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Abstract. Fluid limit techniques have become a central tool to analyze queueing net-

works over the last decade, with applications to performance analysis, simulation, and

optimization.

In this paper some of these techniques are extended to a general class of skip-free

Markov chains. As in the case of queueing models, a fluid approximation is obtained

by scaling time, space, and the initial condition by a large constant. The resulting fluid

limit is the solution of an ordinary differential equation (ODE) in “most” of the state

space. Stability and finer ergodic properties for the stochastic model then follow from

stability of the set of fluid limits. Moreover, similar to the queueing context where fluid

models are routinely used to design control policies, the structure of the limiting ODE

in this general setting provides an understanding of the dynamics of the Markov chain.

These results are illustrated through application to Markov Chain Monte Carlo.
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The use of ordinary differential equations (ODE) to analyse Markov chain has been first

suggested by Kurtz (1970). This idea was later refined by (Newell, 1982), who introduced

the so-called fluid approximations with applications to queueing networks. Beginning in

the 1990s fluid models have been used to address delay in complex networks (Cruz, 1991)

and bottleneck analysis in (Chen and Mandelbaum, 1991). The latter work followed an al-

ready extensive research program on diffusion approximations for networks (see (Harrison,

2000; Whitt, 2002; Chen and Yao, 2001) and the references therein).

The purpose of this paper is to extend the fluid-limit techniques to a general class of

discrete-time Markov chains {Φk} on d-dimensional Euclidean state-space X. Recall that

a Markov chain is called skip-free if the increments (Φk+1 − Φk) are uniformly bounded

in norm by a deterministic constant for each k and each initial condition. For example,

Markov chain models of queueing systems are typically skip-free. Here we consider a

relaxation of this assumption in which the increments are assumed bounded in an Lp-

sense. Consequently, we find that the chain can be represented by the following additive

noise model,

Φk+1 = Φk + ∆(Φk) + εk+1 , (1)

where {εk} is a martingale increment sequence w.r.t. the natural filtration of the process

{Φk}, and ∆: X → X is bounded. Associated to this chain, we consider the following

sequence of continuous time processes

ηα
r (t;x)

def
= r−1Φbtr1+αc, ηα

r (t; 0) = r−1Φ0 = x , r ≥ 0, α ≥ 0, x ∈ X , (2)

obtained by interpolating and scaling the Markov chain in space and time. A fluid limit

is obtained as a sub-sequential weak-limit of a sequence {ηα
rn

(·;xn)}, where {rn} and {xn}
are two sequences such that limn→∞ rn = ∞ and limn→∞ xn = x. The set of all such

limits is called the fluid limit model. In queueing network applications, a fluid limit is easy

to interpret in terms of mean flows; in most situations it is a solution of a deterministic

set of equations depending on network characteristics as well as the control policy (see e.g.

Chen and Mandelbaum (1991); Dai (1995); Dai and Meyn (1995); Chen and Yao (2001);

Meyn (2007)). The existence of limits and the continuity of the fluid limit model may be

established under general conditions on the increments (see Theorem 1.2).

The fact that stability of the fluid limit model implies stability of the stochastic network

was established in a limited setting in Malyšev and Menc’̌sikov (1979). This was extended

to a very broad class of multiclass networks by Dai (1995). A key step in the proof of

these results is a multi-step state-dependent version of Foster’s criterion introduced in

Malyšev and Menc’̌sikov (1979) for countable state space models, and later extended to

general state-space in Meyn and Tweedie (1993, 1994). The main result of Dai (1995) only

established positive recurrence. Moments and rates of convergence to stationarity of the

Markovian network model were obtained in Dai and Meyn (1995) based on an extension

of Meyn and Tweedie (1994) using the subgeometric f -ergodic theorem in Tuominen and

Tweedie (1994) (recently extended and simplified in work of Douc et al. (2004)). Converse

theorems have appeared in Dai and Weiss (1996); Dai (1996); Meyn (1995) that show that,

under somewhat strong conditions, instability of the fluid model implies transience of the
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stochastic network. The counterexamples in Gamarnik and Hasenbein (2005); Dai et al.

(2004) show that some additional conditions are necessary to obtain a converse.

Under general conditions, including the generalized skip-free assumption, a fluid limit

η is a weak solution (in a sense given below) to the homogeneous ODE,

µ̇ = h(µ) . (3)

The vector field h is defined as a radial limit of the function ∆ appearing in (1) under

appropriate renormalization.

Provided that the increments {εk} in the decomposition (1) are tight in Lp, stability of

the fluid limit model implies finite moments in steady state, as well as polynomial rates

of convergence to stationarity - see Theorem 1.4.

One advantage of the ODE approach over the usual Foster-Lyapunov approach to stabil-

ity is that the ODE model provides insight into Markov chain dynamics. In the queueing

context the ODE model has many other applications, such as simulation variance reduction

(Henderson et al., 2003) and optimization (Chen and Meyn, 1999).

The remainder of the paper is organized as follows. Section 1.1 contains notation

and assumptions, along with a construction of the fluid limit model. The main result is

contained in section 1.2, where it is shown that stability of the fluid limit model implies the

existence of polynomial moments as well as polynomial rates of convergence to stationarity

(known as (f, r)-ergodicity). Fluid limits are characterized in section 1.3. Proposition 1.5

provides conditions that guarantee that a fluid limit coincides with the weak solutions of

the ODE (3).

These results are applied to establish (f, r)-ergodicity of the random-walk Metropolis-

Hastings algorithm for super-exponential densities in Section 2.1 and sub-exponential den-

sities in Section 2.2. In examples 2 and 4, the fluid limit model is stable, and any fluid

limit is a weak solution of the ODE (3), yet some fluid limits are non-deterministic.

The conclusions contain proposed extensions including diffusion limits of the form ob-

tained in Harrison (2000); Whitt (2002); Chen and Yao (2001), and application of ODE

methods for variance reduction in simulation and MCMC.

1. Assumptions and Statement of the results

1.1. Fluid Limit: definitions. We consider a Markov chain Φ
def
= {Φk}k≥0 on a d-

dimensional Euclidean space X equipped with its Borel sigma-field X . We denote by

{Fk}k≥0 the natural filtration. The distribution of Φ is specified by its initial state Φ0 =

x ∈ X and its transition kernel P . We write Px for the distribution of the chain conditional

on the initial state Φ0 = x and Ex for the corresponding expectation.

Denote by C(R+,X) the space of continuous X-valued functions on the infinite time in-

terval [0,∞). We equip C(R+,X) with the local uniform topology. Denote by D(R+,X) the

space of X-valued right-continuous functions with left limits on the infinite time interval

[0,∞), hereafter cad-lag functions. This space is endowed with the Skorokhod topology.

For 0 < T < +∞, denote by C([0, T ],X) (resp. D([0, T ],X)) the space of X-valued continu-

ous functions (resp. cadlag functions) defined on [0, T ], equipped with the uniform (resp.

Skorokhod) topology.
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For x ∈ X, α ≥ 0, and r > 0, consider the following interpolated process,

ηα
r (t;x)

def
= r−1Φbtr1+αc, ηα

r (t; 0) = r−1Φ0 = x , (4)

where b·c stands for the lower integer part. Denote by Qα
r;x the image probability on

D(R+,X) of Px by ηα
r (·;x). In words, the renormalized process is obtained by scaling the

Markov chain in space, time and initial condition. This is made precise in the following,

Definition 1.1 (α-Fluid Limit). Let α ≥ 0 and x ∈ X. A probability measure Qα
x on

D(R+,X) is said to be an α- fluid limit if there exist sequences of scaling factors {rn} ⊂ R+

and initial states {xn} ⊂ X satisfying limn→∞ rn = +∞ and limn→∞ xn = x such that

{Qα
rn;xn

} converges weakly to Qα
x on D(R+,X) (denoted Qα

rn;xn
⇒ Qα

x).

The set {Qα
x , x ∈ X} of all such limits is referred to as the α-fluid limit model. An

α-fluid limit Qα
x is said to be deterministic if there exists a function g ∈ D(R+,X) such

that Qα
x = δg, the Dirac mass at g.

Assume that, Ex[|Φ1|] < ∞, for all x ∈ X where | · | denotes the Euclidean norm, and

consider the following decomposition,

Φk = Φk−1 + ∆(Φk−1) + εk , k ≥ 1 , (5)

where

∆(x)
def
= Ex[Φ1 − Φ0] = Ex [Φ1] − x for all x ∈ X , (6)

εk
def
= Φk − E[Φk|Fk−1] for all k ≥ 1 . (7)

In the sequel, we assume that

B1 There exists p > 1 such that limK→∞ supx∈X Ex[|ε1|p
�{|ε1| ≥ K}] = 0.

B2 There exists β ∈ [0, 1∧ (p−1) ) such that N(β,∆)
def
= supx∈X

{

(1 + |x|β)|∆(x)|
}

<

∞ .

Theorem 1.2. Assume B1 and B2. Then, for all 0 ≤ α ≤ β and any sequences {rn} ⊂ R+

and {xn} ⊂ X such that limn→∞ rn = +∞ and limn→∞ xn = x, there exists a probability

measure Qα
x on C(R+,X) and subsequences {rnj

} ⊆ {rn} and {xnj
} ⊆ {xn} such that

Qα
rnj

;xnj
⇒ Qα

x . Furthermore, for all 0 ≤ α < β, the α-fluid limits are trivial in the sense

that Qα
x = δg with g(t) ≡ x.

Note that, for any x ∈ X and 0 ≤ α ≤ β, Qα
x(η, η(0) = x) = 1, showing that x is the initial

point of the fluid limit.

1.2. Stability of Fluid Limits and Markov Chain Stability. There are several no-

tions of stability that appeared in the literature (see (Meyn, 2001, Theorem 3) and the

surrounding discussion). We adopt the notion of stability introduced in Stolyar (1995).

Definition 1.3 (Stability). The α-fluid limit model is said to be stable if there exist T > 0

and ρ < 1 such that for any x ∈ X with |x| = 1,

Qα
x

(

η ∈ D(R+,X), inf
0≤t≤T

|η(t)| ≤ ρ

)

= 1 . (8)
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Let f : X → [1,∞) and Lf
∞ the vector space of all measurable functions g on X such

that supx∈X |g(x)|/f(x) is finite. Lf
∞ equipped with the norm |g|f def

= supx∈X |g(x)|/f(x)

is a Banach space.

Denote by ‖·‖f the f -total variation norm, defined for any finite signed measure ν as

‖ν‖f = sup|g|≤f |ν(g)|.

We recall some basic definitions on Markov chains on general state space; see Meyn and

Tweedie (1993) for an in-depth presentation. A chain is said phi-irreducible, if there exists

a σ-finite measure φ such that
∑

n≥0 Pn(x,A) > 0 for all x ∈ X whenever φ(A) > 0. A set

C ∈ X is νm-small if there exist a non-trivial measure νm and a positive integer m such

that such that Pm(x, ·) ≥ �C(x)νm(·). Petite sets are a generalization of small sets : a set

C is said petite if there exists a distribution a on the positive integers and a distribution

ν such that
∑

n≥0 a(n)Pn(x, ·) ≥ �C(x)ν(·). Finally, an aperiodic chain is a chain such

that the greatest common divisor of the set

{m,C is νm-small and νm = δmν for some δm > 0} ,

for some small set C. For a phi-irreducible aperiodic chain, the petite sets are small (Meyn

and Tweedie, 1993, Proposition 5.5.7).

Let {r(n)}n∈N be a sequence of positive real numbers. An aperiodic phi-irreducible

positive Harris chain with stationary distribution π is called (f, r)-ergodic if

lim
n→∞

r(n) ‖Pn(x, ·) − π‖f = 0

for all x ∈ X. If P is positive Harris recurrent with invariant probability π, the fundamental

kernel Z is defined as Z
def
= (Id − P + Π)−1, where the kernel Π is Π(x, ·) ≡ π(·), for all

x ∈ X and Id is the identity kernel. For any measurable function g on X, the function

ĝ = Zg is a solution to the Poisson equation, whenever the inverse is well defined (see

Meyn and Tweedie (1993)).

The following theorem may be seen as an extension of (Dai and Meyn, 1995, Theorem

5.5), which relates the stability of the fluid limit to the (f, r)-ergodicity of the original

chain.

Theorem 1.4. Let {Φk}k∈N be a phi-irreducible and aperiodic Markov chain such that

compact sets are petite. Assume B1 and B2 and the β-fluid limit model is stable. Then,

for any 1 ≤ q ≤ (1 + β)−1p,

(i) the Markov chain {Φk}k∈N is
(

f (q), r(q)
)

-ergodic with f (q)(x)
def
= 1 + |x|p−q(1+β) and

r(q)(n) = nq−1.

(ii) the fundamental kernel Z is a bounded linear transformation from Lf(q)

∞ to Lf(q−1)

∞ .

1.3. Characterization of the fluid limits. Theorem 1.4 relates the ergodicity of the

Markov chain to the stability of the fluid limit and begs the question: how can we determine

if the β-fluid model is stable ? To answer this question we first characterize the set of fluid

limits.

