie (1993, 1994). The main result of Dai (1995) only
established positive recurrence. Moments and rates of convergence to stationarity of the
Markovian network model were obtained in Dai and Meyn (1995) based on an extension
of Meyn and Tweedie (1994) using the subgeometric f-ergodic theorem in Tuominen and
Tweedie (1994) (recently extended and simplified in work of Douc et al. (2004)). Converse
theorems have appeared in Dai and Weiss (1996); Dai (1996); Meyn (1995) that show that,
under somewhat strong conditions, instability of the fluid model implies transience of the
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stochastic network. The counterexamples in Gamarnik and Hasenbein (2005); Dai et al.
(2004) show that some additional conditions are necessary to obtain a converse.
Under general conditions, including the generalized skip-free assumption, a fluid limit

n is a weak solution (in a sense given below) to the homogeneous ODE,

o= h(p) . (3)

The vector field h is defined as a radial limit of the function A appearing in (1) under
appropriate renormalization.

Provided that the increments {¢;} in the decomposition (1) are tight in LP, stability of
the fluid limit model implies finite moments in steady state, as well as polynomial rates
of convergence to stationarity - see Theorem 1.4.

One advantage of the ODE approach over the usual Foster-Lyapunov approach to stabil-
ity is that the ODE model provides insight into Markov chain dynamics. In the queueing
context the ODE model has many other applications, such as simulation variance reduction
(Henderson et al., 2003) and optimization (Chen and Meyn, 1999).

The remainder of the paper is organized as follows. Section 1.1 contains notation
and assumptions, along with a construction of the fluid limit model. The main result is
contained in section 1.2, where it is shown that stability of the fluid limit model implies the
existence of polynomial moments as well as polynomial rates of convergence to stationarity
(known as (f,r)-ergodicity). Fluid limits are characterized in section 1.3. Proposition 1.5
provides conditions that guarantee that a fluid limit coincides with the weak solutions of
the ODE (3).

These results are applied to establish (f,r)-ergodicity of the random-walk Metropolis-
Hastings algorithm for super-exponential densities in Section 2.1 and sub-exponential den-
sities in Section 2.2. In examples 2 and 4, the fluid limit model is stable, and any fluid
limit is a weak solution of the ODE (3), yet some fluid limits are non-deterministic.

The conclusions contain proposed extensions including diffusion limits of the form ob-
tained in Harrison (2000); Whitt (2002); Chen and Yao (2001), and application of ODE
methods for variance reduction in simulation and MCMC.

1. ASSUMPTIONS AND STATEMENT OF THE RESULTS

1.1. Fluid Limit: definitions. We consider a Markov chain & % {®r}r>0 on a d-
dimensional Euclidean space X equipped with its Borel sigma-field X. We denote by
{Fk}r>0 the natural filtration. The distribution of ® is specified by its initial state ®¢ =
x € X and its transition kernel P. We write P, for the distribution of the chain conditional
on the initial state 9 = x and E, for the corresponding expectation.

Denote by C(R™, X) the space of continuous X-valued functions on the infinite time in-
terval [0, 00). We equip C(R*, X) with the local uniform topology. Denote by D(R™, X) the
space of X-valued right-continuous functions with left limits on the infinite time interval
[0,00), hereafter cad-lag functions. This space is endowed with the Skorokhod topology.
For 0 < T' < +00, denote by C(]0, T, X) (resp. D(]0,T], X)) the space of X-valued continu-
ous functions (resp. cadlag functions) defined on [0, 7], equipped with the uniform (resp.
Skorokhod) topology.
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For z € X, a > 0, and r > 0, consider the following interpolated process,
() E T ey, R (50) =170 = 2, (4)

where |-] stands for the lower integer part. Denote by Q.. the image probability on
D(R*, X) of P, by n%(-;z). In words, the renormalized process is obtained by scaling the

Markov chain in space, time and initial condition. This is made precise in the following,

Definition 1.1 (a-Fluid Limit). Let « > 0 and © € X. A probability measure QS on
D(R™, X) is said to be an - fluid limit if there exist sequences of scaling factors {r,} C Ry
and initial states {x,} C X satisfying lim, oo, = 400 and lim, . x, = = such that

{Qg ...} converges weakly to Qy on D(RT,X) (denoted Q2 ., = QF).

Tn;Tn

The set {Q%,z € X} of all such limits is referred to as the a-fluid limit model. An
a-fluid limit Q2 is said to be deterministic if there exists a function g € D(R™,X) such
that Q% = d,, the Dirac mass at g.

Assume that, E;[|®1]] < oo, for all z € X where | - | denotes the Euclidean norm, and

consider the following decomposition,

Q=0 1 +A(Py1) +er, k>1, (5)

where
A(z) Y E,[@) — O] = E, [1] — z for all z € X (6)
e & @) — E[d)|Fi] for all k> 1. (7)

In the sequel, we assume that

B1 There exists p > 1 such that limg oo sup,ex Ex[le1[P1{|e1] > K} = 0.

B2 There exists 5 € [0,1A(p—1) ) such that N(3,A) o supgex { (1 +|z|%)|A(z)|} <

oo .

Theorem 1.2. Assume B1 and B2. Then, for all0 < a < 3 and any sequences {r,} C Ry
and {x,} C X such that lim,, ., = +00 and lim,, .~ x, = x, there exists a probability
measure QF on C(Ry,X) and subsequences {ry,} C {rn} and {xn;} C {x,} such that

. = Qg . Furthermore, for all 0 < oo < 8, the a-fluid limits are trivial in the sense

that Q% = 04 with g(t) = x.

Note that, for any € X and 0 < a < 3, Q%¥(n,n(0) = z) = 1, showing that x is the initial
point of the fluid limit.

1.2. Stability of Fluid Limits and Markov Chain Stability. There are several no-
tions of stability that appeared in the literature (see (Meyn, 2001, Theorem 3) and the
surrounding discussion). We adopt the notion of stability introduced in Stolyar (1995).

Definition 1.3 (Stability). The a-fluid limit model is said to be stable if there exist T > 0
and p < 1 such that for any x € X with |z| =1,

0z (we D@0, int, I <) =1. (®)
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Let f: X — [1,00) and L, the vector space of all measurable functions g on X such
that sup,ex |g(x)|/f(x) is finite. L%, equipped with the norm lg| o sup,ex |9(x)|/ f(x)
is a Banach space.

Denote by |||, the f-total variation norm, defined for any finite signed measure v as

V]l y = supjg <5 [v(9)]-

We recall some basic definitions on Markov chains on general state space; see Meyn and
Tweedie (1993) for an in-depth presentation. A chain is said phi-irreducible, if there exists
a o-finite measure ¢ such that > ., P"(x, A) > 0 for all z € X whenever ¢(A) > 0. A set
C € X is vpy-small if there exist a non-trivial measure Vm and a positive integer m such
that such that P™(x,-) > Lo (z)vm(+). Petite sets are a generalization of small sets : a set
C is said petite if there exists a distribution a on the positive integers and a distribution
v such that ) -a(n)P"(z,-) > Llo(x)v(-). Finally, an aperiodic chain is a chain such

that the greatest common divisor of the set
{m, C is vy-small and v,,, = d,,v for some d,, > 0} ,

for some small set C'. For a phi-irreducible aperiodic chain, the petite sets are small (Meyn
and Tweedie, 1993, Proposition 5.5.7).
Let {r(n)}nen be a sequence of positive real numbers. An aperiodic phi-irreducible

positive Harris chain with stationary distribution 7 is called (f,r)-ergodic if
lim r(n)[|P"(z,") — 7|, =0
n—oo

for all x € X. If P is positive Harris recurrent with invariant probability 7, the fundamental
kernel Z is defined as Z % (Id — P + I)~!, where the kernel II is II(z,-) = 7(-), for all
x € X and Id is the identity kernel. For any measurable function g on X, the function
g = Zg is a solution to the Poisson equation, whenever the inverse is well defined (see
Meyn and Tweedie (1993)).

The following theorem may be seen as an extension of (Dai and Meyn, 1995, Theorem
5.5), which relates the stability of the fluid limit to the (f,r)-ergodicity of the original

chain.

Theorem 1.4. Let {®y}ren be a phi-irreducible and aperiodic Markov chain such that
compact sets are petite. Assume B1 and B2 and the B-fluid limit model is stable. Then,
forany 1 <q<(1+75)""p,
(i) the Markov chain {®y}ren is (f(Q),T(Q))—ergodic with (@ (z) defy 4 |z[P~90+8) gnd
r@(n) =na1,

(ii) the fundamental kernel Z is a bounded linear transformation from LJOCC(,Q) to Lgc(,qil).

1.3. Characterization of the fluid limits. Theorem 1.4 relates the ergodicity of the
Markov chain to the stability of the fluid limit and begs the question: how can we determine
if the B-fluid model is stable 7 To answer this question we first characterize the set of fluid
limits.

In addition to Assumptions B1-B2 we require conditions on the limiting behavior of the
function A.



THE ODE METHOD FOR MARKOV CHAIN STABILITY 7

B3 There exist an open cone O C X\ {0} and a continuous function Ay, : O — X such
that, for any compact subset H C O,
lim sup [rP|z|PA(rz) — Ax(z)| =0,
r——+00 zEH
where 3 is given by B2.
The easy situations is when O = X\ {0}, in which case the radial limit lim, ., 7°|2|?A(rz)
exists for x # 0. Though this condition is met in examples of interest, there are several

situations for which the radial limits do not exist for directions belonging to some low-

dimensional manifolds of the unit sphere. Let h be given by

h(z) € 2|77 Ao(x) . (9)

A function p : I — X (where I C R* is an interval which can be open or closed, bounded
or unbounded) is said to be a solution of the ODE (3) on I with initial condition z if p is
continuously differentiable on I, for all t € I u(t) € O, u(0) = z and f(t) = ho u(t). The
following theorem shows that the fluid limits restricted to O evolve deterministically and

more precisely, that their supports on O belong to the flow of the ODE.

Proposition 1.5. Assume B1, B2 and BS3. For any 0 < s <, define

def

A(s,t) = {ne C(R*,X) :n(u) €O foralluc [s,t]} . (10)

Then, for any © € X and any B-fluid limit Q?, on A(s,t),

sup =0, @g — a.s.

s<u<t

) —nts) - | " hon(v)dv

Under very weak additional conditions, one may assume that the solutions of the ODE
(3) with initial condition & € O exist and are unique on a non-vanishing interval [0, 7].

