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CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 1IntrodutionMany problems in omputational statistis redue to the maximization of a riteriong(�) := ZX h(z; �)�(dz) h(�; �) > 0; �-a.s.; (1)on a feasible set �, when g an not omputed in losed form. In the terminology of the missingdata problem, g is the inomplete data likelihood i.e. the likelihood of the observations for thevalue of the parameter �, z 2 X is the missing data vetor and h is the omplete data likelihoodwith respet to (w.r.t.) the referene measure �, i.e. h is the likelihood of the observations andof the missing data.The Expetation Maximization (EM) algorithm (Dempster et al. (1977)) is a popular iterativeproedure for maximizing g. The E step of the algorithm requires the omputation of theexpetation of the omplete log-likelihood w.r.t. the posterior distribution of the missing data.In many situations, this step is intratable; to solve this problem, many approximations of theEM algorithm, whih use simulations as an intermediate step, have been proposed (see, e.g.Tanner (1996), Celeux and Diebolt (1992), Delyon et al. (1999)). Perhaps the most popularalgorithm for this purpose is the Monte Carlo EM, initially proposed by Wei and Tanner (1991)and later used and studied by many authors (see Sherman et al. (1999) and referenes therein).The basi priniple behind this algorithm is to replae the expetation step by a blendingof Monte Carlo integration proedure with MCMC sampling tehniques suh as the Gibbs orthe Metropolis Hastings algorithms. The MCEM algorithm has been suessfully applied inmany di�erent settings, inluding non-linear time-series model (Chan and Ledolter (1995)),generalized linear mixed models with missing data (Chan and Kuk (1997)), full-informationitem fator models (Meng and Shilling (1996)), geneti models (Guo and Thompson (1991))and blind deonvolution (Capp�e et al. (1999)).The analysis of the onvergene of the MCEM algorithm has been �rst formally addressedby Bisarat (1994) as a spei� example of a random iterative algorithm. The onditions inBisarat (1994) have been later weakened by Chan and Ledolter (1995). The assumptions inthese works are however rather restritive, beause they involve an uniform law of large numbers,i.e., uniform onvergene in probability of the Monte Carlo expetation to their orrespondingsample average over � in a ompat subset of the feasible set �. This assumption fails to be



2 GERSENDE FORT AND ERIC MOULINESveri�ed when Monte Carlo integration is arried out along a single run MCMC algorithm in thesimulation step. It an however be veri�ed under reasonable assumptions when Monte Carlointegration is done using independent hains, as shown by (Sherman et al., 1999, Theorem 2)(the diÆulty when moving from single run to multiple runs has been overlooked by Chanand Ledolter (1995)). Convergene of random iterative algorithms has also been onsidered byShapiro and Wardi (1996), Pierre-Loti-Viaud (1995) and Brandi�ere (1998), also under restritiveassumptions.Sherman et al. (1999) address a di�erent lass of results. These authors fous on the missingdata problem, for whih g(�) is the inomplete data likelihood, depending on the sample size,say N (the dependene on this parameter is impliit in our work, all the results we obtain beingonditional to N). They assume that the Monte Carlo integration is arried out by means ofindependent hains, and that the number of independent hains, the number of iterations foreah hain at eah step, and the number of the iterations of the algorithm are funtions ofN . Under these assumptions, the authors derive the rate of onvergene of the Monte Carloestimator obtained as N !1.The purpose of this paper is to omplement the results above, by providing a onvergeneanalysis of the MCEM algorithm whih remains valid under assumptions that are veri�ed for awide lass of MCMC simulation tehniques, inluding both single run and multiple runs hains.The proof of onvergene is rather di�erent from the shemes used before, avoiding any formof uniform law of large numbers. An averaging tehnique to improve the rate of onvergene isalso presented, based on a modi�ation of the averaging tehniques (Polyak (1990)).The paper is organized as follows. In Setion 1 we present the MCEM algorithm, and de�ne thestable MCEM algorithm whih guarantees the almost sure (a.s.) boundedness of the randomreursion. In Setion 2, we study the onvergene of stable MCEM for urved exponentialfamilies when the simulation step is based on MCMC tehniques, by assuming an uniformergodi behavior of the MCMC kernels. In Setion 3, the rate of onvergene is derived ; itis shown how this rate an be improved, with a very small omputational overhead, by usingan averaging approah. Setion 4 is devoted to an appliation. The proofs are postponed inSetions 5 to 7.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 31. The Monte Carlo Expetation Maximization algorithmIn that ontribution, we use the terminology of the missing data problem. Let � � Rl, X � Rdendowed with the Borel �-�eld, � be a �-�nite Borel measure on X , and fh(z; �); � 2 �g be afamily of positive �-integrable funtions. Any iteration of EM may be formally deomposed intotwo steps. At iteration n+ 1, the E-step onsists in evaluatingQ(�; �n) := ZX log h(z; �) p(z; �)�(dz)where p(z; �) := h(z; �)=g(�);so that ��(dz) := p(z; �)�(dz)is a probability distribution whih may be interpreted as the posterior distribution of the missingdata. In the M-step, the new value of the parameter �n+1 is set as the maximum over � of� 7! Q(�; �n), �n+1 := argmax�2� Q(�; �n). It is assumed for simpliity that this maximumexists and is unique (see Wu (1983) for details). The key property of EM is that inreasingQ(�; �n) fores an inrease of g, the funtion to maximize. It is known that under regularityassumptions, EM instanes f�ng onverge to the set of the stationary points of g (Wu (1983)).In some situations, the E-step is intratable and to deal with these ases, Wei and Tanner (1991)propose to replae the expetation by a Monte Carlo integration, leading to the so-alled MonteCarlo EM. The MCMC approah onsists in sampling a X -valued Markov hain fZnj gj from aMarkov kernel P�n , with stationary distribution ��n and initial distribution � (assumed to beonstant over iterations). In the E-step we ompute Qn(�; �n)Qn(�; �n) :=m�1n mnXj=1 log h(Znj ; �); mn 2Z+whereas the M-step remains unhanged. A diÆulty when dealing with random sequene f�ngis to guarantee the stability (a.s. boundedness). To avoid unneessary tehnial onditions, wepresent a simple modi�ation of the iterative sheme, adapting the algorithm presented by Chenet al. (1988).



4 GERSENDE FORT AND ERIC MOULINESThe stable MCEM algorithm. A new sequene f�0ng is obtained by trunating the originalreursion: whenever argmax�2� Qn(�; �0n) is outside a spei� set, it is re-initialized at a point�00. In the tehnique proposed by Chen et al. (1988), the trunation bounds are random funtionsof the reursion index n. The advantage of this approah (ompared to projetion) is that thetrunation does not modify the set of stationary points of the original reursion. More formally,let fKng be a sequene of ompat subsets suh that for any n � 0,Kn ( Kn+1; � = [n�0Kn: (2)Set p0 := 0 and hoose �00 2 K0. The stable MCEM algorithm is de�ned as follows8<: If argmax�2� Qn(�; �0n) 2 Kpn ; �0n+1 := argmax�2� Qn(�; �0n) and pn+1 := pn;if argmax�2� Qn(�; �0n) 62 Kpn ; �0n+1 := �00 and pn+1 := pn + 1: (3)Note that pn ounts the number of re-initializations. It is shown in the sequel that, underappropriate assumptions, fpng is a.s. �nite, meaning that along any trajetory of the algorithm,the number of re-initialization is �nite.2. Convergene of the MCEM algorithm for urved exponential family2.1. Model assumptions. We further restrit our attention to the ase where the ompletedata likelihood h is from the lass of the urved exponential densities. We onsider the followingassumptions whih are satis�ed in many senarios.M1 � � Rl, X � Rd, and � is a �-�nite positive Borel measure on X .Denote by < �; � > the salar produt, by j � j the Eulidean norm and by r the di�erentiationoperator. Let � : � ! R,  : � ! Rq and S : X ! S � Rq. De�ne L : S � � ! R andh : X � �! R+ n f0gL(s; �) := �(�) + hs; (�)i h(z; �) := exp�L (S(z); �)�:Assume thatM2 (a) �,  are ontinuous on � and S is ontinuous on X .(b) for all � 2 �, �S(�) := ��(S) is �nite and ontinuous on �.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 5() there exists a ontinuous funtion �̂ : S ! �, suh that for all s 2 S, L(s; �̂(s)) =sup�2� L(s; �).(d) g is positive, �nite and ontinuous on �, and for any M > 0, the level set f� 2�; g(�) �Mg is ompat.Let L be the set of stationary points of the EM algorithm. With the notations above, L is givenby L := f� 2 �; �̂ Æ �S(�) = �g: (4)As shown by Wu ((Wu, 1983, Theorem 2)), under M1-2, if � is open and � and  are di�eren-tiable on �, then g is di�erentiable on � and L = f� 2 �;rg(�) = 0g. Hene, the set of �xedpoints of EM oinides with the set of stationary points of g. Assume either thatM3 (a) the set g(L) is ompator(a') for all ompat set K � �, g(L\ K) is �nite.Note that under M2(d), g(L) is ompat i� L is ompat.Example: Poisson ount with random e�et. For the purpose of illustration, we onsiderthe estimation of a loation parameter in a model of Poisson ounts. This model is adaptedfrom Zeger (1988), (see also Chan and Ledolter (1995)). Conditional to the latent variablesZ0; Z1; : : : ; Zd, the ounts Y1; : : : ; Yd are independent and Poisson variables with intensity exp(�+Zk), where � is the unknown translation parameter to estimate in the maximum likelihood sense.fZkg is a stationary autoregressive proess of order 1, Zk = aZk�1 + ��k, where f�kg is an i.i.dstandard gaussian noise and the oeÆients jaj < 1, � > 0 are known. Set z := (z0; : : : ; zd) aRd+1-valued vetor. The omplete likelihood may be written ash(z; �) = exp � dXk=1 Yk � exp(�) dXk=1 exp(zk)! ; (5)the dominating measure � is absolutely ontinuous w.r.t. the Lebesgue measure on X := Rd+1,and the density is given up to irrelevant normalization fator byexp dXk=1 Ykzk � (2�2)�1 dXk=1(zk � azk�1)2 + (1� a)2z20!! : (6)