In addition to Assumptions B1-B2 we require conditions on the limiting behavior of the

function ∆.
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B3 There exist an open cone O ⊆ X\{0} and a continuous function ∆∞ : O → X such

that, for any compact subset H ⊆ O,

lim
r→+∞

sup
x∈H

∣

∣

∣
rβ|x|β∆(rx) − ∆∞(x)

∣

∣

∣
= 0 ,

where β is given by B2.

The easy situations is when O = X\{0}, in which case the radial limit limr→∞ rβ|x|β∆(rx)

exists for x 6= 0. Though this condition is met in examples of interest, there are several

situations for which the radial limits do not exist for directions belonging to some low-

dimensional manifolds of the unit sphere. Let h be given by

h(x)
def
= |x|−β ∆∞(x) . (9)

A function µ : I → X (where I ⊂ R+ is an interval which can be open or closed, bounded

or unbounded) is said to be a solution of the ODE (3) on I with initial condition x if µ is

continuously differentiable on I, for all t ∈ I µ(t) ∈ O, µ(0) = x and µ̇(t) = h ◦ µ(t). The

following theorem shows that the fluid limits restricted to O evolve deterministically and

more precisely, that their supports on O belong to the flow of the ODE.

Proposition 1.5. Assume B1, B2 and B3. For any 0 ≤ s ≤ t, define

A(s, t)
def
=
{

η ∈ C(R+,X) : η(u) ∈ O for all u ∈ [s, t]
}

. (10)

Then, for any x ∈ X and any β-fluid limit Q
β
x, on A(s, t),

sup
s≤u≤t

∣

∣

∣

∣

η(u) − η(s) −
∫ u

s
h ◦ η(v)dv

∣

∣

∣

∣

= 0 , Qβ
x − a.s.

Under very weak additional conditions, one may assume that the solutions of the ODE

(3) with initial condition x ∈ O exist and are unique on a non-vanishing interval [0, Tx].

In such case, Proposition 1.5 provides a handy description of the fluid limit.

B4 Assume that for all x ∈ O, there exists Tx > 0 such that the ODE (3) with initial

condition x has a unique solution, denoted µ(·;x) on an interval [0, Tx].

Assumption B4 is satisfied if ∆∞ is locally Lipschitz on O; in such case, h is locally

Lipschitz on O and it then follows from classical results on the existence of solutions of

the ODE (see e.g. Verhulst (1996)) that, for any x ∈ O, there exists Tx > 0 such that, on

the interval [0, Tx], the ODE (3) has a unique solution µ with initial condition µ(0) = x.

In addition, if the ODE (3) has two solutions µ1 and µ2 on an interval I which satisfy

µ1(t0) = µ2(t0) = x0 for some t0 ∈ I, then µ1(t) = µ2(t) for any t ∈ I.

An elementary application of Proposition 1.5 shows that, under this additional assump-

tion, a fluid limit starting at x0 ∈ O coincides with the solution of the ODE (3) with initial

condition x0 on a non-vanishing interval.

Theorem 1.6. Assume B1 to B4. Let x ∈ O. Then, there exists Tx > 0 such that

Q
β
x = δµ(·;x) on D([0, Tx],X).

As a corollary of Theorem 1.6, we have
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Corollary 1.7. Assume that O = X \ {0} in B3. Then all β-fluid limits are deterministic

and solve the ODE (3). Furthermore, for any ε > 0 and x ∈ X, and any sequences

{rn} ⊂ R+ and {xn} ⊂ X such that limn→∞ rn = +∞ and limn→∞ xn = x,

lim
n

Prnxn

(

sup
0≤t≤Tx

∣

∣

∣
ηβ

rn
(t;xn) − µ(t;x)

∣

∣

∣
≥ ε

)

= 0 .

Hence, the fluid limit only depends on the initial value x and does not depend upon the

choice of the sequences {rn} and {xn}.
The last step is to relate the stability of the fluid limit (see (8)) to the behavior of the

solutions of the ODE, when such solutions are well-defined. From the discussion above, we

may deduce a first elementary stability condition. Assume that B3 holds with O = X\{0}.
In this case, the fluid limit model is stable if there exist ρ < 1 and T < ∞ such that, for

any |x| = 1, inf [0,T ] |µ(·;x)| < ρ, i.e. the solutions of the ODE enter a sphere of radius

ρ < 1 before a given time T .

Theorem 1.8. Let {Φk}k∈N be a phi-irreducible and aperiodic Markov chain such that

compact sets are petite. Let ρ, 0 < ρ < 1 and T > 0. Assume that B1 to B4 hold

with O = X \ {0}. Assume in addition that, for any x satisfying |x| = 1, the solution

µ(·;x) is such that inf [0,T∧Tx] |µ(·;x)| ≤ ρ. Then, the β-fluid limit model is stable and the

conclusions of Theorem 1.4 hold.

When B3 holds for a strict subset of the state space O ( X \ {0}, the situation is more

difficult, because some fluid limits are not solutions of the ODE. Regardless, under general

assumptions stability of the ODE implies stability of the fluid limit model.

Theorem 1.9. Let {Φk}k∈N be a phi-irreducible and aperiodic Markov chain such that

compact sets are petite. Assume that B1 to B4 hold with O ( X \{0}. Assume in addition

that

(i) there exists T0 > 0 such that, for any x, |x| = 1, and any β-fluid limit Q
β
x,

Qβ
x (η : η([0, T0]) ∩ O 6= ∅) = 1 . (11)

(ii) for any K > 0, there exist TK > 0 and 0 < ρK < 1 such that for any x ∈ O, |x| ≤ K,

inf
[0,TK∧Tx]

|µ(·;x)| ≤ ρK . (12)

(iii) for any compact set H ⊂ O and any K,

ΩH

def
= {µ(t;x) : x ∈ H, t ∈ [0, Tx ∧ TK ]}

is a compact subset of O.

Then, the β-fluid model is stable and the conclusions of Theorem 1.4 hold.

The first condition (i) implies that each β-fluid limit reaches in a finite time the set

O. When the initial condition x 6= 0 does belongs to O, this condition is automatically

fulfilled. When x does not belong to O, this condition typically requires that there is a

force driving the chain into O. The verification of this property generally requires some

problem-dependent and sometimes intricate constructions (see e.g. Example 2). The
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second condition (ii) implies that the solution µ(·;x) of the ODE with initial point x ∈ O

reaches a ball inside the unit sphere before approaching the singularity. This also means

that the singular set is repulsive for the solution of the ODE.

2. The ODE method for the Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (see Robert and Casella (2004) and the ref-

erences therein) is a popular computational method for generating samples from virtually

any distribution π. In particular there is no need for the normalising constant to be known

and the space X = Rd (for some integer d) on which it is defined can be high dimensional.

The method consists of simulating an ergodic Markov chain {Φk}k≥0 on X with transition

probability P such that π is the stationary distribution for this chain, i.e πP = π.

The MH algorithm requires the choice of a proposal kernel q. In order to simplify the

discussion, we will here assume that π and q admit densities with respect to the Lebesgue

measure λLeb, denoted with an abuse of notation π and q hereafter. We denote by Q

the probability defined by Q(A) =
∫

A q(y)λLeb(dy). The rôle of the kernel q consists

of proposing potential transitions for the Markov chain {Φk}. Given that the chain is

currently at x, a candidate y is accepted with probability α(x, y) defined as α(x, y) =

1 ∧ π(y)
π(x)

q(y,x)
q(x,y) .Otherwise it is rejected and the Markov chain stays at its current location

x. The transition kernel P of this Markov chain takes the form for x ∈ X and A ∈ B(X)

P (x,A) =

∫

A−x
α(x, x + y)q(x, x + y)λLeb(dy)

+ �A(x)

∫

X−x
{1 − α(x, x + y)}q(x, x + y)λLeb(dy) , (13)

where A − x
def
= {y ∈ X, x + y ∈ A}. The Markov chain P is reversible with respect to π,

and therefore admits π as invariant distribution. For the purpose of illustration, we focus

on the symmetric increments random-walk MH algorithm (hereafter SRWM), in which

q(x, y) = q(y − x) for some symmetric distribution q on X. Under these assumptions the

acceptance probability simplifies to α(x, y) = 1∧[π(y)/π(x)]. For any measurable function

W : X → X,

Ex [W (Φ1)] − W (x) =

∫

Ax

{W (x + y) − W (x)}q(y)λLeb(dy)

+

∫

Rx

{W (x + y) − W (x)}π(x + y)

π(x)
q(y)λLeb(dy) ,

where Ax
def
= {y ∈ X, π(x + y) ≥ π(x)} is the acceptance region (moves toward x + Ax are

accepted with probability one) and Rx
def
= X \ Ax is the potential rejection region. From

(Roberts and Tweedie, 1996, Theorem 2.2), we get the following basic result.

Theorem 2.1. Suppose that the target density π is positive and continuous and that q

is bounded away from zero, i.e. there exist δq > 0 and εq > 0 such that q(x) ≥ εq for

|x| ≤ δq. Then, the random-walk-based Metropolis algorithm on {X,X} is λLeb-irreducible,

aperiodic and every non-empty bounded set is small.
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In all the sequel, we assume that q has a moment of order p > 1. To apply the results

presented in Section 1, we must first compute ∆(x) = Ex[Φ1]−x, i.e. to set W (x) = x in

the previous formula. Since q is symmetric and therefore zero-mean, the previous relation

boils down to

∆(x) =

∫

Rx

y

(

π(x + y)

π(x)
− 1

)

q(y)λLeb(dy) . (14)

Note that, for any x ∈ X, |ε1| ≤ |Φ1 − Φ0| + m Px-a.s. , where m =
∫

|y|q(y)λLeb(dy).

Therefore, for any K > 0,

Ex [|ε1|p�{|ε1| ≥ K}] ≤ 2pEx[(|Φ1 − Φ0|p + mp)�{|Φ1 − Φ0| ≥ K − m}]

≤ 2p

∫

|y|p�{|y| ≥ K − m}q(y)λLeb(dy) ,

showing that assumption B1 is satisfied as soon as the increment distribution has a

bounded p-th moment. Because on the set Rx, π(x + y) ≤ π(x), we similarly have

|∆(x)| ≤
∫

|y|q(y)λLeb(dy) showing that B2 is satisfied with β = 0; nevertheless, in some

examples, for β = 0, ∆∞ can be zero and the fluid limit model is unstable. In these cases,

it is required to use larger β (see Section 2.2).

2.1. Super-exponential target densities. In this section, we focus on target density π

on X which are super-exponential. Define n(x)
def
= x/|x|.

Definition 2.2 (Super-exponential pdf). A probability density function π is said to be

super-exponential if π is positive, has continuous first derivatives, and lim|x|→∞〈n(x), `(x)〉 =

−∞ where `(x)
def
= ∇ log π(x).

The condition implies that for any H > 0 there exists R > 0 such that

π(x + an(x))

π(x)
≤ exp(−aH) for |x| ≥ R, a ≥ 0 , (15)

that is, π(x) is at least exponentially decaying along any ray with the rate H tending to

infinity as |x| goes to infinity. It also implies that for x large enough the contour manifold

Cx
def
= {y ∈ X, π(x + y) = π(x)} can be parameterized by the unit sphere S, since each ray

meets Cx at exactly one point. In addition, for sufficiently large |x|, the acceptance region

Ax is the set enclosed by the contour manifold Cx (see Fig. 1). Denote by A	 B denotes

the symmetric difference of the sets A and B.

Definition 2.3 (q-Radial limit). We say that the family of rejection regions {Rrx, r ≥
0, x ∈ O} has q-radial limits over the open cone O ⊆ X \ {0} if there exists a collection of

sets {R∞,x, x ∈ O} such that, for any compact subset H ⊆ O, limr→∞ supx∈H Q (Rrx 	 R∞,x) =

0.

Proposition 2.4. Assume that the target density π is super-exponential. Assume in

addition that the family {Rrx, r ≥ 0, x ∈ O} has a q-radial limit over an open cone O ⊆
X \ {0}. Then, for any compact set H ⊂ O, limr→∞ supx∈H |∆(rx) − ∆∞(x)| = 0, where

∆∞(x)
def
= −

∫

R∞,x
yq(y)λLeb(dy).