In such case, Proposition 1.5 provides a handy description of the fluid limit.

B4 Assume that for all x € O, there exists T, > 0 such that the ODE (3) with initial

condition x has a unique solution, denoted p(-;x) on an interval [0,T;].

Assumption B4 is satisfied if A, is locally Lipschitz on O; in such case, h is locally
Lipschitz on O and it then follows from classical results on the existence of solutions of
the ODE (see e.g. Verhulst (1996)) that, for any « € O, there exists T, > 0 such that, on
the interval [0, 7], the ODE (3) has a unique solution p with initial condition u(0) = x.
In addition, if the ODE (3) has two solutions p; and ug on an interval I which satisfy
pi(to) = pa(to) = o for some ¢y € I, then py(t) = pa(t) for any ¢ € I.

An elementary application of Proposition 1.5 shows that, under this additional assump-
tion, a fluid limit starting at xp € O coincides with the solution of the ODE (3) with initial

condition xy on a non-vanishing interval.

Theorem 1.6. Assume Bl to B4. Let x € O. Then, there exists T, > 0 such that
Q7 = G0y on D([0, T3], X).

As a corollary of Theorem 1.6, we have
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Corollary 1.7. Assume that O = X\ {0} in B3. Then all 5-fluid limits are deterministic
and solve the ODE (3). Furthermore, for any ¢ > 0 and x € X, and any sequences
{rn} C Ry and {z,,} C X such that lim, o 7, = +00 and lim, ., =, = =,

imP, . ( sup nfn(t;xn) — p(t; x)‘ > e) =0.
n

0<t<T,

Hence, the fluid limit only depends on the initial value  and does not depend upon the
choice of the sequences {r,} and {z,}.

The last step is to relate the stability of the fluid limit (see (8)) to the behavior of the
solutions of the ODE, when such solutions are well-defined. From the discussion above, we
may deduce a first elementary stability condition. Assume that B3 holds with O = X\ {0}.
In this case, the fluid limit model is stable if there exist p < 1 and T' < oo such that, for
any |z| = 1, infjg 7 [u(;7)| < p, i.e. the solutions of the ODE enter a sphere of radius
p < 1 before a given time 7.

Theorem 1.8. Let {®y}ren be a phi-irreducible and aperiodic Markov chain such that
compact sets are petite. Let p, 0 < p < 1 and T > 0. Assume that B1 to B4 hold
with O = X\ {0}. Assume in addition that, for any = satisfying |z| = 1, the solution
p(5x) is such that infi par,) (5 2)| < p. Then, the B-fluid limit model is stable and the
conclusions of Theorem 1.4 hold.

When B3 holds for a strict subset of the state space O C X\ {0}, the situation is more
difficult, because some fluid limits are not solutions of the ODE. Regardless, under general

assumptions stability of the ODE implies stability of the fluid limit model.

Theorem 1.9. Let {®}ren be a phi-irreducible and aperiodic Markov chain such that
compact sets are petite. Assume that B1 to B4 hold with O C X\ {0}. Assume in addition
that

(i) there exists Ty > 0 such that, for any x, |x| =1, and any B-fluid limit @ﬁ,

Q7 (n:n([0,To) NO#B) =1, (11)

(ii) for any K > 0, there exist Tx > 0 and 0 < px < 1 such that for any xz € O, |z| < K,
inf 5 < . 12

. lu(s2)| < px (12)

(iii) for any compact set H C O and any K,

Oy def {p(t;z) : x € H it € [0, T, ATk}

is a compact subset of O.

Then, the B-fluid model is stable and the conclusions of Theorem 1.4 hold.

The first condition (i) implies that each [-fluid limit reaches in a finite time the set
O. When the initial condition z # 0 does belongs to O, this condition is automatically
fulfilled. When z does not belong to O, this condition typically requires that there is a
force driving the chain into O. The verification of this property generally requires some
problem-dependent and sometimes intricate constructions (see e.g. Example 2). The
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second condition (ii) implies that the solution pu(-;x) of the ODE with initial point x € O
reaches a ball inside the unit sphere before approaching the singularity. This also means

that the singular set is repulsive for the solution of the ODE.

2. THE ODE METHOD FOR THE METROPOLIS-HASTINGS ALGORITHM

The Metropolis-Hastings (MH) algorithm (see Robert and Casella (2004) and the ref-
erences therein) is a popular computational method for generating samples from virtually
any distribution 7. In particular there is no need for the normalising constant to be known
and the space X = R? (for some integer d) on which it is defined can be high dimensional.
The method consists of simulating an ergodic Markov chain {®j},>0 on X with transition
probability P such that 7 is the stationary distribution for this chain, i.e 7P = 7.

The MH algorithm requires the choice of a proposal kernel q. In order to simplify the
discussion, we will here assume that m and ¢ admit densities with respect to the Lebesgue
measure AP denoted with an abuse of notation 7 and ¢ hereafter. We denote by Q
the probability defined by Q(A) = [ 44y y)AP(dy). The role of the kernel g consists
of proposing potential transmons for the Markov chain {®;}. Given that the chain is

currently at z, a candidate y is accepted with probability a(z,y) defined as a(z,y) =
1 A W) aly.x)

m(x) q(z,y)
x. The transition kernel P of this Markov chain takes the form for x € X and A € B(X)

.Otherwise it is rejected and the Markov chain stays at its current location

PlaA) = [ ale.o+ yhataa + )NO(dn)

+ La(z) y {1 - a(w,z +y)ae,z +y)A"P(dy) , (13)
—

where A —z & {y € X,z +y € A}. The Markov chain P is reversible with respect to m,
and therefore admits 7 as invariant distribution. For the purpose of illustration, we focus
on the symmetric increments random-walk MH algorithm (hereafter SRWM), in which
q(z,y) = q(y — x) for some symmetric distribution ¢ on X. Under these assumptions the
acceptance probability simplifies to a(z,y) = 1A[n(y)/7(x)]. For any measurable function
WX —=X,

By [W(®1)] = W(z) = A {W(z +y) = W(x)a(y) A" (dy)

# [ et = Wy )y

where A, {y € X,m(x +y) > m(x)} is the acceptance region (moves toward x + A, are

def

accepted with probability one) and R, = X\ A, is the potential rejection region. From

(Roberts and Tweedie, 1996, Theorem 2.2), we get the following basic result.

Theorem 2.1. Suppose that the target density w is positive and continuous and that g
is bounded away from zero, i.e. there exist §; > 0 and €, > 0 such that q(x) > €, for
|z| < &4. Then, the random-walk-based Metropolis algorithm on {X, X'} is AP-irreducible,
aperiodic and every non-empty bounded set is small.
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In all the sequel, we assume that ¢ has a moment of order p > 1. To apply the results
presented in Section 1, we must first compute A(x) = E,[®1] —x, i.e. toset W(z) =z in

the previous formula. Since ¢ is symmetric and therefore zero-mean, the previous relation

A = | K (% - 1) a(y) NP (dy) . (14)

Note that, for any = € X, |e1] < |®; — ®¢| + m P,-a.s. , where m = [ |y|q(y) AL (dy).
Therefore, for any K > 0,

boils down to

B [lea[PT{ler] > K} < 27Ey[(|@1 — @of” +mP)1{[®1 — Bg| > K —m}]

<o / WPL{ly| > K — m}q(y) AW (dy)

showing that assumption Bl is satisfied as soon as the increment distribution has a
bounded p-th moment. Because on the set R,, 7(z + y) < 7w(x), we similarly have
IA(@)] < [ |ylg(y) AP (dy) showing that B2 is satisfied with 8 = 0; nevertheless, in some
examples, for 6 = 0, A, can be zero and the fluid limit model is unstable. In these cases,

it is required to use larger [ (see Section 2.2).

2.1. Super-exponential target densities. In this section, we focus on target density 7

on X which are super-exponential. Define n(x) o x/|x|.

Definition 2.2 (Super-exponential pdf). A probability density function m is said to be
super-exponential if 7 is positive, has continuous first derivatives, and lim,|_,o(n(x),€(z)) =
—oo where £(x) def Vlog m(x).
The condition implies that for any H > 0 there exists R > 0 such that
m(x + an(x))
7(x)

that is, m(x) is at least exponentially decaying along any ray with the rate H tending to

<exp(—aH) for|z|> R,a>0, (15)

infinity as |x| goes to infinity. It also implies that for = large enough the contour manifold
C, {y € X,m(x +y) = m(z)} can be parameterized by the unit sphere S, since each ray
meets C, at exactly one point. In addition, for sufficiently large |z|, the acceptance region
A is the set enclosed by the contour manifold C, (see Fig. 1). Denote by A & B denotes

the symmetric difference of the sets A and B.

Definition 2.3 (¢-Radial limit). We say that the family of rejection regions {Ry,,r >
0,2 € O} has g-radial limits over the open cone O C X\ {0} if there exists a collection of
sets {Roo 2, € O} such that, for any compact subset H C O, lim,_, o sup,epy Q (Rre © Rooz) =
0.

Proposition 2.4. Assume that the target density 7 is super-exponential. Assume in
addition that the family {R..,7 > 0,2 € O} has a q-radial limit over an open cone O C
X\ {0}. Then, for any compact set H C O, lim, oo sup,ep |A(rz) — As(z)| = 0, where

Aso(@) € = [ ya(y) N> (dy).

The proof is postponed to Section 5.1. The definition of the limiting field A,, becomes
simple when the rejection region radially converges to an half-space.
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n(z)
z + R,
T Uz

s / + {y, (v, () < 0}

z + Ag

L(x) £ V log 7(x)

FIGURE 1

Definition 2.5 (¢-Regularity in the tails). We say that the target density  is g-regular
in the tails over O if the family {R,,,r > 0,z € O} has g-radial limits over an open cone
O C X\ {0} and there exists a continuous function ls : X\ {0} — X such that, for all
x €0,

Q (Rooe ©{y € X, (y, loo(x)) < 0}) =0. (16)

Regularity in the tails holds with o (2) = lim, oo n(¢(rz)) when the curvature at 0 of
the contour manifold C,.,, goes to zero as r — o0; nevertheless, this condition may still hold
in situations where there exist a sequence {x,} with lim |z,,| = oo such that the curvature
of the contour manifolds C, at zero can grow to infinity (see example 1 and 2). Assume
that

g(x) = det™*() qo(= ), (17)

where ¥ is a positive definite matrix and qg is a rotationally invariant distribution, i.e.

qo(Ux) = qo(x) for any unitary matrix U, and is such that

/X Yt qo(y)AN"(dy) < oo .