6 GERSENDE FORT AND ERIC MOULINESHere � := R, �(�) := �Pdk=1 Yk,  (�) := �e� , and S(z) := Pdk=1 ezk 2 S := R+ n f0g.Assumption M2(a) is trivially veri�ed. Observe that for y > 0, z 2 R, � 2 R, we have y��e�+z ��yz + y(ln(y)� 1), so thath(z; �) � exp dXk=1 Yk(log(Yk)� 1)� dXk=1 Ykzk! ; 8z 2 Rd+1; � 2 R: (7)We easily dedue from (7) that sup�2Rg(�) <1. (7) also implies that g is uniformly bounded on� and is ontinuous. Sine lim�!�1 g(�) = lim�!+1 g(�) = 0, then the level sets are ompat,and M2(d) is veri�ed. As g is ontinuous, M2(b) is trivially heked using similar arguments.M2() is veri�ed with �̂(s) := log dXk=1 Yk!� log(s):Finally, � 7! g(�) and its derivatives are analyti on � and analyti funtions have only a �nitenumber of zeros in any ompat set. As L = f� 2 �;rg(�) = 0g, then for all ompat K � �,L \ K is �nite and M3(a') is veri�ed.2.2. Monte Carlo approximation. Let fKng be a sequene of ompat sets satisfying (2).Given �00 2 K0 and a probability measure � on X , the stable MCEM sequene f�0ng is thende�ned as (see (3))8<: If �̂( ~Sn) 2 Kpn ; �0n+1 := �̂( ~Sn) and pn+1 := pn;if �̂( ~Sn) =2 Kpn ; �0n+1 := �00 and pn+1 := pn + 1; (8)where ~Sn :=m�1n mnXj=1 S(Znj );and fZnj g is sampled from a Markov kernel P�0n with invariant distribution ��0n , and Zn0 � �. Togo further, we need to ontrol the Lp-norm of the utuations of the Monte Carlo approximationof �S(�0n) by ~Sn.M4 There exist p � 2 and �, a probability measure on X , suh that for any ompatset K � �,sup�2K supn�1 n�p=2 E�;� "����� nXk=1fS(�k)� ��(S)g�����p# <1sup�2K supn�1Xk�1 ����P k� (S)� ��(S)��� <1;



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 7where E�;� is the expetation of the anonial Markov hain f�ng with transitionkernel P� and initial distribution �.We now state pratial onditions upon whih M4 is veri�ed. The simplest ase is when thekernel P� is uniformly ergodi. (See Meyn and Tweedie (1993) for relevant de�nitions on Markovhains). Let P be a Markov kernel on X .Proposition 1. Let P be a  -irreduible aperiodi Markov transition kernel on X . Assume thatthe whole state spae is �m-small with minorizing onstant � > 0. Then, P possesses an uniqueinvariant probability measure �. In addition, for any p � 2 and any bounded Borel funtiong : X ! Rq, 1Xk=1 ���P kg(x)� �(g)��� � 2 �supX jgj� �1� (1� �)1=m��1; 8x 2 Xand for all n � 1, x 2 XEx ��� nXk=1fg(�k)� �(g)g���p � 6pCp �supX jgjp� �1 + 2f1� (1� �)1=mg�1�p+1 np=2; (9)where Cp is the Rosenthal's onstant (see Hall and Heyde (1980), Theorem 2.12).The proof is in Setion 6.Using this result, assumption M4 is veri�ed provided that supX jSj < 1, P� is for all � 2 �uniformly ergodi, i.e. X is �m� -small with minorizing onstant �� , and for all � in a ompatsubset of �, (a) �� is bounded away from zero and (b) m� is bounded. This ondition isoften veri�ed when X is ompat and the kernel depends ontinuously on � (see Setion 4 foran illustration). To deal with non-ompat state spae, the following proposition proved inSetion 6 provides onvenient suÆient onditions based on the Foster-Lyapunov drift riterion(10).Proposition 2. Let P be a  -irreduible aperiodi transition kernel on X and C be an aessiblepetite set. Assume that there exist some onstants 0 < � < 1, b < 1 and a Borel norm-likefuntion V : X ! [1;1), bounded on C suh thatPV � �V + b1IC : (10)Let p � 2. Choose M > supC V _ b=(1 � �1=p)p. Then the set fV � Mg is �m-small withminorizing onstant � > 0 and for any Borel funtion g : X ! Rq, jgj � V 1=p, it holds that for



8 GERSENDE FORT AND ERIC MOULINESall x 2 X , n � 1, 1Xk=1 ���P kg(x)� �(g)��� � C ��1(m+ 1)M1=pA�1V 1=p(x)and Ex ����� nXk=1fg(�k)� �(g)g�����p � C ��(p+1)(m+ 1)p+1M2A�2p V (x) np=2;where A := �(1� �)1=p � (b=M)1=p� and C is a onstant whih depends only upon p.Hene, if the kernel P depends on a parameter �, all the quantities appearing in Proposition 2may depend on � and the ondition M4 is veri�ed if, for any ompat subset K � �, (a)sup�2K �� < 1, sup�2K b� < 1, sup�2KM� < 1 and sup�2Km� < 1, (b) inf�2K �� > 0 and ()there exists a measure of probability � on X suh that sup�2K �(V�) <1.Finally, we need to assume that the number of simulations at eah iteration inreases at agiven rate fmng. The rate of inrease depends upon the ontrol of the utuation of the MonteCarlo sum. More preisely,M5 fmng is a sequene of integers suh thatPnm�p=2n <1 where p is given by M4.Example: Poisson ount with random e�et (ontinued). To impute the missing values,we use the hybrid sampler random san symmetri random walk Metropolis Hastings (heneforthdenoted RSM). At eah iteration a single omponent of the missing data vetor z drawn atrandom is updated, using a one-dimensional random walk Metropolis Hastings algorithm, with aproposal distribution having a positive, ontinuous and symmetri density q w.r.t. the Lebesguemeasure on R. This sampler has been studied in Fort et al. (2001). The key �ndings aresummarized here� for any � 2 �, the RSM kernel P� is Lebesgue-irreduible, aperiodi. In addition, forany ompat sets C � Rd+1 and K � �, there exist a onstant � > 0 and a probabilitymeasure � on Rd+1 suh that P d+1� (z; �) � � �(�) for all � 2 K, z 2 C.� Choose 0 < s < 1 suh that s(1� s)1=s�1 < (2d� 2)�1 and set V�(z) := ��(z)�s. Then,for any ompat K � �, lim supjzj!+1 sup�2K P�V�(z)V�(z) < 1:



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 9Consequently, by applying Proposition 2, it is proved that assumption M4 holds with any realp � 2 and any probability measure � suh that for any ompat set K � �, sup�2K �(V�) <1.2.3. Almost-sure onvergene. We now state the main results of our ontribution. Underassumptions M1-2, any iteration of the EM algorithm an be written as �n+1 = �̂Æ �S(�n) =: T (�n),where T : � ! � is ontinuous. (Wu, 1983, Theorem 1) proved that (a) fg(�n)g onverges tog(��) for some �� in the set L of the �xed points of T , and (b) the limit points of f�ng are inL. Under assumptions M1-4, we obtain a similar result for the stable MCEM algorithm. Theonvergene results hold almost-surely w.r.t. P, the probability on the anonial spae assoiatedto the trajetories of stable MCEM, started at �00, given �, the initial distribution of the Markovhains, and fKng, the sequene of ompat sets (see Setion 5.2 for a preise de�nition of P).Denote by Cl(A) the losure of the set A.Theorem 3. Assume M1-5. Let fKng be a sequene of ompat sets satisfying (2), �00 2 K0and � be given in M4. Consider the stable MCEM random sequene f�0ng de�ned by (8). Then,(i) (a) limn pn <1 w.p.1 and lim supn j�0nj <1 w.p.1(b) fg(�0n)g onverges w.p.1 to a onneted omponent of g(L), where L is given by (4).(ii) If in addition g(L \ Cl(f�0ng)) has an empty interior, then fg(�0n)g onverges w.p.1 to g�and f�0ng onverges to the set Lg� := f� 2 L; g(�) = g�g.The proof is given in Setion 5.Remark 4. Using the Sard's Theorem (Br�oker (1975)), it is known that g(frg = 0g) has anempty interior as soon as the funtion g is l-times di�erentiable (where l is the dimension of theparameter spae). Hene, Theorem 3(ii) applies under very weak regularity assumptions.In many instanes, the set L is made of isolated points and, under suitable onditions, theprevious onvergene results imply pointwise onvergene to some stationary point of g. De-pending upon the values of the Hessian of g, these limiting points are either loal maxima, loalminima or saddle points. A question of interest is to state onditions upon whih the stationarypoints only oinide with loal maxima. To that goal, we formulate some additional regularityassumptionsM6 (a) � is open, (b) for any s 2 S, � 7! L(s; �) is twie ontinuously di�erentiableon �, () � 7! �S(�) is twie ontinuously di�erentiable on �, (d) � 7! g(�) is



