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CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 1Introdu
tionMany problems in 
omputational statisti
s redu
e to the maximization of a 
riteriong(�) := ZX h(z; �)�(dz) h(�; �) > 0; �-a.s.; (1)on a feasible set �, when g 
an not 
omputed in 
losed form. In the terminology of the missingdata problem, g is the in
omplete data likelihood i.e. the likelihood of the observations for thevalue of the parameter �, z 2 X is the missing data ve
tor and h is the 
omplete data likelihoodwith respe
t to (w.r.t.) the referen
e measure �, i.e. h is the likelihood of the observations andof the missing data.The Expe
tation Maximization (EM) algorithm (Dempster et al. (1977)) is a popular iterativepro
edure for maximizing g. The E step of the algorithm requires the 
omputation of theexpe
tation of the 
omplete log-likelihood w.r.t. the posterior distribution of the missing data.In many situations, this step is intra
table; to solve this problem, many approximations of theEM algorithm, whi
h use simulations as an intermediate step, have been proposed (see, e.g.Tanner (1996), Celeux and Diebolt (1992), Delyon et al. (1999)). Perhaps the most popularalgorithm for this purpose is the Monte Carlo EM, initially proposed by Wei and Tanner (1991)and later used and studied by many authors (see Sherman et al. (1999) and referen
es therein).The basi
 prin
iple behind this algorithm is to repla
e the expe
tation step by a blendingof Monte Carlo integration pro
edure with MCMC sampling te
hniques su
h as the Gibbs orthe Metropolis Hastings algorithms. The MCEM algorithm has been su

essfully applied inmany di�erent settings, in
luding non-linear time-series model (Chan and Ledolter (1995)),generalized linear mixed models with missing data (Chan and Kuk (1997)), full-informationitem fa
tor models (Meng and S
hilling (1996)), geneti
 models (Guo and Thompson (1991))and blind de
onvolution (Capp�e et al. (1999)).The analysis of the 
onvergen
e of the MCEM algorithm has been �rst formally addressedby Bis
arat (1994) as a spe
i�
 example of a random iterative algorithm. The 
onditions inBis
arat (1994) have been later weakened by Chan and Ledolter (1995). The assumptions inthese works are however rather restri
tive, be
ause they involve an uniform law of large numbers,i.e., uniform 
onvergen
e in probability of the Monte Carlo expe
tation to their 
orrespondingsample average over � in a 
ompa
t subset of the feasible set �. This assumption fails to be



2 GERSENDE FORT AND ERIC MOULINESveri�ed when Monte Carlo integration is 
arried out along a single run MCMC algorithm in thesimulation step. It 
an however be veri�ed under reasonable assumptions when Monte Carlointegration is done using independent 
hains, as shown by (Sherman et al., 1999, Theorem 2)(the diÆ
ulty when moving from single run to multiple runs has been overlooked by Chanand Ledolter (1995)). Convergen
e of random iterative algorithms has also been 
onsidered byShapiro and Wardi (1996), Pierre-Loti-Viaud (1995) and Brandi�ere (1998), also under restri
tiveassumptions.Sherman et al. (1999) address a di�erent 
lass of results. These authors fo
us on the missingdata problem, for whi
h g(�) is the in
omplete data likelihood, depending on the sample size,say N (the dependen
e on this parameter is impli
it in our work, all the results we obtain being
onditional to N). They assume that the Monte Carlo integration is 
arried out by means ofindependent 
hains, and that the number of independent 
hains, the number of iterations forea
h 
hain at ea
h step, and the number of the iterations of the algorithm are fun
tions ofN . Under these assumptions, the authors derive the rate of 
onvergen
e of the Monte Carloestimator obtained as N !1.The purpose of this paper is to 
omplement the results above, by providing a 
onvergen
eanalysis of the MCEM algorithm whi
h remains valid under assumptions that are veri�ed for awide 
lass of MCMC simulation te
hniques, in
luding both single run and multiple runs 
hains.The proof of 
onvergen
e is rather di�erent from the s
hemes used before, avoiding any formof uniform law of large numbers. An averaging te
hnique to improve the rate of 
onvergen
e isalso presented, based on a modi�
ation of the averaging te
hniques (Polyak (1990)).The paper is organized as follows. In Se
tion 1 we present the MCEM algorithm, and de�ne thestable MCEM algorithm whi
h guarantees the almost sure (a.s.) boundedness of the randomre
ursion. In Se
tion 2, we study the 
onvergen
e of stable MCEM for 
urved exponentialfamilies when the simulation step is based on MCMC te
hniques, by assuming an uniformergodi
 behavior of the MCMC kernels. In Se
tion 3, the rate of 
onvergen
e is derived ; itis shown how this rate 
an be improved, with a very small 
omputational overhead, by usingan averaging approa
h. Se
tion 4 is devoted to an appli
ation. The proofs are postponed inSe
tions 5 to 7.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 31. The Monte Carlo Expe
tation Maximization algorithmIn that 
ontribution, we use the terminology of the missing data problem. Let � � Rl, X � Rdendowed with the Borel �-�eld, � be a �-�nite Borel measure on X , and fh(z; �); � 2 �g be afamily of positive �-integrable fun
tions. Any iteration of EM may be formally de
omposed intotwo steps. At iteration n+ 1, the E-step 
onsists in evaluatingQ(�; �n) := ZX log h(z; �) p(z; �)�(dz)where p(z; �) := h(z; �)=g(�);so that ��(dz) := p(z; �)�(dz)is a probability distribution whi
h may be interpreted as the posterior distribution of the missingdata. In the M-step, the new value of the parameter �n+1 is set as the maximum over � of� 7! Q(�; �n), �n+1 := argmax�2� Q(�; �n). It is assumed for simpli
ity that this maximumexists and is unique (see Wu (1983) for details). The key property of EM is that in
reasingQ(�; �n) for
es an in
rease of g, the fun
tion to maximize. It is known that under regularityassumptions, EM instan
es f�ng 
onverge to the set of the stationary points of g (Wu (1983)).In some situations, the E-step is intra
table and to deal with these 
ases, Wei and Tanner (1991)propose to repla
e the expe
tation by a Monte Carlo integration, leading to the so-
alled MonteCarlo EM. The MCMC approa
h 
onsists in sampling a X -valued Markov 
hain fZnj gj from aMarkov kernel P�n , with stationary distribution ��n and initial distribution � (assumed to be
onstant over iterations). In the E-step we 
ompute Qn(�; �n)Qn(�; �n) :=m�1n mnXj=1 log h(Znj ; �); mn 2Z+whereas the M-step remains un
hanged. A diÆ
ulty when dealing with random sequen
e f�ngis to guarantee the stability (a.s. boundedness). To avoid unne
essary te
hni
al 
onditions, wepresent a simple modi�
ation of the iterative s
heme, adapting the algorithm presented by Chenet al. (1988).



4 GERSENDE FORT AND ERIC MOULINESThe stable MCEM algorithm. A new sequen
e f�0ng is obtained by trun
ating the originalre
ursion: whenever argmax�2� Qn(�; �0n) is outside a spe
i�
 set, it is re-initialized at a point�00. In the te
hnique proposed by Chen et al. (1988), the trun
ation bounds are random fun
tionsof the re
ursion index n. The advantage of this approa
h (
ompared to proje
tion) is that thetrun
ation does not modify the set of stationary points of the original re
ursion. More formally,let fKng be a sequen
e of 
ompa
t subsets su
h that for any n � 0,Kn ( Kn+1; � = [n�0Kn: (2)Set p0 := 0 and 
hoose �00 2 K0. The stable MCEM algorithm is de�ned as follows8<: If argmax�2� Qn(�; �0n) 2 Kpn ; �0n+1 := argmax�2� Qn(�; �0n) and pn+1 := pn;if argmax�2� Qn(�; �0n) 62 Kpn ; �0n+1 := �00 and pn+1 := pn + 1: (3)Note that pn 
ounts the number of re-initializations. It is shown in the sequel that, underappropriate assumptions, fpng is a.s. �nite, meaning that along any traje
tory of the algorithm,the number of re-initialization is �nite.2. Convergen
e of the MCEM algorithm for 
urved exponential family2.1. Model assumptions. We further restri
t our attention to the 
ase where the 
ompletedata likelihood h is from the 
lass of the 
urved exponential densities. We 
onsider the followingassumptions whi
h are satis�ed in many s
enarios.M1 � � Rl, X � Rd, and � is a �-�nite positive Borel measure on X .Denote by < �; � > the s
alar produ
t, by j � j the Eu
lidean norm and by r the di�erentiationoperator. Let � : � ! R,  : � ! Rq and S : X ! S � Rq. De�ne L : S � � ! R andh : X � �! R+ n f0gL(s; �) := �(�) + hs; (�)i h(z; �) := exp�L (S(z); �)�:Assume thatM2 (a) �,  are 
ontinuous on � and S is 
ontinuous on X .(b) for all � 2 �, �S(�) := ��(S) is �nite and 
ontinuous on �.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 5(
) there exists a 
ontinuous fun
tion �̂ : S ! �, su
h that for all s 2 S, L(s; �̂(s)) =sup�2� L(s; �).(d) g is positive, �nite and 
ontinuous on �, and for any M > 0, the level set f� 2�; g(�) �Mg is 
ompa
t.Let L be the set of stationary points of the EM algorithm. With the notations above, L is givenby L := f� 2 �; �̂ Æ �S(�) = �g: (4)As shown by Wu ((Wu, 1983, Theorem 2)), under M1-2, if � is open and � and  are di�eren-tiable on �, then g is di�erentiable on � and L = f� 2 �;rg(�) = 0g. Hen
e, the set of �xedpoints of EM 
oin
ides with the set of stationary points of g. Assume either thatM3 (a) the set g(L) is 
ompa
tor(a') for all 
ompa
t set K � �, g(L\ K) is �nite.Note that under M2(d), g(L) is 
ompa
t i� L is 
ompa
t.Example: Poisson 
ount with random e�e
t. For the purpose of illustration, we 
onsiderthe estimation of a lo
ation parameter in a model of Poisson 
ounts. This model is adaptedfrom Zeger (1988), (see also Chan and Ledolter (1995)). Conditional to the latent variablesZ0; Z1; : : : ; Zd, the 
ounts Y1; : : : ; Yd are independent and Poisson variables with intensity exp(�+Zk), where � is the unknown translation parameter to estimate in the maximum likelihood sense.fZkg is a stationary autoregressive pro
ess of order 1, Zk = aZk�1 + ��k, where f�kg is an i.i.dstandard gaussian noise and the 
oeÆ
ients jaj < 1, � > 0 are known. Set z := (z0; : : : ; zd) aRd+1-valued ve
tor. The 
omplete likelihood may be written ash(z; �) = exp � dXk=1 Yk � exp(�) dXk=1 exp(zk)! ; (5)the dominating measure � is absolutely 
ontinuous w.r.t. the Lebesgue measure on X := Rd+1,and the density is given up to irrelevant normalization fa
tor byexp dXk=1 Ykzk � (2�2)�1 dXk=1(zk � azk�1)2 + (1� a)2z20!! : (6)