Proposition 2.6. Assume that the target density 7 is super-exponential and g-regular
in the tails over the open cone O C X\ {0}. Then, the SRWM algorithm with proposal q

given in (17) satisfies assumption B3 on O with

- Yloo(x)
Ay () = 1(%)7\\/5600(35)] : (18)

where ls is defined in (16) and mi(qo) o fxyl]l{ylzo}qo(y))\Leb(dy) > 0, where y =
(yla e ayd)'

The proof is given in Section 5.1. If ¥ = Id and ¢ () = lim, oo n(¢(rz)) then the
ODE may be seen as a version of steepest ascent algorithm to maximize logm. It may
appear that convergence would be faster if mq(qg) is increased. While it is true for the
ODE, we cannot reach such a positive conclusion for the algorithm itself because we do
not control the fluctuation of the algorithm around its limit.
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2.1.1. Regular case. The tail regularity condition and the definition of the ODE limit are
more transparent in a class of models which are very natural in many statistical contexts,
namely, the exponential family. Following Roberts and Tweedie (1996), define the class
P to consist of those everywhere positive densities with continuous second derivatives 7
satisfying

7(2) x g(x) exp {—p(@)} , (19)
where

e g is a positive function slowly varying at infinity, i.e. for any K > 0,

limsup inf M = limsup sup M

=1, (20)
|z|—o0 ly|l<K g(x) || —oo |y|<K g(.%')
e p is a positive polynomial in X of even order m and lim|;|_,o pm(x) = +00, where

Pm denotes the polynomial consisting only of the p’s m-th order terms.

Proposition 2.7. Assume that 7 € P and let q be given by (17). Then, 7 is super-
exponential, g-reqular in the tails over X \ {0} with s (z) = —n[Vpm (n(x))]. For any
x € X\ {0}, there exists T,, > 0 such that the ODE [1 = A (p) with initial condition x and
As given by (18) has a unique solution on [0,T;) and lim, - p(t;z) = 0. In addition,
the fluid limit Q) is deterministic on D([0, Ty],X), with support function u(-;x).

The proof is skipped for brevity (see Fort et al. (2006)). Because all the solutions of the
initial value problem 1 = —my(qo)VEnR[VEVp,(n(p))], £(0) = z are zero after a fixed
amount of time 7" for any initial condition on the unit sphere, we may apply Theorem 1.8.
We have, from Theorem 2.1 and Theorem 1.8

Theorem 2.8. Consider the SRWM Markov chain with target distribution m € P and
increment distribution q having a moment of order p > 1 and satisfying (17). Then for
any 1 < u < p, the SRWM Markov chain is (fy,)-ergodic with

fulz) =1+ |x|P7, ru(t) ~ el

Ezample 1. To illustrate our findings, consider the target density, borrowed from (Jarner
and Hansen, 2000, example 5.3)

m(xy,x2) x (1 + ﬂ:% + x% + x?x%) exp (—(m% + x%)) . (21)

The contour curves are illustrated in Figure 4. They are almost circular except from some
small wedges by the z-axis. Due to the wedges, the curvature of the contour manifold at
(z,0) is (2% — 1)/ and therefore tends to infinity along the z-axis (Jarner and Hansen
(2000)). Since m € P, Proposition 2.7 shows that 7 is super-exponential, regular in
the tails and /oo () = —n(x). Taking ¢ ~ N(0,0%1d), Ax(x) = —on(z)/v/2m and the

(Caratheodory) solution of the initial value problem i = Ao (1), u(0) = = are given by

pu(t;x) = (|z| — ot/vV2m)1{ot < V2x|z|}x/|z|. Along the sequence {xj & (k, £k~ }>1,

the normed gradient n[¢(xy)] converges to (0,+£1), showing that whereas {+, is the radial
limit of the normed gradient n[f] (i.e. for any u € S, limy_,oo n[l(Au)] = lo(u)),
Hm Sup 3|00 [n[€(2)] — loo(x)| = 2. Therefore, the normed gradient n[¢(z)] does not have
a limit as |z| — oo along the z-axis. Nevertheless the fluid limit exists, and is extremely
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simple to determine. Hence, the ergodicity of the SRWM sampler with target distribution
(21) may be established (note that for this example the theory developed in Roberts and
Tweedie (1996) and in Jarner and Hansen (2000) does not apply). The functions A and
A are displayed in Figure 5. The flow of the initial value problem i = Ay (u) for a set
of initial conditions on the unit sphere between (0,7 /2) is displayed in Fig. 2.

2.1.2. Irregular case. We give an example for which in Proposition 2.4, O C X\ {0}.

Ezample 2. In this example (also borrowed from Jarner and Hansen (2000)), we consider

the mixture of two Gaussian distributions on R?. For some a?> > 1 and 0 < o < 1, set
m(x) o aexp (—(1/2)$IFI1$) + (1 —a)exp (—(1/2)$IF51$) , (22)

where I'}* def diag(a®,1) and ;! def diag(1,a?). The contour curves for 7 with a = 4
are illustrated in Fig. 6. We see that the contour curves have some sharp bends along
the diagonals that do not disappear in the limit even though the contour curves of the
two components of the mixtures are smooth ellipses. (Jarner and Hansen, 2000, Eq.(51))
shows indeed that the curvature of the contour curve on the diagonal tends to infinity.

As shown in the following Lemma, this target density is however regular in the tails over
0 =X\ {z = (z1,72) € R, |21| = |z2|} (and not over X\ {0}). More precisely:

Lemma 2.9. For any € > 0, there exist M and K such that

sup A(z) — Ax(z)| < €, (23)
|z|>K,||z1|—|z2| |>M
def . def _ .
where Ao(z)  — [ 1. () ya()N(dy) with R o S {3, (00.T5"2) > 0} if 1] > o

and R » def {y, (y, Ff1x> > 0} otherwise.

The proof is postponed to Section 5.2. Since ¢ satisfies (17), when ¥ = Id, for any = € O
we have either Ao () = —cn(Ty x) if |z1] > 22| or Aso(x) = —cyn(T] x) if |21] < |z2],
where ¢, is a constant depending on the increment distribution ¢. This is illustrated in
Figure 7 which displays the functions A and A, and shows that these two functions are
asymptotically close outside a band along the main diagonal. The flow of the initial value
problem 1 = Ay (p) for a set of initial conditions on (0,7/2) are displayed in Figure 8.

We now prove that Theorem 1.9 applies. Conditions B1-B2 hold as discussed above.
Condition B3 results from Lemma 2.9. It remains to prove that B4 and conditions (i) to
(iii) are verified. The proof of condition (i) is certainly the most difficult to check in this

example.

Proposition 2.10. Consider the SRWM Markov chain with target distribution given by
(22). Assume that q is rotationally invariant and with compact support. Then B4, and
conditions (i), (ii), and (iii) of Theorem 1.9 hold.

A detailed proof is provided in Section 5.2. Note that the fluid limit model is not
deterministic in this example: for z on the diagonal in X, the support of the fluid limit
QY consists of two trajectories, which are each solutions of the ODE. This is illustrated
in Figure 3. By Theorem 1.9 and the discussions above, we may conclude that, if the
increment distribution ¢ is compactly supported, the SRWM Markov chain with target
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distribution 7 given by (22) is (fy,rs)-ergodic with f,(z) = 1+ |z|* and r4(t) ~ t* for any
u >0 and s > 0.

2.2. Subexponential density. In this section, we focus on target densities m on X which
are subexponential. We assume that ¢ satisfies (17) and has moment of order p > 2. This
section is organized as above: we start with the regular case (Example 3) and then consider

the irregular case (Example 4).

Definition 2.11 (subexponential pdf). A probability density function 7 is said to be
subexponential if 7 is positive with continuous first derivatives, (n(x),n(¢(z))) < 0 for all
x sufficiently large, and limg_ |¢(7)] = 0.

The condition implies that for any R < 0o, lim| o Supy<g m(x +y)/m(z) = 1, which
implies that lim,_ [A(z)| = 0. Subexponential target densities provide examples that
require the use of positive § in the normalization to get a non-trivial fluid limit model.

The condition (n(z),n(¢(x))) < 0 for all sufficiently large |x| implies that for ¢ small
enough the contour manifold C, can be parameterized by the unit sphere (see the discussion
above) and that for sufficiently large |z|, the acceptance region A, is the set enclosed by

the contour manifold C; (see Fig. 1).

Definition 2.12 (¢g-Regularity in the tails (subexponential)). We say that 7 is g-regular
in the tails over an open cone O C X\ {0} if there exists a continuous function lo, : O — X
and (8 € (0,1) such that, for any compact set H C O and any K > 0,

lim sup/ 7“6|33|6 {M - 1} - (foo(ﬁ'?),w' (I(’y)ALeb(d?/) =0,
=0 geH RraN{y,ly|<K}

7(rx)
lim SUEQ (Rrz ©4y, (boo(x),y) >0}) =0.

r—00 ze

Proposition 2.13. Assume that the target density w is subexponential and q-regular in
the tails over an open cone O C X\ {0} and that q satisfies (17). Then, for any compact
set HC O, lim, o sup,ey [7°)2[PA(rz) — Ax(z)| = 0, with

Aoo(z) Yoo (), ) a(y) A (dy) = ma(qo)Shoo(2) |

/{yﬂoo (2),y) =0}

def
where ma(qo) = fx y%ﬂ{ylzo}QO(y)ALeb(dy) > 0.

The proof is similar to Proposition 2.4 and is omitted for brevity. Once again, if the
curvature of the contour curve goes to zero at infinity, £ () is for large x asymptotically
collinear to n[Vlog w(x)]. However, whereas |Vlogm(z)| — 0 as |z| — oo, the renormal-
ization prevents /o, () to vanish at co; on the contrary, it converges radially to a constant
along each ray. As above, the tail regularity condition may still hold even when the curva-
ture goes to infinity; see example 3. As above, the subexponential tail regularity condition
and the definition of the ODE limit are more transparent in the weibullian family. Mim-
icking the construction above, define for § > 0 the class Ps to consist of those everywhere

positive densities with continuous second derivatives 7 satisfying

w(x) o< g(x) exp {—p(2)} . (24)
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where g is a positive function slowly varying at infinity (see (20)), p is a positive polynomial

in X of even order m with lim,|_,o pm(z) = +00.