10 GERSENDE FORT AND ERIC MOULINESontinuously di�erentiable on �, (e) S is open and the onvex hull of S(Rd) isinluded in S, and (f) s 7! �̂(s) is twie ontinuously di�erentiable on S.M7 The stationary points of g are isolated. For every stationary point �� of g, thematries �r2�L( �S(��); ��) andZX r�L(S(z); ��) tr�L(S(z); ��) p(z; ��) �(dz);are positive de�nite.It is shown in Delyon et al. (1999) that under M6-7, the matrixrT (��) = [r2�L(s�; ��)℄�1�r2�L(s�; ��)� r2 log g(��)�; s� := �S(��);is diagonalizable with positive real eigenvalues. If �� is a stable �xed point of T , then the moduluso� all the eigenvalues of rT (��) are stritly less than one, and �� is a proper maximizer of g.If �� is hyperboli (resp. unstable) then it is a saddle-point of g (resp. a loal minimum of g).Reall �nally that if the stationary points of g are isolated (that is under M7), onvergene tohyperboli and unstable points, that is onvergene to saddle points and loal minima of g neverours w.p.1 for the MCEM sequene, as shown in Brandi�ere (1998).Example: Poisson ount with random e�ets (ontinued) M6 is readily veri�ed. Notethat r log g(�) = dXk=1 Yk � e� ZRd+1 S(z)p(z; �)�(dz);and a stationary point �� solves the equation:dXk=1 Yk = e�� Z S(z)p(z; ��)�(dz) i.e. dXk=1 Yk = e�� �S(��):Sine g is analyti (see setion 2.1) any ompat subset of � ontains only a �nite number ofstationary points of g. For a stationary point ��, note that �r2�L( �S(��); ��) = e�� �S(��) andZ r�L(S(z); ��) tr�L(S(z); ��)p(z; ��)�(dz) = e�� Z (S(z)� �S(��))2p(z; ��)�(dz);so that M7 holds.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 113. Rate of onvergene and averagingWe now study the rate of onvergene of f�0ng (given fKng, �00 2 K0 and �) to a loal maximum�� of g. Rate of onvergene is useful to understand how we should ideally tune the numberof simulations mn as a funtion of the iteration index. It also allows to derive an aeleratedversion of the algorithm, based on averaging.De�ne G(s) := �S Æ �̂(s). The mapping G gives another way to onsider an iteration of theEM algorithm, not diretly in the parameter spae �, but in the spae of the omplete datasuÆient statistis S. If �� is a �xed point of T , i.e. �� = T (��) = �̂ Æ �S(��), then s� := �S(��)is a �xed point of G, i.e. s� = G(s�) = �S Æ �̂(s�). In addition, rT (��) = r�̂(s�) r �S(��)and rG(s�) = r �S(��) r�̂(s�). Hene rG(s�) has the same eigenvalues as rT (��), ountingmultipliities together with (q� l) additional eigenvalues equal to zero. The stability propertiesan thus be diretly translated in terms of stability of s�; when �� is stable, then s� is stableand vie-versa.3.1. Rate of onvergene. We begin by disussing informally the results. Let �� be a �xedpoint of T and let s� := �S(��). There are a priori multiple possible limiting points, so we needto restrit our attention to the set of trajetories that onverge to a given limiting point s�. Forlarge enough n, we may deompose the reursion as follows,~Sn � s� = �G( ~Sn�1)� G(s�)�+ ~Sn � G( ~Sn�1) = �� ~Sn�1 � s��+ �n + �n;where � := rG(s�) and f�ng is a martingale di�erene sequene w.r.t. the �ltration Fn :=� � ~S0; : : : ; ~Sn�,�n := � ~Sn � E [ ~SnjFn�1℄� 1Ifj ~Sn�1�s� j�Æg; n � 1; Æ > 0; �0 := 0:The remainder term �n an be expressed as �n := �(1)n + �(2)n , where for n � 1,�(1)n := � ~Sn �G( ~Sn�1)� 1Ifj ~Sn�1�s�j�Æg + �E h ~Sn���Fn�1i� G( ~Sn�1)� 1Ifj~Sn�1�s� j�Æg; (11)�(2)n := �G( ~Sn�1)�G(s�)� �( ~Sn�1 � s�)� =Xi;j Rn�1(i; j)�~Sn�1;i � s�i�� ~Sn�1;j � s�j� ; (12)and Rn is de�ned omponentwise asRn(i; j) := Z 10 (1� t)�2G(s� + t( ~Sn � s�))�si�sj dt:



12 GERSENDE FORT AND ERIC MOULINESIt is onvenient to deompose the error ~Sn � s� as a sum of a linear term �n obeying a lineardi�erene equation driven by the martingale di�erene �n,�n = ��n�1 + �n; n � 1; and �0 := 0; (13)and a remainder term �n �n := ~Sn � s� � �n; n � 0; (14)whih will be shown to be negligible along the trajetories onverging to s�. We stress that,beause there are possibly several onvergene points, the remainder term �n as de�ned abovewill be small only along trajetories that onverge to s�.As shown in the previous setion, under the stated assumptions, ~Sn may only onverge to stablepoints of G (hyperboli points and unstable points are avoided w.p.1), whih are assoiated toa loal maximum of the inomplete likelihood g. Hene, we may assume that s� is stable, whihimplies that all the eigenvalues of � have modulus less than 1, and thus, that there exist  < 1and a onstant C < 1 suh that for all k, j�kj � Ck, where j:j is any matrix norm. Thisimplies that the linear ontrol model (13) above is stable and that,�n = nXk=0 �k�n�k :In many situations,  is very lose to one, explaining why the EM algorithm is sometimes slowto onverge (see Jamshidian and Jennrih (1997)). Most often,  is unknown. It an howeverbe estimated using e.g. the Louis Information priniple (see Delyon et al. (1999)) but thisgenerally involves a signi�ant omputational overhead. By onstrution, the driving error f�ngis a martingale inrement. Observe that if one assumes that for all n, j ~Sn�1 � s�j � Æ for somedeterministi s� and Æ, then there exists a deterministi ompat K � � suh that for all n,�0n 2 K. From that remark and M4, it may be asserted that the Lp-norm of the martingale �n isinversely proportional to pmn, the square root of the number of simulations at step n. Hene,�n = OLp  nXk=0 n�km�1=2k ! ;we say that Xn = OLp(�n) where �n 6= 0 if ��1n Xn is bounded in Lp. A more expliit expressionfor the rate of �n an be obtained by using the following Lemma, from (P�olya and Szeg}o, 1976,Result 178 p.39),



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 13Lemma 5. Let fang and fbng, bn 6= 0, be two sequenes suh that (i) the power series f(x) :=P1n=1 anxn has a radius of onvergene r, (ii) limn!1 bn=bn+1 =: q, with jqj < r. De�nen :=Pnk=0 akbn�k. Then, limn!1 nb�1n = f(q).Hene, provided that limnmn+1=mn < �2, the linear term �n = OLp(m�1=2n ). The onstraintlimnmn+1=mn < �2 is always satis�ed when fmng is subexponential. When lim sup 2nmn =1, the onstraint is no longer satis�ed and the rate is stritly lower than m�1=2n . Of ourse, thisanalysis makes sense only if we an prove that �n is the leading term of the error ~Sn � s�, i.e.�n is negligible w.r.t. �n along the trajetories of ~Sn that onverge to s�. More spei�ally, wehave to show that (see Lemma 14, Setion 7)�n1Iflimn ~Sn=s�g = ow:p:1(m�1=2n ); (15)we say that Xn = ow:p:1(�n), resp. Xn = Ow:p:1(�n), where �n 6= 0 if limn ��1n jXnj = 0, w.p.1;resp. ��1n jXnj is bounded w.p.1.The disussion above is summarized in the following Theorem.Theorem 6. Assume M1-7. Let s� be a stable �xed point of the map G. Let  < 1 be themodulus of the largest eigenvalue of rG(s�). Assume that 1 � limnmn+1=mn < �2. Then,�n = OLp �m�1=2n � and �n1Ilimn ~Sn=s� = ow:p:1(m�1=2n ), where �n and �n are given by (13) and(14).Theorem 6 shows that, under weak onditions on the sequene fmng, along any trajetoryonverging to a stable �xed point s�, the error �0n��� (or equivalently ~Sn�s�), is asymptotiallygiven by �n. In addition, the Lp-norm of �n dereases as the square root of the number ofsimulations at step n.To ompare the rate of onvergene of the MCEM algorithm with other stohasti versions of theEM algorithm, suh as the Stohasti Approximation EM (SAEM), it is worthwhile to omputethe rate as a funtion of the number of simulations rather than as a funtion of the number ofiterations. For a generi sequene fXng, de�ne the interpolated sequene X(i)n = X�(n) where �is de�ned as the largest integer suh that�(n)Xk=0mk < n � �(n)+1Xk=0 mk:The subsript n for the interpolated sequene �0(i)n refers to the total number of simulationswhile for the original sequene f�0ng, it oinides with the number of iterations. Assume �rst