The proof is postponed to Section 5.1. The definition of the limiting field ∆∞ becomes

simple when the rejection region radially converges to an half-space.
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x + {y, 〈y, `(x)〉 < 0}

n(x)

x

x + Rx

x + Cx

x + Ax

`(x) = ∇ log π(x)

Figure 1

Definition 2.5 (q-Regularity in the tails). We say that the target density π is q-regular

in the tails over O if the family {Rrx, r ≥ 0, x ∈ O} has q-radial limits over an open cone

O ⊆ X \ {0} and there exists a continuous function `∞ : X \ {0} → X such that, for all

x ∈ O,

Q (R∞,x 	 {y ∈ X, 〈y, `∞(x)〉 < 0}) = 0 . (16)

Regularity in the tails holds with `∞(x) = limr→∞ n(`(rx)) when the curvature at 0 of

the contour manifold Crx goes to zero as r → ∞; nevertheless, this condition may still hold

in situations where there exist a sequence {xn} with lim |xn| = ∞ such that the curvature

of the contour manifolds Cxn at zero can grow to infinity (see example 1 and 2). Assume

that

q(x) = det−1/2(Σ) q0(Σ
−1/2x) , (17)

where Σ is a positive definite matrix and q0 is a rotationally invariant distribution, i.e.

q0(Ux) = q0(x) for any unitary matrix U , and is such that
∫

X

y2
1 q0(y)λLeb(dy) < ∞ .

Proposition 2.6. Assume that the target density π is super-exponential and q-regular

in the tails over the open cone O ⊆ X \ {0}. Then, the SRWM algorithm with proposal q

given in (17) satisfies assumption B3 on O with

∆∞(x) = m1(q0)
Σ`∞(x)

|
√

Σ`∞(x)|
, (18)

where `∞ is defined in (16) and m1(q0)
def
=
∫

X
y1�{y1≥0}q0(y)λLeb(dy) > 0, where y =

(y1, . . . , yd).

The proof is given in Section 5.1. If Σ = Id and `∞(x) = limr→∞ n(`(rx)) then the

ODE may be seen as a version of steepest ascent algorithm to maximize log π. It may

appear that convergence would be faster if m1(q0) is increased. While it is true for the

ODE, we cannot reach such a positive conclusion for the algorithm itself because we do

not control the fluctuation of the algorithm around its limit.
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2.1.1. Regular case. The tail regularity condition and the definition of the ODE limit are

more transparent in a class of models which are very natural in many statistical contexts,

namely, the exponential family. Following Roberts and Tweedie (1996), define the class

P to consist of those everywhere positive densities with continuous second derivatives π

satisfying

π(x) ∝ g(x) exp {−p(x)} , (19)

where

• g is a positive function slowly varying at infinity, i.e. for any K > 0,

lim sup
|x|→∞

inf
|y|≤K

g(x + y)

g(x)
= lim sup

|x|→∞
sup
|y|≤K

g(x + y)

g(x)
= 1 , (20)

• p is a positive polynomial in X of even order m and lim|x|→∞ pm(x) = +∞, where

pm denotes the polynomial consisting only of the p’s m-th order terms.

Proposition 2.7. Assume that π ∈ P and let q be given by (17). Then, π is super-

exponential, q-regular in the tails over X \ {0} with `∞(x) = −n [∇pm (n(x))]. For any

x ∈ X\{0}, there exists Tx > 0 such that the ODE µ̇ = ∆∞(µ) with initial condition x and

∆∞ given by (18) has a unique solution on [0, Tx) and limt→T−

x
µ(t;x) = 0. In addition,

the fluid limit Q0
x is deterministic on D([0, Tx],X), with support function µ(·;x).

The proof is skipped for brevity (see Fort et al. (2006)). Because all the solutions of the

initial value problem µ̇ = −m1(q0)
√

Σn[
√

Σ∇pm(n(µ))], µ(0) = x are zero after a fixed

amount of time T for any initial condition on the unit sphere, we may apply Theorem 1.8.

We have, from Theorem 2.1 and Theorem 1.8

Theorem 2.8. Consider the SRWM Markov chain with target distribution π ∈ P and

increment distribution q having a moment of order p > 1 and satisfying (17). Then for

any 1 ≤ u ≤ p, the SRWM Markov chain is (fu, ru)-ergodic with

fu(x) = 1 + |x|p−u, ru(t) ∼ tu−1 .

Example 1. To illustrate our findings, consider the target density, borrowed from (Jarner

and Hansen, 2000, example 5.3)

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x

2
2) exp

(

−(x2
1 + x2

2)
)

. (21)

The contour curves are illustrated in Figure 4. They are almost circular except from some

small wedges by the x-axis. Due to the wedges, the curvature of the contour manifold at

(x, 0) is (x6 − 1)/x and therefore tends to infinity along the x-axis (Jarner and Hansen

(2000)). Since π ∈ P, Proposition 2.7 shows that π is super-exponential, regular in

the tails and `∞(x) = −n(x). Taking q ∼ N (0, σ2Id), ∆∞(x) = −σn(x)/
√

2π and the

(Caratheodory) solution of the initial value problem µ̇ = ∆∞(µ), µ(0) = x are given by

µ(t;x) = (|x| − σt/
√

2π)�{σt ≤
√

2π|x|}x/|x|. Along the sequence {xk
def
= (k,±k−4)}k≥1,

the normed gradient n[`(xk)] converges to (0,±1), showing that whereas `∞ is the radial

limit of the normed gradient n[`] (i.e. for any u ∈ S, limλ→∞ n[`(λu)] = `∞(u)),

lim sup|x|→∞ |n[`(x)] − `∞(x)| = 2. Therefore, the normed gradient n[`(x)] does not have

a limit as |x| → ∞ along the x-axis. Nevertheless the fluid limit exists, and is extremely
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simple to determine. Hence, the ergodicity of the SRWM sampler with target distribution

(21) may be established (note that for this example the theory developed in Roberts and

Tweedie (1996) and in Jarner and Hansen (2000) does not apply). The functions ∆ and

∆∞ are displayed in Figure 5. The flow of the initial value problem µ̇ = ∆∞(µ) for a set

of initial conditions on the unit sphere between (0, π/2) is displayed in Fig. 2.

2.1.2. Irregular case. We give an example for which in Proposition 2.4, O ( X \ {0}.

Example 2. In this example (also borrowed from Jarner and Hansen (2000)), we consider

the mixture of two Gaussian distributions on R2. For some a2 > 1 and 0 < α < 1, set

π(x) ∝ α exp
(

−(1/2)x′Γ−1
1 x

)

+ (1 − α) exp
(

−(1/2)x′Γ−1
2 x

)

, (22)

where Γ−1
1

def
= diag(a2, 1) and Γ−1

2
def
= diag(1, a2). The contour curves for π with a = 4

are illustrated in Fig. 6. We see that the contour curves have some sharp bends along

the diagonals that do not disappear in the limit even though the contour curves of the

two components of the mixtures are smooth ellipses. (Jarner and Hansen, 2000, Eq.(51))

shows indeed that the curvature of the contour curve on the diagonal tends to infinity.

As shown in the following Lemma, this target density is however regular in the tails over

O = X \ {x = (x1, x2) ∈ R2, |x1| = |x2|} (and not over X \ {0}). More precisely:

Lemma 2.9. For any ε > 0, there exist M and K such that

sup
|x|≥K,| |x1|−|x2| |≥M

|∆(x) − ∆∞(x)| ≤ ε , (23)

where ∆∞(x)
def
= −

∫ �
R∞,x(y) yq(y)λLeb(dy) with R∞,x

def
= {y, 〈y,Γ−1

2 x〉 ≥ 0} if |x1| > |x2|
and R∞,x

def
= {y, 〈y,Γ−1

1 x〉 ≥ 0} otherwise.

The proof is postponed to Section 5.2. Since q satisfies (17), when Σ = Id, for any x ∈ O

we have either ∆∞(x) = −cqn(Γ−1
2 x) if |x1| > |x2| or ∆∞(x) = −cqn(Γ−1

1 x) if |x1| < |x2|,
where cq is a constant depending on the increment distribution q. This is illustrated in

Figure 7 which displays the functions ∆ and ∆∞ and shows that these two functions are

asymptotically close outside a band along the main diagonal. The flow of the initial value

problem µ̇ = ∆∞(µ) for a set of initial conditions on (0, π/2) are displayed in Figure 8.

We now prove that Theorem 1.9 applies. Conditions B1-B2 hold as discussed above.

Condition B3 results from Lemma 2.9. It remains to prove that B4 and conditions (i) to

(iii) are verified. The proof of condition (i) is certainly the most difficult to check in this

example.

Proposition 2.10. Consider the SRWM Markov chain with target distribution given by

(22). Assume that q is rotationally invariant and with compact support. Then B4, and

conditions (i), (ii), and (iii) of Theorem 1.9 hold.

A detailed proof is provided in Section 5.2. Note that the fluid limit model is not

deterministic in this example: for x on the diagonal in X, the support of the fluid limit

Q0
x consists of two trajectories, which are each solutions of the ODE. This is illustrated

in Figure 3. By Theorem 1.9 and the discussions above, we may conclude that, if the

increment distribution q is compactly supported, the SRWM Markov chain with target
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distribution π given by (22) is (fu, rs)-ergodic with fu(x) = 1+ |x|u and rs(t) ∼ ts for any

u ≥ 0 and s ≥ 0.

2.2. Subexponential density. In this section, we focus on target densities π on X which

are subexponential. We assume that q satisfies (17) and has moment of order p ≥ 2. This

section is organized as above: we start with the regular case (Example 3) and then consider

the irregular case (Example 4).

Definition 2.11 (subexponential pdf). A probability density function π is said to be

subexponential if π is positive with continuous first derivatives, 〈n(x), n(`(x))〉 < 0 for all

x sufficiently large, and lim|x|→∞ |`(x)| = 0.

The condition implies that for any R < ∞, lim|x|→∞ sup|y|≤R π(x + y)/π(x) = 1, which

implies that lim|x|→∞ |∆(x)| = 0. Subexponential target densities provide examples that

require the use of positive β in the normalization to get a non-trivial fluid limit model.

The condition 〈n(x), n(`(x))〉 < 0 for all sufficiently large |x| implies that for ε small

enough the contour manifold Cε can be parameterized by the unit sphere (see the discussion

above) and that for sufficiently large |x|, the acceptance region Ax is the set enclosed by

the contour manifold Cx (see Fig. 1).

Definition 2.12 (q-Regularity in the tails (subexponential)). We say that π is q-regular

in the tails over an open cone O ⊆ X\{0} if there exists a continuous function `∞ : O → X

and β ∈ (0, 1) such that, for any compact set H ⊂ O and any K > 0,

lim
r→∞

sup
x∈H

∫

Rrx∩{y,|y|≤K}

∣

∣

∣

∣

rβ|x|β
{

π(rx + y)

π(rx)
− 1

}

− 〈`∞(x), y〉
∣

∣

∣

∣

q(y)λLeb(dy) = 0 ,

lim
r→∞

sup
x∈H

Q (Rrx 	 {y, 〈`∞(x), y〉 ≥ 0}) = 0 .

Proposition 2.13. Assume that the target density π is subexponential and q-regular in

the tails over an open cone O ⊆ X \ {0} and that q satisfies (17). Then, for any compact

set H ⊂ O, limr→∞ supx∈H |rβ|x|β∆(rx) − ∆∞(x)| = 0, with

∆∞(x)
def
=

∫

{y,〈`∞(x),y〉≥0}
y〈`∞(x), y〉q(y)λLeb(dy) = m2(q0)Σ`∞(x) ,

where m2(q0)
def
=
∫

X
y2
1

�
{y1≥0}q0(y)λLeb(dy) > 0.

The proof is similar to Proposition 2.4 and is omitted for brevity. Once again, if the

curvature of the contour curve goes to zero at infinity, `∞(x) is for large x asymptotically

collinear to n[∇ log π(x)]. However, whereas |∇ log π(x)| → 0 as |x| → ∞, the renormal-

ization prevents `∞(x) to vanish at ∞; on the contrary, it converges radially to a constant

along each ray. As above, the tail regularity condition may still hold even when the curva-

ture goes to infinity; see example 3. As above, the subexponential tail regularity condition

and the definition of the ODE limit are more transparent in the weibullian family. Mim-

icking the construction above, define for δ > 0 the class Pδ to consist of those everywhere

positive densities with continuous second derivatives π satisfying

π(x) ∝ g(x) exp
{

−pδ(x)
}

, (24)
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where g is a positive function slowly varying at infinity (see (20)), p is a positive polynomial

in X of even order m with lim|x|→∞ pm(x) = +∞.

Proposition 2.14. Assume that π ∈ Pδ for some 0 < δ < 1/m and let q be given by

(17). Then, π is subexponential, q-regular in the tails with β = 1 − mδ and `∞(x) =

−δpδ−1
m (n(x))∇pm (n(x)). For any x ∈ X \ {0}, there exists Tx > 0 such that the ODE

µ̇ = h(µ) with initial condition x and h given by

h(x) = −δ|x|−(1−mδ)m2(q0)p
δ−1
m (n(x)) Σ∇pm(n(x)) , (25)

has a unique solution on [0, Tx) and limt→T−

x
µ(t;x) = 0. In addition, the fluid limit Q

β
x

is deterministic on D([0, Tx],X), with support function µ(·;x).

We may apply Theorem 1.8: from Theorem 2.1 and Proposition 2.14 we have

Theorem 2.15. Consider the SRWM Markov chain with target distribution π on Pδ and

increment distribution q having a moment of order p ≥ 2 and satisfying (17). Then for

any 1 ≤ u ≤ p/(2 − mδ), the SRWM Markov chain is (fu, ru)-ergodic with

fu(x) = 1 + |x|p−u(2−mδ) , ru(t) ∼ tu−1 .