Proposition 2.14. Assume that m € Ps for some 0 < § < 1/m and let q be given by
(17). Then, 7 is subexponential, q-reqular in the tails with f = 1 — md and lx(z) =
—6pd1 (n(2)) Vpm (n(x)). For any x € X\ {0}, there exists Ty > 0 such that the ODE
Lo = h(u) with initial condition = and h given by

h(x) = =3la| =" ma(a0)p), ! (n(2)) EVpm(n(z)) | (25)

has a unique solution on [0,T,) and limt_)Tz— wu(t;x) = 0. In addition, the fluid limit @éﬁ
is deterministic on D([0,T],X), with support function u(-;x).

We may apply Theorem 1.8: from Theorem 2.1 and Proposition 2.14 we have

Theorem 2.15. Consider the SRWM Markov chain with target distribution m on Ps and
increment distribution q having a moment of order p > 2 and satisfying (17). Then for
any 1 <u < p/(2—md), the SRWM Markov chain is (fy,r)-ergodic with

fu(x) =14+ ‘x’p—U(Q—mé) ’ Tu(t) ~ tu—l )
Ezample 3. Consider the subexponential weibullian family derived from Example 1
m(21,2) o< (143 + a3 + 2$23)’ exp (~(a + 23)°) . (26)

The contour curves are displayed in Figure 4. Since m € Pg, Proposition 2.14 shows that
7 is subexponential, regular in the tails with § = 1 — 20 and (o (z) = —2dn(x). Tak-
ing ¢ ~ N(0,0%Id), Ax(z) = —026n(x) and the (Caratheodory) solution of the initial
value problem 1 = |u| =20 A (), (0) = z are given by u(t; ) = [|z[?0~9 — 2026(1 —
5)75]0'5(1*5)_1n(w)1|$|2(1_5)_2025(1_5)t20. Here again, the gradient ¢(x) (even properly nor-
malized) does not have a limit as |z| — oo along the z-axis, but the fluid limit model
is simple to determine. Hence, the ergodicity of the SRWM sampler with target distri-
bution (26) may be established (note that for this example the theory developed in Fort
and Moulines (2003) and Douc et al. (2004) do not apply). The functions A and Ay
are displayed in Figure 5. The flow of the initial value problem g = h(u) for a set of
initial conditions on the unit sphere between (0,7/2) are displayed in Fig. 2, together

with trajectories of the interpolated process.

Example 4. Consider the following mixture of bivariate Weibull distributions (see Patra
and Dey (1999) for applications)

7(x) oc a2’ T7 )L exp (—(1/2)($'Ff1x)5>—i—(l—a)(:nlfglx)‘sfl exp <—(1/2)(x'F51x)5) ,
(27)
where I';, i = £1,2 are defined in Example 2 and 0 < o < 1. Similar to Example 2, the
curvature of the contour curve on the diagonal tends to infinity; nevertheless, the target
density is regular in the tails over O = X\ {x = (21, z2) € R?, |x1| = |22|}. More precisely,

Lemma 2.16. For any € > 0, there exist M and K such that

sup 2| Ax) — Aso()| <&, (28)
(el | 1| foa] [0
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where 3 def 1-25, Ay (2) def —ma(qo)|z|?8 (2T ) ST w if |21 | > |wa|, and Ao () def

—ma2(qo) |$|ﬁ5($,rf1$)6_1szlx, otherwise.

We can then establish the analogue of Proposition 2.10 for the target distribution (27),
assuming again that the proposal distribution ¢ is with compact support. The details are
omitted for brevity. From the discussions above, the SRWM Markov chain with target
distribution 7 given by (27) is (fu,7s)-ergodic with f,(x) =1+ |z[* and 74(t) ~ ¢* for all
u>0,s>0.

3. CONCLUSIONS

ODE techniques provide a general and powerful approach to establishing stability and
ergodic theorems for a Markov chain. In typical applications the assumptions of this paper
hold for any p > 0 and consequently, the ergodic Theorem 1.4 asserts that the mean of
any function with polynomial growth converges to its steady-state mean faster than any
polynomial rate. The counterexample presented in Gamarnik and Meyn (2005) shows that
in general it is impossible to obtain a geometric rate of convergence even when A, {¢;}
and the function f are bounded.

The ODE method developed within the queueing networks research community has
undergone many refinements, and has been applied in many very different contexts. Some
of these extensions might serve well in other applications, such as MCMC. In particular,

(i) Control variates have been proposed previously in MCMC to speed convergence
and construct stopping rules (Robert (1998)). The fluid model is a convenient
tool for constructing control variates for application in simulation of networks.
The resulting simulators show dramatic performance improvements in numerical
experiments: one-hundred fold variance reduction is obtained in experiments pre-
sented in Henderson and Meyn (1997) and Henderson et al. (2003) based on mar-
ginal additional computational effort. Moreover, analytical results demonstrate
that the asymptotic behavior of the controlled estimators are greatly improved
Meyn (2005, 2006, 2007). It is likely that both the theory and methodology can
be extended to other applications.

(ii) A current focus of interest in the networks community is the reflected diffusion
model obtained under a ‘heavy traffic scaling’. An analog of ‘heavy-traffic’ in
MCMC is the case 8 > 0 considered in this paper; the larger scaling is necessary
to obtain a non-static fluid limit (see Theorem 1.2.) We have maintained 8 < 1
to obtain a deterministic limit. With 8 = 1, we expect that a diffusion limit will
be obtained for the scaled MH algorithm under general conditions. This will be
an important tool in the subexponential case. In the fluid-setting of this paper,
when ( > 0, it is necessary to assume a great deal of regularity on the densities
m and q appearing in the MH algorithm to obtain a meaningful fluid limit model.
We expect that very different regularity assumptions will be required to obtain
a diffusion limit, and that new insights will be obtained from properties of the

resulting diffusion model.
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4. PROOFS OF THE MAIN RESULTS

4.1. State Dependent Drift Conditions. In this section, we improve the state-dependent
drift conditions proposed by Filonov (1989) for discrete state space and later extended by
Meyn and Tweedie (1994) for general state space Markov chains (see also Meyn and
Tweedie (1993) and Robert (2000) for additional references and comments).

Following Nummelin and Tuominen (1983), we denote by A the set of non-decreasing
sequences 7 = {r(n)nen satisfying lim, . | logr(n)/n = 0 i.e. logr(n)/n converges
to zero monotonically from above. A sequence r € A is said to be subgeometric. Exam-
ples include polynomial sequences r(n) = (n + 1)° with § > 0 and truly subexponential
sequences, 7(n) = (n 4+ 1)%e“” (¢ >0 and vy € (0,1)). Denote by C the set of functions

d f
< {(;5 [1,00) — RT | ¢ is concave, monotone nondecreasing, differentiable

{ve[l,00)}

and inf  ¢(v) >0, lim &' (v) :0} . (29)

For ¢ € C, define Hy(v ey J{ (1/¢(z))dz. The function Hy : [1,00) — [0,00) is increasing
and lim,_.oc Hy(v) = o0; see (Douc et al., 2004, Section 2). Define, for u > 0, 7, (u) o
Qo H(;l(u)/go o H;l(O), where H(;l is the inverse of Hy. The function u — 7,(u) is log-
concave and thus the sequence {r,(k)}i>0 is subgeometric. Polynomial functions p(v) =
v, a € (0,1), are associated with polynomial sequences r,(k) = (1 + (1 — a)k)e/(=),

Proposition 4.1. Let f : X — [l,00) and V : X — [1,00) be measurable functions,
e € (0,1) be a constant, and C € X be a set. Assume that supy f/V < oo and that there

exists a stopping time T > 1 such that, for any x & C,

T—1

k=0

<V() and E,[V(®,)]<(1-)V(x). (30)

Then, for allz ¢ C, Ey [>7%, f(®r)] < (7 Vsupe f/V) V(). If in addition we assume
that sup,cc{f(x) + Ez[V(P1)]} < o0, then sup,cc Ex [Z;io f(@k)] < 00.

Proof. Set 7 o T1ce(®g) + 1o(Pg) and define recursively the sequence {7"} by 7° o ,

r1 4 7, and 7" def - n—1 +To 97%1, where 0 is the shift operator. For any n € N, define
by ®,, = ®,n, the chain sampled at the instants {7"},,>0. {®p }n>0 is a Markov chain with

transition kernel P(z, A) = Lp (@7 € A), x € X, A € X. Equation (30) implies that
PV(z) =E, [V(®:)] < V(z) — F(z), for all z ¢ C', (31)

where F(x) R, _Zz;é f(@k)] Let 7¢ def inf{n > 1,®, € C}. Applying the Markov
property and the bound 7¢ < 77¢, we obtain for all ¢ C,

TC 7] Tc—1 %oGTk—l
Z f(q)k) <E; Z Z f(q)jJer) +E,; |:f(¢T‘T—C)I]'{T?C<OO}:|
k=0 i k=0 j=0

C—

ZF

k=0

s_lEx

<51ép é) E; [V(‘I)T*c)l{r*c«)o}} :
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Furthermore, Eq. (31) and the Comparison theorem (Meyn and Tweedie (1993, Theorem
11.3.2)) applied to the sampled chain {®,},>0 yields

To—1

PR

k=0

Ey

+E, [V(@T;C)]l {ch@o}] < V(x), v C,

which concludes the proof of the first claim. The second claim follows by writing for z € C,

Zf ‘I)k] <2811Pf+E 1{X1¢C} Zf(‘bk)]
k=0 k=1

<2sup f+E, [1{X; ¢ C} Ex,
c

Ci f(q)k)]

k=0

< 9sup f 4 (w v sup f/V> E, [1{X; ¢ C} V(X))
C C

O

Proposition 4.2. Assume that the conditions of Proposition 4.1 are satisfied with f(x) =
poV(x) forx ¢ C with ¢ € C. Then, for x ¢ C, E; ZZCOIT (k )] < M~V (x) and

supgec Ex ZZCZBITQ;(IC)] < 0o, where,

forallt, &) Loty and MY [

“Lvsuppo V/V]L. (32)
C

Proof. 1t is known that U(z) = g, [>7C0 @0 V(®y)] where o¢ o inf{k > 0,®, € C},
solves the equations PU(z) = U(z) —¢o V(x), v ¢ C and U(z) = ¢o V(z), x € C
(see (Meyn and Tweedie, 1993, Theorem 14.2.3)). By Proposition 4.1, U(z) < M~ V(z)
for all = ¢ C. Hence,

PU(x) <U(x) —¢oU(z), z¢C, (33)
From (33) and (Douc et al., 2004, Proposition 2.2), E [22001 r(k )] <U(z) <Mt V(x),
for © ¢ C. The proof is concluded by noting that, for z € C,

To—1 To—1
E. Z ré(k)] r5(0) + Eqz | 1{®1 ¢ C} Z ] rg(0) + M~ sugPV(:C) <00,
k=0 Te

O

Theorem 4.3. Suppose that {®,,}n>0 is a phi-irreducible and aperiodic Markov chain.
Assume that there exist a function ¢ € C, a measurable function V : X — [1,00), a
stopping time T > 1, a constant € € (0,1) and a petite set C C X, such that,

T—1
By | Y ¢oV(®)| <V(2), xgC (34)
k=0
B, [V(®,)] < (1-)V(a), Te (33)
sgp{V +PV}<oo. (36)

Then P is positive Harris recurrent with invariant probability m and
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(1) for all v € X, limp.oo r5(n) || P" (@, ) — 7|l py = 0 where ¢ is defined in (32).
(2) for all x € X, lim,_,o0 | P"(z, ") — 7| 4o, = 0.