14 GERSENDE FORT AND ERIC MOULINESthat the number of simulations is inreasing at a polynomial rate, i.e. mn := n� so that�(n) � [(1 + �)n℄1=(1+�) . On the simulation time-sale, �(i)n = OLp �n��=(2(1+�))� and �(i)n =ow:p:1(n��=(2(1+�))). Hene the rate of onvergene is always smaller than n�1=2, whih is therate of the SAEM algorithm (Delyon et al., 1999, Theorem 7). It is interesting to note thatthe rate is improved by hoosing large values of �, whereas small values of � an lead torather ineÆient estimates. In pratie, this means that it is better to inrease the number ofsimulations rapidly when the algorithm is approahing onvergene, giving thus a theoretialbakground to well established pratie. Assume now that mn := mn, m > 1. This hoie isadvoated in Chan and Ledolter (1995) and in several earlier works on the subjet. We getsimilarly that �(i)n = OLp(n�1=2) and �(i)n = ow:p:1(n�1=2) whenever 1 < m < �2: in this ase,the rate of onvergene is n�1=2, provided that m is small enough.3.2. The averaging proedure. This previous disussion evidenes that the performane de-pends ritially upon the hoie of the shedule whih is of ourse a serious pratial drawbak.Reently, a data-driven proedure has been proposed by Booth and Hobert (1999). This pro-edure requires to evaluate the variane of ~Sn � G( ~Sn�1) whih is a hallenging problem whenMCMC is used to sample the missing data.We onsider here an alternative proedure adapted from a tehnique developed by Polyak(1990) to improve the rate of onvergene for stohasti approximation proedures. To motivatethe onstrution, reall that~Sn = s� + �n; �n := nXk=0�n�k�k + �n:Eah value of ~Sn may be seen as an estimator of s� a�eted by a noise term. The stable MCEMalgorithm estimates s� by ~Sn whih is an ineÆient estimation strategy. By analogy with theregression problem, estimator of s� with redued variane an be obtained by averaging andweighting the suessive estimates ~Sn of s�. The regression noise �n being both orrelated andheterosedasti, the best unbiased linear estimator of s� would require to know (or estimate)both the orrelation and the variane of �n, whih is a diÆult task. For simpliity, we onsiderweighted average �n :=M�1n nXj=0mj ~Sj ; and Mn := nXj=0mj ; (16)



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 15where ~Sn is weighted by mn, whih is a rough estimate of the inverse of the variane of �n.�n may thus be seen as a weighted least-square estimate of s�, the weights being (roughly)proportional to the inverse of the noise variane.Using the deomposition above, �n � s� may be written as �n � s� = ��n + ��n where��n :=M�1n nXk=00�n�kXj=0mj+k�j1A �k ; ��n :=M�1n nXk=0mk�k: (17)Under M4, �E [j�njpjFn℄ � 2pCm�p=2n where C, given by M4, does not depend on the simulationshedule. Then, the martingale form of the Rosenthal's inequality implies thatk��nkLp � C(p) 0B�0� nXk=0m�1k 0�n�kXj=0 mj+kj1A21A1=2 +0� nXk=0m�p=2k 0�n�kXj=0mj+kj1Ap1A1=p1CAM�1n ;where C(p) is a onstant depending only on p. A more expliit expression for the rate of ��n anbe obtained from the following Lemma (the proof of whih is postponed in Setion 7).Lemma 7. Let 0 <  < 1 and fmng be a positive sequene suh that 1 � limnmn+1=mn =:m < �2. De�ne for some positive integer r,�(r)n :=  nXk=0mr=2k !�1=r 0� nXk=0m�r=2k 0�n�kXj=0mj+kj1Ar1A1=r :Then, limn �(r)n =: Br(m; ) whereBr(m; ) :=  (1�m)�r "1 + �mr=2 � 1� r�1Xl=0 (rl ) (�1)r�l �ml�r=2l�r � 1��1#!1=r ; if m 6= 1;Br(�1; ) :=  (1� r=2) Xn (n+ 1)rnr=2!1=r :Hene, provided that limnmn+1=mn =:m < �2, this shows thatlimn M1=2n k��nkLp � C(p) B2(m; )+ C(p) Bp(m; ) limn  nXk=0mp=2k !1=pM�1=2n : (18)If m = 1 (this happens for example, for polynomial shedules mn / n� or sub-geometrialshedules mn / exp(n�), � < 1), then Pnk=0mp=2k � nmp=2n and limn �Pnk=0mp=2k �1=pM�1=2n =0. Hene, limn M1=2n k��nkLp � C(p) B2(1; ):



16 GERSENDE FORT AND ERIC MOULINESIf 1 < m, then Lemma 5 implies that limn �Pnk=0mp=2k �1=pM�1=2n = (m� 1)1=2(mp=2 � 1)�1=p.Hene, limn M1=2n k��nkLp � C(p) B2(m; )+ C(p) Bp(m; ) (m� 1)1=2 (mp=2 � 1)�1=p:This disussion evidenes that the Lp-norm of the term ��n dereases as M�1=2n , the inverseof the square root of the total number of simulations up to iteration n. In addition, m 7!B2(m; ) inreases on [1; �2) n f�1g and the minimum is B2(1; ) = (1 � )�1; when m =�1, B2(�1; ) = (1 + )1=2(1 � )�3=2 > B2(1; ). This implies that the upper bound in(18) is minimal for m = 1 and that the upper bound for the error term is minimum whenlimnmn+1=mn = 1.��n is the leading term in �n�s� provided that, along any trajetories that onverge to s�, ��nis negligible w.r.t. ��n, that is ��n1Ilimn ~Sn=s� = ow:p:1(M�1=2n ). By (37) and (38), ��n1Ilimn ~Sn=s� =Ow:p:1(1)OLp(nM�1n ). Hene, ��n is negligible ompared to ��n whenever the simulation sheduleheks the ondition nM�1=2n = o(1). For example, for geometrial shedules, this ondition isalways heked whereas for polynomial shedules mn / n�, one has to hoose � > 1.The disussion above is summarized in the following Theorem.Theorem 8. Assume M1-M7. Let s� be a stable �xed point of the map G and denote � :=rG(s�). Let  < 1 be the modulus of the largest eigenvalue of rG(s�). Let Mn, ��n and ��n begiven by (16) and (17). Assume that (i) 1 � limnmn+1=mn < �2, and (ii) nM�1=2n = o(1).Then, ��n = OLp �M�1=2n � and ��n1Ilimn ~Sn=s� = ow:p:1 �M�1=2n �.Theorem 8 shows that under weak onditions on the sequene fmng, along any trajetoryonverging to a stable �xed point s�, the error �n � s� behaves asymptotially as ��n; thus, theestimator ��n := �̂(�n) (or equivalently �n) has a rate proportional to M�1=2n , that is a rateinversely proportional to the square root of the total number of simulations up to iteration n.When expressed on the simulation time-sale, the previous result shows that the Lp-norm of theleading term ��(i)n is proportional to n�1=2.Hene, the averaging proedure improves the rate of onvergene. In addition, the disussionabove evidenes that when averaging is used, it is not reommended to use geometrial shedules.It is better to hoose mn in suh a way that limnmn+1=mn = 1 and nM�1=2n = o(1), whih isveri�ed e.g. if mn grows polynomially.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 17Example: Poisson ount with random e�ets (ontinued). A plot of N = 100 observa-tions Y1; � � � ; Y100, obtained with �true = 2, a = 0:4 and �2 = 1 is given in Figure 1. To implementstable MCEM, the ompat sets fKng are hosen as ball of radius (n+ 1) entered at �00. TheMonte Carlo approximations are omputed by use of the hybrid sampler desribed in Para-graph 2.2. The proposal distribution for eah omponent is a standard Gaussian variable on R,(the mean aeptane rate is � 40%). The hains are initialized in a ompat ball of radius r = 11aording to a onatenation rule: if the last sample Znmn at iteration n is in this ball, then it is thestarting point of the following hain i.e. Zn+10 := Znmn ; otherwise, we set Zn+10 := r Znmn=jZnmn j.The simulation shedule inreases polynomially mn := 1000 + n2. In Figure 2, we plot threepaths of stable MCEM started respetively at �00 = log(N�1P Yk) � 2:41, �00 = �2 and �00 = 4.After respetively 0, 3 and 2 re-initializations, onvergene to the point �� � 1:88 may be ob-served. In Figure 3, we plot a stable MCEM path started from �00 = log(N�1P Yk) and itsaveraged ounterpart (i.e. the sequene ��n given by ��n := �̂(�n)). It may be observed that thevariation of the averaged path dereases more rapidly than the variation of the stable MCEMpath, whih illustrates the disussion of Paragraph 3.2.4. An appliation to produt diffusion modelingWe illustrate the previous results by onsidering the Bass produt di�usion model whih onsistsin prediting market penetration of new produts and servies. Sherman et al. (1999) proved theonvergene in the ase where the missing data are obtained (at eah step) from m independentruns of a Gibbs sampler. These authors assume uniform geometri ergodiity in the totalvariation distane, and uniform onvergene in L2 (Assumptions (C5-6)) whih seem diÆult todiretly verify in pratie.The observations y := f(t1; n1); � � � ; (td; nd)g are the umulative numbers nj of adopters at a setof inreasing instants tj . We set t0 = n0 := 0. It is assumed that the nj 's are realizations of aproess N(t) at time tj , and the tj 's are seleted independently of the adoption proess. N(t)is a pure birth Markov proess with stationary transition probabilities and population adoptionrate �(t) := �M� �N(t)��%+ &N(t)�where M is the population size (M is known and onstant over time), � is the proportion ofpotential adopters, % � 0 is the innovator oeÆient and & � 0 is the imitator oeÆient. For all