Example 3. Consider the subexponential weibullian family derived from Example 1

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x

2
2)

δ exp
(

−(x2
1 + x2

2)
δ
)

. (26)

The contour curves are displayed in Figure 4. Since π ∈ Pδ, Proposition 2.14 shows that

π is subexponential, regular in the tails with β = 1 − 2δ and `∞(x) = −2δn(x). Tak-

ing q ∼ N (0, σ2Id), ∆∞(x) = −σ2δn(x) and the (Caratheodory) solution of the initial

value problem µ̇ = |µ|−(1−2δ)∆∞(µ), µ(0) = x are given by µ(t;x) = [|x|2(1−δ) − 2σ2δ(1 −
δ)t]0.5(1−δ)−1

n(x)�|x|2(1−δ)−2σ2δ(1−δ)t≥0 . Here again, the gradient `(x) (even properly nor-

malized) does not have a limit as |x| → ∞ along the x-axis, but the fluid limit model

is simple to determine. Hence, the ergodicity of the SRWM sampler with target distri-

bution (26) may be established (note that for this example the theory developed in Fort

and Moulines (2003) and Douc et al. (2004) do not apply). The functions ∆ and ∆∞

are displayed in Figure 5. The flow of the initial value problem µ̇ = h(µ) for a set of

initial conditions on the unit sphere between (0, π/2) are displayed in Fig. 2, together

with trajectories of the interpolated process.

Example 4. Consider the following mixture of bivariate Weibull distributions (see Patra

and Dey (1999) for applications)

π(x) ∝ α(x′Γ−1
1 x)δ−1 exp

(

−(1/2)(x′Γ−1
1 x)δ

)

+(1−α)(x′Γ−1
2 x)δ−1 exp

(

−(1/2)(x′Γ−1
2 x)δ

)

,

(27)

where Γi, i = ±1, 2 are defined in Example 2 and 0 < α < 1. Similar to Example 2, the

curvature of the contour curve on the diagonal tends to infinity; nevertheless, the target

density is regular in the tails over O = X \{x = (x1, x2) ∈ R2, |x1| = |x2|}. More precisely,

Lemma 2.16. For any ε > 0, there exist M and K such that

sup
|x|≥K,| |x1|−|x2| |≥M

∣

∣

∣
|x|β∆(x) − ∆∞(x)

∣

∣

∣
≤ ε , (28)
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where β
def
= 1−2δ, ∆∞(x)

def
= −m2(q0)|x|βδ(x′Γ−1

2 x)δ−1ΣΓ−1
2 x if |x1| > |x2|, and ∆∞(x)

def
=

−m2(q0)|x|βδ(x′Γ−1
1 x)δ−1ΣΓ−1

1 x, otherwise.

We can then establish the analogue of Proposition 2.10 for the target distribution (27),

assuming again that the proposal distribution q is with compact support. The details are

omitted for brevity. From the discussions above, the SRWM Markov chain with target

distribution π given by (27) is (fu, rs)-ergodic with fu(x) = 1 + |x|u and rs(t) ∼ ts for all

u ≥ 0, s ≥ 0.

3. Conclusions

ODE techniques provide a general and powerful approach to establishing stability and

ergodic theorems for a Markov chain. In typical applications the assumptions of this paper

hold for any p > 0 and consequently, the ergodic Theorem 1.4 asserts that the mean of

any function with polynomial growth converges to its steady-state mean faster than any

polynomial rate. The counterexample presented in Gamarnik and Meyn (2005) shows that

in general it is impossible to obtain a geometric rate of convergence even when ∆, {εk}
and the function f are bounded.

The ODE method developed within the queueing networks research community has

undergone many refinements, and has been applied in many very different contexts. Some

of these extensions might serve well in other applications, such as MCMC. In particular,

(i) Control variates have been proposed previously in MCMC to speed convergence

and construct stopping rules (Robert (1998)). The fluid model is a convenient

tool for constructing control variates for application in simulation of networks.

The resulting simulators show dramatic performance improvements in numerical

experiments: one-hundred fold variance reduction is obtained in experiments pre-

sented in Henderson and Meyn (1997) and Henderson et al. (2003) based on mar-

ginal additional computational effort. Moreover, analytical results demonstrate

that the asymptotic behavior of the controlled estimators are greatly improved

Meyn (2005, 2006, 2007). It is likely that both the theory and methodology can

be extended to other applications.

(ii) A current focus of interest in the networks community is the reflected diffusion

model obtained under a ‘heavy traffic scaling’. An analog of ‘heavy-traffic’ in

MCMC is the case β > 0 considered in this paper; the larger scaling is necessary

to obtain a non-static fluid limit (see Theorem 1.2.) We have maintained β < 1

to obtain a deterministic limit. With β = 1, we expect that a diffusion limit will

be obtained for the scaled MH algorithm under general conditions. This will be

an important tool in the subexponential case. In the fluid-setting of this paper,

when β > 0, it is necessary to assume a great deal of regularity on the densities

π and q appearing in the MH algorithm to obtain a meaningful fluid limit model.

We expect that very different regularity assumptions will be required to obtain

a diffusion limit, and that new insights will be obtained from properties of the

resulting diffusion model.
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4. Proofs of the main results

4.1. State Dependent Drift Conditions. In this section, we improve the state-dependent

drift conditions proposed by Filonov (1989) for discrete state space and later extended by

Meyn and Tweedie (1994) for general state space Markov chains (see also Meyn and

Tweedie (1993) and Robert (2000) for additional references and comments).

Following Nummelin and Tuominen (1983), we denote by Λ the set of non-decreasing

sequences r = {r(n)}n∈N satisfying limn→∞ ↓ log r(n)/n = 0 i.e. log r(n)/n converges

to zero monotonically from above. A sequence r ∈ Λ is said to be subgeometric. Exam-

ples include polynomial sequences r(n) = (n + 1)δ with δ > 0 and truly subexponential

sequences, r(n) = (n + 1)δecnγ
( c > 0 and γ ∈ (0, 1)). Denote by C the set of functions

C def
=
{

φ : [1,∞) → R+ , φ is concave, monotone nondecreasing, differentiable

and inf
{v∈[1,∞)}

φ(v) > 0, lim
v→∞

φ′(v) = 0

}

. (29)

For φ ∈ C, define Hφ(v)
def
=
∫ v
1 (1/ϕ(x))dx. The function Hφ : [1,∞) → [0,∞) is increasing

and limv→∞ Hφ(v) = ∞; see (Douc et al., 2004, Section 2). Define, for u ≥ 0, rϕ(u)
def
=

ϕ ◦ H−1
φ (u)/ϕ ◦ H−1

φ (0), where H−1
φ is the inverse of Hφ. The function u 7→ rϕ(u) is log-

concave and thus the sequence {rϕ(k)}k≥0 is subgeometric. Polynomial functions ϕ(v) =

vα, α ∈ (0, 1), are associated with polynomial sequences rϕ(k) = (1 + (1 − α)k)α/(1−α).

Proposition 4.1. Let f : X → [1,∞) and V : X → [1,∞) be measurable functions,

ε ∈ (0, 1) be a constant, and C ∈ X be a set. Assume that supC f/V < ∞ and that there

exists a stopping time τ ≥ 1 such that, for any x 6∈ C,

Ex

[

τ−1
∑

k=0

f(Φk)

]

≤ V (x) and Ex [V (Φτ )] ≤ (1 − ε)V (x) . (30)

Then, for all x /∈ C, Ex

[
∑τC

k=0 f(Φk)
]

≤
(

ε−1 ∨ supC f/V
)

V (x). If in addition we assume

that supx∈C{f(x) + Ex[V (Φ1)]} < ∞, then supx∈C Ex

[
∑τC

k=0 f(Φk)
]

< ∞.

Proof. Set τ̃
def
= τ 	Cc(Φ0) + 	C(Φ0) and define recursively the sequence {τn} by τ0 def

= 0,

τ1 def
= τ̃ , and τn def

= τn−1 + τ̃ ◦ θτn−1
, where θ is the shift operator. For any n ∈ N, define

by Φ̄n = Φτn , the chain sampled at the instants {τn}n≥0. {Φ̄n}n≥0 is a Markov chain with

transition kernel P̄ (x,A)
def
= Px(Φτ̃ ∈ A), x ∈ X, A ∈ X . Equation (30) implies that

P̄ V (x) = Ex [V (Φτ̃ )] ≤ V (x) − F (x), for all x /∈ C , (31)

where F (x)
def
= εEx

[

∑τ̃−1
k=0 f(Φk)

]

. Let τ̄C
def
= inf{n ≥ 1, Φ̄n ∈ C}. Applying the Markov

property and the bound τC ≤ τ τ̄C , we obtain for all x /∈ C,

Ex

[

τC
∑

k=0

f(Φk)

]

≤ Ex





τ̄C−1
∑

k=0

τ̃◦θτk
−1

∑

j=0

f(Φj+τk)



+ Ex

[

f(Φτ τ̄C )	{τ τ̄C <∞}

]

≤ ε−1Ex

[

τ̄C−1
∑

k=0

F (Φ̄k)

]

+

(

sup
C

f

V

)

Ex

[

V (Φτ τ̄C )	{τ τ̄C <∞}

]

.
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Furthermore, Eq. (31) and the Comparison theorem (Meyn and Tweedie (1993, Theorem

11.3.2)) applied to the sampled chain {Φ̄n}n≥0 yields

Ex

[

τ̄C−1
∑

k=0

F (Φ̄k)

]

+ Ex

[

V (Φτ τ̄C )
{τ τ̄C <∞}

]

≤ V (x), x /∈ C ,

which concludes the proof of the first claim. The second claim follows by writing for x ∈ C,

Ex

[

τC
∑

k=0

f(Φk)

]

≤ 2 sup
C

f + Ex

[


{X1 /∈ C}
τC
∑

k=1

f(Φk)

]

≤ 2 sup
C

f + Ex

[


{X1 /∈ C} EX1

[

τC−1
∑

k=0

f(Φk)

]]

≤ 2 sup
C

f +

(

ε−1 ∨ sup
C

f/V

)

Ex [
{X1 /∈ C} V (X1)]

�

Proposition 4.2. Assume that the conditions of Proposition 4.1 are satisfied with f(x) =

φ ◦ V (x) for x /∈ C with φ ∈ C. Then, for x 6∈ C, Ex

[

∑τC−1
k=0 rφ̃(k)

]

≤ M−1V (x) and

supx∈C Ex

[

∑τC−1
k=0 rφ̃(k)

]

< ∞, where,

for all t, φ̃(t)
def
= φ(Mt) and M

def
= [ε−1 ∨ sup

C
φ ◦ V/V ]−1 . (32)

Proof. It is known that U(x)
def
= Ex

[
∑σC

k=0 φ ◦ V (Φk)
]

where σC
def
= inf{k ≥ 0,Φk ∈ C},

solves the equations PU(x) = U(x) − φ ◦ V (x), x /∈ C and U(x) = φ ◦ V (x), x ∈ C

(see (Meyn and Tweedie, 1993, Theorem 14.2.3)). By Proposition 4.1, U(x) ≤ M−1 V (x)

for all x /∈ C. Hence,

PU(x) ≤ U(x) − φ̃ ◦ U(x), x /∈ C , (33)

From (33) and (Douc et al., 2004, Proposition 2.2), Ex

[

∑τC−1
k=0 rφ̃(k)

]

≤ U(x) ≤ M−1 V (x),

for x /∈ C. The proof is concluded by noting that, for x ∈ C,

Ex

[

τC−1
∑

k=0

rφ̃(k)

]

≤ rφ̃(0) + Ex

[


{Φ1 /∈ C}
τC−1
∑

k=1

rφ̃(k)

]

≤ rφ̃(0) + M−1 sup
x∈C

PV (x) < ∞ .

�

Theorem 4.3. Suppose that {Φn}n≥0 is a phi-irreducible and aperiodic Markov chain.

Assume that there exist a function φ ∈ C, a measurable function V : X → [1,∞), a

stopping time τ ≥ 1, a constant ε ∈ (0, 1) and a petite set C ⊂ X , such that,

Ex

[

τ−1
∑

k=0

φ ◦ V (Φk)

]

≤ V (x) , x 6∈ C (34)

Ex [V (Φτ )] ≤ (1 − ε)V (x) , x 6∈ C (35)

sup
C

{V + PV } < ∞ . (36)

Then P is positive Harris recurrent with invariant probability π and
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(1) for all x ∈ X, limn→∞ rφ̃(n) ‖Pn(x, ·) − π‖TV = 0 where φ̃ is defined in (32).

(2) for all x ∈ X, limn→∞ ‖Pn(x, ·) − π‖φ◦V = 0.

(3) the fundamental kernel Z is a bounded linear transformation from Lφ◦V
∞ to LV

∞.

