SUPPLEMENT TO PAPER "CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS"

By G. Fort $^{*}{ }^{\dagger} \dagger$, E. Moulines ${ }^{\ddagger}$ and P. Priouret ${ }^{\text {§ }}$
LTCI, CNRS - TELECOM ParisTech ${ }^{\dagger}$, LPMA, Université Pierre et Marie Curie ${ }^{\S}$

This supplement provides a detailed proof of Lemma 4.2 and Propositions 3.1, 4.3 and 5.2 of Fort, Moulines and Priouret (2010). It also contains a discussion on the setwise convergence of transition kernels (see Section 1).

For completeness and ease of references, we repeat the assumptions and the main notations.

For $V: \mathrm{X} \rightarrow[1, \infty)$ and $\theta, \theta^{\prime} \in \Theta$, denote by $D_{V}\left(\theta, \theta^{\prime}\right)$ the V-variation of the kernels P_{θ} and $P_{\theta^{\prime}}$

$$
\begin{equation*}
D_{V}\left(\theta, \theta^{\prime}\right) \stackrel{\text { def }}{=} \sup _{x \in \mathrm{X}} \frac{\left\|P_{\theta}(x, \cdot)-P_{\theta^{\prime}}(x, \cdot)\right\|_{V}}{V(x)} . \tag{1}
\end{equation*}
$$

When $V \equiv 1$, we use the simpler notation $D\left(\theta, \theta^{\prime}\right)$. Consider the following assumption:

A1 For any $\theta \in \Theta$, there exists a probability distribution π_{θ} such that $\pi_{\theta} P_{\theta}=\pi_{\theta}$.

A2 (a) For any $\varepsilon>0$, there exists a non-decreasing positive sequence $\left\{r_{\varepsilon}(n), n \geq 0\right\}$ such that $\lim \sup _{n \rightarrow \infty} r_{\varepsilon}(n) / n=0$ and

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left[\left\|P_{\theta_{n-r_{\varepsilon}(n)}^{r_{\varepsilon}(n)}}\left(X_{n-r_{\varepsilon}(n)}, \cdot\right)-\pi_{\theta_{n-r_{\varepsilon}(n)}}\right\|_{\mathrm{TV}}\right] \leq \varepsilon .
$$

(b) For any $\varepsilon>0, \lim _{n \rightarrow \infty} \sum_{j=0}^{r_{\varepsilon}(n)-1} \mathbb{E}\left[D\left(\theta_{n-r_{\varepsilon}(n)+j}, \theta_{n-r_{\varepsilon}(n)}\right)\right]=0$, where D is defined in (1).
A3 $\sum_{k=1}^{\infty} k^{-1}\left(L_{\theta_{k}} \vee L_{\theta_{k-1}}\right)^{6} D_{V}\left(\theta_{k}, \theta_{k-1}\right) V\left(X_{k}\right)<+\infty \mathbb{P}$-a.s., where D_{V} and L_{θ} are defined in (1) and (3).
A4 (a) $\limsup n_{n} \pi_{\theta_{n}}(V)<+\infty, \mathbb{P}$-a.s.
(b) For some $\alpha>1, \sum_{k=0}^{\infty}(k+1)^{-\alpha} L_{\theta_{k}}^{2 \alpha} \quad P_{\theta_{k}} V^{\alpha}\left(X_{k}\right)<+\infty, \mathbb{P}$-a.s.

[^0]A5 For all $\theta \in \Theta, P_{\theta}$ is phi-irreducible, aperiodic and there exist a function $V: X \rightarrow[1,+\infty)$, and for any $\theta \in \Theta$ there exist some constants $b_{\theta}<\infty, \delta_{\theta} \in(0,1), \lambda_{\theta} \in(0,1)$ and a probability measure ν_{θ} on X such that

$$
\begin{aligned}
& P_{\theta} V \leq \lambda_{\theta} V+b_{\theta} \\
& P_{\theta}(x, \cdot) \geq \delta_{\theta} \nu_{\theta}(\cdot) \mathbb{1}_{\left\{V \leq c_{\theta}\right\}}(x) \quad c_{\theta} \stackrel{\text { def }}{=} 2 b_{\theta}\left(1-\lambda_{\theta}\right)^{-1}-1 .
\end{aligned}
$$

For any $\varepsilon>0, x \in \mathrm{X}, \theta \in \Theta$, set

$$
\begin{equation*}
M_{\varepsilon}(x, \theta) \stackrel{\text { def }}{=} \inf \left\{n \geq 0,\left\|P_{\theta}^{n}(x, \cdot)-\pi_{\theta}\right\|_{\mathrm{TV}} \leq \varepsilon\right\} \tag{2}
\end{equation*}
$$