(3) the fundamental kernel Z is a bounded linear transformation from L to LY.

Proof. (1-2) By (Tuominen and Tweedie, 1994, Theorem 2.1), it is sufficient to prove that

To—1 To—1
supE, r:(k)| < oo, sup E, poV(Pr)| < 0
i 5 v <ox o | S oovios
and for all z € X
To—1 To—1
Ex[Zré(kz)]<oo, Ex[ZgboV(‘I)k) <00
k=0 k=0

We show in Proposition 4.2 that the stated assumptions imply such bounds.

(3) By (Glynn and Meyn, 1996, Theorem 2.3), it is sufficient to prove that there exist
constants b, ¢ < oo such that for all z € X, PW (z) < W (x)—¢poV (x)+blc(x) with W(x) <
¢V (z). This follows from Proposition 4.1 which shows that sup,cc By [>27% ¢ 0 V(®)] <
oo and By [79, 00V (®)] < cV(z) forall z ¢ C. O

Using an interpolation technique, we derive a rate of convergence associated to some

g-norm, 0 < g< poV.

Corollary 4.4 (Theorem 4.3). For any pair («, 3) of functions satisfying a(u)f(v) < u+wv,
for all (u,v) € RT x RT and all x € X,

1i71;n Q (Tq;(n)) | P"(z,-) — 7T||ﬁ(¢oV)V1 =0.

Pair of functions («, 3) satisfying this condition can be constructed by using Young’s
inequality (Krasnosel’skij and Rutitskij, 1961).

4.2. Proof of Theorem 1.2. We preface the proof by a preparatory lemma. For any
process {€j}x>1, define

My (e,n) def sup
1<I<n

S

k=1

. (37)

Lemma 4.5. Assume B1 and B2.
(i) for all k >0, J and K integers with J < K,

sup |Prij — Prl < 8Moo(e, K) +2N(8,A)x™"J + N(5,A) + 2 ,
0<k<k+j<K,0<j<J
where N(B3,A) is given in B2.
(ii) For all0 < a < 3, and all T > 0, there exists M such that,

lim supP, sup |Ppyj — Pyl > Mr | =0.
T geX 0<k<k+j<|Trlte]
(#ii) For all T > 0 and € > 0 there exists 6 > 0 such that,

lim supP, sup |Ppyj— Pp| >er | =0.
ro00 geX  \0<k<hi<|Tri+h),0< < |81+
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Proof. (i). Let 0 < j < Jand 0 <k < K — j. On the set ﬂg;ol{|<1>k+l| > Kk},

ki1 et kj—1
Pryy — @kl = | D AP =@} < | Y @+ D IA@)]
1=k l=k+1 =k
k+j ktj—1
<D al+ D 1@ TPN(B,A) <2Muo(e, K) + JON(B,A), (38
l=k+1 =k

Consider now the case when |®y ;| < k for some 0 <[ < j — 1. Define

T; o inf{l0 <1<j—1,|P| <k} and o o sup{0 <1 <j—1,|®py| <k}+1

which are respectively the first hitting time and the last exit time before j of the ball of
radius k. Write @p1j — P = (Pp1j — Prio;) + (Phto; — Phar;) +(Pryr, — Pr) and consider
the three terms separately. The first term is non null if o; < j; hence,

k+j ketj—1
Phry — Prioy | < | D @+ D A@)] < 2Mu(e, K) + JrN(B,A)
I=k+oj+1 I=k+0;

since, by definition of ¢;, |®4| > & for all 0; <1 < j — 1. Similarly, for the third term,

k+T; k+7j—1
Prr, — Okl < | D @+ D |A@)] < 2Mo(e, K) + Ju PN(B,A)  (39)
I=k+1 1=k

since, by definition of 7, |®;| > & for all 0 <[ < 7;. Finally, the second term is bounded
by,

[ Phto; — Phtr;| < [ Phto; — Phtoy—1]+ [Pty —1| + [ Ppotry | < N(B,A) +2Moo(e, K) + 25

Combining the inequalities above yields the desired result.
(ii). From the previous inequality applied with x = ¢r > 0 and K = J = |Tr'T%] it holds

P, sup |pyj — g > AMr | <4PM PrP supE, [ME (e, [Tr'H])]
0<k<k+j<|Trit+e] zeX

+ 1{N(B,A) > Mr} + 1{2N(3, A)T > (P Mr~tP} 4 1{20 > M} .

By Lemma A.1, the expectation tends to zero uniformly for x € X. The second term tends
to zero when r — oco. The remaining two terms are zero will £ and M chosen so that
(B > N(B,A)T and M > 2/.

(iii. ) The proof follows similarly upon setting K = [Tr'*?], J = [0r'*#] and k = &r. O

Proof of Theorem 1.2. Let a < 3. A sequence of probability measure on D(R™,X) is
said to be D(R™T, X)-tight if it is tight in D(R™,X) and if every weak limit of a subse-
quence is continuous. By (Billingsley, 1999, Theorem 13.2, Eq. (13.7) p.140 and Corol-
lary p.142), the sequence of probability measures {QF ., }n>o0 is C(Ry,X)-tight if (a)
limg oo limsup, Q2. , {7 : [9(0)] > a} = 0, (b) limsup, o0 Q2. {1 : SuPocrer () —
n(t—) > a} = 0, and (c) for all Kk > 0 and € > 0, there exist § € (0,1) such that
. def

limsup,, Q. ., {n:w(n,0) > e} < & where w(n,8) = supocycicri—s<s [1(t) — 0(s)].
Properties (a) to (c¢) follow immediately from Lemma 4.5. Choose o < (. Let {r,}
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and {z,} be sequences such that lim,, r,, = co and lim, z,, = x. Let ¢ > 0. We have, for
all n large enough so that |z, — z| < /2,

Proz, | sup |0 (tan) —x| > | <Proa, sup | Pk, — rpxn| > (e/2)r, |
Ost=T 0<k<|Tra]
and we conclude (b) again by Lemma 4.5(ii). O

4.3. Proof of Theorem 1.4. We preface the proof by establishing a uniform integrability

condition for the martingale increment sequence {¢}x>1 and then for the Markov chain
{®r}r>0-

Lemma 4.6. Assume B1. Then, for all T > 0,

lim sup |z PE,[M, (¢, | T|@o| "7 ) 1{Muc (e, |T|o|*7]) = b|o[}] =0, (40)

b=o0a|>1
def 1+8 _def ~ def
Proof. Set Tg, = |T|®o|" 7). For K >0, set €, = e 1{|ex| < K} and €, = e 1{|ex| >
K}. By Lemma A.2, there exists a constant C' (depending only on p) such that
B [ME, (€, Tay) I{ Moo (€, Ta, ) = b|Pol}]
< CEo[ME, (€, To, ) I{ Moo (€, Ty ) = (b/2)[Pol}] + CEL[ME (€, T, )] -

Consider the first term on the right hand side of the previous inequality. Using Lemma
A.3 with a > 1V 2/p and Lemma A.1 yields

| P By [ME, (€, | T|o|"7 ) 1{Moc (€, Tay) 2> (b/2)|o}]
< (0/2) 7P || T PEL M (€, Tw, )] < CA(€, ap)b™ =P [ ~eU=PP/2,

where A(€, ap) def sup,ex Ez[|€,]?]. Note that, by construction, A(€, ap) < K. Similarly,

Lemma A.1 implies, E,[M% (€, Tp,)] < CA(E,p)TP/?|z|r(0+8)/22VA+5) where A(E, p) &

sup,ex Ex[|€; [P]. Therefore, since p > 1+, sup|, > |2 PE[M& (€, Ta, )] < CTPI2A(,p).
Combining the two later inequalities,

sup [2| PE[ME, (e, T, ) 1{ Moo (e, Tay) = b|o|}] < C{KPb7Y + A(E,p)},
|21

which goes to 0 by setting K def K (b) = log(b). O

Proposition 4.7. Assume B1, B2. Then, for all T > 0,

sup(1l + |z|)"PE,

sup \@k]p] < o0, (41)

wEX 0<E< |T|®o|1+4]
lim sup |z| PE, sup | P[P 1 sup || > K|Po| p| =0. (42)
K—=0o|g)>1 0<k<|T|@o[1+0) 0<k<|T|@o[1+7)

Proof. Set Ty, = |T|®o|'*”]. For all r > 1, applying Lemma 4.5(i) with K = J =
|T|®o|"+*] and & = |®g| yields

sup - [@x[" < C {1+ |®o|" + M (e, Twy )} (43)
0<k<Ts,
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for some constant C' depending upon r, 3, N(6,A),T. The first assertion is then a con-
sequence of Lemma A.1. The inequality (43) applied with » = 1 implies that there exist
constants a,b > 0 such that for all |z| > 1 and all large enough K,

{ sup ‘q)k:‘ > K‘@O‘} C {MOO(E,T.:I)O) > (aK — b)‘q)()’} ]P’x — a.s.