Proof. (1-2) By (Tuominen and Tweedie, 1994, Theorem 2.1), it is sufficient to prove that

sup
x∈C

Ex

[

τC−1
∑

k=0

rφ̃(k)

]

< ∞, sup
x∈C

Ex

[

τC−1
∑

k=0

φ ◦ V (Φk)

]

< ∞

and for all x ∈ X

Ex

[

τC−1
∑

k=0

rφ̃(k)

]

< ∞, Ex

[

τC−1
∑

k=0

φ ◦ V (Φk)

]

< ∞ .

We show in Proposition 4.2 that the stated assumptions imply such bounds.

(3) By (Glynn and Meyn, 1996, Theorem 2.3), it is sufficient to prove that there exist

constants b, c < ∞ such that for all x ∈ X, PW (x) ≤ W (x)−φ◦V (x)+b�C(x) with W (x) ≤
cV (x). This follows from Proposition 4.1 which shows that supx∈C Ex

[
∑τC

k=0 φ ◦ V (Φk)
]

<

∞ and Ex

[
∑τC

k=0 φ ◦ V (Φk)
]

≤ cV (x) for all x /∈ C. �

Using an interpolation technique, we derive a rate of convergence associated to some

g-norm, 0 ≤ g ≤ φ ◦ V .

Corollary 4.4 (Theorem 4.3). For any pair (α, β) of functions satisfying α(u)β(v) ≤ u+v,

for all (u, v) ∈ R+ × R+ and all x ∈ X,

lim
n

α
(

rφ̃(n)
)

‖Pn(x, ·) − π‖β(φ◦V )∨1 = 0.

Pair of functions (α, β) satisfying this condition can be constructed by using Young’s

inequality (Krasnosel’skij and Rutitskij, 1961).

4.2. Proof of Theorem 1.2. We preface the proof by a preparatory lemma. For any

process {εk}k≥1, define

M∞(ε, n)
def
= sup

1≤l≤n

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

. (37)

Lemma 4.5. Assume B1 and B2.

(i) for all κ > 0, J and K integers with J < K,

sup
0≤k≤k+j≤K,0≤j≤J

|Φk+j − Φk| ≤ 8M∞(ε,K) + 2N(β,∆)κ−βJ + N(β,∆) + 2κ ,

where N(β,∆) is given in B2.

(ii) For all 0 ≤ α ≤ β, and all T > 0, there exists M such that,

lim
r→∞

sup
x∈X

Px

(

sup
0≤k≤k+j≤bTr1+αc

|Φk+j − Φk| ≥ Mr

)

= 0 .

(iii) For all T > 0 and ε > 0 there exists δ > 0 such that,

lim
r→∞

sup
x∈X

Px

(

sup
0≤k≤k+j≤bTr1+βc,0≤j≤bδr1+βc

|Φk+j − Φk| ≥ εr

)

= 0 .
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Proof. (i). Let 0 ≤ j ≤ J and 0 ≤ k ≤ K − j. On the set
⋂j−1

l=0 {|Φk+l| > κ},

|Φk+j − Φk| =

∣

∣

∣

∣

∣

k+j−1
∑

l=k

{Φl+1 − Φl}
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k+j
∑

l=k+1

εl

∣

∣

∣

∣

∣

+

k+j−1
∑

l=k

|∆(Φl)|

≤
∣

∣

∣

∣

∣

k+j
∑

l=k+1

εl

∣

∣

∣

∣

∣

+

k+j−1
∑

l=k

|Φl|−βN(β,∆) ≤ 2M∞(ε,K) + Jκ−βN(β,∆) , (38)

Consider now the case when |Φk+l| ≤ κ for some 0 ≤ l ≤ j − 1. Define

τj
def
= inf{0 ≤ l ≤ j − 1, |Φk+l| ≤ κ} and σj

def
= sup{0 ≤ l ≤ j − 1, |Φk+l| ≤ κ} + 1

which are respectively the first hitting time and the last exit time before j of the ball of

radius κ. Write Φk+j−Φk = (Φk+j−Φk+σj
)+(Φk+σj

−Φk+τj
)+(Φk+τj

−Φk) and consider

the three terms separately. The first term is non null if σj < j; hence,

|Φk+j − Φk+σj
| ≤

∣

∣

∣

∣

∣

∣

k+j
∑

l=k+σj+1

εl

∣

∣

∣

∣

∣

∣

+

k+j−1
∑

l=k+σj

|∆(Φl)| ≤ 2M∞(ε,K) + Jκ−βN(β,∆)

since, by definition of σj, |Φk+l| > κ for all σj ≤ l ≤ j − 1. Similarly, for the third term,

|Φk+τj
− Φk| ≤

∣

∣

∣

∣

∣

∣

k+τj
∑

l=k+1

εl

∣

∣

∣

∣

∣

∣

+

k+τj−1
∑

l=k

|∆(Φl)| ≤ 2M∞(ε,K) + Jκ−βN(β,∆) (39)

since, by definition of τj, |Φl| > κ for all 0 ≤ l < τj . Finally, the second term is bounded

by,

|Φk+σj
−Φk+τj

| ≤ |Φk+σj
−Φk+σj−1|+ |Φk+σj−1|+ |Φk+τj

| ≤ N(β,∆)+ 2M∞(ε,K)+ 2κ .

Combining the inequalities above yields the desired result.

(ii). From the previous inequality applied with κ = `r > 0 and K = J = bTr1+αc it holds

Px

(

sup
0≤k≤k+j≤bTr1+αc

|Φk+j − Φk| ≥ 4Mr

)

≤ 4pM−pr−p sup
x∈X

Ex

[

Mp
∞(ε, bTr1+αc)

]

+ �{N(β,∆) ≥ Mr} + �{2N(β,∆)T ≥ `βMr−α+β} + �{2` ≥ M} .

By Lemma A.1, the expectation tends to zero uniformly for x ∈ X. The second term tends

to zero when r → ∞. The remaining two terms are zero will ` and M chosen so that

`1+β > N(β,∆)T and M > 2`.

(iii. ) The proof follows similarly upon setting K = bTr1+βc, J = bδr1+βc and κ = `r. �

Proof of Theorem 1.2. Let α ≤ β. A sequence of probability measure on D(R+,X) is

said to be D(R+,X)-tight if it is tight in D(R+,X) and if every weak limit of a subse-

quence is continuous. By (Billingsley, 1999, Theorem 13.2, Eq. (13.7) p.140 and Corol-

lary p.142), the sequence of probability measures {Qα
rn;xn

}n≥0 is C(R+,X)-tight if (a)

lima→∞ lim supn Qα
rn;xn

{η : |η(0)| ≥ a} = 0, (b) lim supn→∞ Qα
rn;xn

{η : sup0≤t≤T |η(t) −
η(t−)| ≥ a} = 0, and (c) for all κ > 0 and ε > 0, there exist δ ∈ (0, 1) such that

lim supn Qα
rn;xn

{η : w(η, δ) ≥ ε} ≤ κ where w(η, δ)
def
= sup0≤s≤t≤T,|t−s|≤δ |η(t) − η(s)|.

Properties (a) to (c) follow immediately from Lemma 4.5. Choose α < β. Let {rn}
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and {xn} be sequences such that limn rn = ∞ and limn xn = x. Let ε > 0. We have, for

all n large enough so that |xn − x| ≤ ε/2,

Prnxn

(

sup
0≤t≤T

|ηα
rn

(t;xn) − x| ≥ ε

)

≤ Prnxn

(

sup
0≤k≤bTr1+α

n c

|Φk − rnxn| ≥ (ε/2)rn

)

,

and we conclude (b) again by Lemma 4.5(ii). �

4.3. Proof of Theorem 1.4. We preface the proof by establishing a uniform integrability

condition for the martingale increment sequence {εk}k≥1 and then for the Markov chain

{Φk}k≥0.

Lemma 4.6. Assume B1. Then, for all T > 0,

lim
b→∞

sup
|x|≥1

|x|−pEx[Mp
∞(ε, bT |Φ0|1+βc){M∞(ε, bT |Φ0|1+βc) ≥ b|Φ0|}] = 0 , (40)

Proof. Set TΦ0

def
= bT |Φ0|1+βc. For K ≥ 0, set ε̄k

def
= εk {|εk| ≤ K} and ε̃k

def
= εk {|εk| ≥

K}. By Lemma A.2, there exists a constant C (depending only on p) such that

Ex[M
p
∞(ε, TΦ0){M∞(ε, TΦ0) ≥ b|Φ0|}]

≤ CEx[M
p
∞(ε̄, TΦ0){M∞(ε̄, TΦ0) ≥ (b/2)|Φ0|}] + CEx[M

p
∞(ε̃, TΦ0)] .

Consider the first term on the right hand side of the previous inequality. Using Lemma

A.3 with a > 1 ∨ 2/p and Lemma A.1 yields

|x|−p Ex[Mp
∞(ε̄, bT |Φ0|1+βc){M∞(ε̄, TΦ0) ≥ (b/2)|Φ0|}]

≤ (b/2)−(a−1)p|x|−apEx[Map
∞ (ε̄, TΦ0)] ≤ CA(ε̄, ap)b−(a−1)p|x|−a(1−β)p/2 ,

where A(ε̄, ap)
def
= supx∈X Ex[|ε̄1|ap]. Note that, by construction, A(ε̄, ap) ≤ Kap. Similarly,

Lemma A.1 implies, Ex[Mp
∞(ε̃, TΦ0)] ≤ CA(ε̃, p)T p/2|x|{p(1+β)/2}∨(1+β), where A(ε̃, p)

def
=

supx∈X Ex[|ε̃1|p]. Therefore, since p ≥ 1+β, sup|x|≥1 |x|−pEx[Mp
∞(ε̃, TΦ0)] ≤ CT p/2A(ε̃, p).

Combining the two later inequalities,

sup
|x|≥1

|x|−pEx[M
p
∞(ε, TΦ0){M∞(ε, TΦ0) ≥ b|Φ0|}] ≤ C{Kapb−p(a−1) + A(ε̃, p)},

which goes to 0 by setting K
def
= K(b) = log(b). �

Proposition 4.7. Assume B1, B2. Then, for all T > 0,

sup
x∈X

(1 + |x|)−pEx

[

sup
0≤k≤bT |Φ0|1+βc

|Φk|p
]

< ∞ , (41)

lim
K→∞

sup
|x|≥1

|x|−pEx

[

sup
0≤k≤bT |Φ0|1+βc

|Φk|p
{

sup
0≤k≤bT |Φ0|1+βc

|Φk| ≥ K|Φ0|
}]

= 0 . (42)

Proof. Set TΦ0 = bT |Φ0|1+βc. For all r ≥ 1, applying Lemma 4.5(i) with K = J =

bT |Φ0|1+βc and κ = |Φ0| yields

sup
0≤k≤TΦ0

|Φk|r ≤ C {1 + |Φ0|r + M r
∞(ε, TΦ0)} , (43)
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for some constant C depending upon r, β,N(β,∆), T . The first assertion is then a con-

sequence of Lemma A.1. The inequality (43) applied with r = 1 implies that there exist

constants a, b > 0 such that for all |x| ≥ 1 and all large enough K,
{

sup
0≤k≤TΦ0

|Φk| ≥ K|Φ0|
}

⊂ {M∞(ε, TΦ0) ≥ (aK − b)|Φ0|} Px − a.s.

Hence, for large enough K and an appropriately chosen constant C,

sup
|x|≥1

|x|−pEx

[

sup
0≤k≤TΦ0

|Φk|p�
{

sup
0≤k≤TΦ0

|Φk| ≥ K|Φ0|
}]

≤ C sup
|x|≥1

Px [M∞(ε, TΦ0) ≥ (aK − b)|Φ0|]

+ C sup
|x|≥1

|x|−p Ex [Mp
∞(ε, TΦ0)

�{M∞(ε, TΦ0) ≥ (aK − b)|Φ0|}] .

The proof of (42) follows from Lemma 4.6. �

Proposition 4.8. Assume B1 and B2 and that there exist T < ∞ and ρ ∈ (0, 1) such

that

lim sup
|x|→∞

Px (σ > τ) = 0 ,with σ
def
= inf {k ≥ 0, |Φk| < ρ|Φ0|} , (44)

where τ
def
= σ ∧ dT |Φ0|1+βe. Then, (a) there exists M such that sup|x|≥M |x|−pEx [|Φτ |p] <

1, and (b) Ex

[

∑τ−1
k=0 |Φk|p

]

≤ C |x|p+1+β .