6 GERSENDE FORT AND ERIC MOULINESHere � := R, �(�) := �Pdk=1 Yk,  (�) := �e� , and S(z) := Pdk=1 ezk 2 S := R+ n f0g.Assumption M2(a) is trivially veri�ed. Observe that for y > 0, z 2 R, � 2 R, we have y��e�+z ��yz + y(ln(y)� 1), so thath(z; �) � exp dXk=1 Yk(log(Yk)� 1)� dXk=1 Ykzk! ; 8z 2 Rd+1; � 2 R: (7)We easily dedu
e from (7) that sup�2Rg(�) <1. (7) also implies that g is uniformly bounded on� and is 
ontinuous. Sin
e lim�!�1 g(�) = lim�!+1 g(�) = 0, then the level sets are 
ompa
t,and M2(d) is veri�ed. As g is 
ontinuous, M2(b) is trivially 
he
ked using similar arguments.M2(
) is veri�ed with �̂(s) := log dXk=1 Yk!� log(s):Finally, � 7! g(�) and its derivatives are analyti
 on � and analyti
 fun
tions have only a �nitenumber of zeros in any 
ompa
t set. As L = f� 2 �;rg(�) = 0g, then for all 
ompa
t K � �,L \ K is �nite and M3(a') is veri�ed.2.2. Monte Carlo approximation. Let fKng be a sequen
e of 
ompa
t sets satisfying (2).Given �00 2 K0 and a probability measure � on X , the stable MCEM sequen
e f�0ng is thende�ned as (see (3))8<: If �̂( ~Sn) 2 Kpn ; �0n+1 := �̂( ~Sn) and pn+1 := pn;if �̂( ~Sn) =2 Kpn ; �0n+1 := �00 and pn+1 := pn + 1; (8)where ~Sn :=m�1n mnXj=1 S(Znj );and fZnj g is sampled from a Markov kernel P�0n with invariant distribution ��0n , and Zn0 � �. Togo further, we need to 
ontrol the Lp-norm of the 
u
tuations of the Monte Carlo approximationof �S(�0n) by ~Sn.M4 There exist p � 2 and �, a probability measure on X , su
h that for any 
ompa
tset K � �,sup�2K supn�1 n�p=2 E�;� "����� nXk=1fS(�k)� ��(S)g�����p# <1sup�2K supn�1Xk�1 ����P k� (S)� ��(S)��� <1;



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 7where E�;� is the expe
tation of the 
anoni
al Markov 
hain f�ng with transitionkernel P� and initial distribution �.We now state pra
ti
al 
onditions upon whi
h M4 is veri�ed. The simplest 
ase is when thekernel P� is uniformly ergodi
. (See Meyn and Tweedie (1993) for relevant de�nitions on Markov
hains). Let P be a Markov kernel on X .Proposition 1. Let P be a  -irredu
ible aperiodi
 Markov transition kernel on X . Assume thatthe whole state spa
e is �m-small with minorizing 
onstant � > 0. Then, P possesses an uniqueinvariant probability measure �. In addition, for any p � 2 and any bounded Borel fun
tiong : X ! Rq, 1Xk=1 ���P kg(x)� �(g)��� � 2 �supX jgj� �1� (1� �)1=m��1; 8x 2 Xand for all n � 1, x 2 XEx ��� nXk=1fg(�k)� �(g)g���p � 6pCp �supX jgjp� �1 + 2f1� (1� �)1=mg�1�p+1 np=2; (9)where Cp is the Rosenthal's 
onstant (see Hall and Heyde (1980), Theorem 2.12).The proof is in Se
tion 6.Using this result, assumption M4 is veri�ed provided that supX jSj < 1, P� is for all � 2 �uniformly ergodi
, i.e. X is �m� -small with minorizing 
onstant �� , and for all � in a 
ompa
tsubset of �, (a) �� is bounded away from zero and (b) m� is bounded. This 
ondition isoften veri�ed when X is 
ompa
t and the kernel depends 
ontinuously on � (see Se
tion 4 foran illustration). To deal with non-
ompa
t state spa
e, the following proposition proved inSe
tion 6 provides 
onvenient suÆ
ient 
onditions based on the Foster-Lyapunov drift 
riterion(10).Proposition 2. Let P be a  -irredu
ible aperiodi
 transition kernel on X and C be an a

essiblepetite set. Assume that there exist some 
onstants 0 < � < 1, b < 1 and a Borel norm-likefun
tion V : X ! [1;1), bounded on C su
h thatPV � �V + b1IC : (10)Let p � 2. Choose M > supC V _ b=(1 � �1=p)p. Then the set fV � Mg is �m-small withminorizing 
onstant � > 0 and for any Borel fun
tion g : X ! Rq, jgj � V 1=p, it holds that for



8 GERSENDE FORT AND ERIC MOULINESall x 2 X , n � 1, 1Xk=1 ���P kg(x)� �(g)��� � C ��1(m+ 1)M1=pA�1V 1=p(x)and Ex ����� nXk=1fg(�k)� �(g)g�����p � C ��(p+1)(m+ 1)p+1M2A�2p V (x) np=2;where A := �(1� �)1=p � (b=M)1=p� and C is a 
onstant whi
h depends only upon p.Hen
e, if the kernel P depends on a parameter �, all the quantities appearing in Proposition 2may depend on � and the 
ondition M4 is veri�ed if, for any 
ompa
t subset K � �, (a)sup�2K �� < 1, sup�2K b� < 1, sup�2KM� < 1 and sup�2Km� < 1, (b) inf�2K �� > 0 and (
)there exists a measure of probability � on X su
h that sup�2K �(V�) <1.Finally, we need to assume that the number of simulations at ea
h iteration in
reases at agiven rate fmng. The rate of in
rease depends upon the 
ontrol of the 
u
tuation of the MonteCarlo sum. More pre
isely,M5 fmng is a sequen
e of integers su
h thatPnm�p=2n <1 where p is given by M4.Example: Poisson 
ount with random e�e
t (
ontinued). To impute the missing values,we use the hybrid sampler random s
an symmetri
 random walk Metropolis Hastings (hen
eforthdenoted RSM). At ea
h iteration a single 
omponent of the missing data ve
tor z drawn atrandom is updated, using a one-dimensional random walk Metropolis Hastings algorithm, with aproposal distribution having a positive, 
ontinuous and symmetri
 density q w.r.t. the Lebesguemeasure on R. This sampler has been studied in Fort et al. (2001). The key �ndings aresummarized here� for any � 2 �, the RSM kernel P� is Lebesgue-irredu
ible, aperiodi
. In addition, forany 
ompa
t sets C � Rd+1 and K � �, there exist a 
onstant � > 0 and a probabilitymeasure � on Rd+1 su
h that P d+1� (z; �) � � �(�) for all � 2 K, z 2 C.� Choose 0 < s < 1 su
h that s(1� s)1=s�1 < (2d� 2)�1 and set V�(z) := ��(z)�s. Then,for any 
ompa
t K � �, lim supjzj!+1 sup�2K P�V�(z)V�(z) < 1:



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 9Consequently, by applying Proposition 2, it is proved that assumption M4 holds with any realp � 2 and any probability measure � su
h that for any 
ompa
t set K � �, sup�2K �(V�) <1.2.3. Almost-sure 
onvergen
e. We now state the main results of our 
ontribution. Underassumptions M1-2, any iteration of the EM algorithm 
an be written as �n+1 = �̂Æ �S(�n) =: T (�n),where T : � ! � is 
ontinuous. (Wu, 1983, Theorem 1) proved that (a) fg(�n)g 
onverges tog(��) for some �� in the set L of the �xed points of T , and (b) the limit points of f�ng are inL. Under assumptions M1-4, we obtain a similar result for the stable MCEM algorithm. The
onvergen
e results hold almost-surely w.r.t. P, the probability on the 
anoni
al spa
e asso
iatedto the traje
tories of stable MCEM, started at �00, given �, the initial distribution of the Markov
hains, and fKng, the sequen
e of 
ompa
t sets (see Se
tion 5.2 for a pre
ise de�nition of P).Denote by Cl(A) the 
losure of the set A.Theorem 3. Assume M1-5. Let fKng be a sequen
e of 
ompa
t sets satisfying (2), �00 2 K0and � be given in M4. Consider the stable MCEM random sequen
e f�0ng de�ned by (8). Then,(i) (a) limn pn <1 w.p.1 and lim supn j�0nj <1 w.p.1(b) fg(�0n)g 
onverges w.p.1 to a 
onne
ted 
omponent of g(L), where L is given by (4).(ii) If in addition g(L \ Cl(f�0ng)) has an empty interior, then fg(�0n)g 
onverges w.p.1 to g�and f�0ng 
onverges to the set Lg� := f� 2 L; g(�) = g�g.The proof is given in Se
tion 5.Remark 4. Using the Sard's Theorem (Br�o
ker (1975)), it is known that g(frg = 0g) has anempty interior as soon as the fun
tion g is l-times di�erentiable (where l is the dimension of theparameter spa
e). Hen
e, Theorem 3(ii) applies under very weak regularity assumptions.In many instan
es, the set L is made of isolated points and, under suitable 
onditions, theprevious 
onvergen
e results imply pointwise 
onvergen
e to some stationary point of g. De-pending upon the values of the Hessian of g, these limiting points are either lo
al maxima, lo
alminima or saddle points. A question of interest is to state 
onditions upon whi
h the stationarypoints only 
oin
ide with lo
al maxima. To that goal, we formulate some additional regularityassumptionsM6 (a) � is open, (b) for any s 2 S, � 7! L(s; �) is twi
e 
ontinuously di�erentiableon �, (
) � 7! �S(�) is twi
e 
ontinuously di�erentiable on �, (d) � 7! g(�) is