0<k<Ts,

Hence, for large enough K and an appropriately chosen constant C,

sup [z K,

sup ’(bk’p]l{ sup [Py > K"bof}]
0<k<Ta,

|z|>1 0<k<Ty,
< C sup P, [Mx(€,Ta,) > (aK — )| Pol]
|lz|=1
+ C sup |z| P E, [ME (¢, Top,) 1{Muo (€, Tp,) > (aK — b)|Po|}] .
|z[>1

The proof of (42) follows from Lemma 4.6. O
Proposition 4.8. Assume Bl and B2 and that there exist T < oo and p € (0,1) such
that

limsupP, (0 > 7) =0 ,with o A inf {k>0,|® < p|Po|} , (44)

|z|—o00
where 7 < & A [T|®o|'*P]. Then, (a) there exists M such that SUp|g>nr |2 PE; [|@7P] <
1, and (b) By [S7201@41P| < C Jafp150.

Proof. Set Tg, = [T|®o|'*?]. For any K >0
277 By [|0 ] = [2] 7 By [1{r = 0} |2, ] + 2| 7Es [1{o > T, }|®r, I

<P+ [ R, |
By Proposition 4.7, one may choose K sufficiently large so that
P
1|07, > K@} <1- 7. (46)

p
01y, | U|Pry,| > K|20l}]| + KPylo > To,] . (45)

sup |z|PE, [ Py,

x| >1

Since lim sup ;oo Pz[o > Tg,] = 0, the proof of (a) follows. Since, 7 < Tg,, (b) follows
from (41) and the bound E, [zg;}] \@k\p] < O Tla| OBy [supy gy, |2k]P] O

The following elementary proposition relates the stability of the fluid limit model to the
condition (44) on the stopping time o. We introduce the polygonal process that agrees
with @ /r at the points t = kr—(1+) and is defined by linear interpolation

Aet) =r Y {(B+ 107 B+ (1 — k) Bpq } 1{k < tr1 < (B + 1)}

k>0
(47)
Denote by @?‘x the image probability on C(R™*,X) of P, by 7%(¢;2). The introduction
of this process allows an easier characterization of the open and closed set of C([0,T7,X)
equipped with the uniform topology, than the open and closed set of D([0, 7], X) equipped
with the Skorokhod topology. For any sequence {r,}, C R* such that r, — +oco and
{zn} C Xsuch that z,, — z the family of probability measures {@?‘n%} is tight and weakly

converges to Q%, the weak limit of the sequence {Q }nen. This can be proved following

(6%
Tn;Tn
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the same lines as in the proof of Theorem 1.2 (see e.g. (Billingsley, 1999, Theorem 7.3)).

Details are omitted.

Proposition 4.9. Assume B1, B2 and that the (3-fluid limit model {Qf,x € X} is stable.
Then (44) is satisfied.

Proof. Let {y,} C X be any sequence of initial states with |y,| — oo as n — oo. Set
Tn def lyn| and z, def Yn/lynl- One may extract a subsequence {z,,} C {x,} such that
lim; o Tpn; = @ for some z, |x| = 1. By Theorem 1.2, there exist subsequences {ry,,} C

{rn; } and {zy,, } € {7y} and a f-fluid limit Q2 such that Q7 = Q~. By construction,

ij ?fl'mj

P

Ton - Tony, -
g

(05 7)< Py, (0L 72, (520 > 1)

0<t<T

Tor, - Lomy, -
M

i, (1€ CERNX: it (0] 2 )

By the Portmanteau theorem, since the set {n € C(R*,X) ,infj 71 |n| > p} is closed,

sup @2, o, (a8 (012 p) < @2 (int, (0] = p) =0

jooo MM \0<t<T 0<t<T

Because {y,} is an arbitrary sequence, this relation implies (44). O

Proof of Theorem 1.4. It follows immediately from Theorem 4.3, using Propositions 4.8
and 4.9. ]

4.4. Proof of Proposition 1.5. In this proof, we see the (-fluid limit Qf as the weak
limit of @E)n;:vn, for some sequences {r,} C Ry and {x,} C X satisfying lim, o, r,, = 00

and lim,_ ., z, = x. Fix s,t such that s < t. We prove that

Q2 (At {ne Clls.tl) s sup

s<u<t

o) = n(s) ~ [ o n(y)dy‘ >of) =0, 4y

Let U be an open set such that U C O, where U denotes the closure of the set U. For any
6>0,M>0and m>0,s<u<w<t, define

AY s (s w) & {n € C[s, 11, X), ([u,w]) € UN Coar,

n(v) — () — / h o () dz

u

sup
u<v<w

> 5} , (49)

where Cp, s o {z e X;m < |z| < M}. Since 6, m, M, U, u and w are arbitrary, (48)
holds whenever Qf {Agm M(u,w)} = 0. By the Portmanteau Theorem, since the set

AgmM(u, w) is open in the uniform topology,

Q? [AgmM(u,w)} < linrr_l)igf@fn;m [Agm,M(U,w)] ’
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and the property will follow if we can prove that the RHS of the previous inequality is

null. To that goal, we write

7 (vsn) = 8, (i) — [ o, (45 0)dy
=i (vyan) — 72 (lord Py D) 478 (lurs™ ey O 2,) — 3P (us )
\_vr,ﬁLﬁJ 1

4+t Z {Pr11 — i} —/ hoﬁfn(t;xn)dt

k= |_ur,11+’8J

< 2x1 4 X2 + X3 + 2r Moo (e, [t P )

where we have defined

BN =B () 1B —(1+5). ‘ ! B .
nrn(v,xn) nr (\‘UT J 71'n) + /\_ }L+6Jr;(1+ﬁ)ho77rn(tvxn)dt

ur

b

def
X1 = sup
u<v<w

|_wr,11+’8J—1
X2 = Z r Al Gy ) = OB Gy (”ﬁ);mn))( :
148
=|ur,""]
Lwr}fﬁjfl (j4+1)ry 10
— (1+/3) &} (1+8). _ =B (4.
X3 = Z h(iy, (T $Tn)) /—(1+5) hoq, (t;xy,)dt
j= |_UT’1+BJ JTn

Denote by wy, p,u the modulus of continuity of h on UN Cyy, pr. Since h is continuous on

U, limy—o wm,a,u(A) = 0. On the event {ﬁfn(t;xn) eun CmM}7

x1 <yt <1 + sup !h(x)\> sup  [®j41 — @y,
1<<|trat? ]

o< (—s+m™  sup | rlePA(rar) - A(@) |

{J:EU,\x\Zm}

and, for any A > 0,

x3<(t—s+1) (Wm,M,U(A) + sup |h(z)| 1 { sup [P — 4| > )\rn}> .

|z]2m 1<j< ey

By Lemma 4.5, for any 6 > 0, lim,,—o0 Py, 2, (811p1<j<W1+@J |®ip1 — P > 5rn> =0. On
the other hand, limy, oo SUP{zey,[o|>mr} ‘ lz[PA(z) — Aso () | = 0. Therefore, for any
6 > 0, one may choose A small enough so that,

nlLHgo Prnxn <ﬁfn(t7 xn) eun Cm,M, (2X1 + X2+ X3) > 5) =

The proof follows from Lemma A.1.

4.5. Proof of Theorem 1.6. We preface the proof by a Lemma showing that the fluid
limits are uniformly bounded.

Lemma 4.10. Assume B1 and B2.
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(i) For any T > 0 and p > 0, there exists § > 0 such that for any B-fluid limit @éf,

Q7 (?7 € C(R*,X),  sup [n(u) —n(t)] < p) =1. (50)
0<t<u<t+6<T
(ii) For any T > 0, there exists K > 0 such that for any B-fluid limit QZ,
Q7 <77 € C(R™,X), sup [n(t) —n(0)] > K) =0. (51)
0<t<T

Proof. (i) Let {r,} C Ry and {z,} C X be two sequences such that lim,_. r, = +0o0,
lim, ooz, = x and an;xn = sz By the Portmanteau theorem, since the set {n €
C(R™,X) ,supg<scu<irs<t n(w) —n(t)| < p} is closed, it holds

Q; <77 € C(R*,X), sup [n(u) —n(t)] < p)

0<t<u<t+6<T
> limsup Q7 ., (?7 €CR"X), sup n(u) —n(t)| < p) -
n 0<t<u<t+0<T
By definition of the process ﬁfn(, Tn),

Qe ... (n e C(R',X), sup  |n(u) —n(t)] > p)

0<t<u<t+6<T

< Prnxn sup ‘q)k:Jrj - (I)k‘ > pry )
0<k<k-+i<TriT?o<j<srit?

and the proof follows from Lemma 4.5(iii).

(ii). The proof follows from (i) by considering the decomposition

(7/5)
sup [n(t) —n(0)) < Y sup  |n(u) —n(gd)| .
0<t<T 4=0 q6<u<(q+1)d

O

Proof of Theorem 1.6. Under the stated assumptions, u([0,7,]; ) is a compact subset of
0. Since O is open, there exists p > 0 such that

{y e X, d(y, ([0, T;];2)) < 2p} C O,

where for z € X and A C X, d(z, A) is the distance from z to the set A. By Lemma 4.10(%),
there exists 0 > 0 such that

Q; (n € C(R4,X),  sup  |n(u) —n(t)| < p) =1.

0<t<u<t+6<T;
Since Qf (n € C(Ry,X),n(0) =z = u(0;2)) = 1,
Q (1 € C(R+,X),n([0,8]) cO)=1.
By Proposition 1.5, this yields Qg = Op(52) on C([0,4],X). By repeated application of
Lemma 4.10(%), it is readily proved by induction that Q= Su(szy on C([(g — 1)d,¢d] N

)

[0, T,], X) for any integer ¢ > 1. O
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4.6. Proof of Theorem 1.9. Let x such that |z| = 1. By Lemma 4.10, there exists K
depending upon T such that Qg <77 s supo 1 1)) < K) = 1 for any [-fluid limit Qf
Set T'= Ty + T, where T and Tk are defined by (11) and (12), respectively.