Proof. Set TΦ0 = dT |Φ0|1+βe. For any K ≥ 0

|x|−p Ex [|Φτ |p] = |x|−p Ex [�{τ = σ} |Φτ |p] + |x|−pEx

[�{σ > TΦ0}|ΦTΦ0
|p
]

≤ ρp + |x|−pEx

[
∣

∣

∣
ΦTΦ0

∣

∣

∣

p �{|ΦTΦ0
| ≥ K|Φ0|}

]

+ KpPx[σ > TΦ0 ] . (45)

By Proposition 4.7, one may choose K sufficiently large so that

sup
|x|≥1

|x|−pEx

[∣

∣

∣
ΦTΦ0

∣

∣

∣

p �{|ΦTΦ0
| ≥ K|Φ0|}

]

< 1 − ρp . (46)

Since lim sup|x|→∞ Px[σ > TΦ0 ] = 0, the proof of (a) follows. Since, τ ≤ TΦ0, (b) follows

from (41) and the bound Ex

[

∑τ−1
k=0 |Φk|p

]

≤ C T |x|1+βEx[sup1≤k≤TΦ0
|Φk|p]. �

The following elementary proposition relates the stability of the fluid limit model to the

condition (44) on the stopping time σ. We introduce the polygonal process that agrees

with Φk/r at the points t = kr−(1+α) and is defined by linear interpolation

η̃α
r (t;x) = r−1

∑

k≥0

{(

k + 1 − tr1+α
)

Φk +
(

tr1+α − k
)

Φk+1

} �{k ≤ tr1+α < (k + 1)} .

(47)

Denote by Q̃α
r;x the image probability on C(R+,X) of Prx by η̃α

r (t;x). The introduction

of this process allows an easier characterization of the open and closed set of C([0, T ],X)

equipped with the uniform topology, than the open and closed set of D([0, T ],X) equipped

with the Skorokhod topology. For any sequence {rn}n ⊂ R+ such that rn → +∞ and

{xn} ⊂ X such that xn → x the family of probability measures {Q̃α
rn;xn

} is tight and weakly

converges to Qα
x , the weak limit of the sequence {Qα

rn;xn
}n∈N. This can be proved following
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the same lines as in the proof of Theorem 1.2 (see e.g. (Billingsley, 1999, Theorem 7.3)).

Details are omitted.

Proposition 4.9. Assume B1, B2 and that the β-fluid limit model {Qβ
x, x ∈ X} is stable.

Then (44) is satisfied.

Proof. Let {yn} ⊂ X be any sequence of initial states with |yn| → ∞ as n → ∞. Set

rn
def
= |yn| and xn

def
= yn/|yn|. One may extract a subsequence {xnj

} ⊆ {xn} such that

limj→∞ xnj
= x for some x, |x| = 1. By Theorem 1.2, there exist subsequences {rmj

} ⊆
{rnj

} and {xmj
} ⊆ {xn} and a β-fluid limit Q

β
x such that Q̃

β
rmj

;xmj
⇒ Q

β
x. By construction,

Prmj
xmj

(σ > τ) ≤ Prmj
xmj

(

inf
0≤t≤T

|η̃β
rmj

(t;xmj
)| ≥ ρ

)

= Q̃β
rmj

;xmj

(

η ∈ C(R+,X) : inf
0≤t≤T

|η(t)| ≥ ρ

)

.

By the Portmanteau theorem, since the set {η ∈ C(R+,X) , inf [0,T ] |η| ≥ ρ} is closed,

lim sup
j→∞

Q̃β
rmj

;xmj

(

inf
0≤t≤T

|η(t)| ≥ ρ

)

≤ Qβ
x

(

inf
0≤t≤T

|η(t)| ≥ ρ

)

= 0 .

Because {yn} is an arbitrary sequence, this relation implies (44). �

Proof of Theorem 1.4. It follows immediately from Theorem 4.3, using Propositions 4.8

and 4.9. �

4.4. Proof of Proposition 1.5. In this proof, we see the β-fluid limit Q
β
x as the weak

limit of Q̃
β
rn;xn , for some sequences {rn} ⊂ R+ and {xn} ⊂ X satisfying limn→∞ rn = ∞

and limn→∞ xn = x. Fix s, t such that s < t. We prove that

Qβ
x

(

A(s, t) ∩
{

η ∈ C([s, t],X) : sup
s≤u≤t

∣

∣

∣

∣

η(u) − η(s) −
∫ u

s
h ◦ η(y)dy

∣

∣

∣

∣

> 0

})

= 0. (48)

Let U be an open set such that Ū ⊆ O, where Ū denotes the closure of the set U. For any

δ > 0, M > 0 and m > 0, s ≤ u < w ≤ t, define

AU
δ,m,M(u,w)

def
= {η ∈ C([s, t],X), η([u,w]) ⊂ U ∩ Cm,M ,

sup
u≤v≤w

∣

∣

∣

∣

η(v) − η(u) −
∫ v

u
h ◦ η(x)dx

∣

∣

∣

∣

> δ

}

, (49)

where Cm,M
def
= {x ∈ X,m ≤ |x| ≤ M}. Since δ, m, M , U, u and w are arbitrary, (48)

holds whenever Q
β
x

[

AU
δ,m,M(u,w)

]

= 0. By the Portmanteau Theorem, since the set

AU
δ,m,M(u,w) is open in the uniform topology,

Qβ
x

[

AU
δ,m,M(u,w)

]

≤ lim inf
n→∞

Q̃β
rn;xn

[

AU
δ,m,M (u,w)

]

,
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and the property will follow if we can prove that the RHS of the previous inequality is

null. To that goal, we write

η̃β
rn

(v;xn) − η̃β
rn

(u;xn) −
∫ v

u
h ◦ η̃β

rn
(y;xn)dy

= η̃β
rn

(v;xn) − η̃β
rn

(bvr1+β
n cr−(1+β)

n ;xn) + η̃β
rn

(bur1+β
n cr−(1+β)

n ;xn) − η̃β
rn

(u;xn)

+ r−1
n

bvr1+β
n c−1
∑

k=bur1+β
n c

{Φk+1 − Φk} −
∫ v

u
h ◦ η̃β

rn
(t;xn)dt

≤ 2χ1 + χ2 + χ3 + 2r−1
n M∞(ε, btr1+β

n c) ,

where we have defined

χ1
def
= sup

u≤v≤w

{

∣

∣

∣
η̃β

rn
(v;xn) − η̃β

rn
(bvr1+β

n cr−(1+β)
n ;xn)

∣

∣

∣
+

∣

∣

∣

∣

∣

∫ v

bvr1+β
n cr

−(1+β)
n

h ◦ η̃β
rn

(t;xn)dt

∣

∣

∣

∣

∣

}

,

χ2 =

bwr1+β
n c−1
∑

j=bur1+β
n c

∣

∣

∣
r−1
n ∆(rnη̃β

rn
(jr−(1+β)

n ;xn)) − r−(1+β)
n h(η̃β

rn
(jr−(1+β)

n ;xn))
∣

∣

∣
,

χ3 =

bwr1+β
n c−1
∑

j=bur1+β
n c

∣

∣

∣

∣

∣

r−(1+β)
n h(η̃β

rn
(jr−(1+β)

n ;xn)) −
∫ (j+1)r

−(1+β)
n

jr
−(1+β)
n

h ◦ η̃β
rn

(t;xn)dt

∣

∣

∣

∣

∣

.

Denote by ωm,M,U the modulus of continuity of h on U ∩ Cm,M . Since h is continuous on

U, limλ→0 ωm,M,U(λ) = 0. On the event
{

η̃β
rn(t;xn) ∈ U ∩ Cm,M

}

,

χ1 ≤ r−1
n

(

1 + sup
|x|≥m

|h(x)|
)

sup
1≤j≤btr1+β

n c

|Φj+1 − Φj| ,

χ2 ≤ (t − s + 1)m−β sup
{x∈U,|x|≥m}

∣

∣

∣
rβ
n|x|β∆(rnx) − ∆∞(x)

∣

∣

∣
,

and, for any λ > 0,

χ3 ≤ (t − s + 1)

(

ωm,M,U(λ) + sup
|x|≥m

|h(x)| �
{

sup
1≤j≤btr1+β

n c

|Φj+1 − Φj| ≥ λrn

})

.

By Lemma 4.5, for any δ > 0, limn→∞ Prnxn

(

sup
1≤j≤btr1+β

n c
|Φj+1 − Φj| ≥ δrn

)

= 0. On

the other hand, limn→∞ sup{x∈U,|x|≥mrn}

∣

∣ |x|β∆(x) − ∆∞(x)
∣

∣ = 0. Therefore, for any

δ > 0, one may choose λ small enough so that,

lim
n→∞

Prnxn

(

η̃β
rn

(t;xn) ∈ U ∩ Cm,M , (2χ1 + χ2 + χ3) ≥ δ
)

= 0 .

The proof follows from Lemma A.1.

4.5. Proof of Theorem 1.6. We preface the proof by a Lemma showing that the fluid

limits are uniformly bounded.

Lemma 4.10. Assume B1 and B2.
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(i) For any T > 0 and ρ > 0, there exists δ > 0 such that for any β-fluid limit Q
β
x,

Qβ
x

(

η ∈ C(R+,X), sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| ≤ ρ

)

= 1 . (50)

(ii) For any T > 0, there exists K > 0 such that for any β-fluid limit Q
β
x,

Qβ
x

(

η ∈ C(R+,X) , sup
0≤t≤T

|η(t) − η(0)| ≥ K

)

= 0 . (51)

Proof. (i) Let {rn} ⊂ R+ and {xn} ⊂ X be two sequences such that limn→∞ rn = +∞,

limn→∞ xn = x and Q
β
rn;xn ⇒ Q

β
x. By the Portmanteau theorem, since the set {η ∈

C(R+,X) , sup0≤t≤u≤t+δ≤T |η(u) − η(t)| ≤ ρ} is closed, it holds

Qβ
x

(

η ∈ C(R+,X) , sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| ≤ ρ

)

≥ lim sup
n

Q̃β
rn;xn

(

η ∈ C(R+,X) , sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| ≤ ρ

)

.

By definition of the process η̃β
rn(·;xn),

Q̃β
rn;xn

(

η ∈ C(R+,X), sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| > ρ

)

≤ Prnxn

(

sup
0≤k<k+j≤Tr1+β

n ,0≤j≤δr1+β
n

|Φk+j − Φk| > ρrn

)

,

and the proof follows from Lemma 4.5(iii).

(ii). The proof follows from (i) by considering the decomposition

sup
0≤t≤T

|η(t) − η(0)| ≤
bT/δc
∑

q=0

sup
qδ≤u≤(q+1)δ

|η(u) − η(qδ)| .

�

Proof of Theorem 1.6. Under the stated assumptions, µ([0, Tx];x) is a compact subset of

O. Since O is open, there exists ρ > 0 such that

{y ∈ X, d (y, µ([0, Tx];x)) ≤ 2ρ} ⊂ O ,

where for x ∈ X and A ⊂ X, d(x,A) is the distance from x to the set A. By Lemma 4.10(i),

there exists δ > 0 such that

Qβ
x

(

η ∈ C(R+,X), sup
0≤t≤u≤t+δ≤Tx

|η(u) − η(t)| ≤ ρ

)

= 1 .

Since Q
β
x (η ∈ C(R+,X), η(0) = x = µ(0;x)) = 1,

Qβ
x (η ∈ C(R+,X), η([0, δ]) ⊂ O) = 1 .

By Proposition 1.5, this yields Q
β
x = δµ(·;x) on C([0, δ],X). By repeated application of

Lemma 4.10(i), it is readily proved by induction that Q
β
x = δµ(·;x) on C([(q − 1)δ, qδ] ∩

[0, Tx],X) for any integer q ≥ 1. �
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4.6. Proof of Theorem 1.9. Let x such that |x| = 1. By Lemma 4.10, there exists K

depending upon T0 such that Q
β
x

(

η : sup[0,T0] |η(·)| ≤ K
)

= 1 for any β-fluid limit Q
β
x.

Set T = T0 + TK where T0 and TK are defined by (11) and (12), respectively.

By definition, for any set H, H ⊂ ΩH; therefore, there exists an increasing sequence {Hn}
of compact subsets of O such that Hn ( Hn+1 and O =

⋃

n ΩHn (note that ΩHn ⊆ ΩHn+1).

This implies

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η([0, T0]) ∩ O 6= ∅
)

= lim ↑n Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η([0, T0]) ∩ ΩHn 6= ∅
)

.

lim ↑n stands for a limit that converges monotonically from below. We prove that for any

n, the term in the right hand side is zero. To that goal we start with proving that for any

compact set H ⊂ O and any real numbers 0 ≤ q ≤ T0,

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q + ·) = µ(·; η(q)) on
[

0, Tη(q)

]

, η(q) ∈ ΩH

)

. (52)

We will then establish that

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q + ·) = µ(·; η(q)) on
[

0, Tη(q)

]

, η(q) ∈ ΩH

)

= 0 . (53)

Since Q
β
x(C(R+,X)) = 1, (52) and (53) imply that

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η([0, T0]) ∩ ΩHn 6= ∅
)

≤
∑

q∈Q

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q + ·) = µ(·; η(q)) on
[

0, Tη(q)

]

, η(q) ∈ ΩH′

n

)

= 0 ,

where H′
n ⊃ Hn is a compact set of O and Q ⊂ [0, T0] is a denumerable dense set. This

concludes the proof.