10 GERSENDE FORT AND ERIC MOULINES
ontinuously di�erentiable on �, (e) S is open and the 
onvex hull of S(Rd) isin
luded in S, and (f) s 7! �̂(s) is twi
e 
ontinuously di�erentiable on S.M7 The stationary points of g are isolated. For every stationary point �� of g, thematri
es �r2�L( �S(��); ��) andZX r�L(S(z); ��) tr�L(S(z); ��) p(z; ��) �(dz);are positive de�nite.It is shown in Delyon et al. (1999) that under M6-7, the matrixrT (��) = [r2�L(s�; ��)℄�1�r2�L(s�; ��)� r2 log g(��)�; s� := �S(��);is diagonalizable with positive real eigenvalues. If �� is a stable �xed point of T , then the moduluso� all the eigenvalues of rT (��) are stri
tly less than one, and �� is a proper maximizer of g.If �� is hyperboli
 (resp. unstable) then it is a saddle-point of g (resp. a lo
al minimum of g).Re
all �nally that if the stationary points of g are isolated (that is under M7), 
onvergen
e tohyperboli
 and unstable points, that is 
onvergen
e to saddle points and lo
al minima of g nevero

urs w.p.1 for the MCEM sequen
e, as shown in Brandi�ere (1998).Example: Poisson 
ount with random e�e
ts (
ontinued) M6 is readily veri�ed. Notethat r log g(�) = dXk=1 Yk � e� ZRd+1 S(z)p(z; �)�(dz);and a stationary point �� solves the equation:dXk=1 Yk = e�� Z S(z)p(z; ��)�(dz) i.e. dXk=1 Yk = e�� �S(��):Sin
e g is analyti
 (see se
tion 2.1) any 
ompa
t subset of � 
ontains only a �nite number ofstationary points of g. For a stationary point ��, note that �r2�L( �S(��); ��) = e�� �S(��) andZ r�L(S(z); ��) tr�L(S(z); ��)p(z; ��)�(dz) = e�� Z (S(z)� �S(��))2p(z; ��)�(dz);so that M7 holds.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 113. Rate of 
onvergen
e and averagingWe now study the rate of 
onvergen
e of f�0ng (given fKng, �00 2 K0 and �) to a lo
al maximum�� of g. Rate of 
onvergen
e is useful to understand how we should ideally tune the numberof simulations mn as a fun
tion of the iteration index. It also allows to derive an a

eleratedversion of the algorithm, based on averaging.De�ne G(s) := �S Æ �̂(s). The mapping G gives another way to 
onsider an iteration of theEM algorithm, not dire
tly in the parameter spa
e �, but in the spa
e of the 
omplete datasuÆ
ient statisti
s S. If �� is a �xed point of T , i.e. �� = T (��) = �̂ Æ �S(��), then s� := �S(��)is a �xed point of G, i.e. s� = G(s�) = �S Æ �̂(s�). In addition, rT (��) = r�̂(s�) r �S(��)and rG(s�) = r �S(��) r�̂(s�). Hen
e rG(s�) has the same eigenvalues as rT (��), 
ountingmultipli
ities together with (q� l) additional eigenvalues equal to zero. The stability properties
an thus be dire
tly translated in terms of stability of s�; when �� is stable, then s� is stableand vi
e-versa.3.1. Rate of 
onvergen
e. We begin by dis
ussing informally the results. Let �� be a �xedpoint of T and let s� := �S(��). There are a priori multiple possible limiting points, so we needto restri
t our attention to the set of traje
tories that 
onverge to a given limiting point s�. Forlarge enough n, we may de
ompose the re
ursion as follows,~Sn � s� = �G( ~Sn�1)� G(s�)�+ ~Sn � G( ~Sn�1) = �� ~Sn�1 � s��+ �n + �n;where � := rG(s�) and f�ng is a martingale di�eren
e sequen
e w.r.t. the �ltration Fn :=� � ~S0; : : : ; ~Sn�,�n := � ~Sn � E [ ~SnjFn�1℄� 1Ifj ~Sn�1�s� j�Æg; n � 1; Æ > 0; �0 := 0:The remainder term �n 
an be expressed as �n := �(1)n + �(2)n , where for n � 1,�(1)n := � ~Sn �G( ~Sn�1)� 1Ifj ~Sn�1�s�j�Æg + �E h ~Sn���Fn�1i� G( ~Sn�1)� 1Ifj~Sn�1�s� j�Æg; (11)�(2)n := �G( ~Sn�1)�G(s�)� �( ~Sn�1 � s�)� =Xi;j Rn�1(i; j)�~Sn�1;i � s�i�� ~Sn�1;j � s�j� ; (12)and Rn is de�ned 
omponentwise asRn(i; j) := Z 10 (1� t)�2G(s� + t( ~Sn � s�))�si�sj dt:



12 GERSENDE FORT AND ERIC MOULINESIt is 
onvenient to de
ompose the error ~Sn � s� as a sum of a linear term �n obeying a lineardi�eren
e equation driven by the martingale di�eren
e �n,�n = ��n�1 + �n; n � 1; and �0 := 0; (13)and a remainder term �n �n := ~Sn � s� � �n; n � 0; (14)whi
h will be shown to be negligible along the traje
tories 
onverging to s�. We stress that,be
ause there are possibly several 
onvergen
e points, the remainder term �n as de�ned abovewill be small only along traje
tories that 
onverge to s�.As shown in the previous se
tion, under the stated assumptions, ~Sn may only 
onverge to stablepoints of G (hyperboli
 points and unstable points are avoided w.p.1), whi
h are asso
iated toa lo
al maximum of the in
omplete likelihood g. Hen
e, we may assume that s� is stable, whi
himplies that all the eigenvalues of � have modulus less than 1, and thus, that there exist 
 < 1and a 
onstant C < 1 su
h that for all k, j�kj � C
k, where j:j is any matrix norm. Thisimplies that the linear 
ontrol model (13) above is stable and that,�n = nXk=0 �k�n�k :In many situations, 
 is very 
lose to one, explaining why the EM algorithm is sometimes slowto 
onverge (see Jamshidian and Jennri
h (1997)). Most often, 
 is unknown. It 
an howeverbe estimated using e.g. the Louis Information prin
iple (see Delyon et al. (1999)) but thisgenerally involves a signi�
ant 
omputational overhead. By 
onstru
tion, the driving error f�ngis a martingale in
rement. Observe that if one assumes that for all n, j ~Sn�1 � s�j � Æ for somedeterministi
 s� and Æ, then there exists a deterministi
 
ompa
t K � � su
h that for all n,�0n 2 K. From that remark and M4, it may be asserted that the Lp-norm of the martingale �n isinversely proportional to pmn, the square root of the number of simulations at step n. Hen
e,�n = OLp  nXk=0 
n�km�1=2k ! ;we say that Xn = OLp(�n) where �n 6= 0 if ��1n Xn is bounded in Lp. A more expli
it expressionfor the rate of �n 
an be obtained by using the following Lemma, from (P�olya and Szeg}o, 1976,Result 178 p.39),



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 13Lemma 5. Let fang and fbng, bn 6= 0, be two sequen
es su
h that (i) the power series f(x) :=P1n=1 anxn has a radius of 
onvergen
e r, (ii) limn!1 bn=bn+1 =: q, with jqj < r. De�ne
n :=Pnk=0 akbn�k. Then, limn!1 
nb�1n = f(q).Hen
e, provided that limnmn+1=mn < 
�2, the linear term �n = OLp(m�1=2n ). The 
onstraintlimnmn+1=mn < 
�2 is always satis�ed when fmng is subexponential. When lim sup 
2nmn =1, the 
onstraint is no longer satis�ed and the rate is stri
tly lower than m�1=2n . Of 
ourse, thisanalysis makes sense only if we 
an prove that �n is the leading term of the error ~Sn � s�, i.e.�n is negligible w.r.t. �n along the traje
tories of ~Sn that 
onverge to s�. More spe
i�
ally, wehave to show that (see Lemma 14, Se
tion 7)�n1Iflimn ~Sn=s�g = ow:p:1(m�1=2n ); (15)we say that Xn = ow:p:1(�n), resp. Xn = Ow:p:1(�n), where �n 6= 0 if limn ��1n jXnj = 0, w.p.1;resp. ��1n jXnj is bounded w.p.1.The dis
ussion above is summarized in the following Theorem.Theorem 6. Assume M1-7. Let s� be a stable �xed point of the map G. Let 
 < 1 be themodulus of the largest eigenvalue of rG(s�). Assume that 1 � limnmn+1=mn < 
�2. Then,�n = OLp �m�1=2n � and �n1Ilimn ~Sn=s� = ow:p:1(m�1=2n ), where �n and �n are given by (13) and(14).Theorem 6 shows that, under weak 
onditions on the sequen
e fmng, along any traje
tory
onverging to a stable �xed point s�, the error �0n��� (or equivalently ~Sn�s�), is asymptoti
allygiven by �n. In addition, the Lp-norm of �n de
reases as the square root of the number ofsimulations at step n.To 
ompare the rate of 
onvergen
e of the MCEM algorithm with other sto
hasti
 versions of theEM algorithm, su
h as the Sto
hasti
 Approximation EM (SAEM), it is worthwhile to 
omputethe rate as a fun
tion of the number of simulations rather than as a fun
tion of the number ofiterations. For a generi
 sequen
e fXng, de�ne the interpolated sequen
e X(i)n = X�(n) where �is de�ned as the largest integer su
h that�(n)Xk=0mk < n � �(n)+1Xk=0 mk:The subs
ript n for the interpolated sequen
e �0(i)n refers to the total number of simulationswhile for the original sequen
e f�0ng, it 
oin
ides with the number of iterations. Assume �rst