For any $\theta \in \Theta$, set

$$
\begin{equation*}
L_{\theta} \stackrel{\text { def }}{=} C_{\theta} \vee\left(1-\rho_{\theta}\right)^{-1} \leq C\left\{b_{\theta} \vee \delta_{\theta}^{-1} \vee\left(1-\lambda_{\theta}\right)^{-1}\right\}^{\gamma}, \tag{3}
\end{equation*}
$$

where C_{θ} and $\rho_{\theta} \in(0,1)$ are finite constants such that

$$
\left\|P_{\theta}^{n}(x, \cdot)-\pi_{\theta}\right\|_{V} \leq C_{\theta} \rho_{\theta}^{n} V(x) .
$$

1. Setwise convergence of kernels. In many situations (see e.g. (Fort, Moulines and Priouret, 2010, Section 3)), we are able to prove that
for (a fixed) $x \in \mathrm{X}$ and any $A \in \mathcal{X}$, there exists Ω_{A} such that $\mathbb{P}\left(\Omega_{A}\right)=1$ and for any $\omega \in \Omega_{A}$,

$$
\lim _{n} P_{\theta_{n}(\omega)}(x, A)=P_{\theta_{\star}}(x, A)
$$

This implies that if \mathcal{B}_{0} is a countable algebra generating the σ-algebra \mathcal{X}, there exists Ω_{0} such that $\mathbb{P}\left(\Omega_{0}\right)=1$ and for any $\omega \in \Omega_{0}$ and $A \in \mathcal{B}_{0}$,

$$
\lim _{n} P_{\theta_{n}(\omega)}(x, A)=P_{\theta_{\star}}(x, A)
$$

Therefore, we are faced to the question: does it imply that there exists Ω_{\star} such that $\mathbb{P}\left(\Omega_{\star}\right)=1$ and for any $\omega \in \Omega_{\star}$ and $A \in \mathcal{X}$,

$$
\lim _{n} P_{\theta_{n}(\omega)}(x, A)=P_{\theta_{\star}}(x, A)
$$

The answer is no, in general, as illustrated by the following counter-example.
Counter-Example: Set $P_{\theta_{\star}}(x, A)=\mu(A)$ and $P_{\theta_{n}(\omega)}(x, A)=\mu_{n}(\omega, A)$ where

- μ is a probability distribution such that for any $x \in X, \mu(\{x\})=0$.
- $\mu_{n}(\omega, A) \stackrel{\text { def }}{=} n^{-1} \sum_{k=1}^{n} \mathbb{1}_{A}\left(X_{k}(\omega)\right)$ with $\left\{X_{k}, k \geq 1\right\}$ i.i.d. r.v. defined on $(\Omega, \mathcal{F}, \mathbb{P})$ taking value in (X, \mathcal{X}), with distribution μ.

Then, by the strong law of large numbers, for any $A \in \mathcal{X}, \lim _{n} \mu_{n}(\cdot, A)=$ $\mu(A) \mathbb{P}$-a.s. İf we take a countable family of measurable sets \mathcal{B}_{0}, then we may find a \mathbb{P}-full set $\mathcal{D} \subseteq \Omega$, such that for any $\omega \in \mathcal{D}$, and $A \in \mathcal{B}_{0}$, $\lim _{n \rightarrow \infty} \mu_{n}(\omega, A)=\mu(A)$. Of course, \mathcal{B}_{0} can be an algebra, and even an algebra generating \mathcal{X}. Nevertheless, it is wrong to assume that this condition implies the setwise convergence, i.e. that $\lim _{n \rightarrow \infty} \mu_{n}(\omega, A)=\mu(A)$ for any $\omega \in \mathcal{D}$ and $A \in \mathcal{X}$. To see why this is wrong, choose $\omega_{\star} \in \mathcal{D}$ and set $A \xlongequal{\text { def }}$ $\bigcup_{n}\left\{X_{n}\left(\omega_{\star}\right)\right\}$. Then $\mu_{n}\left(\omega_{\star}, A\right)=1$ for any n, and $\mu(A)=0 \neq \lim _{n} \mu_{n}\left(\omega_{\star}, A\right)$.