18 GERSENDE FORT AND ERIC MOULINES0 � i � nd � 1, �(ti) has to be positive. In addition, in order the expeted number of adoptersnot to exeed the number of eventual adopters, we require % + &nd � 1. Hene (%; &; �) 2 �where � := f(%; &; �) 2 (0; 1℄� [0; 1℄� [nd=M; 1℄; 0 < %+ &nd � 1g :Our purpose is to ompute the maximum likelihood estimator for # := (%; &; �), or equivalentlythe maximum likelihood estimator for � = (�; �; ) := �(#) de�ned as�(%; &; �) := 26664 �&&M� � %%M� 37775 ��1(�; �; ) := 26664 1=2 (�� +p�2 � 4�)��2M�1(�� +p�2 � 4�)�137775so that � : � ! � := �(�) is ontinuous. Hene, we want to maximize on � the inompletedata likelihood g given byg(�) := dYj=10� nj�1Yk=nj�1 �k(�)1A njXi=nj�10�exp (��i(�)(tj � tj�1)) njYk=nj�1 ;k 6=if�k(�)� �i(�)g�11A ;where �i(�) := �i2+�i+. Computation and maximization of g are not tratable (see Dalal andWeerahandi (1995)). We thus implement the stable MCEM algorithm and solve a missing dataproblem where missing data are individual adoption times. We write g(�) := RX h(z; �)�(dz)where (see (Sherman et al., 1999, Eq.(11)))z := (z1; � � � ; znd); z0 := 0 X := [0; td℄nd ;h(z; �) := nd�1Yi=0 �i(�) exp�� �i(�)(zi+1 � zi)� exp� � �nd(�)(td � znd)�;and � is absolutely ontinuous w.r.t. the Lebesgue measure on Rnd�(dz) := 1I0<z1<���<znd d�1Yj=1 1Iznj�tj<znj+1 1Iznd�td dz:De�ne  (�) := � and�(�) := ��nd(�)td + nd�1Xk=0 ln�k(�); S(z) := " ndXk=1(2k� 1)zk; ndXk=1 zk; 0# ;so that log h(z; �) = �(�)+hS(z); �i. M2(a) is readily veri�ed and, as g is ontinuous on �, M2(b)follows from an appliation of the Lebesgue theorem. It is trivial to verify that for all � 2 �,s 2 S, �r2�L (s; �) is positive de�nite; then, for all s 2 S, the funtion � 7! L(s; �) is stritlyonave on � and s 7! �̂(s) is well-de�ned on S. By applying the impliit funtion theorem, �̂is also ontinuous. M2() is thus veri�ed. # 7! g Æ �(#) is a positive and ontinuous funtion on



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 19�, and lim%!0 g Æ �(%; &; �) = 0 for any (&; �) showing that the level sets fg Æ � � Mg, M > 0,are ompat subsets of �. As � is ontinuous, the level sets fg �Mg are ompat subsets of �,and M2(d) holds. Finally, L is a losed subset of the bounded set � whih proves M3(a).To impute the missing values z, we use a Metropolis Hastings Independent Sampler (IS) withproposal distribution q d� whih is hosen as the produt of d distributions of the order statistisof (nk � nk�1) independent random variable uniformly distributed on [tk�1; tk℄, 1 � k � d, i.e.q(z)�(dz) := h dYk=1 (tk � tk�1)nk�nk�1(nk � nk�1)! i�11I0<z1<���<znd d�1Yj=1 1Iznj�tj<znj+1 1Iznd�td dz:Reall that for an homogeneous Poisson proess of rate �, the onditional distributions of thearrivals in a given interval given the number of arrival is i.i.d uniform over that interval so thatthe hoie of the proposal is well mathed to the target density. With these de�nitions, the ISkernel, P�, is Lebesgue-irreduible and aperiodi. It is easily seen that the target density p(z; �)is uniformly bounded for � in a ompat set K � �. Thus, there exists some minorizing onstant0 < � < 1 suh that �p(z; �) � q(z) for all � 2 K, z 2 X . Hene, for z 2 X , any measurable setA, P�(z; A) � ZA ��(z; z0)q(z0)�(dz0) � � ZA p(z0; �)�(dz0) = � ��(A);where ��(z; z0) is the aeptation ratio. The ondition M4 follows from Proposition 1, with anyp � 2 and any probability measure � on X .Simulations (1). We generate d := 30 observations at time tj := 0:25j by hoosing M :=2000, (%t; &t; �t) := (0:03; 0:0004; 0:5) that is (�t; �t; t) = (�0:0004; 0:37; 30). The orrespondingumulative numbers nj appear as stars in Figure 4 (we have nd = 651). The parameter spae� is overed by the inreasing sequene of ompat setsKn := ��f(%; &); 0:0003=2n � % � 1; 0 � & � 1; 0 � %+ &nd � 1g � [nd=M; 1℄�; n � 0:The initial distribution � of the Markov hains oinides with the proposal distribution of theindependent sampler q d� desribed above.Two paths of stable MCEM started respetively at �00 = (�5 10�5; 0:0321; 0:3260) [path 1℄ and�00 = (�4 10�5;�0:24; 450) [path 2℄ are run for 300 iterations. The number of simulations at eahiteration inreases polynomially mn = 20+n1:2. After respetively four and zero re-initializationsand a small number of iterations, the onvergene of both paths to �� � (�0:00027; 0:2965; 37:41)may be observed. In Figure 5, we plot the stable MCEM sequenes fng both onverging to� = 37:41. In the lower left-hand orner, the �rst ten values are drawn, showing (a) the four



20 GERSENDE FORT AND ERIC MOULINESre-initializations on Path 1 and (b) for both paths, the rapid move towards a neighborhood ofthe limiting value �. The two paths are drawn in the right subplots (from iteration 9 to 300),showing the onvergene to the same limiting point � and a similar variation of the paths.We then observe the performane of stable MCEM and the averaged ounterpart for two poly-nomial shedules, mn � n1:2 and mn � n2. The proedures, run for 300 iterations, start from�00 = (�5 10�5; 0:0321; 0:3260). In Figure 6, we plot the sequenes fng and f�ng, respetivelyobtained by the stable MCEM algorithm and the averaging proedure (the ten �rst values aredisarded). In all ases, onvergene to � = 37:41 may be observed. COntrary to the variationof the averageds stable MCEM path, the variation of stable MCEM paths depends upon thesimulation shedule. Hene, it may be observed that averaging smoothes out the trajetory andimproves the rate of onvergene.The same onlusions ould be drawn from the sequenes f�ng, f�ng, f��ng, and f��ng, the plotsof whih are omitted.Dalal and Weerahandi Dalal and Weerahandi (1992) derive approximations of mean and vari-ane of the Poisson proess N(t). The estimates of the mean funtions E[N(tj )℄ omputed fromthe true value of the parameter �t (resp. the stable MCEM estimate ��) appeared as x-marks(resp. squares) on Figure 4. The dots urves interpolate points orresponding to �2 estimatedstandard errors from the estimates of the mean E[N(tj )℄.Simulations (2). Consider now the predition of the number of wireless teleommuniationservies in the United States. Cellular Teleommuniations Industry Assoiation performedsemi-annual surveys, olleted in June and Deember, from January 1985 to June 2001 (thedatas are available on the web site www.wow-om.om/industry/stats/surveys/). In Figure 8,the 34 observations olleted at time 1; 2; � � � ; 34, appear as stars. We assume that this ountfollows a pure birth Markov model (our results suggest it is a good approximation). Sinethe same person may subsribe to di�erent wireless servies, the (true) population size M isunknown. As disussed in Sherman et al., M and � enter the model through the produt M�,so any value M > nd is onvenient. As nd � 108, we set M = 109.Our estimate is omputed from the 29 values olleted from January 1985 to Deember 1998and the last values are used to ross-validate the result. The estimate is omputed as thelimiting value of a path f��ng of the averaged proedure run for 200 iterations with a polynomialsimulation shedule mn � n2 and started at �00 = (�5 10�5; 0:0321; 0:3260). The paths of f��ng,f��ng, f�ng are plotted in Figure 7. The limiting value is �� = (�6:27 10�11; 0:16; 1:77 105). The



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 21�tted values (resp. the predited values) of the mean funtion E[N(tj )℄ for j 2 f1; 28g (resp.j 2 f29; 37g) appear as (down) triangles in Figure 8 (resp. (up) triangles).Sherman et al.provide an estimate �� of �t based on the �rst 23 values olleted from January1985 to Deember 1995. They obtain �� = (�1:06 10�9; 0:20097; 8:17 105). Their �tted values(resp. their predited values) of the mean funtion E[N(tj )℄ for j 2 f1; 23g (resp. j 2 f24; 37g)are represented as diamonds in Figure 8 (resp. squares).In both ases, the extrapolated values well trak the observed datas.5. Proof of Theorem 3Let T : �! � be a point-to-point map. Let L be a non empty subset of �. A positive funtionW de�ned on � is said to be a Lyapunov funtion relatively to (T;L) when, (i) for all u 2 �,W Æ T (u)�W (u) � 0 and (ii) for any ompat set K � � n L, infu2KfW Æ T (u)�W (u)g > 0.In the literature, onvergene of random iterative maps fFng that approximate a deterministiiterative map T having a Lyapunov funtion W is addressed under the assumption that for allompat set K, limn supu2K jW Æ Fn(u)�W Æ T (u)j = 0:When applied to the present problem, this ondition is often not heked when MCMC algo-rithms are used to perform Monte Carlo integration. In this setion, we show how this onditionan be replaed by the weaker onditionlimn jW Æ Fn(un)�W Æ T (un)j 1Iun2K = 0:5.1. Deterministi results.Proposition 9. Let � � Rl, K be a ompat subset of � and L � � suh that L\K is ompat.Let W be a ontinuous Lyapunov funtion relatively to (T;L). Assume that there exists a K-valued sequene fung suh that limn jW (un+1)�W ÆT (un)j = 0. Then fW (un)g onverges to aonneted omponent of W (L \ K). If W (L \ K) has an empty interior, fW (un)g onverges tow? and fung onverges to the set Lw? \ K where Lw? := f� 2 L;W (�) = w?g.Proof. De�ne the ompat set D := W (L\K). Let D� be the �-neighborhood of the losed setD in R, D� := fx 2 R; d(x;D) < �g. As D is ompat, D = T�>0D�. Let � > 0. Sine D�



22 GERSENDE FORT AND ERIC MOULINESis a �nite union of disjoint bounded open intervals, there exist n� � 0 and two inreasing realvalued sequenes fa�(k)g and fb�(k)g, 1 � k � n�, suh thatD� = [k2f1;��� ;n�g (a�(k); b�(k)): (19)W�1(D�=2) is an open neighborhood of L \ K, and we de�ne�� := inffu2KnW�1(D�=2)g fW Æ T (u)�W (u)g; and �� := �� ^ �: (20)Sine K n W�1(D�=2) is a ompat subset of Rd, �� and �� are both positive. We de�ne�n+1 :=W (un+1)�W Æ T (un). ThenW (un+1)�W (un) = W Æ T (un)�W (un) + �n+1: (21)and there exists N� � 0, suh that for any n � N�,j�n+1j � ��=2: (22)By (20), (21),�n � N� and un 2 K nW�1(D�=2)� =) W (un+1)�W (un) � ��=2: (23)De�ne k?� := minf1 � k � n�; lim supn W (un) < b�(k)g and I(�) := (a�(k?�); b�(k?�)). (23)shows that fW (un)g is in�nitely often (i.o.) in D�=2 � D�, and sine D� is a �nite union ofintervals, fW (un)g is i.o. in an interval of (19); thus, lim supn W (un) 2 I(�). Let p � N� suhthat W (up) 2 I(�). We prove by indution that for all n � p, W (un) 2 I(�). By de�nition,W (up) 2 I(�). Assume now that for p � k � n, W (uk) 2 I(�).� If W (un) 2 D�=2, we have W (un) � a�(k��) + �=2. Thus,W (un+1) � W (un) + �n+1 � a�(k��) + �=2� ��=2 � a�(k��):� If W (un) 2 D� n D�=2, then under (20), W Æ T (un) �W (un) � ��, and (21) and (22)imply that W (un+1) � a�(k��) + ��=2 � a�(k��).Hene, the set of the limit points I of fW (un)g is non empty and inluded in the interval I(�).Let 0 < �1 < �2. By de�nition, D�1 � D�2 , thus I(�1) � I(�2) and I � I(�1) \ I(�2).Let f�ng be a dereasing sequene suh that limn �n = 0; then I � Tn I(�n). fI(�n)g is adereasing sequene of intervals, Tn I(�n) is an interval and Tn I(�n) � W (L \ K). Hene,



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 23fW (un)g onverges to this interval whih onludes the �rst part of the proof. The last part isa onsequene of (21). �It is proved in Proposition 10 that the ompatness assumption of the sequene fung an bereplaed by a reurrene ondition, provided that there exists a Lyapunov funtion ontrollingthe exursion outside the ompat sets of �. In Proposition11, we propose a stabilizationproedure ensuring this reurrene property for sequenes fung de�ned by inhomogeneous maps,un+1 = Fn(un).Proposition 10. Let � � Rl, T : �! � and L � �. Assume thatA1 there exists a ontinuous Lyapunov funtionW for (T;L) suh that (a) for allM > 0,the level set f� 2 �;W (�) �Mg is ompat, (b) � = Sn�1f� 2 �;W (�) � ng.A2 W (L) is ompat, or A2' W (L \ K) is �nite for all ompat set K � �.A3 there exists a �-valued sequene fung suh that (a) fung is in�nitely often in aompat subset G � � and (b) for any ompat set K � �, limn jW (un+1) � W ÆT (un)j1Iun2K = 0.Then fung is in a ompat subset of �.Proof. (under the assumption A2) Let � > 0. Under A1(b) and A2, there exists M > 0 suhthat G [ L� � f� 2 �;W (�) �Mg;where L� is the �-neighborhood of L. De�ne� := inff�2�;W (�)�M�1gnL�fW Æ T (�)�W (�)g and � := � ^ 1: (24)By assumption, � > 0 and � > 0. De�ne �n+1 := W (un+1)�W ÆT (un). Under A3, there existsN suh that �n � Nand un 2 f� 2 �;W (�) �M � 1g�) j�n+1j � �=2: (25)Note that W (un+1)�W (un) = W Æ T (un)�W (un) + �n+1: (26)Sine fung is in�nitely often in the ompat set G, there exists p � N suh thatW (up) �M�1.We show by indution that for all n � p, W (un) � M � 1. The property holds for n = p.Assume it holds for p � k � n.



24 GERSENDE FORT AND ERIC MOULINES� If un 2 f� 2 �;W (�) � Mg, then (24-26) imply that W (un+1) � W (un) � �=2 �M � 1=2 �M � 1.� If un 2 f� 2 �;W (�) �M � 1g n L�, then (24-26) imply that W (un+1) � W (un) + ���=2 � W (un) �M � 1.Hene for any q � n, uq is in the ompat set f� 2 �;W (�) �M � 1g.Proof. (under the assumption A2'). By assumption, there exists M suh that G � f� 2�;W (�) � Mg. As W (L \ f�;W (�) � M � 1g) is �nite, there exist � > 0 and M � 1 �M 00 < M 0 < M , suh thatL� \ f� 2 �;W (�) �M 00g � f� 2 �;W (�) �M 0g:De�ne � := inff�2�;W (�)�M 00gnL�fW Æ T (�)�W (�)g and � := � ^ (M 0 �M 00):It may be proved that for all large q, uq is in the ompat set f� 2 �;W (�) �M 00g. The proofis on the same lines as the previous one, and is omitted for brevity. �Let fFng : �! � be a family of point-to-point maps. Choose a sequene of ompat subsetsfKng of � suh that for any n � 0,Kn ( Kn+1 � = [n�0Kn:Let u0 2 K0. Set p0 := 0 and for n � 0,8<: If Fn(un) 2 Kpn; un+1 := Fn(un) and pn+1 := pn;if Fn(un) 62 Kpn un+1 := u0 and pn+1 := pn + 1: (27)Proposition 11. Let � � Rl, T and fFng be point-to-point maps onto �. Let fung be thesequene given by (27). Assume (a) A1-2 holds, (b) for all u 2 K0, limn jW ÆFn�W ÆT j(u) = 0and () for any ompat subset K � �, limn jW Æ Fn(un) � W Æ T (un)j1Iun2K = 0. Then,lim supn pn <1 and fung is a ompat sequene.The proof is along the same lines as Proposition 10 and is omitted for brevity.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 255.2. Proof of Theorem 3. Given �, �00 and the sequene of ompat sets fKng, the proessf�0ng is de�ned on the anonial spae of the inhomogeneous Markov hain f( ~Sn; pn)g. Wedenote by P (resp. E) the probability (resp. the expetation) of this anonial Markov hain(the dependene upon �, �00 and fKng is omitted).We apply Proposition 9 and Proposition 11 with the EM map T := �̂ Æ �S and the randomsequene of maps fFng, Fn(�) := argmax�2� Qn(�; �).Proof of (i-a). We hek the onditions of Proposition 11. It is well-known that the inompletedata likelihood g is a natural Lyapunov funtion relatively to the EM map T and to the set Lof the �xed points of T . Under M1-3, the onditions A1-2 are veri�ed with W = g. Let � > 0and K � � be a ompat. We prove that Pn 1IfjgÆFn(�0n)�gÆT (�0n)j1I�0n2K��g is �nite w.p.1. Bythe seond Borel-Cantelli Lemma, the onvergene of the series is implied by the onvergene ofPnP�jgÆFn(�0n)�gÆT (�0n)j1I�0n2K � �jFn�1� w.p.1 where Fn := � � ~Sk ; k � n�. By assumption,�S(K) is a ompat subset of S. For Æ > 0, de�ne the ompat �S(K; Æ) := fs 2 Rq; inf t2K jt�sj �Æg. Then there exists �(�; Æ) suh that for any x; y 2 �S(K; Æ),jx� yj � �(�; Æ) =) jg Æ �̂(x)� g Æ �̂(y)j � �:Hene,P���g Æ Fn(�0n)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� = P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �jFn�1�= P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �; ��� ~Sn � �S(�0n)��� 1I�0n2K � ÆjFn�1�+P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �; ��� ~Sn � �S(�0n)��� 1I�0n2K > ÆjFn�1�� 2P���� ~Sn � �S(�0n)��� 1I�0n2K � �jFn�1�with � := Æ ^ �(�; Æ). Thus,P���g Æ Fn(�0n)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� � 2 ��pE h��� ~Sn � �S(�0n)���p jFn�1i 1I�0n2K� 2 ��p m�pn E�;�0n 24������mnXj=1fS(�j)� ��0n(S)g������p35 1I�0n2K;where p is given by M4. Then M4 implies that there exists a �nite onstant C := C(K) suhthat E�;�0n 24������mnXj=1fS(�j)� ��0n(S)g������p35 1I�0n2K � Cmp=2n ;and, under M5, the proof is onluded.