14 GERSENDE FORT AND ERIC MOULINESthat the number of simulations is in
reasing at a polynomial rate, i.e. mn := n� so that�(n) � [(1 + �)n℄1=(1+�) . On the simulation time-s
ale, �(i)n = OLp �n��=(2(1+�))� and �(i)n =ow:p:1(n��=(2(1+�))). Hen
e the rate of 
onvergen
e is always smaller than n�1=2, whi
h is therate of the SAEM algorithm (Delyon et al., 1999, Theorem 7). It is interesting to note thatthe rate is improved by 
hoosing large values of �, whereas small values of � 
an lead torather ineÆ
ient estimates. In pra
ti
e, this means that it is better to in
rease the number ofsimulations rapidly when the algorithm is approa
hing 
onvergen
e, giving thus a theoreti
alba
kground to well established pra
ti
e. Assume now that mn := mn, m > 1. This 
hoi
e isadvo
ated in Chan and Ledolter (1995) and in several earlier works on the subje
t. We getsimilarly that �(i)n = OLp(n�1=2) and �(i)n = ow:p:1(n�1=2) whenever 1 < m < 
�2: in this 
ase,the rate of 
onvergen
e is n�1=2, provided that m is small enough.3.2. The averaging pro
edure. This previous dis
ussion eviden
es that the performan
e de-pends 
riti
ally upon the 
hoi
e of the s
hedule whi
h is of 
ourse a serious pra
ti
al drawba
k.Re
ently, a data-driven pro
edure has been proposed by Booth and Hobert (1999). This pro-
edure requires to evaluate the varian
e of ~Sn � G( ~Sn�1) whi
h is a 
hallenging problem whenMCMC is used to sample the missing data.We 
onsider here an alternative pro
edure adapted from a te
hnique developed by Polyak(1990) to improve the rate of 
onvergen
e for sto
hasti
 approximation pro
edures. To motivatethe 
onstru
tion, re
all that~Sn = s� + �n; �n := nXk=0�n�k�k + �n:Ea
h value of ~Sn may be seen as an estimator of s� a�e
ted by a noise term. The stable MCEMalgorithm estimates s� by ~Sn whi
h is an ineÆ
ient estimation strategy. By analogy with theregression problem, estimator of s� with redu
ed varian
e 
an be obtained by averaging andweighting the su

essive estimates ~Sn of s�. The regression noise �n being both 
orrelated andheteros
edasti
, the best unbiased linear estimator of s� would require to know (or estimate)both the 
orrelation and the varian
e of �n, whi
h is a diÆ
ult task. For simpli
ity, we 
onsiderweighted average �n :=M�1n nXj=0mj ~Sj ; and Mn := nXj=0mj ; (16)



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 15where ~Sn is weighted by mn, whi
h is a rough estimate of the inverse of the varian
e of �n.�n may thus be seen as a weighted least-square estimate of s�, the weights being (roughly)proportional to the inverse of the noise varian
e.Using the de
omposition above, �n � s� may be written as �n � s� = ��n + ��n where��n :=M�1n nXk=00�n�kXj=0mj+k�j1A �k ; ��n :=M�1n nXk=0mk�k: (17)Under M4, �E [j�njpjFn℄ � 2pCm�p=2n where C, given by M4, does not depend on the simulations
hedule. Then, the martingale form of the Rosenthal's inequality implies thatk��nkLp � C(p) 0B�0� nXk=0m�1k 0�n�kXj=0 mj+k
j1A21A1=2 +0� nXk=0m�p=2k 0�n�kXj=0mj+k
j1Ap1A1=p1CAM�1n ;where C(p) is a 
onstant depending only on p. A more expli
it expression for the rate of ��n 
anbe obtained from the following Lemma (the proof of whi
h is postponed in Se
tion 7).Lemma 7. Let 0 < 
 < 1 and fmng be a positive sequen
e su
h that 1 � limnmn+1=mn =:m < 
�2. De�ne for some positive integer r,�(r)n :=  nXk=0mr=2k !�1=r 0� nXk=0m�r=2k 0�n�kXj=0mj+k
j1Ar1A1=r :Then, limn �(r)n =: Br(m; 
) whereBr(m; 
) :=  (1�m
)�r "1 + �mr=2 � 1� r�1Xl=0 (rl ) (�1)r�l �ml�r=2
l�r � 1��1#!1=r ; if m
 6= 1;Br(
�1; 
) :=  (1� 
r=2) Xn (n+ 1)r
nr=2!1=r :Hen
e, provided that limnmn+1=mn =:m < 
�2, this shows thatlimn M1=2n k��nkLp � C(p) B2(m; 
)+ C(p) Bp(m; 
) limn  nXk=0mp=2k !1=pM�1=2n : (18)If m = 1 (this happens for example, for polynomial s
hedules mn / n� or sub-geometri
als
hedules mn / exp(n�), � < 1), then Pnk=0mp=2k � nmp=2n and limn �Pnk=0mp=2k �1=pM�1=2n =0. Hen
e, limn M1=2n k��nkLp � C(p) B2(1; 
):



16 GERSENDE FORT AND ERIC MOULINESIf 1 < m, then Lemma 5 implies that limn �Pnk=0mp=2k �1=pM�1=2n = (m� 1)1=2(mp=2 � 1)�1=p.Hen
e, limn M1=2n k��nkLp � C(p) B2(m; 
)+ C(p) Bp(m; 
) (m� 1)1=2 (mp=2 � 1)�1=p:This dis
ussion eviden
es that the Lp-norm of the term ��n de
reases as M�1=2n , the inverseof the square root of the total number of simulations up to iteration n. In addition, m 7!B2(m; 
) in
reases on [1; 
�2) n f
�1g and the minimum is B2(1; 
) = (1 � 
)�1; when m =
�1, B2(
�1; 
) = (1 + 
)1=2(1 � 
)�3=2 > B2(1; 
). This implies that the upper bound in(18) is minimal for m = 1 and that the upper bound for the error term is minimum whenlimnmn+1=mn = 1.��n is the leading term in �n�s� provided that, along any traje
tories that 
onverge to s�, ��nis negligible w.r.t. ��n, that is ��n1Ilimn ~Sn=s� = ow:p:1(M�1=2n ). By (37) and (38), ��n1Ilimn ~Sn=s� =Ow:p:1(1)OLp(nM�1n ). Hen
e, ��n is negligible 
ompared to ��n whenever the simulation s
hedule
he
ks the 
ondition nM�1=2n = o(1). For example, for geometri
al s
hedules, this 
ondition isalways 
he
ked whereas for polynomial s
hedules mn / n�, one has to 
hoose � > 1.The dis
ussion above is summarized in the following Theorem.Theorem 8. Assume M1-M7. Let s� be a stable �xed point of the map G and denote � :=rG(s�). Let 
 < 1 be the modulus of the largest eigenvalue of rG(s�). Let Mn, ��n and ��n begiven by (16) and (17). Assume that (i) 1 � limnmn+1=mn < 
�2, and (ii) nM�1=2n = o(1).Then, ��n = OLp �M�1=2n � and ��n1Ilimn ~Sn=s� = ow:p:1 �M�1=2n �.Theorem 8 shows that under weak 
onditions on the sequen
e fmng, along any traje
tory
onverging to a stable �xed point s�, the error �n � s� behaves asymptoti
ally as ��n; thus, theestimator ��n := �̂(�n) (or equivalently �n) has a rate proportional to M�1=2n , that is a rateinversely proportional to the square root of the total number of simulations up to iteration n.When expressed on the simulation time-s
ale, the previous result shows that the Lp-norm of theleading term ��(i)n is proportional to n�1=2.Hen
e, the averaging pro
edure improves the rate of 
onvergen
e. In addition, the dis
ussionabove eviden
es that when averaging is used, it is not re
ommended to use geometri
al s
hedules.It is better to 
hoose mn in su
h a way that limnmn+1=mn = 1 and nM�1=2n = o(1), whi
h isveri�ed e.g. if mn grows polynomially.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 17Example: Poisson 
ount with random e�e
ts (
ontinued). A plot of N = 100 observa-tions Y1; � � � ; Y100, obtained with �true = 2, a = 0:4 and �2 = 1 is given in Figure 1. To implementstable MCEM, the 
ompa
t sets fKng are 
hosen as ball of radius (n+ 1) 
entered at �00. TheMonte Carlo approximations are 
omputed by use of the hybrid sampler des
ribed in Para-graph 2.2. The proposal distribution for ea
h 
omponent is a standard Gaussian variable on R,(the mean a

eptan
e rate is � 40%). The 
hains are initialized in a 
ompa
t ball of radius r = 11a

ording to a 
on
atenation rule: if the last sample Znmn at iteration n is in this ball, then it is thestarting point of the following 
hain i.e. Zn+10 := Znmn ; otherwise, we set Zn+10 := r Znmn=jZnmn j.The simulation s
hedule in
reases polynomially mn := 1000 + n2. In Figure 2, we plot threepaths of stable MCEM started respe
tively at �00 = log(N�1P Yk) � 2:41, �00 = �2 and �00 = 4.After respe
tively 0, 3 and 2 re-initializations, 
onvergen
e to the point �� � 1:88 may be ob-served. In Figure 3, we plot a stable MCEM path started from �00 = log(N�1P Yk) and itsaveraged 
ounterpart (i.e. the sequen
e ��n given by ��n := �̂(�n)). It may be observed that thevariation of the averaged path de
reases more rapidly than the variation of the stable MCEMpath, whi
h illustrates the dis
ussion of Paragraph 3.2.4. An appli
ation to produ
t diffusion modelingWe illustrate the previous results by 
onsidering the Bass produ
t di�usion model whi
h 
onsistsin predi
ting market penetration of new produ
ts and servi
es. Sherman et al. (1999) proved the
onvergen
e in the 
ase where the missing data are obtained (at ea
h step) from m independentruns of a Gibbs sampler. These authors assume uniform geometri
 ergodi
ity in the totalvariation distan
e, and uniform 
onvergen
e in L2 (Assumptions (C5-6)) whi
h seem diÆ
ult todire
tly verify in pra
ti
e.The observations y := f(t1; n1); � � � ; (td; nd)g are the 
umulative numbers nj of adopters at a setof in
reasing instants tj . We set t0 = n0 := 0. It is assumed that the nj 's are realizations of apro
ess N(t) at time tj , and the tj 's are sele
ted independently of the adoption pro
ess. N(t)is a pure birth Markov pro
ess with stationary transition probabilities and population adoptionrate �(t) := �M� �N(t)��%+ &N(t)�where M is the population size (M is known and 
onstant over time), � is the proportion ofpotential adopters, % � 0 is the innovator 
oeÆ
ient and & � 0 is the imitator 
oeÆ
ient. For all