By definition, for any set H, H C Qp; therefore, there exists an increasing sequence {H,, }
of compact subsets of O such that H, C H,11 and O = J,, Qn,, (note that Qn, € Qn,,_,).
This implies

Qs <?7 : [iO{ljﬁ] In(-)| > PK> =QZ <n : [iorbﬁ] ()l > pr,n([0,T5]) N O # VJ>

=lim T, Qf <77 : [%njﬁ] n()l > pr,n([0, To]) N O, # ®> .

lim T, stands for a limit that converges monotonically from below. We prove that for any
n, the term in the right hand side is zero. To that goal we start with proving that for any
compact set H C O and any real numbers 0 < ¢ < Ty,

Q2 (77  dnf In()] > prcn(a) € QH>
=Qf (77 : [}){ljﬁ} n()l > pr,ng +-) = p(1(q) on [0, Tyg)] s n(q) € QH> : (52)
We will then establish that
Q2 (s ut 19001 > penta +) = (@) on 0Ty onla) € O ) =0 (53)

Since Q2(C(RT,X)) = 1, (52) and (53) imply that

Q2 (1 fuf 1)1 > pac (0T 1 20, #0)
<> Q) (77 Hinf ()] > prc.n(a +-) = p(n(q)) on [0, Ty ] () € QH;L> =0,

qeQ
where H/, D H,, is a compact set of O and Q C [0,7p] is a denumerable dense set. This
concludes the proof.
We now turn to the proof of (52) and (53). Since Qy is a compact set of O, there exists
e > 0 (depending upon H) such that {y € X,d (y,Q4) < 2¢} € O. By Lemma 4.10, one
may choose § > 0 small enough (depending upon 7" and ¢ so that

Q? <77 € C(R*,X) : sup  |n(u) —n(t)| < e) =1.
0<t<u<t+6<T

Therefore, for any compact set HC O and g € Q,

Q2 (n: jut 10001 > o, n(a) € )

0

=Q7 | n:inf [n()| > pk, n(@) €,  sup  |n(u) —n(t)| <e
[0,T] 0<t<u<t+5<T

=2 (0 1 O > o, 1(0) € O 1o+ 6)AT) € O)
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By Proposition 1.5, on the set A(q,q + 6), n(q + ) = u(;;n(g)) on [0,6 ATy, Q2 as.
Hence

Q2 (n+ juf 10021 > prc.n(a) € On

[0

= Q] (77 inf In0)] > preyn() € Qe +-) = u(n(@) 5 on 0,04 Tn(q>]> '

By repeated application of Proposition 1.5, for any integer [ > 0,
Q7 (n :

— sz <77 : [io?:/f] n()| > pr,n(q) € Q,n(q +-) = u(sn(q)) , on [0,16 A Tn(q)]> ’

inf |n(-)] > €N
[B{IT]\H()\ pr,n(q) H>

which concludes the proof of (52).

Q <?7 : [ioflqij] n() > pr,nlg +-) = u(5n(q) on [0, Ty, n(q) € QH>

< Q2 (ns ut o)1 > o, jut il < i) =0,

[0 [07T0+TK

since T' = Ty + Tk, which concludes the proof of (53).

5. PROOFS OF SECTION 2

5.1. Proofs of Section 2.1.

Proof of Proposition 2.4. Define
B~ [ yaly)\(ay). (54
Introduce for any § > 0, the §-zone C,(0) around C,,
Ca(8) € {y + sn(y),y € Cp, 0 < 5 <0} (55)

By (Jarner and Hansen, 2000, Theorem 4.1), we may bound the measure of the §-zone’s
intersection with the ball B(0, K), for any K > 0 and all |z| large enough

AP (C,.(6) N B(0, K)) < 6 (M)d_l ALeb (B(0, 3K)}

|z| — K K ’

where the z-dependent term tends to 1 as |z| tends to infinity. From this it follows, using
that [ |y|q(y)AL"(dy) < oo that for any K > 0 and € > 0, there exists § > 0 such that

fimsup [ [yla(y)\ () <. (56)
E.(6,K)

|z|—o00

where E; (9, K) o C.(d)NB(0, K). For arbitrary, but fixed, ¢ > 0 choose K > 0 such that

fBC(O,K) lylq(y) AP (dy) < e. Then choose § > 0 such that (56) holds. By construction, for
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y € Ry, m(x +y)/m(z) <1 and (56) implies

. (T + o

imsup [  ZEE D g atev(gy) < e, (57)
2| =00 JReNEL(6,K) ()

. (T + o

lim sup/ ZEE Y Ay < e (58)
|z| =00 JRLNB¢(0,K) 77(:6)

From (15), for y € R, such that y is with a radial distance at least § to C,, the acceptance
probability satisfies w(x + y)/7(z) < ¢/K for all |z| sufficiently large (see (Jarner and
Hansen, 2000, pp.351)) and (56) shows

lim sup | m(z +y)

/ y a(y)NP(dy) < e (59)
|| —o0 JRzNES(8,K)NB(0,K) m(z)

By combining (14), (54), (57), (58) and (59), lim sup|y|_.oc [A(7) — A(x)| < 3¢ and since ¢
is arbitrary, lim, . [A(z) — A(z)] = 0. 0

def

Proof of Proposition 2.6. Set z = (z1,...,2q4) »~ Y2y and v = n(El/Qu). Then

/{ L, V) =3 /{ L, SN =5 [ #1esonmE)i:
v,y u> zw'z>
The proof follows. O

5.2. Proof of Lemma 2.9. Let § and M be constant to be specified later. Write A(z) —
A () o Z?Zl A;(0, M, x), where

def

Ay (5, M, z) © mz+y)

1. . (y) ya(y) AP (dy)
/{yv|y§M,yy'r;1m\zax} ()

def vy’ o Leb
wb ) S [ (S ) () e 0) @

—

—

de 77(1. +y) _ Leb
CSTER AR | -+ S ) RUXCIRR ENRO) RO

4406, M, z) /{ o { (M - 1) 1n,(y) + nRW,Ay)} ya(y) N (dy)

m(x)

For x = (x1,x2) such that |z1|—|x2| > 2M and |y| < M, |x1+y1| > |x1|—M > |xo|+ M >
|zo + yal, it is easily shown that

% <(1—a)texp (—O.Sy/I‘gly — ngly) .

(60)
If y € Roow N{z : |2'T5'2| > 6|x|} then by (60), 7(z + y)/7(z) < (1 — ) te 0]
which implies that |A;(8, M,z)] < (1 — a)~te %2l [|ylg(y)AL(dy). Furthermore, for
any K such that (1 — ) 'e X < 1, and z such that ||zi| — |22|| > 2M and |z| > K,
Rooo N {y : ly| < M, |2'T5'y| > dlz|} C R,. This property yields to the bound:

(1 —a)exp (—0.5y'F51y — ngly) <

m(z +y)
m(x)

_ 1' ILr.(4) - 1r . ()] 2y T3yl > el ly| < M}

< 1r\Re. )1y, |yl < M, |2'T5 y| > d]z|} . (61)
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Using again (60) for y € R, N{|y| < M}, (1 — a)e_0'5“2M2e_xlF;1y <7(x+y)/m(x) <1.
On the other hand, for y & Ru., satisfying |2'T5 y| > 6|z|, we have 2'T5 'y < —d|z|,
showing that

Y € Ro\RooaN {2, |2 < M, |2'T5 2| > 8|} = (1—a)e ¥ MK < n(zty)/m(z) < 1.

For fixed M, we choose K such that (1 — a)e*0'5a2M 9K > 1 which implies that the right
hand side in (61) is zero and thus As(d, M,xz) = 0. Consider finally A;(§, M,x), i = 3,4.

Note that ( )
m(xr+vy
—=—-1]1 1 <2
( @) ) R () + 1Ry . (y)| <2,
and the proof follows from the bounds
[As(0.M0)| <221 [ {1 1y'T5 o] < 0ol ulalu) NP d) (62)
A M) <2 [ JalalN ) (63)
ly|>M

These terms are arbitrarily small for convenient constants M and §.
5.3. Proof of Proposition 2.10.

5.3.1. Proof of the condition (i) of Theorem 1.9. The only difficulty here stems from
irregularity of the ODE for initial conditions on the diagonals. Consider the S-fluid limit

Q7 with initial condition u, & (1/v/2,1/v/2) (the other cases can be dealt with similarly).

Set v, & (1/v2,-1/v/2) and define V(z) = |(vs,z)|. Since the increment distribution

is assumed to be bounded, there exists a positive constant Cj such that |®; — ®g| < Cy,
P,-as for all z € X. By Lemma 2.9, we may choose constants v € (0,1), m > 0, My > C,
and R such that,

RNE® C{z € X, [(vs, A(x))| > m , (vy, x)(vs, Ax)) > 0} . (64)

where (see Figure 9)

def def

E={z,V(x) <My}, and R = {z e X |z| >R, |{(ve,n(x))| <~} . (65)
For § > 0, define the stopping time x(d) as the infimum of the three stopping times
k1(8) E inf{k > 0, [(v,, ®1)| > 20]Po|} (66)
ke S inf{k > 0, @ — Bo| > (1/2)|D0]} (67)
ks inf{k > 0,|04] < R} . (68)

We will establish the following drift condition: there exist constants b > 0 and C such
that for all § € (0,v/4),

E [V (®rt1)|Fi] > V(Pr) +m — bleg(Pr), on the set {k < ()}, (69)
Kk(0)—1
E. | > Le(®)| <C, (70)
k=0

with the convention that ZZ = 0 when a > b. We postpone the proof of (69) and
(70), and show how these drift conditions allow us to obtain the condition (i). On the
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event {k < k(9)}, |Pr| > R, (1/2)|Po| < |Px| < (3/2)|P|, and [(vy, n(Pg))| < 46 < 7.
Therefore, for all z € X, P,-a.s.

{k<k(0)} C{PreR}. (71)

Condition (69) yields for any constant N > 0,
K(9)
M By 5(0) A N] < B[V ( @) 1s(8) > 1} +0E, | 3 16(®y)
k=0
The definition of x(d) and C, implies that E, [V (®.san)1{x(0) > 1}] < 26|x|+ C, for all
N which with (70) yields the bound

mEq[k(8)] < 26]z| + bC + C, . (72)

Let {x,} be a sequence of initial state such that lim, . x, = u, and {r,} be a se-
quence of scaling constants, lim,, .., r, = +00. By Lemma 4.10, there exists Ty such that
Q5, {supte[QTO] In(t) —n(0)| < 1/4} = 1. Furthermore, we have 1/2 < |z,| < 3/2 for all
n large enough. Then, by the Portmanteau Theorem,

Q7 {n.n([0,Tp]) N O = 0}

= lim Q, {777 sup n(t) —n(0)| < 1/4, sup !<v*777(t)>!<5}

510+ 1[0, 7] te[0,1v]

< lim iminf P, , sup | — Po| < (1/2)]Po], sup |(Vs, Pr)| < 28|Po]
§l0+ nm—oo 0<k<2Ty|®o|/3 0<k<2Tp|®ol/3

< lim liminf P, ., (k(8) > 2T5|®o|/3) =0,

5lo+ n—oo

where the last equality stems from (72). This proves Theorem 1.9-(i).