2. Proof of (Fort, Moulines and Priouret, 2010, Proposition 3.1).

I1 π is a continuous positive density on X and $\|\pi\|_{\infty}<+\infty$.
I2 (a) P is a phi-irreducible aperiodic Feller transition kernel on (X, \mathcal{X}) such that $\pi P=\pi$.
(b) There exist $\tau \in(0,1 / T), \lambda \in(0,1)$ and $b<+\infty$ such that
(4) $\quad P W \leq \lambda W+b$ with $W(x) \stackrel{\text { def }}{=}\left(\pi(x) /\|\pi\|_{\infty}\right)^{-\tau}$.
(c) For any $p \in\left(0,\|\pi\|_{\infty}\right.$), the sets $\{\pi \geq p\}$ are 1 -small (w.r.t. the transition kernel $P)$.

Proposition (Proposition 3.1 in Fort, Moulines and Priouret (2010)). Assume I1, I2. There exist $\tilde{\lambda} \in(0,1), \tilde{b}<\infty$, such that, for any $\theta \in \Theta$,

$$
P_{\theta} W(x) \leq \tilde{\lambda} W(x)+\tilde{b} \theta(W) .
$$

In addition, for any $p \in\left(0,\|\pi\|_{\infty}\right)$, the level sets $\{\pi \geq p\}$ are 1 -small w.r.t. the transition kernels P_{θ} (whatever θ) and the minorization constant does not depend upon θ.

Proof. We prove the drift inequality with $a=1$. The proof for $a<1$ follows from the Jensen's inequality. The proof is adapted from (Atchadé, 2010, Lemma 4.1.). Under I2b, we have

$$
\begin{aligned}
& P_{\theta} W(x) \leq(1-v) \lambda W(x)+(1-v) b+v W(x) \\
& \quad+v \int \alpha(x, y)\{W(y)-W(x)\} \theta(\mathrm{d} y) .
\end{aligned}
$$

By definition of W and of the acceptance ratio α,

$$
\begin{aligned}
& \int \alpha(x, y)\{W(y)-W(x)\} \theta(\mathrm{d} y) \\
& =\int W(y)\left(1 \wedge \frac{\pi^{\beta}(y)}{\pi^{\beta}(x)}\right)\left\{1-\frac{\pi^{\tau}(y)}{\pi^{\tau}(x)}\right\} \theta(\mathrm{d} y) \\
& \leq \int_{\{y, \pi(y) \leq \pi(x)\}} W(y) \frac{\pi^{\beta}(y)}{\pi^{\beta}(x)}\left\{1-\frac{\pi^{\tau}(y)}{\pi^{\tau}(x)}\right\} \theta(\mathrm{d} y) \\
& \leq \Psi(\tau / \beta) \theta(W)
\end{aligned}
$$

where we have used that, for $a>0$,

$$
\sup _{z \in[0,1]} z\left(1-z^{a}\right) \leq \Psi(a) \stackrel{\text { def }}{=} a /(a+1)^{(a+1) / a}
$$

as in (Atchadé, 2010, Lemma 1.5.1). Combining the two latter inequalities yield

$$
P_{\theta} W(x) \leq[(1-v) \lambda+v] W(x)+v \Psi(\tau / \beta) \theta(W)+(1-v) b
$$

The proof of the smallness condition relies on the inequality $P_{\theta}(x, A) \geq$ $(1-v) P(x, A)$.

3. Proof of (Fort, Moulines and Priouret, 2010, Lemma 4.2) .

Lemma (Lemma 4.2 Fort, Moulines and Priouret (2010)). Assume A5. For any $\theta \in \Theta$, let $F_{\theta}: X \rightarrow \mathbb{R}^{+}$be a measurable function such that $\sup _{\theta}\left\|F_{\theta}\right\|_{V}<+\infty$ and define

$$
\hat{F}_{\theta} \stackrel{\text { def }}{=} \sum_{n \geq 0} P_{\theta}^{n}\left\{F_{\theta}-\pi_{\theta}\left(F_{\theta}\right)\right\}
$$

For any $\theta, \theta^{\prime} \in \Theta$,

$$
\begin{equation*}
\left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V} \leq L_{\theta^{\prime}}^{2}\left\{\pi_{\theta}(V)+L_{\theta}^{2} V(x)\right\} D_{V}\left(\theta, \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

and
(6) $\left|P_{\theta} \hat{F}_{\theta}-P_{\theta^{\prime}} \hat{F}_{\theta^{\prime}}\right|_{V} \leq \sup _{\theta \in \Theta}\left\|F_{\theta}\right\|_{V} L_{\theta^{\prime}}^{2}\left(L_{\theta} D_{V}\left(\theta, \theta^{\prime}\right)+\left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V}\right)$

$$
+L_{\theta^{\prime}}^{2}\left\|F_{\theta}-F_{\theta^{\prime}}\right\|_{V} .
$$

where L_{θ} is given by (3).