18 GERSENDE FORT AND ERIC MOULINES0 � i � nd � 1, �(ti) has to be positive. In addition, in order the expe
ted number of adoptersnot to ex
eed the number of eventual adopters, we require % + &nd � 1. Hen
e (%; &; �) 2 �where � := f(%; &; �) 2 (0; 1℄� [0; 1℄� [nd=M; 1℄; 0 < %+ &nd � 1g :Our purpose is to 
ompute the maximum likelihood estimator for # := (%; &; �), or equivalentlythe maximum likelihood estimator for � = (�; �; 
) := �(#) de�ned as�(%; &; �) := 26664 �&&M� � %%M� 37775 ��1(�; �; 
) := 26664 1=2 (�� +p�2 � 4�
)��2
M�1(�� +p�2 � 4�
)�137775so that � : � ! � := �(�) is 
ontinuous. Hen
e, we want to maximize on � the in
ompletedata likelihood g given byg(�) := dYj=10� nj�1Yk=nj�1 �k(�)1A njXi=nj�10�exp (��i(�)(tj � tj�1)) njYk=nj�1 ;k 6=if�k(�)� �i(�)g�11A ;where �i(�) := �i2+�i+
. Computation and maximization of g are not tra
table (see Dalal andWeerahandi (1995)). We thus implement the stable MCEM algorithm and solve a missing dataproblem where missing data are individual adoption times. We write g(�) := RX h(z; �)�(dz)where (see (Sherman et al., 1999, Eq.(11)))z := (z1; � � � ; znd); z0 := 0 X := [0; td℄nd ;h(z; �) := nd�1Yi=0 �i(�) exp�� �i(�)(zi+1 � zi)� exp� � �nd(�)(td � znd)�;and � is absolutely 
ontinuous w.r.t. the Lebesgue measure on Rnd�(dz) := 1I0<z1<���<znd d�1Yj=1 1Iznj�tj<znj+1 1Iznd�td dz:De�ne  (�) := � and�(�) := ��nd(�)td + nd�1Xk=0 ln�k(�); S(z) := " ndXk=1(2k� 1)zk; ndXk=1 zk; 0# ;so that log h(z; �) = �(�)+hS(z); �i. M2(a) is readily veri�ed and, as g is 
ontinuous on �, M2(b)follows from an appli
ation of the Lebesgue theorem. It is trivial to verify that for all � 2 �,s 2 S, �r2�L (s; �) is positive de�nite; then, for all s 2 S, the fun
tion � 7! L(s; �) is stri
tly
on
ave on � and s 7! �̂(s) is well-de�ned on S. By applying the impli
it fun
tion theorem, �̂is also 
ontinuous. M2(
) is thus veri�ed. # 7! g Æ �(#) is a positive and 
ontinuous fun
tion on



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 19�, and lim%!0 g Æ �(%; &; �) = 0 for any (&; �) showing that the level sets fg Æ � � Mg, M > 0,are 
ompa
t subsets of �. As � is 
ontinuous, the level sets fg �Mg are 
ompa
t subsets of �,and M2(d) holds. Finally, L is a 
losed subset of the bounded set � whi
h proves M3(a).To impute the missing values z, we use a Metropolis Hastings Independent Sampler (IS) withproposal distribution q d� whi
h is 
hosen as the produ
t of d distributions of the order statisti
sof (nk � nk�1) independent random variable uniformly distributed on [tk�1; tk℄, 1 � k � d, i.e.q(z)�(dz) := h dYk=1 (tk � tk�1)nk�nk�1(nk � nk�1)! i�11I0<z1<���<znd d�1Yj=1 1Iznj�tj<znj+1 1Iznd�td dz:Re
all that for an homogeneous Poisson pro
ess of rate �, the 
onditional distributions of thearrivals in a given interval given the number of arrival is i.i.d uniform over that interval so thatthe 
hoi
e of the proposal is well mat
hed to the target density. With these de�nitions, the ISkernel, P�, is Lebesgue-irredu
ible and aperiodi
. It is easily seen that the target density p(z; �)is uniformly bounded for � in a 
ompa
t set K � �. Thus, there exists some minorizing 
onstant0 < � < 1 su
h that �p(z; �) � q(z) for all � 2 K, z 2 X . Hen
e, for z 2 X , any measurable setA, P�(z; A) � ZA ��(z; z0)q(z0)�(dz0) � � ZA p(z0; �)�(dz0) = � ��(A);where ��(z; z0) is the a

eptation ratio. The 
ondition M4 follows from Proposition 1, with anyp � 2 and any probability measure � on X .Simulations (1). We generate d := 30 observations at time tj := 0:25j by 
hoosing M :=2000, (%t; &t; �t) := (0:03; 0:0004; 0:5) that is (�t; �t; 
t) = (�0:0004; 0:37; 30). The 
orresponding
umulative numbers nj appear as stars in Figure 4 (we have nd = 651). The parameter spa
e� is 
overed by the in
reasing sequen
e of 
ompa
t setsKn := ��f(%; &); 0:0003=2n � % � 1; 0 � & � 1; 0 � %+ &nd � 1g � [nd=M; 1℄�; n � 0:The initial distribution � of the Markov 
hains 
oin
ides with the proposal distribution of theindependent sampler q d� des
ribed above.Two paths of stable MCEM started respe
tively at �00 = (�5 10�5; 0:0321; 0:3260) [path 1℄ and�00 = (�4 10�5;�0:24; 450) [path 2℄ are run for 300 iterations. The number of simulations at ea
hiteration in
reases polynomially mn = 20+n1:2. After respe
tively four and zero re-initializationsand a small number of iterations, the 
onvergen
e of both paths to �� � (�0:00027; 0:2965; 37:41)may be observed. In Figure 5, we plot the stable MCEM sequen
es f
ng both 
onverging to
� = 37:41. In the lower left-hand 
orner, the �rst ten values are drawn, showing (a) the four



20 GERSENDE FORT AND ERIC MOULINESre-initializations on Path 1 and (b) for both paths, the rapid move towards a neighborhood ofthe limiting value 
�. The two paths are drawn in the right subplots (from iteration 9 to 300),showing the 
onvergen
e to the same limiting point 
� and a similar variation of the paths.We then observe the performan
e of stable MCEM and the averaged 
ounterpart for two poly-nomial s
hedules, mn � n1:2 and mn � n2. The pro
edures, run for 300 iterations, start from�00 = (�5 10�5; 0:0321; 0:3260). In Figure 6, we plot the sequen
es f
ng and f�
ng, respe
tivelyobtained by the stable MCEM algorithm and the averaging pro
edure (the ten �rst values aredis
arded). In all 
ases, 
onvergen
e to 
� = 37:41 may be observed. COntrary to the variationof the averageds stable MCEM path, the variation of stable MCEM paths depends upon thesimulation s
hedule. Hen
e, it may be observed that averaging smoothes out the traje
tory andimproves the rate of 
onvergen
e.The same 
on
lusions 
ould be drawn from the sequen
es f�ng, f�ng, f��ng, and f��ng, the plotsof whi
h are omitted.Dalal and Weerahandi Dalal and Weerahandi (1992) derive approximations of mean and vari-an
e of the Poisson pro
ess N(t). The estimates of the mean fun
tions E[N(tj )℄ 
omputed fromthe true value of the parameter �t (resp. the stable MCEM estimate ��) appeared as x-marks(resp. squares) on Figure 4. The dots 
urves interpolate points 
orresponding to �2 estimatedstandard errors from the estimates of the mean E[N(tj )℄.Simulations (2). Consider now the predi
tion of the number of wireless tele
ommuni
ationservi
es in the United States. Cellular Tele
ommuni
ations Industry Asso
iation performedsemi-annual surveys, 
olle
ted in June and De
ember, from January 1985 to June 2001 (thedatas are available on the web site www.wow-
om.
om/industry/stats/surveys/). In Figure 8,the 34 observations 
olle
ted at time 1; 2; � � � ; 34, appear as stars. We assume that this 
ountfollows a pure birth Markov model (our results suggest it is a good approximation). Sin
ethe same person may subs
ribe to di�erent wireless servi
es, the (true) population size M isunknown. As dis
ussed in Sherman et al., M and � enter the model through the produ
t M�,so any value M > nd is 
onvenient. As nd � 108, we set M = 109.Our estimate is 
omputed from the 29 values 
olle
ted from January 1985 to De
ember 1998and the last values are used to 
ross-validate the result. The estimate is 
omputed as thelimiting value of a path f��ng of the averaged pro
edure run for 200 iterations with a polynomialsimulation s
hedule mn � n2 and started at �00 = (�5 10�5; 0:0321; 0:3260). The paths of f��ng,f��ng, f�
ng are plotted in Figure 7. The limiting value is �� = (�6:27 10�11; 0:16; 1:77 105). The
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ted values) of the mean fun
tion E[N(tj )℄ for j 2 f1; 28g (resp.j 2 f29; 37g) appear as (down) triangles in Figure 8 (resp. (up) triangles).Sherman et al.provide an estimate �� of �t based on the �rst 23 values 
olle
ted from January1985 to De
ember 1995. They obtain �� = (�1:06 10�9; 0:20097; 8:17 105). Their �tted values(resp. their predi
ted values) of the mean fun
tion E[N(tj )℄ for j 2 f1; 23g (resp. j 2 f24; 37g)are represented as diamonds in Figure 8 (resp. squares).In both 
ases, the extrapolated values well tra
k the observed datas.5. Proof of Theorem 3Let T : �! � be a point-to-point map. Let L be a non empty subset of �. A positive fun
tionW de�ned on � is said to be a Lyapunov fun
tion relatively to (T;L) when, (i) for all u 2 �,W Æ T (u)�W (u) � 0 and (ii) for any 
ompa
t set K � � n L, infu2KfW Æ T (u)�W (u)g > 0.In the literature, 
onvergen
e of random iterative maps fFng that approximate a deterministi
iterative map T having a Lyapunov fun
tion W is addressed under the assumption that for all
ompa
t set K, limn supu2K jW Æ Fn(u)�W Æ T (u)j = 0:When applied to the present problem, this 
ondition is often not 
he
ked when MCMC algo-rithms are used to perform Monte Carlo integration. In this se
tion, we show how this 
ondition
an be repla
ed by the weaker 
onditionlimn jW Æ Fn(un)�W Æ T (un)j 1Iun2K = 0:5.1. Deterministi
 results.Proposition 9. Let � � Rl, K be a 
ompa
t subset of � and L � � su
h that L\K is 
ompa
t.Let W be a 
ontinuous Lyapunov fun
tion relatively to (T;L). Assume that there exists a K-valued sequen
e fung su
h that limn jW (un+1)�W ÆT (un)j = 0. Then fW (un)g 
onverges to a
onne
ted 
omponent of W (L \ K). If W (L \ K) has an empty interior, fW (un)g 
onverges tow? and fung 
onverges to the set Lw? \ K where Lw? := f� 2 L;W (�) = w?g.Proof. De�ne the 
ompa
t set D := W (L\K). Let D� be the �-neighborhood of the 
losed setD in R, D� := fx 2 R; d(x;D) < �g. As D is 
ompa
t, D = T�>0D�. Let � > 0. Sin
e D�



22 GERSENDE FORT AND ERIC MOULINESis a �nite union of disjoint bounded open intervals, there exist n� � 0 and two in
reasing realvalued sequen
es fa�(k)g and fb�(k)g, 1 � k � n�, su
h thatD� = [k2f1;��� ;n�g (a�(k); b�(k)): (19)W�1(D�=2) is an open neighborhood of L \ K, and we de�ne�� := inffu2KnW�1(D�=2)g fW Æ T (u)�W (u)g; and �� := �� ^ �: (20)Sin
e K n W�1(D�=2) is a 
ompa
t subset of Rd, �� and �� are both positive. We de�ne�n+1 :=W (un+1)�W Æ T (un). ThenW (un+1)�W (un) = W Æ T (un)�W (un) + �n+1: (21)and there exists N� � 0, su
h that for any n � N�,j�n+1j � ��=2: (22)By (20), (21),�n � N� and un 2 K nW�1(D�=2)� =) W (un+1)�W (un) � ��=2: (23)De�ne k?� := minf1 � k � n�; lim supn W (un) < b�(k)g and I(�) := (a�(k?�); b�(k?�)). (23)shows that fW (un)g is in�nitely often (i.o.) in D�=2 � D�, and sin
e D� is a �nite union ofintervals, fW (un)g is i.o. in an interval of (19); thus, lim supn W (un) 2 I(�). Let p � N� su
hthat W (up) 2 I(�). We prove by indu
tion that for all n � p, W (un) 2 I(�). By de�nition,W (up) 2 I(�). Assume now that for p � k � n, W (uk) 2 I(�).� If W (un) 2 D�=2, we have W (un) � a�(k��) + �=2. Thus,W (un+1) � W (un) + �n+1 � a�(k��) + �=2� ��=2 � a�(k��):� If W (un) 2 D� n D�=2, then under (20), W Æ T (un) �W (un) � ��, and (21) and (22)imply that W (un+1) � a�(k��) + ��=2 � a�(k��).Hen
e, the set of the limit points I of fW (un)g is non empty and in
luded in the interval I(�).Let 0 < �1 < �2. By de�nition, D�1 � D�2 , thus I(�1) � I(�2) and I � I(�1) \ I(�2).Let f�ng be a de
reasing sequen
e su
h that limn �n = 0; then I � Tn I(�n). fI(�n)g is ade
reasing sequen
e of intervals, Tn I(�n) is an interval and Tn I(�n) � W (L \ K). Hen
e,
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onverges to this interval whi
h 
on
ludes the �rst part of the proof. The last part isa 
onsequen
e of (21). �It is proved in Proposition 10 that the 
ompa
tness assumption of the sequen
e fung 
an berepla
ed by a re
urren
e 
ondition, provided that there exists a Lyapunov fun
tion 
ontrollingthe ex
ursion outside the 
ompa
t sets of �. In Proposition11, we propose a stabilizationpro
edure ensuring this re
urren
e property for sequen
es fung de�ned by inhomogeneous maps,un+1 = Fn(un).Proposition 10. Let � � Rl, T : �! � and L � �. Assume thatA1 there exists a 
ontinuous Lyapunov fun
tionW for (T;L) su
h that (a) for allM > 0,the level set f� 2 �;W (�) �Mg is 
ompa
t, (b) � = Sn�1f� 2 �;W (�) � ng.A2 W (L) is 
ompa
t, or A2' W (L \ K) is �nite for all 
ompa
t set K � �.A3 there exists a �-valued sequen
e fung su
h that (a) fung is in�nitely often in a
ompa
t subset G � � and (b) for any 
ompa
t set K � �, limn jW (un+1) � W ÆT (un)j1Iun2K = 0.Then fung is in a 
ompa
t subset of �.Proof. (under the assumption A2) Let � > 0. Under A1(b) and A2, there exists M > 0 su
hthat G [ L� � f� 2 �;W (�) �Mg;where L� is the �-neighborhood of L. De�ne� := inff�2�;W (�)�M�1gnL�fW Æ T (�)�W (�)g and � := � ^ 1: (24)By assumption, � > 0 and � > 0. De�ne �n+1 := W (un+1)�W ÆT (un). Under A3, there existsN su
h that �n � Nand un 2 f� 2 �;W (�) �M � 1g�) j�n+1j � �=2: (25)Note that W (un+1)�W (un) = W Æ T (un)�W (un) + �n+1: (26)Sin
e fung is in�nitely often in the 
ompa
t set G, there exists p � N su
h thatW (up) �M�1.We show by indu
tion that for all n � p, W (un) � M � 1. The property holds for n = p.Assume it holds for p � k � n.



24 GERSENDE FORT AND ERIC MOULINES� If un 2 f� 2 �;W (�) � Mg, then (24-26) imply that W (un+1) � W (un) � �=2 �M � 1=2 �M � 1.� If un 2 f� 2 �;W (�) �M � 1g n L�, then (24-26) imply that W (un+1) � W (un) + ���=2 � W (un) �M � 1.Hen
e for any q � n, uq is in the 
ompa
t set f� 2 �;W (�) �M � 1g.Proof. (under the assumption A2'). By assumption, there exists M su
h that G � f� 2�;W (�) � Mg. As W (L \ f�;W (�) � M � 1g) is �nite, there exist � > 0 and M � 1 �M 00 < M 0 < M , su
h thatL� \ f� 2 �;W (�) �M 00g � f� 2 �;W (�) �M 0g:De�ne � := inff�2�;W (�)�M 00gnL�fW Æ T (�)�W (�)g and � := � ^ (M 0 �M 00):It may be proved that for all large q, uq is in the 
ompa
t set f� 2 �;W (�) �M 00g. The proofis on the same lines as the previous one, and is omitted for brevity. �Let fFng : �! � be a family of point-to-point maps. Choose a sequen
e of 
ompa
t subsetsfKng of � su
h that for any n � 0,Kn ( Kn+1 � = [n�0Kn:Let u0 2 K0. Set p0 := 0 and for n � 0,8<: If Fn(un) 2 Kpn; un+1 := Fn(un) and pn+1 := pn;if Fn(un) 62 Kpn un+1 := u0 and pn+1 := pn + 1: (27)Proposition 11. Let � � Rl, T and fFng be point-to-point maps onto �. Let fung be thesequen
e given by (27). Assume (a) A1-2 holds, (b) for all u 2 K0, limn jW ÆFn�W ÆT j(u) = 0and (
) for any 
ompa
t subset K � �, limn jW Æ Fn(un) � W Æ T (un)j1Iun2K = 0. Then,lim supn pn <1 and fung is a 
ompa
t sequen
e.The proof is along the same lines as Proposition 10 and is omitted for brevity.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 255.2. Proof of Theorem 3. Given �, �00 and the sequen
e of 
ompa
t sets fKng, the pro
essf�0ng is de�ned on the 
anoni
al spa
e of the inhomogeneous Markov 
hain f( ~Sn; pn)g. Wedenote by P (resp. E) the probability (resp. the expe
tation) of this 
anoni
al Markov 
hain(the dependen
e upon �, �00 and fKng is omitted).We apply Proposition 9 and Proposition 11 with the EM map T := �̂ Æ �S and the randomsequen
e of maps fFng, Fn(�) := argmax�2� Qn(�; �).Proof of (i-a). We 
he
k the 
onditions of Proposition 11. It is well-known that the in
ompletedata likelihood g is a natural Lyapunov fun
tion relatively to the EM map T and to the set Lof the �xed points of T . Under M1-3, the 
onditions A1-2 are veri�ed with W = g. Let � > 0and K � � be a 
ompa
t. We prove that Pn 1IfjgÆFn(�0n)�gÆT (�0n)j1I�0n2K��g is �nite w.p.1. Bythe se
ond Borel-Cantelli Lemma, the 
onvergen
e of the series is implied by the 
onvergen
e ofPnP�jgÆFn(�0n)�gÆT (�0n)j1I�0n2K � �jFn�1� w.p.1 where Fn := � � ~Sk ; k � n�. By assumption,�S(K) is a 
ompa
t subset of S. For Æ > 0, de�ne the 
ompa
t �S(K; Æ) := fs 2 Rq; inf t2K jt�sj �Æg. Then there exists �(�; Æ) su
h that for any x; y 2 �S(K; Æ),jx� yj � �(�; Æ) =) jg Æ �̂(x)� g Æ �̂(y)j � �:Hen
e,P���g Æ Fn(�0n)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� = P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �jFn�1�= P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �; ��� ~Sn � �S(�0n)��� 1I�0n2K � ÆjFn�1�+P����g Æ �̂( ~Sn)� g Æ �̂( �S(�0n))��� 1I�0n2K � �; ��� ~Sn � �S(�0n)��� 1I�0n2K > ÆjFn�1�� 2P���� ~Sn � �S(�0n)��� 1I�0n2K � �jFn�1�with � := Æ ^ �(�; Æ). Thus,P���g Æ Fn(�0n)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� � 2 ��pE h��� ~Sn � �S(�0n)���p jFn�1i 1I�0n2K� 2 ��p m�pn E�;�0n 24������mnXj=1fS(�j)� ��0n(S)g������p35 1I�0n2K;where p is given by M4. Then M4 implies that there exists a �nite 
onstant C := C(K) su
hthat E�;�0n 24������mnXj=1fS(�j)� ��0n(S)g������p35 1I�0n2K � Cmp=2n ;and, under M5, the proof is 
on
luded.