We now turn to the proof of (52) and (53). Since ΩH is a compact set of O, there exists

ε > 0 (depending upon H) such that {y ∈ X, d (y,ΩH) ≤ 2ε} ( O. By Lemma 4.10, one

may choose δ > 0 small enough (depending upon T and ε so that

Qβ
x

(

η ∈ C(R+,X) : sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| ≤ ε

)

= 1 .

Therefore, for any compact set H ⊂ O and q ∈ Q,

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH, sup
0≤t≤u≤t+δ≤T

|η(u) − η(t)| ≤ ε

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH, η([q, (q + δ) ∧ T ]) ⊂ O

)

.
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By Proposition 1.5, on the set A(q, q + δ), η(q + ·) = µ(·; η(q)) on [0, δ ∧ Tη(q)], Q
β
x- a.s.

Hence

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH, η(q + ·) = µ(·; η(q)) , on [0, δ ∧ Tη(q)]

)

.

By repeated application of Proposition 1.5, for any integer l > 0,

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH

)

= Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q) ∈ ΩH, η(q + ·) = µ(·; η(q)) , on [0, lδ ∧ Tη(q)]

)

,

which concludes the proof of (52).

Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , η(q + ·) = µ(·; η(q)) on [0, Tη(q)], η(q) ∈ ΩH

)

≤ Qβ
x

(

η : inf
[0,T ]

|η(·)| > ρK , inf
[0,T0+TK ]

|η| ≤ ρK

)

= 0 ,

since T = T0 + TK , which concludes the proof of (53).

5. Proofs of Section 2

5.1. Proofs of Section 2.1.

Proof of Proposition 2.4. Define

∆̄(x)
def
= −

∫

Rx

yq(y)λLeb(dy) . (54)

Introduce for any δ > 0, the δ-zone Cx(δ) around Cx,

Cx(δ)
def
= {y + sn(y), y ∈ Cx,−δ ≤ s ≤ δ} . (55)

By (Jarner and Hansen, 2000, Theorem 4.1), we may bound the measure of the δ-zone’s

intersection with the ball B(0,K), for any K > 0 and all |x| large enough

λLeb (Cx(δ) ∩ B(0,K)) ≤ δ

( |x| + K

|x| − K

)d−1 λLeb {B(0, 3K)}
K

,

where the x-dependent term tends to 1 as |x| tends to infinity. From this it follows, using

that
∫

|y|q(y)λLeb(dy) < ∞ that for any K > 0 and ε > 0, there exists δ > 0 such that

lim sup
|x|→∞

∫

Ex(δ,K)
|y|q(y)λLeb(dy) < ε , (56)

where Ex(δ,K)
def
= Cx(δ)∩B(0,K). For arbitrary, but fixed, ε > 0 choose K > 0 such that

∫

Bc(0,K) |y|q(y)λLeb(dy) ≤ ε. Then choose δ > 0 such that (56) holds. By construction, for
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y ∈ Rx, π(x + y)/π(x) ≤ 1 and (56) implies

lim sup
|x|→∞

∫

Rx∩Ex(δ,K)
|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε , (57)

lim sup
|x|→∞

∫

Rx∩Bc(0,K)
|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε . (58)

From (15), for y ∈ Rx such that y is with a radial distance at least δ to Cx, the acceptance

probability satisfies π(x + y)/π(x) ≤ ε/K for all |x| sufficiently large (see (Jarner and

Hansen, 2000, pp.351)) and (56) shows

lim sup
|x|→∞

∫

Rx∩Ec
x(δ,K)∩B(0,K)

|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε . (59)

By combining (14), (54), (57), (58) and (59), lim sup|x|→∞ |∆(x)− ∆̄(x)| ≤ 3ε and since ε

is arbitrary, lim|x|→∞ |∆(x) − ∆̄(x)| = 0. �

Proof of Proposition 2.6. Set z = (z1, . . . , zd)
def
= Σ−1/2y and v = n(Σ1/2u). Then

∫

{y,y′u≥0}
yq(y)λLeb(dy) = Σ1/2

∫

{z,v′z≥0}
zq0(z)λLeb(dz) = Σ1/2v

∫

X

z1�{z1≥0}q0(z)dz .

The proof follows. �

5.2. Proof of Lemma 2.9. Let δ and M be constant to be specified later. Write ∆(x)−
∆∞(x)

def
=
∑4

i=1 Ai(δ,M, x), where

A1(δ,M, x)
def
=

∫

{y,|y|≤M,|y′Γ−1
2 x|≥δ|x|}

π(x + y)

π(x)
�R∞,x(y) yq(y)λLeb(dy)

A2(δ,M, x)
def
=

∫

{y,|y|≤M,|y′Γ−1
2 x|≥δ|x|}

(

π(x + y)

π(x)
− 1

)

(�Rx(y) − �R∞,x(y)
)

yq(y)λLeb(dy)

A3(δ,M, x)
def
=

∫

{y,|y|≤M,|y′Γ−1
2 x|≤δ|x|}

{(

π(x + y)

π(x)
− 1

)

�Rx(y) + �R∞,x(y)

}

yq(y)λLeb(dy)

A4(δ,M, x)
def
=

∫

{y,|y|≥M}

{(

π(x + y)

π(x)
− 1

)

�Rx(y) + �R∞,x(y)

}

yq(y)λLeb(dy) .

For x = (x1, x2) such that |x1|−|x2| ≥ 2M and |y| ≤ M , |x1+y1| ≥ |x1|−M ≥ |x2|+M ≥
|x2 + y2|, it is easily shown that

(1 − α) exp
(

−0.5y′Γ−1
2 y − x′Γ−1

2 y
)

≤ π(x + y)

π(x)
≤ (1 − α)−1 exp

(

−0.5y′Γ−1
2 y − x′Γ−1

2 y
)

.

(60)

If y ∈ R∞,x ∩ {z : |x′Γ−1
2 z| ≥ δ|x|} then by (60), π(x + y)/π(x) ≤ (1 − α)−1e−δ|x|,

which implies that |A1(δ,M, x)| ≤ (1 − α)−1e−δ|x|
∫

|y|q(y)λLeb(dy). Furthermore, for

any K such that (1 − α)−1e−δK ≤ 1, and x such that ||x1| − |x2|| ≥ 2M and |x| ≥ K,

R∞,x ∩
{

y : |y| ≤ M, |x′Γ−1
2 y| ≥ δ|x|

}

⊆ Rx. This property yields to the bound:

∣

∣

∣

∣

π(x + y)

π(x)
− 1

∣

∣

∣

∣

∣

∣�Rx(y) − �R∞,x(y)
∣

∣ �{y, |x′Γ−1
2 y| ≥ δ|x|, |y| ≤ M}

≤ �Rx\R∞,x
(y)�{y, |y| ≤ M, |x′Γ−1

2 y| ≥ δ|x|} . (61)
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Using again (60) for y ∈ Rx ∩ {|y| ≤ M}, (1 − α)e−0.5a2M2
e−x′Γ−1

2 y ≤ π(x + y)/π(x) ≤ 1.

On the other hand, for y 6∈ R∞,x satisfying |x′Γ−1
2 y| ≥ δ|x|, we have x′Γ−1

2 y ≤ −δ|x|,
showing that

y ∈ Rx\R∞,x∩{z, |z| ≤ M, |x′Γ−1
2 z| ≥ δ|x|} =⇒ (1−α)e−0.5a2M2

eδK ≤ π(x+y)/π(x) ≤ 1 .

For fixed M , we choose K such that (1−α)e−0.5a2M2
eδK > 1 which implies that the right

hand side in (61) is zero and thus A2(δ,M, x) = 0. Consider finally Ai(δ,M, x), i = 3, 4.

Note that
∣

∣

∣

∣

(

π(x + y)

π(x)
− 1

) �
Rx(y) +

�
R∞,x(y)

∣

∣

∣

∣

≤ 2,

and the proof follows from the bounds

|A3(δ,M, x)| ≤ 2M

∫
�
{

y, |y′Γ−1
2 x| ≤ δ|x|

}

|y|q(y)λLeb(dy) , (62)

|A4(δ,M, x)| ≤ 2

∫

|y|≥M
|y|q(y)λLeb(dy) . (63)

These terms are arbitrarily small for convenient constants M and δ.

5.3. Proof of Proposition 2.10.

5.3.1. Proof of the condition (i) of Theorem 1.9. The only difficulty here stems from

irregularity of the ODE for initial conditions on the diagonals. Consider the β-fluid limit

Q
β
u? with initial condition u?

def
=
(

1/
√

2, 1/
√

2
)

(the other cases can be dealt with similarly).

Set v?
def
=
(

1/
√

2,−1/
√

2
)

and define V (x) = |〈v?, x〉|. Since the increment distribution

is assumed to be bounded, there exists a positive constant Cq such that |Φ1 − Φ0| ≤ Cq,

Px-as for all x ∈ X. By Lemma 2.9, we may choose constants γ ∈ (0, 1), m > 0, M0 > Cq

and R such that,

R ∩ Ec ⊂ {x ∈ X, |〈v?,∆(x)〉| ≥ m , 〈v?, x〉〈v?,∆(x)〉 > 0} . (64)

where (see Figure 9)

E
def
= {x, V (x) ≤ M0}, and R

def
= {x ∈ X, |x| ≥ R, |〈v?, n(x)〉| ≤ γ} . (65)

For δ > 0, define the stopping time κ(δ) as the infimum of the three stopping times

κ1(δ)
def
= inf{k ≥ 0, |〈v?,Φk〉| ≥ 2δ|Φ0|} , (66)

κ2
def
= inf{k ≥ 0, |Φk − Φ0| ≥ (1/2)|Φ0|} , (67)

κ3
def
= inf{k ≥ 0, |Φk| < R} . (68)

We will establish the following drift condition: there exist constants b > 0 and C such

that for all δ ∈ (0, γ/4),

E [V (Φk+1)|Fk] ≥ V (Φk) + m − b

�
E(Φk), on the set {k < κ(δ)} , (69)

Ex





κ(δ)−1
∑

k=0

�
E(Φk)



 ≤ C , (70)

with the convention that
∑b

a = 0 when a > b. We postpone the proof of (69) and

(70), and show how these drift conditions allow us to obtain the condition (i). On the
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event {k < κ(δ)}, |Φk| ≥ R, (1/2)|Φ0| ≤ |Φk| ≤ (3/2)|Φ0|, and |〈v?, n(Φk)〉| ≤ 4δ ≤ γ.

Therefore, for all x ∈ X, Px-a.s.

{k < κ(δ)} ⊂ {Φk ∈ R} . (71)

Condition (69) yields for any constant N > 0,

m Ex[κ(δ) ∧ N ] ≤ Ex[V (Φκ(δ)∧N )�{κ(δ) ≥ 1}] + b Ex





κ(δ)∧N−1
∑

k=0

1E(Φk)



 .

The definition of κ(δ) and Cq implies that Ex[V (Φκ(δ)∧N )�{κ(δ) ≥ 1}] ≤ 2δ|x|+Cq for all

N which with (70) yields the bound

mEx[κ(δ)] ≤ 2δ|x| + bC + Cq . (72)

Let {xn} be a sequence of initial state such that limn→∞ xn = u? and {rn} be a se-

quence of scaling constants, limn→∞ rn = +∞. By Lemma 4.10, there exists T0 such that

Q
β
u?

{

supt∈[0,T0] |η(t) − η(0)| < 1/4
}

= 1. Furthermore, we have 1/2 ≤ |xn| ≤ 3/2 for all

n large enough. Then, by the Portmanteau Theorem,

Qβ
u?

{η, η([0, T0]) ∩ O = ∅}

= lim
δ↓0+

Qβ
u?

{

η, sup
t∈[0,T0]

|η(t) − η(0)| < 1/4, sup
t∈[0,T0]

|〈v?, η(t)〉| < δ

}

≤ lim
δ↓0+

lim inf
n→∞

Prnxn

{

sup
0≤k≤2T0|Φ0|/3

|Φk − Φ0| < (1/2)|Φ0|, sup
0≤k≤2T0|Φ0|/3

|〈v?,Φk〉| < 2δ|Φ0|
}

≤ lim
δ↓0+

lim inf
n→∞

Prnxn (κ(δ) ≥ 2T0|Φ0|/3) = 0 ,

where the last equality stems from (72). This proves Theorem 1.9-(i).

We now prove (69). Since E [Φk+1|Fk] = Φk + ∆(Φk), Jensen’s inequality implies

Ex [V (Φk+1)|Fk] ≥ |〈v?,Φk + ∆(Φk)〉|. Furthermore, by (64) and (71), {k < κ(δ),Φk ∈
Ec} ⊂ {Φk ∈ R ∩ Ec}, which implies |〈v?,Φk + ∆(Φk)〉| − |〈v?,Φk〉| = |〈v?,∆(Φk)〉| ≥ m,

since on R∩ Ec 〈v?, x〉 and 〈v?,∆(x)〉 have the same sign and 〈v?,∆(x)〉 is lower bounded.