26 GERSENDE FORT AND ERIC MOULINESProof of (i-b) and (ii). We hek the onditions of Proposition 9. It remains to prove that forany ompat set K � �, limn ��g(�0n+1)� g Æ T (�0n)�� 1I�0n2K = 0 P-a.s.We proeed as above and onsider the a.s. onvergene of the random seriesXn P���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� : (28)By de�nition, either �0n+1 = Fn(�0n) or �0n+1 = �00 and pn+1 = pn + 1. We have just proved thatthe number of re-initialization is �nite w.p.1 so that the seriesXn P���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �; �0n+1 = �00; pn+1 = pn + 1jFn�1�is �nite P-a.s. Then (28) is �nite i�PnP���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �; �0n+1 = Fn(�0n)jFn�1�is �nite P-a.s., whih is established above.6. Uniform Rosenthal's inequalityLet f : X ! [1;1) be a measurable funtion. For some funtion g : X ! Rq, (resp. for somesigned measure � on X ), de�nekgkf := supX jgjf ; Lf := fg : X ! Rq; kgkf <1g k�kf := supfg;jgj�fg j�(g)j:Proposition 12. Let (
;A;Fn; f�ng; Px) be a anonial Markov hain with invariant probabilitymeasure � on X . Assume that there exist p � 2, some measurable funtions 1 � f0 � V0 �V p0 � V1 <1 and some onstants Ci <1, i = 0; 1, suh that for any x 2 X8<: Pn kPn(x; �)� �(�)kf0 � C0V0(x);Pn kPn(x; �)� �(�)kV p0 � C1V1(x): (29)Then, for any Borel funtion g : X ! Rq, g 2 Lf0,Ex ����� nXk=1fg(�k)� �(g)g�����p � kgkpf0 6pCpCp0 (C1V1(x) + �(V p0 )) np=2 x 2 X ;where Cp is the Rosenthal's onstant.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 27Proof. Denote by ĝ(x) :=P1k=0fP kg(x)� �(g)g; the unique solution (up to a onstant) of thePoisson equation ĝ � Pĝ = g � �(g). Then ĝ 2 LV0 and kĝkV0 � C0kgkf0. WritenXk=1 fg(�k)� �(g)g = nXk=1fĝ(�k)� Pĝ(�k�1)g � Pĝ(�n) + Pĝ(�0):fĝ(�k) � Pĝ(�k�1)g is a Lp-martingale inrement (w.r.t. the initial distribution Æx) and byapplying the Minkovsky's inequality and the Rosenthal's inequality (Hall and Heyde, 1980,Theorem 2.12), we getEx "����� nXk=1fg(�k)� �(g)g�����p# � 3p�18<:CpEx 24 nXk=1 Ex �jĝ(�k)� Pĝ(�k�1)j2 jFk�1�!p=235+ CpEx " nXk=1 jĝ(�k)� Pĝ(�k�1)jp#+ Ex [jPĝ(�n)jp℄ + jPĝ(x)jp)where Cp is the Rosenthal's onstant and fFng is the natural �ltration of the Markov hainf�ng. In addition, nXk=1 Ex �jĝ(�k)� Pĝ(�k�1)j2jFk�1�!p=2 �  nXk=1P jĝj2(�k�1)!p=2 � np=2�1 nXk=1 P jĝjp(�k�1):Hene,Ex "����� nXk=1fg(�k)� �(g)g�����p# � 3p�1 Cp(np=2�1 + 2p) nXk=1P k jĝjp(x) + P jĝjp(x) + Pn+1jĝjp(x)!� 3p�1 �Cp(np=2�1 + 2p) + 1�0�Xk�1 ���P k jĝjp(x)� �(jĝjp)���+ n�(jĝjp)1A� 6pCpnp=20�Xk�1 ���P k jĝjp(x)� �(jĝjp)���+ �(jĝjp)1A :Sine ĝ 2 LV0 , �(jĝjp) � k ĝ kpV0�(V p0 ) <1, and by assumption,1Xk=0 ���P k jĝjp(x)� �(jĝjp)��� � k ĝ kpV0 C1V1(x):This yields the desired result. �



28 GERSENDE FORT AND ERIC MOULINESProof of Proposition 1 . When the state spae is �m-small, it is easily seen thatXn kPn(x; �)� �(�)kTV � 2�1� (1� �)1=m��1 ;and the proof of (9) is a trivial appliation of Proposition 12.The following proposition gives suÆient onditions, based on nested drift onditions, leadingto the expliit bounds (29).Proposition 13. Let P be a  -irreduible and aperiodi transition kernel on a general statespae X . Let C � D be some aessible �m-small sets. Assume there exist some Borel funtionsf; V : X ! [1;1), f � V , some onstants b <1 and 0 < a < 1 suh that supD V <1 and8<: PV (x) � V (x)� f(x) + b1IC(x);f(x) � b=(1� a); x 2 D:Then, P possesses an invariant probability measure �, �(f) <1 and for any probability measure(�; �) on X � X , 1Xn=0 j�Png � �Pngj � kgkf ���1MV + a�1��(V ) + �(V )�� ; (30)where,MV := sup(x;x0)2C�Dm�1Xk=1 fP kf(x) + P kf(x0)g+ sup(x;x0)2C�D m�1Xk=1fP kf(x) + P kf(x0)g+ a�1fPmV (x) + PmV (x0)g! � 4a�1 �bm+ supD V � ;with the onvention that P0k=1 P kf(x) = 0.Proof. By Theorem 14.0.1 of Meyn and Tweedie (1993), there exists an invariant probabilitymeasure � suh that �(f) <1.For simpliity, the proof of (30) is restrited to the ase m = 1. The proof of (30) is based onoupling tehnique whih may be summarized as follows. Let � := (C �D) [ (D � C) and Rbe the residual kernel de�ned asR(x; �) := (1� 1ID(x)�)�1�P (x; �)� �1ID(x)�1(�)�:We de�ne a X �X � f0; 1g-valued proess Z := f
;A; Zn = (Xn; X 0n; dn); Px;x0;dg suh that (a)Px;x0;0(Xn 2 �) = Pn(x; �) and Px;x0;0(X 0n 2 �) = Pn(x0; �) for all (x; x0) 2 X �X , (b) there existsa random-time T and Xn1IT�n = X 0n1IT�n. Set Z0 := (x; x0; 0). Eah time (Xk; X 0k; dk) hits the



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 29set ��f0g, an �-biased oin is tossed. If the oin omes up head, then the oupling is suessful:the next value of Xk+1 = X 0k+1 is simulated from �1, dk+1 = 1, and the two omponents remainforever oupled. Otherwise, the next values Xk+1 and X 0k+1 are drawn independently from theresidual kernel R and dk+1 = 0. If (Xk; X 0k; dk) 2 � � f0g, then the proesses are updatedindependently from P .De�ne the oupling time T := inffn � 1; dn = 1g (with the onvention that inf ; = 1),T0 := inffk � 0; (Xk; X 0k) 2 �g and, for i � 1, Ti := inffk > Ti�1; (Xk; X 0k) 2 �g the suessivehitting times on �. By de�nition of T , we have Xn1IT�n = X 0n1IT�n and for any Borel funtiong 2 Lf , Xn�0 Z �(dx)�(dy)jPng(x)� Png(y)j � kgkf E�;�;0 "T�1Xn=0ff(Xn) + f(X 0n)g# : (31)De�ne A(f) := (1� �) sup(x;x0)2�Z R(x; dy)R(x0; dy0)Ey;y0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g# : (32)The �rst set in the proof onsists in showing thatEx;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g# � 1I�(x; x0)ff(x) + f(x0)g+ a�11I�(x; x0)fV (x) + V (x0)g (33)The ase (x; x0) 2 � is trivial. For (x; x0) 2 �, under the stated assumptions,Ex;x0 ;0 �V (X1) + V (X 01)� � V (x) + V (x0)� (f(x) + f(x0)) + b(1IC(x) + 1IC(x0)):Sine (x; x0) 2 �, x 2 C (resp. x0 2 C) implies that x0 2 D (resp. x 2 D), so thatf(x0)� b1IC(x) � af(x0) f(x)� b1IC(x0) � af(x):Hene, Ex;x0 ;0 �V (X1) + V (X 01)� � V (x) + V (x0)� a(f(x) + f(x0)); (x; x0) 2 �;and the proof of (33) follows from the so-alled Dynkin's formula (Meyn and Tweedie, 1993,Proposition 11.3.2). Note that by (33), Ex;x0 ;0[T0℄ < 1, whih implies that Px;x0;0(T <1) = 1for all (x; x0) 2 X � X . We now prove thatEx;x0 ;0 "T�1Xn=0ff(Xn) + f(X 0n)g# � Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g#+ ��1A(f): (34)



30 GERSENDE FORT AND ERIC MOULINESBy the strong Markov property, and by noting that Px;x0;0(dTj = 0) = (1� �)j , for j � 0,Ex;x0 ;0 24Tj+1Xn=0ff(Xn) + f(X 0n)g1If0g(dTj+1)35 = (1��)Ex;x0 ;0 24 TjXn=0ff(Xn) + f(X 0n)g1If0g(dTj�1+1)35+ Ex;x0 ;0 "1If0g(dTj+1)EXTj +1;X 0Tj+1;0 " T0Xn=0ff(Xn) + f(X 0n)g## ;� (1� �)Ex;x0 ;0 24 TjXn=0ff(Xn) + f(X 0n)g1If0g(dTj�1+1)35+ A(f)(1� �)j ;with the onvention T�1 + 1 = 0. By straightforward reursion,Ex;x0 ;0 24Tj+1Xn=0ff(Xn) + f(X 0n)g1If0g(dTj+1)35� (1� �)j�(1� �)Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g#+ (j + 1)A(f)�: (35)Hene,Ex;x0 ;0 "T�1Xn=0ff(Xn) + f(X 0n)g# = Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g1IdT0+1=1#+1Xj=0 Ex;x0 ;0 24Tj+1Xn=0(f(Xn) + f(X 0n))1If0g(dTj+1)1If1g(dTj+1+1)35and (34) follows by noting that PXTj ;X 0Tj ;0(dTj+1 = 1) = �. The proposition follows from (31) to(35).The drift ondition impliessup(x;x0)2C�D m�1Xk=1fP kf(x) + P kf(x0)g+ fPmV (x) + PmV (x0)g! � 2bm+ sup(x;x0)2C�DfV (x)+V (x0)gfrom whih it is easily seen that MV � 4a�1 (bm+ supD V ). �Proof of Proposition 2. The �rst step is to prove that the level set D := fV � Mg issmall. By assumption, supx2D Ex [�C ℄ < 1, then for any � > 0, there exists n0 suh thatPx(�C � n) � �, x 2 D and n � n0. Then we an de�ne a distribution � = f�(n)g on Z+suh that for x 2 D and 0 < l < 1, Pn �(n)Pn(x; C) �Pn�n0 �(n)Pn(x; C) � l(1� �). As Cis petite, there exist some measure � on X and some distribution � = f�(n)g on Z+ suh thatPn � � �(n)Pn(x;A) � l(1� �)�(A) whih proves that D is petite. The smallness property of