26 GERSENDE FORT AND ERIC MOULINESProof of (i-b) and (ii). We 
he
k the 
onditions of Proposition 9. It remains to prove that forany 
ompa
t set K � �, limn ��g(�0n+1)� g Æ T (�0n)�� 1I�0n2K = 0 P-a.s.We pro
eed as above and 
onsider the a.s. 
onvergen
e of the random seriesXn P���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �jFn�1� : (28)By de�nition, either �0n+1 = Fn(�0n) or �0n+1 = �00 and pn+1 = pn + 1. We have just proved thatthe number of re-initialization is �nite w.p.1 so that the seriesXn P���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �; �0n+1 = �00; pn+1 = pn + 1jFn�1�is �nite P-a.s. Then (28) is �nite i�PnP���g(�0n+1)� g Æ T (�0n)�� 1I�0n2K � �; �0n+1 = Fn(�0n)jFn�1�is �nite P-a.s., whi
h is established above.6. Uniform Rosenthal's inequalityLet f : X ! [1;1) be a measurable fun
tion. For some fun
tion g : X ! Rq, (resp. for somesigned measure � on X ), de�nekgkf := supX jgjf ; Lf := fg : X ! Rq; kgkf <1g k�kf := supfg;jgj�fg j�(g)j:Proposition 12. Let (
;A;Fn; f�ng; Px) be a 
anoni
al Markov 
hain with invariant probabilitymeasure � on X . Assume that there exist p � 2, some measurable fun
tions 1 � f0 � V0 �V p0 � V1 <1 and some 
onstants Ci <1, i = 0; 1, su
h that for any x 2 X8<: Pn kPn(x; �)� �(�)kf0 � C0V0(x);Pn kPn(x; �)� �(�)kV p0 � C1V1(x): (29)Then, for any Borel fun
tion g : X ! Rq, g 2 Lf0,Ex ����� nXk=1fg(�k)� �(g)g�����p � kgkpf0 6pCpCp0 (C1V1(x) + �(V p0 )) np=2 x 2 X ;where Cp is the Rosenthal's 
onstant.



CONVERGENCE OF THE MONTE CARLO EM FOR CURVED EXPONENTIAL FAMILIES 27Proof. Denote by ĝ(x) :=P1k=0fP kg(x)� �(g)g; the unique solution (up to a 
onstant) of thePoisson equation ĝ � Pĝ = g � �(g). Then ĝ 2 LV0 and kĝkV0 � C0kgkf0. WritenXk=1 fg(�k)� �(g)g = nXk=1fĝ(�k)� Pĝ(�k�1)g � Pĝ(�n) + Pĝ(�0):fĝ(�k) � Pĝ(�k�1)g is a Lp-martingale in
rement (w.r.t. the initial distribution Æx) and byapplying the Minkovsky's inequality and the Rosenthal's inequality (Hall and Heyde, 1980,Theorem 2.12), we getEx "����� nXk=1fg(�k)� �(g)g�����p# � 3p�18<:CpEx 24 nXk=1 Ex �jĝ(�k)� Pĝ(�k�1)j2 jFk�1�!p=235+ CpEx " nXk=1 jĝ(�k)� Pĝ(�k�1)jp#+ Ex [jPĝ(�n)jp℄ + jPĝ(x)jp)where Cp is the Rosenthal's 
onstant and fFng is the natural �ltration of the Markov 
hainf�ng. In addition, nXk=1 Ex �jĝ(�k)� Pĝ(�k�1)j2jFk�1�!p=2 �  nXk=1P jĝj2(�k�1)!p=2 � np=2�1 nXk=1 P jĝjp(�k�1):Hen
e,Ex "����� nXk=1fg(�k)� �(g)g�����p# � 3p�1 Cp(np=2�1 + 2p) nXk=1P k jĝjp(x) + P jĝjp(x) + Pn+1jĝjp(x)!� 3p�1 �Cp(np=2�1 + 2p) + 1�0�Xk�1 ���P k jĝjp(x)� �(jĝjp)���+ n�(jĝjp)1A� 6pCpnp=20�Xk�1 ���P k jĝjp(x)� �(jĝjp)���+ �(jĝjp)1A :Sin
e ĝ 2 LV0 , �(jĝjp) � k ĝ kpV0�(V p0 ) <1, and by assumption,1Xk=0 ���P k jĝjp(x)� �(jĝjp)��� � k ĝ kpV0 C1V1(x):This yields the desired result. �



28 GERSENDE FORT AND ERIC MOULINESProof of Proposition 1 . When the state spa
e is �m-small, it is easily seen thatXn kPn(x; �)� �(�)kTV � 2�1� (1� �)1=m��1 ;and the proof of (9) is a trivial appli
ation of Proposition 12.The following proposition gives suÆ
ient 
onditions, based on nested drift 
onditions, leadingto the expli
it bounds (29).Proposition 13. Let P be a  -irredu
ible and aperiodi
 transition kernel on a general statespa
e X . Let C � D be some a

essible �m-small sets. Assume there exist some Borel fun
tionsf; V : X ! [1;1), f � V , some 
onstants b <1 and 0 < a < 1 su
h that supD V <1 and8<: PV (x) � V (x)� f(x) + b1IC(x);f(x) � b=(1� a); x 2 D
:Then, P possesses an invariant probability measure �, �(f) <1 and for any probability measure(�; �) on X � X , 1Xn=0 j�Png � �Pngj � kgkf ���1MV + a�1��(V ) + �(V )�� ; (30)where,MV := sup(x;x0)2C�Dm�1Xk=1 fP kf(x) + P kf(x0)g+ sup(x;x0)2C�D m�1Xk=1fP kf(x) + P kf(x0)g+ a�1fPmV (x) + PmV (x0)g! � 4a�1 �bm+ supD V � ;with the 
onvention that P0k=1 P kf(x) = 0.Proof. By Theorem 14.0.1 of Meyn and Tweedie (1993), there exists an invariant probabilitymeasure � su
h that �(f) <1.For simpli
ity, the proof of (30) is restri
ted to the 
ase m = 1. The proof of (30) is based on
oupling te
hnique whi
h may be summarized as follows. Let � := (C �D) [ (D � C) and Rbe the residual kernel de�ned asR(x; �) := (1� 1ID(x)�)�1�P (x; �)� �1ID(x)�1(�)�:We de�ne a X �X � f0; 1g-valued pro
ess Z := f
;A; Zn = (Xn; X 0n; dn); Px;x0;dg su
h that (a)Px;x0;0(Xn 2 �) = Pn(x; �) and Px;x0;0(X 0n 2 �) = Pn(x0; �) for all (x; x0) 2 X �X , (b) there existsa random-time T and Xn1IT�n = X 0n1IT�n. Set Z0 := (x; x0; 0). Ea
h time (Xk; X 0k; dk) hits the
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oin is tossed. If the 
oin 
omes up head, then the 
oupling is su

essful:the next value of Xk+1 = X 0k+1 is simulated from �1, dk+1 = 1, and the two 
omponents remainforever 
oupled. Otherwise, the next values Xk+1 and X 0k+1 are drawn independently from theresidual kernel R and dk+1 = 0. If (Xk; X 0k; dk) 2 �
 � f0g, then the pro
esses are updatedindependently from P .De�ne the 
oupling time T := inffn � 1; dn = 1g (with the 
onvention that inf ; = 1),T0 := inffk � 0; (Xk; X 0k) 2 �g and, for i � 1, Ti := inffk > Ti�1; (Xk; X 0k) 2 �g the su

essivehitting times on �. By de�nition of T , we have Xn1IT�n = X 0n1IT�n and for any Borel fun
tiong 2 Lf , Xn�0 Z �(dx)�(dy)jPng(x)� Png(y)j � kgkf E�;�;0 "T�1Xn=0ff(Xn) + f(X 0n)g# : (31)De�ne A(f) := (1� �) sup(x;x0)2�Z R(x; dy)R(x0; dy0)Ey;y0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g# : (32)The �rst set in the proof 
onsists in showing thatEx;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g# � 1I�(x; x0)ff(x) + f(x0)g+ a�11I�
(x; x0)fV (x) + V (x0)g (33)The 
ase (x; x0) 2 � is trivial. For (x; x0) 2 �
, under the stated assumptions,Ex;x0 ;0 �V (X1) + V (X 01)� � V (x) + V (x0)� (f(x) + f(x0)) + b(1IC(x) + 1IC(x0)):Sin
e (x; x0) 2 �
, x 2 C (resp. x0 2 C) implies that x0 2 D
 (resp. x 2 D
), so thatf(x0)� b1IC(x) � af(x0) f(x)� b1IC(x0) � af(x):Hen
e, Ex;x0 ;0 �V (X1) + V (X 01)� � V (x) + V (x0)� a(f(x) + f(x0)); (x; x0) 2 �
;and the proof of (33) follows from the so-
alled Dynkin's formula (Meyn and Tweedie, 1993,Proposition 11.3.2). Note that by (33), Ex;x0 ;0[T0℄ < 1, whi
h implies that Px;x0;0(T <1) = 1for all (x; x0) 2 X � X . We now prove thatEx;x0 ;0 "T�1Xn=0ff(Xn) + f(X 0n)g# � Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g#+ ��1A(f): (34)