On the set {k < κ(δ),Φk ∈ E}, we write V (Φk+1) ≥ V (Φk)−Cq so that E [V (Φk+1)|Fk] ≥
V (Φk) + m − (Cq + m). This concludes the proof of (69).

We finally prove (70). For A ∈ X , we denote by σA
def
= inf{k ≥ 0,Φk ∈ A} the first

hitting time on A. For notational simplicity, we denote κ instead of κ(δ). Define recursively

σ(1) def
= σE∩R and for all k ≥ 2, σ(k) def

= σ(k−1) + τ ◦ θσ(k−1)
+ σ(1) ◦ θτ◦θσ(k−1)

+σ(k−1)
, where

τ
def
= κ∧k? where k? is an integer whose value will be specified later. With these notations,

Ex

[

κ−1
∑

k=0

�E(Φk)

]

≤ k?

∑

q≥1

Px

(

σ(q) < κ
)

. (73)

Furthermore, for all q ≥ 2, the strong Markov property yields the bound

Px

(

σ(q) < κ
)

≤ Px

(

σ(q−1) < κ
)

sup
y∈E∩R

Py

(

τ + σ(1) ◦ θτ < κ
)

,
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Therefore, by (73), (70) holds provided that supx∈E∩R Px

(

τ + σ(1) ◦ θτ < κ
)

< 1. For all

x ∈ E ∩ R, it is easily seen that,

Px

(

τ + σ(1) ◦ θτ < κ
)

= Px(τ < κ) − Ex

(�
{τ < κ}

�
{Φτ ∈ Ec ∩ R}PΦτ

[

κ ≤ σ(1)
])

,

(74)

≤ 1 − inf
x∈Ec∩R

Px

(

κ ≤ σ(1)
)

{Px (τ = κ) + Px (τ = k?,Φk? ∈ Ec ∩ R)}
(75)

showing that the conditions

inf
x∈E∩R

Px ({τ < k?} ∪ {τ = k?,Φk? ∈ Ec ∩ R}) > 0 , (76)

inf
x∈Ec∩R

Px

(

κ ≤ σ(1)
)

> 0 , (77)

imply (70). We prove first (76). Choose γ̃ ∈ (γ, 1), such that the four half planes

{z, 〈z,Γ−1
i u±

?,γ̃〉 < 0} (i = 1, 2) have a non empty intersection, where u−
?,γ̃ and u+

?,γ̃ are

the unit vectors defining the edges of the cone Cγ̃
def
= {z ∈ X, |〈v?, n(z)〉 ≤ γ̃}. Denote

W
def
= {z, 0 ≤ |z| ≤ Cq, 〈z,Γ−1

i u±
?,γ̃〉 ≤ 0 , i = 1, 2} . (78)

Since any vector y in the cone Cγ̃ can be written as a linear combination of the vectors

u−
?,γ̃ and u+

?,γ̃ with positive weights, for any y ∈ Cγ̃ and z ∈ W, 〈z,Γ−1
i y〉 ≤ 0, i = 1, 2,

which implies,

〈z,∇π(y)〉 = −α〈z,Γ−1
1 y〉 exp(−0.5y′Γ−1

1 y) − (1 − α)〈z,Γ−1
2 y〉 exp(−0.5y′Γ−1

2 y) ≥ 0 .

By choosing R large enough (see (65)), we can assume without loss of generality that for all

x ∈ R and z ∈ W, x+tz ∈ Cγ̃ for all t ∈ (0, 1). Thus, π(x+z) = π(x)+
∫ 1
0 〈∇π(x+tz), z〉dt ≥

0, and we have π(x + z) ≥ π(x), showing that W ⊂ Ax. Finally, we write W as the union

of two disjoint sets W−, W+, where W+ def
= {z ∈ W, 〈v?, z〉 ≥ 0}. Since for x ∈ R, W ⊂ Ax,

then for any 0 ≤ c ≤ Cq,

inf
x∈R,〈v?,x〉≥0

Px (|〈v?,Φ1〉| ≥ |〈v?,Φ0〉| + c) ≥
∫

W+

�
{y, |〈v?, y〉| ≥ c}q(y)λLeb(dy) > 0 .

An analogous lower bound holds for all x ∈ R such that 〈v?, x〉 ≤ 0. These inequalities

combined with repeated applications of the Markov property, yields (76), by choosing k?

such that k?c ≥ M0.

We now prove (77). Let M1 > M0 and set F
def
= {x, V (x) ≤ M1}. By Lemma A.1, we

may choose J ≥ 1 and then M1 > M0 large enough so that, for all x ∈ X,

Px

(

sup
j≥J

j−1

∣

∣

∣

∣

∣

j
∑

l=1

εl

∣

∣

∣

∣

∣

≥ m

)

< 1/2 , Px

(

sup
j≤J

∣

∣

∣

∣

∣

j
∑

l=1

εl

∣

∣

∣

∣

∣

≥ M1 − M0

)

< 1/2 . (79)

It is easily seen that, using the strong Markov property,

inf
x∈Ec∩R

Px (κ ≤ σE∩R) ≥ inf
x∈Ec∩R

Px (σFc∩R < σE∩R) inf
x∈Fc∩R

Px (κ ≤ σE∩R) .

The first term of the RHS of the previous relation is positive using arguments which are

similar to those used in the proof of (76). We write 〈v?,Φk〉 = 〈v?,Φ0〉+
∑k

l=1〈v?,∆(Φl−1)〉+
∑k

l=1〈v?, εl〉. Let x ∈ Fc ∩ R. Px − a.s., since |Φl − Φl−1| ≤ Cq ≤ M0, on the event
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{1 ≤ k ≤ σE∩R < κ}, |〈v?,Φk〉| ≥ M0, 〈v?,Φ0〉〈v?,Φj〉 > 0, and 〈v?,Φ0〉〈v?,∆(Φj)〉 > 0 for

all 0 ≤ j < k which implies

|〈v?,Φk〉| ≥ |〈v?,Φ0〉| +
k
∑

l=1

|〈v?,∆(Φl−1)〉| −
∣

∣

∣

∣

∣

k
∑

l=1

〈v?, εl〉
∣

∣

∣

∣

∣

≥ M1 + km −
∣

∣

∣

∣

∣

k
∑

l=1

〈v?, εl〉
∣

∣

∣

∣

∣

.

Thus, for all x ∈ Fc ∩ R, using the definition (79) of J and M1,

Px{J ≤ σE∩R < κ} ≤ sup
x∈X

Px

{

sup
j≥J

j−1

∣

∣

∣

∣

∣

j
∑

l=1

〈v?, εl〉
∣

∣

∣

∣

∣

≥ m

}

< 1/2

Px{σE∩R < κ ∧ J} ≤ sup
x∈X

Px

{

sup
j≤J

∣

∣

∣

∣

∣

j
∑

l=1

εl

∣

∣

∣

∣

∣

≥ (M1 − M0)

}

< 1/2 ,

which proves infx∈Fc∩R Px (κ ≤ σE∩R) > 0 and therefore (77).

5.3.2. Proof of B4 and the conditions (ii)-(iii) of Theorem 1.9. Assume that x ∈ C
def
=

{x, 0 < |x2| < x1} (the three other cases are similar). By Lemma 2.9, h(x) = −cqn(Γ−1
2 x)

for all x ∈ C, which is locally lipschitz. Hence, there exists an unique maximal solution

µ(·;x) on [0, Tx] satisfying µ(0;x) = x and µ(t;x) ∈ C for all t ≤ Tx, showing B4. Since

for t ∈ [0, Tx), d/dt|µ(t;x)|2 = 2|µ(t;x)|〈n(µ(t;x)), h ◦ µ(t;x)〉 < −2cq|a|−1|µ(t;x)|, the

norm of the ODE solution is bounded by |µ(t;x)| ≤ (|x| − cq|a|−1t)+ for all 0 ≤ t ≤
|x||a|c−1

q , which implies the condition (ii) provided Tx ≥ TK for all x ∈ C ∩ B(0,K). This

result follows from the fact that the boundaries of C are repulsive: consider the relative

neighborhood in C, V
def
= V1 ∪ V2, of the boundaries where V1

def
= {x : x1 > 0, 〈v?, x〉 >

0, 〈x,Γ−1
2 v?〉 < 0} and V2

def
= {x : x1 > 0, 〈u?, x〉 > 0, 〈x,Γ−1

2 u?〉 < 0}. Assume that there

exists s ∈ [0, Tx] such that µ(s;x) ∈ V1 (the other case can be handled similarly). Since

t 7→ µ(t;x) is continuous and V1 is a relative open subset of C, there exists δ such that for

all 0 ≤ t ≤ δ, µ(s + t;x) ∈ V1. This implies that for all 0 ≤ t ≤ δ,

〈v?, µ(s + t;x)〉 − 〈v?, µ(s;x)〉 = −cq

∫ t

0
|Γ−1

2 µ(s + u;x)|−1 〈v?,Γ
−1
2 µ(s + u;x)〉du > 0 ,

showing that, in V1, the distance to the boundary always increase. The properties above

also imply condition (iii) of Theorem 1.9.

Appendix A. Technical Lemmas

Lemma A.1. Let {εk}k≥1 be a Lp-martingale difference sequence adapted to the filtration

{Fk}k≥0. For any p > 1, there exists a constant C (depending only on p) such that,

E

[

sup
1≤l≤n

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

p]

≤ C sup
k≥1

E[|εk|p]n1∨p/2 , (80)

P

[

sup
n≤l

l−1

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

≥ M

]

≤ C sup
k≥1

E[|εk|p]M−pn−p+1∨p/2 . (81)
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Proof. For p > 1, applying in sequence the Doob maximal inequality and by the Burkholder

inequality for Lp martingale, there exists a constant Cp such that

E

[

sup
1≤l≤n

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

p]

≤ CpE





∣

∣

∣

∣

∣

n
∑

k=1

|εk|2
∣

∣

∣

∣

∣

p/2


 .

Eq. (80) follows from the Minkovski inequality for p ≥ 2,

E

[

sup
1≤l≤n

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

p]

≤ Cp sup
k≥1

E[|εk|p]np/2 , (82)

and the sub-additivity inequality for 1 < p ≤ 2,

E

[

sup
1≤l≤n

∣

∣

∣

∣

∣

l
∑

k=1

εk

∣

∣

∣

∣

∣

p]

≤ Cp sup
k≥1

E[|εk|p]n . (83)

Eq. (81) follows from the (Birnbaum and Marshall, 1961, Theorem 1). �

Lemma A.2. Let X,Y be two non negative random variables. Then, for any p ≥ 1, there

exists a constant Cp (depending only on p) such that, for any M > 0,

E[(X + Y )p�{X + Y > M}] ≤ Cp (E [Xp�{X ≥ M/2}] + E[Y p]) .

Proof. Note that �{X+Y ≥ M} ≤ �{X ≥ M/2}+�{X ≤ M/2}�{Y ≥ M/2}. Therefore,

E(Xp�{X + Y ≥ M}) ≤ E(Xp�{X ≥ M/2}) + (M/2)pP(Y ≥ M/2)

≤ E(Xp�{X ≥ M/2}) + E(Y p) .

The proof then follows from (X + Y )p ≤ 2p−1(Xp + Y p). �

Lemma A.3. Let X be a non-negative random variable. For any p ≥ 0, a > 1 and M ,

E[Xp�{X ≥ M}] ≤ M−(a−1)pE[Xap] .

Proof.

E[Xp�{X ≥ M}] ≤ (E[Xap])1/a (P[X ≥ M ])(a−1)/a ≤ (E[Xap])1/a (M−apE[Xap]
)(a−1)/a

.

�
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Figure 2. Dotted lines: trajectories of the interpolated process (2) for the

Random Walk Metropolis Hastings (SRWM) algorithm for a set of initial

conditions on the unit sphere between (0, π/2) for the target densities (21)

(left panel) and (26) (right panel); Solid lines: flow of the associated ODE.
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Figure 3. Dotted lines: trajectories of the interpolated process (2) for

the SRWM with target density (22) (left panel) and (27) (right panel) and

initial condition (1/
√

2, 1/
√

2). Solid lines: flow of the associated ODE.
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Figure 4. contour curves of the target densities (21) (left panel) and (26)

with δ = .4 (right panel).
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Figure 5. Grey lines: ∆; Black lines: ∆∞ for the target densities (21)

(left panel) and (26) with δ = .4 (right panel).
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Figure 6. Contour plot of the target densities (22) (left panel) and (27)

(right panel).
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Figure 7. Grey lines: ∆; Black lines: ∆∞ for the target density (22) (left

panel) and (27) (right panel).
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Figure 8. Dotted lines: interpolated process for a set of initial conditions

on the unit sphere for the target density (22) (left panel) and (27) (right

panel). Solid lines: flow of the initial value problem µ̇ = h(µ) with h(x) =

|x|−β∆∞(x); β = 0 and ∆∞ are given in Lemma 2.9 (left panel) and β,∆∞

are given by Lemma 2.16 (right panel).
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