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 31D dedues from Theorem 5.5.7. Meyn and Tweedie (1993). Note in addition that by de�nition,D � C. De�nef0 := V 1=p; V0 := V 1=p=(1� �1=p); b0 := b1=p=(1� �1=p);f1 := V p0 ; V1 := V=f(1� �)(1� �1=p)pg; b1 := b=f(1� �)(1� �1=p)pg;a0 := 1� b1=p(1��1=p)M1=p a1 := 1� b(1��)MIt is easily seen that PVi � Vi� fi+ bi1IC , i = 0; 1, 1 � f0 � V0 � V p0 = f1 � V1, 0 < ai < 1 andfi � bi=(1 � ai) on D, i = 0; 1. By applying Proposition 13, the inequalities (29) are veri�edand the onstants Ci, i = 0; 1, are upper bounded by (this upper bound is not optimal)C0 � 5��1(m+ 1)M1=p�1� �1=p��(1� �1=p)� (b=M)1=p��1 ;C1V1(x) + �(V p0 ) � 5��1(m+ 1)M �1� �1=p��p (1� �� b=M)�1 V (x):This yields the desired result. 7. Proof of Lemmas 7 and 147.1. Proof of Lemma 14.Lemma 14. Under the assumptions of theorem 6, we have�n1Iflimn ~Sn=s�g = ow:p:1(m�1=2n ); (36)Proof. The remainder term �n also follows a di�erene equation of the form�n = ��n�1 + �n = (Hn�1 + �) �n�1 + rn�1 + �(1)nsine �(2)n may be deomposed as �(2)n = Hn�1�n�1 + rn�1 with Hn := P1�i�q Rn(i; �)�2�n;i +�n;i�, and rn :=P1�i;j�q Rn(i; j)�n;i�n;j for n � 0. Hene we have �n := �(1)n + �(2)n where�(1)n := n�1Yk=0(Hk + �)�0 + nXk=10�n�1Yj=k(Hj + �)1A �(1)k ; �(2)n := n�1Xk=00� n�1Yj=k+1(Hj + �)1A rk:As �n = OLp(m�1=2n ) and, by assumption, Pnm�p=2n < 1, then �n = ow:p:1(1), and thus,�n1Ilimn ~Sn=s� = ow:p:1(1). Hene, jHnj1Ilimn ~Sn=s� = ow:p:1(1), and for any  < ~ < 1, j � n,jQnk=j(Hj + �)j1Ilimn ~Sn=s� = Ow:p:1(~n). Along trajetories onverging to s�, the �rst termin �(1)n is Ow:p:1(1)OLp(~n) sine, by M4, �0 2 Lp. The �rst term in �(1)n is only �nitely-often



32 GERSENDE FORT AND ERIC MOULINESnon-zero, and by M4, the seond term in �(1)n is bounded and the bound is inversely proportionalto mn. Thus, by hoosing ~�1 > limnmn+1=mn and by applying Lemma 5,�(1)n 1Ilimn ~Sn=s� = Ow:p:1(1)OLp(m�1n ): (37)Similarly, as rn = OLp(m�1n ),�(2)n 1Ilimn ~Sn=s� = Ow:p:1(1)OLp(m�1n ); (38)and the proof of (36) is ompleted. �7.2. Proof of Lemma 7.Lemma 15. Let fang and fbng, bn 6= 0, be two sequenes suh that (i) the power series f(x) :=P1n=1 anxn has a radius of onvergene r, (ii) limn!1 bn+1=bn =: q, with jqj < r. De�nen :=Pk�n bkak�n. Then, limn!1 nb�1n = f(q).Proof. By assumption, for any K and � > 0, there exists N suh that for all n � N , jbn+K=bn�qK j � �. In addition, there exist some positive onstants A; � suh that for all n; j � 0, bn+j=bn �A(q + �)j .������b�1n Xk�n bkak�n �Xk�0 qkak������ � n+KXk=n ���bk=bn � qk�n��� ak�n + Xk�n+K bk=bn ak�n + Xk�K qkak:Let � > 0. Then there exists K suh that the last two sums are upper bounded by �. Now forthose onstants K; �, there exists N suh that for n � N , the �rst sum is lower than �. And theproof is ompleted. �We now prove Lemma 7. We shall establish that for m 6= 1,(1�m)r �limn �(r)n �r = 1 +mr=2 r�1Xl=0 (rl ) (�1)r�l �ml�r=2l�r � 1��1 limn mr=2n  nXk=0mr=2k !�1 :(39)If m > 1, then Lemma 5 implies that limnmr=2n �Pnk=0mr=2k ��1 = 1 � m�r=2. If m = 1, thenlimnmr=2n �Pnk=0mr=2k ��1 = 0. In both ases, limnmr=2n �Pnk=0mr=2k ��1 = 1 � m�r=2. ThusLemma 7 holds provided that (39) is established.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 33First ase: m < 1. De�ne Sn := Pj�nmjj. Sn = nPj�nmjj�n, and by applyingLemma 15, sine m < �1, it holdslimn m�1n �nSn = (1�m)�1: (40)We writenXk=0m�r=2k 0�n�kXj=0mj+kj1Ar = nXk=0m�r=2k �kr (Sk � Sn+1)r= nXk=0m�r=2k �krSrk + r�1Xl=0 (rl ) (�1)r�lSr�ln+1 nXk=0m�r=2k �krSlk= nXk=0mr=2k �m�1k �kSk�r +mr=2n r�1Xl=0 (rl ) (�1)r�lr�l(mn+1=mn)r�l �m�1n+1�(n+1)Sn+1�r�l : : :�  mr=2�ln nXk=0ml�r=2k (n�k)(r�l)! nXk=0ml�r=2k k(l�r)!�1 nXk=0ml�r=2k k(l�r) �m�1k �kSk�l :By use of the Cesaro Lemma and (40),limn  nXk=0mr=2k !�1 nXk=0mr=2k �m�1k �kSk�r = (1�m)�r:In addition, for all l 2 f0; : : : ; r�1g, (m)l�rmr=2 > 1 showing thatPnk=0ml�r=2k k(l�r) divergesto in�nity. Then, applying again the Cesaro Lemma and (40),limn  nXk=0ml�r=2k k(l�r)!�1 nXk=0ml�r=2k k(l�r)�m�1k �kSk�l = (1�m)�l:Finally, as l < r, (m)r�lm�r=2 < 1 and Lemma 5 implies thatlimn mr=2�ln nXk=0ml�r=2k (n�k)(r�l) = (m)l�rmr=2(l�rml�r=2 � 1)�1:Combining these limits gives (39).Seond ase: m > 1. De�ne Sn := Pnj=0mjj. Sn = nPnj=0mj�(n�j) and by applyingLemma 5, sine m�1 < , it holdslimn m�1n �nSn = m(m� 1)�1: (41)



34 GERSENDE FORT AND ERIC MOULINESWe write, with the onvention S�1 := 0,nXk=0m�r=2k 0�n�kXj=0mj+kj1Ar = nXk=0m�r=2k �kr (Sn � Sk�1)r= (�1)r nXk=0m�r=2k �krSrk�1 + r�1Xl=0 (rl ) (�1)lSr�ln nXk=0m�r=2k �krSlk�1= (�1)r�r nXk=0mr=2k (mk�1=mk)r �m�1k�1�(k�1)Sk�1�r+mr=2n r�1Xl=0 (rl ) (�1)l�l �m�1n �nSn�r�lmr=2�ln  nXk=0ml�r=2k (r�l)(n�k)! : : :�  nXk=0ml�r=2k k(l�r)!�1 nXk=0ml�r=2k k(l�r)(mk=mk�1)�l �m�1k�1�(k�1)Sk�1�lBy use of the Cesaro Lemma and (41),(�1)r�r limn  nXk=0mr=2k !�1 nXk=0mr=2k (mk�1=mk)r �m�1k�1�(k�1)Sk�1�r = (1�m)�r:In addition, for all l 2 f0; : : : ; r � 1g, (m)l(m2)�r=2 > 1 showing that Pnk=0ml�r=2k k(l�r)diverges to in�nity. Then, applying again the Cesaro Lemma and (41),limn  nXk=0ml�r=2k k(l�r)!�1 nXk=0ml�r=2k k(l�r)(mk=mk�1)�l �m�1k�1�(k�1)Sk�1�l = l(m � 1)�l:Finally, as (m)l(m2)�r=2 > 1, Lemma 5 implies thatlimn mr=2�ln nXk=0ml�r=2k (n�k)(r�l) = (m)l�rmr=2(l�rml�r=2 � 1)�1:Combining these limits gives (39).
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Figure 1. 100 observations from the Poisson ount data model.
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Figure 2. Stable MCEM sequenes for di�erent initial values, and mn = [n2℄.The paths all onverge to �� = 1:88 after a �nite number of re-initializations.
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Figure 3. Stable MCEM sequene with and without averaging both startedfrom �00 = 2:41; polynomial shedule mn = [n2℄.
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Figure 4. Cumulative numbers observed at time tj = 0:25j, j = 1; � � � ; 30; andestimated means of the ount proess
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Figure 5. Stable MCEM sequenes for di�erent initial values and mn = [n1:2℄.The paths onverge to � = 37:41 after a �nite number a re-initializations.
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Figure 8. Cumulative numbers and estimated means of the ount proess.
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