We now prove (69). Since E[®yi1|Fx] = Pr + A(Px), Jensen’s inequality implies
Ey [V(®pi1)|Fi] > [{vs, P + A(Pg))|. Furthermore, by (64) and (71), {k < (d), Py €
E¢} C {®r € RN E®}, which implies |[(vy, P + A(Pr))| — [(vs, Pr)| = |{vs, A(Pg))| > m,
since on RNE® (v,, z) and (v, A(x)) have the same sign and (v, A(x)) is lower bounded.
On the set {k < k(0), @), € E}, we write V(®g41) > V(®y) — Cy so that E [V (Pyiq)|Fr] >
V(®x) + m — (Cy +m). This concludes the proof of (69).

We finally prove (70). For A € X, we denote by o4 def inf{k > 0,9, € A} the first
hitting time on A. For notational simplicity, we denote « instead of k(d). Define recursively
o(1) 4 oerr and for all k > 2, (k) def G(=1) L 769" L 5D o 97090(%1)‘“’%_1)
def

T = k/A\ky where ky is an integer whose value will be specified later. With these notations,

[ZHE<1>k]<k S P, ((Q)</<). (73)

q>1

, where

Furthermore, for all ¢ > 2, the strong Markov property yields the bound

P, (O'(Q) < n) <P, (a(q_l) < n) yZErER P, <T +oWM g™ < /<;> ,
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Therefore, by (73), (70) holds provided that sup,egqg Pz (7 + 0V 087 < k) < 1. For all
x € ENR, it is easily seen that,

Po (7400007 < k) =Pulr < 5) ~ Ex (1{r < 5}1{&, € EENRP, [ <oV},

(74)
<1- inf P, <,<; < a<1>) (B (7 = #) + Py (7 = ky, &y, € E°AR)}
(75)
showing that the conditions
mérérf;RPx({T<k:*}U{T:k*,<1>k* €eE°NR}) >0, (76)
_inf P, (/{ < 0(1)) >0, (77)

imply (70). We prove first (76). Choose ¥ € (v,1), such that the four half planes
{z, (z,l“i_lufw < 0} (i = 1,2) have a non empty intersection, where u, - and uf;/ are
the unit vectors defining the edges of the cone Cy def {z € X, [{vs,n(2)) < A}. Denote

W 2,0 < [2] < Oy (2, T 1) <06 = 1,2} (78)
Since any vector y in the cone C5 can be written as a linear combination of the vectors
Uy 5 and uj;y with positive weights, for any y € C5 and z € W, (Z,F;1y> <0,i=1,2,
which implies,

(2, Vr(y)) = —afz, T y) exp(—0.5y'T1 y) — (1 — @)(z, I y) exp(—0.5y'T5 1) > 0.
By choosing R large enough (see (65)), we can assume without loss of generality that for all
x € Rand z € W, z+tz € C5 forallt € (0,1). Thus, m(z+2) = 7T($)+f01 (Vr(z+tz), z)dt >
0, and we have m(x + z) > m(x), showing that W C A,. Finally, we write W as the union
of two disjoint sets W—, W, where W def {z € W, (v, z) > 0}. Since for z € R, W C A,,
then for any 0 < ¢ < C,

inf Py ([{vx, ®1)] = [(vs, Po)| +¢) = / L{y, (v y)| = cta(y) AP (dy) > 0.

2R, (v4,2) >0 w

An analogous lower bound holds for all z € R such that (v,,z) < 0. These inequalities
combined with repeated applications of the Markov property, yields (76), by choosing k.,
such that k,c > M.

We now prove (77). Let M; > My and set F ey {z,V(z) < M;}. By Lemma A.1, we
may choose J > 1 and then M; > M large enough so that, for all € X,

J
P, <supj1 > e
=1

Jj=J
It is easily seen that, using the strong Markov property,

J

e

=1

Zm) <1/2, P, (sup

j<J

> M — MO> <1/2.  (79)

inf P < > inf P enR < inf P < )
mell?CﬂR x (H s O'EmR) = melglcmR x (O'F NR UEOR) :BEII?CHR . (/<; < UEOR)

The first term of the RHS of the previous relation is positive using arguments which are
similar to those used in the proof of (76). We write (vy, ) = (vy, <I>0>+Zf:1 (Vsey A(Py_1))+
Zle(v*,eﬁ. Let z € F*NR. P, — as., since |®; — ®;_;| < C; < My, on the event
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{1 <k <ognr < K}, [(vs, Pi)| > Mo, (vx, o) (vs, ®;) > 0, and (vs, Po)(vi, A(P;)) > 0 for
all 0 < j < k which implies

k
{0, )| = [(va, Bo)| + Y [(ve, A(P1_1) > My + km —

=1

k
Z ’U*,Gl

}<1/2

> (M —Mo)} <1/2,

k
Z ’U*,Gl

Thus, for all z € F N R, using the definition (79) of J and M,

J

Z 'U*,E[

P {J < 0gnr < K} < supP, {sup]
=1

zeX i>J

P {oenr < Kk A J} <supP, < sup Zel
zeX i<t =

which proves inf,cperr Py (K < 0gnr) > 0 and therefore (77).

5.3.2. Proof of B4 and the conditions (ii)-(iii) of Theorem 1.9. Assume that x € C = o
{2,0 < |w2| < 21} (the three other cases are similar). By Lemma 2.9, h(z) = —c,n(T5 ')
for all x € C, which is locally lipschitz. Hence, there exists an unique maximal solution
p(+;x) on [0,T,] satisfying u(0;z) = x and p(t;z) € C for all t < Ty, showing B4. Since
for t € [0,T,), dfdtl(t; D)? = 2)u(t; 2) (n(alt; ), b o (s 2)) < ~2eqlal ' u(t;2)], the
norm of the ODE solution is bounded by |u(t;z)| < (|z| — ¢4la| 1)y for all 0 < ¢t <
|z|lalc; !, which implies the condition (ii) provided T, > Tk for all z € CNB(0, K). This
result follows from the fact that the boundaries of C are repulsive consider the relative
neighborhood in C, V def V1 U Vs, of the boundaries where V1 = {x cxp > 0, (vg,x) >
0, (z, T3 v,) < 0} and Vs def {z:21 >0, (uy, ) > 0, (2, T3 u,) < 0}. Assume that there
exists s € [0,T;] such that u(s;z) € Vi (the other case can be handled similarly). Since
t — u(t; ) is continuous and V; is a relative open subset of C, there exists ¢ such that for
all 0 <t <4, u(s+t;z) € Vy. This implies that for all 0 <¢ < 4,

t
(Vay (s + t52)) — (s, pu(s52)) = —cq/ T3 (s +w2) |71 (e, Ty (s + wz))du > 0,
0

showing that, in V1, the distance to the boundary always increase. The properties above

also imply condition (iii) of Theorem 1.9.

APPENDIX A. TECHNICAL LEMMAS

Lemma A.1. Let {e}r>1 be a LP-martingale difference sequence adapted to the filtration
{Fi}r>0. For any p > 1, there exists a constant C' (depending only on p) such that,

- l p

E| sup Y ep| | < CsupE[leg]n'V?/? (80)
_1§l§n =1 k>1
i l

P [supl~? Zsk > M <CsupE[|ek|p]M PpPHIVE/2 (81)
n<l
L™= k=1
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Proof. For p > 1, applying in sequence the Doob maximal inequality and by the Burkholder
inequality for LP martingale, there exists a constant C), such that

P p/2

I
e
k=1

n

D el

k=1

E | sup

1<i<n

< C,E

Eq. (80) follows from the Minkovski inequality for p > 2,

1 p
E | sup Zsk < Cpsup E[|eg [PJnP/? (82)
1<i<n |23 k>1
and the sub-additivity inequality for 1 < p < 2,
1 p
E | sup Zek < CpsupE[lex|F]n . (83)
1<i<n |4 k>1

Eq. (81) follows from the (Birnbaum and Marshall, 1961, Theorem 1). O

Lemma A.2. Let X,Y be two non negative random variables. Then, for any p > 1, there
exists a constant Cp, (depending only on p) such that, for any M >0,

E(X+Y)PI{X+Y > M} <C,(E[XP1{X > M/2}] + E[Y?]) .
Proof. Note that 1{X+Y > M} < 1{X > M/2}+1{X < M/2}1{Y > M/2}. Therefore,
E(XPI{X +Y > M}) <E(XPI{X > M/2}) + (M/2)’P(Y > M/2)
<E(XPL{X > M/2}) +E(Y?).
The proof then follows from (X + Y)P < 2P~1(XP + YP). O
Lemma A.3. Let X be a non-negative random variable. For anyp >0, a > 1 and M,
E[XP1{X > M}] < M~ VPE[x%?] .
Proof.
E[XP1{X = M}] < (B[X%))"/* (P[X = M])*~D/* < (E[x7))Y* (M- rE[x)) /"
(]
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FIGURE 2. Dotted lines: trajectories of the interpolated process (2) for the
Random Walk Metropolis Hastings (SRWM) algorithm for a set of initial
conditions on the unit sphere between (0,7/2) for the target densities (21)
(left panel) and (26) (right panel); Solid lines: flow of the associated ODE.
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FIGURE 3. Dotted lines: trajectories of the interpolated process (2) for
the SRWM with target density (22) (left panel) and (27) (right panel) and
initial condition (1/v/2,1/+v/2). Solid lines: flow of the associated ODE.
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FIGURE 4. contour curves of the target densities (21) (left panel) and (26)
with § = .4 (right panel).
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FIGURE 5. Grey lines: A; Black lines: A, for the target densities (21)
(left panel) and (26) with § = .4 (right panel).
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FIGURE 6. Contour plot of the target densities (22) (left panel) and (27)
(right panel).
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FIGURE 7. Grey lines: A; Black lines: Ay, for the target density (22) (left
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FIGURE 8. Dotted lines: interpolated process for a set of initial conditions
on the unit sphere for the target density (22) (left panel) and (27) (right
panel). Solid lines: flow of the initial value problem g = h(u) with h(x) =
|| P Aso(x); B = 0 and A, are given in Lemma 2.9 (left panel) and 3, Ay
are given by Lemma 2.16 (right panel).
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