30 GERSENDE FORT AND ERIC MOULINESBy the strong Markov property, and by noting that Px;x0;0(dTj = 0) = (1� �)j , for j � 0,Ex;x0 ;0 24Tj+1Xn=0ff(Xn) + f(X 0n)g1If0g(dTj+1)35 = (1��)Ex;x0 ;0 24 TjXn=0ff(Xn) + f(X 0n)g1If0g(dTj�1+1)35+ Ex;x0 ;0 "1If0g(dTj+1)EXTj +1;X 0Tj+1;0 " T0Xn=0ff(Xn) + f(X 0n)g## ;� (1� �)Ex;x0 ;0 24 TjXn=0ff(Xn) + f(X 0n)g1If0g(dTj�1+1)35+ A(f)(1� �)j ;with the 
onvention T�1 + 1 = 0. By straightforward re
ursion,Ex;x0 ;0 24Tj+1Xn=0ff(Xn) + f(X 0n)g1If0g(dTj+1)35� (1� �)j�(1� �)Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g#+ (j + 1)A(f)�: (35)Hen
e,Ex;x0 ;0 "T�1Xn=0ff(Xn) + f(X 0n)g# = Ex;x0 ;0 " T0Xn=0ff(Xn) + f(X 0n)g1IdT0+1=1#+1Xj=0 Ex;x0 ;0 24Tj+1Xn=0(f(Xn) + f(X 0n))1If0g(dTj+1)1If1g(dTj+1+1)35and (34) follows by noting that PXTj ;X 0Tj ;0(dTj+1 = 1) = �. The proposition follows from (31) to(35).The drift 
ondition impliessup(x;x0)2C�D m�1Xk=1fP kf(x) + P kf(x0)g+ fPmV (x) + PmV (x0)g! � 2bm+ sup(x;x0)2C�DfV (x)+V (x0)gfrom whi
h it is easily seen that MV � 4a�1 (bm+ supD V ). �Proof of Proposition 2. The �rst step is to prove that the level set D := fV � Mg issmall. By assumption, supx2D Ex [�C ℄ < 1, then for any � > 0, there exists n0 su
h thatPx(�C � n) � �, x 2 D and n � n0. Then we 
an de�ne a distribution � = f�(n)g on Z+su
h that for x 2 D and 0 < l < 1, Pn �(n)Pn(x; C) �Pn�n0 �(n)Pn(x; C) � l(1� �). As Cis petite, there exist some measure � on X and some distribution � = f�(n)g on Z+ su
h thatPn � � �(n)Pn(x;A) � l(1� �)�(A) whi
h proves that D is petite. The smallness property of
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es from Theorem 5.5.7. Meyn and Tweedie (1993). Note in addition that by de�nition,D � C. De�nef0 := V 1=p; V0 := V 1=p=(1� �1=p); b0 := b1=p=(1� �1=p);f1 := V p0 ; V1 := V=f(1� �)(1� �1=p)pg; b1 := b=f(1� �)(1� �1=p)pg;a0 := 1� b1=p(1��1=p)M1=p a1 := 1� b(1��)MIt is easily seen that PVi � Vi� fi+ bi1IC , i = 0; 1, 1 � f0 � V0 � V p0 = f1 � V1, 0 < ai < 1 andfi � bi=(1 � ai) on D
, i = 0; 1. By applying Proposition 13, the inequalities (29) are veri�edand the 
onstants Ci, i = 0; 1, are upper bounded by (this upper bound is not optimal)C0 � 5��1(m+ 1)M1=p�1� �1=p��(1� �1=p)� (b=M)1=p��1 ;C1V1(x) + �(V p0 ) � 5��1(m+ 1)M �1� �1=p��p (1� �� b=M)�1 V (x):This yields the desired result. 7. Proof of Lemmas 7 and 147.1. Proof of Lemma 14.Lemma 14. Under the assumptions of theorem 6, we have�n1Iflimn ~Sn=s�g = ow:p:1(m�1=2n ); (36)Proof. The remainder term �n also follows a di�eren
e equation of the form�n = ��n�1 + �n = (Hn�1 + �) �n�1 + rn�1 + �(1)nsin
e �(2)n may be de
omposed as �(2)n = Hn�1�n�1 + rn�1 with Hn := P1�i�q Rn(i; �)�2�n;i +�n;i�, and rn :=P1�i;j�q Rn(i; j)�n;i�n;j for n � 0. Hen
e we have �n := �(1)n + �(2)n where�(1)n := n�1Yk=0(Hk + �)�0 + nXk=10�n�1Yj=k(Hj + �)1A �(1)k ; �(2)n := n�1Xk=00� n�1Yj=k+1(Hj + �)1A rk:As �n = OLp(m�1=2n ) and, by assumption, Pnm�p=2n < 1, then �n = ow:p:1(1), and thus,�n1Ilimn ~Sn=s� = ow:p:1(1). Hen
e, jHnj1Ilimn ~Sn=s� = ow:p:1(1), and for any 
 < ~
 < 1, j � n,jQnk=j(Hj + �)j1Ilimn ~Sn=s� = Ow:p:1(~
n). Along traje
tories 
onverging to s�, the �rst termin �(1)n is Ow:p:1(1)OLp(~
n) sin
e, by M4, �0 2 Lp. The �rst term in �(1)n is only �nitely-often



32 GERSENDE FORT AND ERIC MOULINESnon-zero, and by M4, the se
ond term in �(1)n is bounded and the bound is inversely proportionalto mn. Thus, by 
hoosing ~
�1 > limnmn+1=mn and by applying Lemma 5,�(1)n 1Ilimn ~Sn=s� = Ow:p:1(1)OLp(m�1n ): (37)Similarly, as rn = OLp(m�1n ),�(2)n 1Ilimn ~Sn=s� = Ow:p:1(1)OLp(m�1n ); (38)and the proof of (36) is 
ompleted. �7.2. Proof of Lemma 7.Lemma 15. Let fang and fbng, bn 6= 0, be two sequen
es su
h that (i) the power series f(x) :=P1n=1 anxn has a radius of 
onvergen
e r, (ii) limn!1 bn+1=bn =: q, with jqj < r. De�ne
n :=Pk�n bkak�n. Then, limn!1 
nb�1n = f(q).Proof. By assumption, for any K and � > 0, there exists N su
h that for all n � N , jbn+K=bn�qK j � �. In addition, there exist some positive 
onstants A; � su
h that for all n; j � 0, bn+j=bn �A(q + �)j .������b�1n Xk�n bkak�n �Xk�0 qkak������ � n+KXk=n ���bk=bn � qk�n��� ak�n + Xk�n+K bk=bn ak�n + Xk�K qkak:Let � > 0. Then there exists K su
h that the last two sums are upper bounded by �. Now forthose 
onstants K; �, there exists N su
h that for n � N , the �rst sum is lower than �. And theproof is 
ompleted. �We now prove Lemma 7. We shall establish that for m
 6= 1,(1�m
)r �limn �(r)n �r = 1 +mr=2 r�1Xl=0 (rl ) (�1)r�l �ml�r=2
l�r � 1��1 limn mr=2n  nXk=0mr=2k !�1 :(39)If m > 1, then Lemma 5 implies that limnmr=2n �Pnk=0mr=2k ��1 = 1 � m�r=2. If m = 1, thenlimnmr=2n �Pnk=0mr=2k ��1 = 0. In both 
ases, limnmr=2n �Pnk=0mr=2k ��1 = 1 � m�r=2. ThusLemma 7 holds provided that (39) is established.
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ase: m
 < 1. De�ne Sn := Pj�nmj
j. Sn = 
nPj�nmj
j�n, and by applyingLemma 15, sin
e m < 
�1, it holdslimn m�1n 
�nSn = (1�m
)�1: (40)We writenXk=0m�r=2k 0�n�kXj=0mj+k
j1Ar = nXk=0m�r=2k 
�kr (Sk � Sn+1)r= nXk=0m�r=2k 
�krSrk + r�1Xl=0 (rl ) (�1)r�lSr�ln+1 nXk=0m�r=2k 
�krSlk= nXk=0mr=2k �m�1k 
�kSk�r +mr=2n r�1Xl=0 (rl ) (�1)r�l
r�l(mn+1=mn)r�l �m�1n+1
�(n+1)Sn+1�r�l : : :�  mr=2�ln nXk=0ml�r=2k 
(n�k)(r�l)! nXk=0ml�r=2k 
k(l�r)!�1 nXk=0ml�r=2k 
k(l�r) �m�1k 
�kSk�l :By use of the Cesaro Lemma and (40),limn  nXk=0mr=2k !�1 nXk=0mr=2k �m�1k 
�kSk�r = (1�m
)�r:In addition, for all l 2 f0; : : : ; r�1g, (m
)l�rmr=2 > 1 showing thatPnk=0ml�r=2k 
k(l�r) divergesto in�nity. Then, applying again the Cesaro Lemma and (40),limn  nXk=0ml�r=2k 
k(l�r)!�1 nXk=0ml�r=2k 
k(l�r)�m�1k 
�kSk�l = (1�m
)�l:Finally, as l < r, (m
)r�lm�r=2 < 1 and Lemma 5 implies thatlimn mr=2�ln nXk=0ml�r=2k 
(n�k)(r�l) = (
m)l�rmr=2(
l�rml�r=2 � 1)�1:Combining these limits gives (39).Se
ond 
ase: m
 > 1. De�ne Sn := Pnj=0mj
j. Sn = 
nPnj=0mj
�(n�j) and by applyingLemma 5, sin
e m�1 < 
, it holdslimn m�1n 
�nSn = m
(m
� 1)�1: (41)



34 GERSENDE FORT AND ERIC MOULINESWe write, with the 
onvention S�1 := 0,nXk=0m�r=2k 0�n�kXj=0mj+k
j1Ar = nXk=0m�r=2k 
�kr (Sn � Sk�1)r= (�1)r nXk=0m�r=2k 
�krSrk�1 + r�1Xl=0 (rl ) (�1)lSr�ln nXk=0m�r=2k 
�krSlk�1= (�1)r
�r nXk=0mr=2k (mk�1=mk)r �m�1k�1
�(k�1)Sk�1�r+mr=2n r�1Xl=0 (rl ) (�1)l
�l �m�1n 
�nSn�r�lmr=2�ln  nXk=0ml�r=2k 
(r�l)(n�k)! : : :�  nXk=0ml�r=2k 
k(l�r)!�1 nXk=0ml�r=2k 
k(l�r)(mk=mk�1)�l �m�1k�1
�(k�1)Sk�1�lBy use of the Cesaro Lemma and (41),(�1)r
�r limn  nXk=0mr=2k !�1 nXk=0mr=2k (mk�1=mk)r �m�1k�1
�(k�1)Sk�1�r = (1�m
)�r:In addition, for all l 2 f0; : : : ; r � 1g, (m
)l(m
2)�r=2 > 1 showing that Pnk=0ml�r=2k 
k(l�r)diverges to in�nity. Then, applying again the Cesaro Lemma and (41),limn  nXk=0ml�r=2k 
k(l�r)!�1 nXk=0ml�r=2k 
k(l�r)(mk=mk�1)�l �m�1k�1
�(k�1)Sk�1�l = 
l(m
 � 1)�l:Finally, as (m
)l(m
2)�r=2 > 1, Lemma 5 implies thatlimn mr=2�ln nXk=0ml�r=2k 
(n�k)(r�l) = (
m)l�rmr=2(
l�rml�r=2 � 1)�1:Combining these limits gives (39).
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Figure 1. 100 observations from the Poisson 
ount data model.
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Figure 2. Stable MCEM sequen
es for di�erent initial values, and mn = [n2℄.The paths all 
onverge to �� = 1:88 after a �nite number of re-initializations.
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hedule mn = [n2℄.



36 GERSENDE FORT AND ERIC MOULINES
0 5 10 15 20 25 30

0

100

200

300

400

500

600

700

Figure 4. Cumulative numbers observed at time tj = 0:25j, j = 1; � � � ; 30; andestimated means of the 
ount pro
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onverge to 
� = 37:41 after a �nite number a re-initializations.
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