Proof. The proof of this Lemma is closely related to (Andrieu and Moulines, 2006, Proposition 3) and its refinement in Andrieu et al. (2011). These types of results have a rather long history: Benveniste, Métivier and Priouret (1990) and Glynn and Meyn (1996) and the references therein for early references.

We first establish (5). For any $k \geq 1$, we decompose $P_{\theta}^{k} f-P_{\theta^{\prime}}^{k} f$ as follows

$$
P_{\theta}^{k} f-P_{\theta^{\prime}}^{k} f=\sum_{j=0}^{k-1} P_{\theta}^{j}\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{k-j-1} f-\pi_{\theta^{\prime}}(f)\right) .
$$

Under A5, there exist constants C_{θ} and $\rho_{\theta} \in(0,1)$ such that $\left\|P_{\theta}^{k}(x, \cdot)-\pi_{\theta}\right\|_{V} \leq$ $C_{\theta} \rho_{\theta}^{k} V(x)$. Therefore, for any $k \geq 1$ and $x_{\star} \in \mathrm{X}$,

$$
\begin{aligned}
& \left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V} \\
& \leq\left\|\pi_{\theta}-P_{\theta}^{k}\left(x_{\star}, \cdot\right)\right\|_{V}+\left\|P_{\theta}^{k}\left(x_{\star}, \cdot\right)-P_{\theta^{\prime}}^{k}\left(x_{\star}, \cdot\right)\right\|_{V}+\left\|P_{\theta^{\prime}}^{k}\left(x_{\star}, \cdot\right)-\pi_{\theta^{\prime}}\right\|_{V} \\
& \leq\left(C_{\theta} \rho_{\theta}^{k}+C_{\theta^{\prime}} \rho_{\theta^{\prime}}^{k}\right) V\left(x_{\star}\right) \\
& \quad+\sup _{\|f\|_{V} \leq 1}\left|\sum_{j=0}^{k-1} P_{\theta}^{j}\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{k-j-1} f-\pi_{\theta^{\prime}}(f)\right)\left(x_{\star}\right)\right|
\end{aligned}
$$

The second term on the RHS is upper bounded by

$$
\begin{aligned}
C_{\theta^{\prime}} & D_{V}\left(\theta, \theta^{\prime}\right) \sum_{j=0}^{k-1} \rho_{\theta^{\prime}}^{k-j-1} P_{\theta}^{j} V\left(x_{\star}\right) \\
& \leq C_{\theta^{\prime}} D_{V}\left(\theta, \theta^{\prime}\right) \sum_{j=0}^{k-1} \rho_{\theta^{\prime}}^{k-j-1}\left\{\pi_{\theta}(V)+C_{\theta} \rho_{\theta}^{j} V\left(x_{\star}\right)\right\} \\
& \leq \frac{C_{\theta^{\prime}}}{1-\rho_{\theta^{\prime}}} D_{V}\left(\theta, \theta^{\prime}\right)\left(\pi_{\theta}(V)+C_{\theta} V\left(x_{\star}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V} \leq\left(C_{\theta} \rho_{\theta}^{k}+C_{\theta^{\prime}} \rho_{\theta^{\prime}}^{k}\right) & V\left(x_{\star}\right) \\
& +\frac{C_{\theta^{\prime}}}{1-\rho_{\theta^{\prime}}} D_{V}\left(\theta, \theta^{\prime}\right)\left(\pi_{\theta}(V)+C_{\theta} V\left(x_{\star}\right)\right)
\end{aligned}
$$

which implies the desired result by taking the limit as $k \rightarrow+\infty$.
We then establish (6). Under A5, \hat{F}_{θ} exists (see (20) of Fort, Moulines and Priouret (2010)) and

$$
P_{\theta} \hat{F}_{\theta}(x)-P_{\theta^{\prime}} \hat{F}_{\theta^{\prime}}(x)=\sum_{n \geq 1} P_{\theta}^{n}\left\{F_{\theta}-\pi_{\theta}\left(F_{\theta}\right)\right\}-\sum_{n \geq 1} P_{\theta^{\prime}}^{n}\left\{F_{\theta^{\prime}}-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}\right)\right\}
$$

We first show
(7) $\quad P_{\theta} \hat{F}_{\theta}-P_{\theta^{\prime}} \hat{F}_{\theta^{\prime}}=\sum_{n \geq 1} \sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right)$

$$
-\sum_{n \geq 1}\left\{P_{\theta^{\prime}}^{n}\left(F_{\theta^{\prime}}-F_{\theta}\right)-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}-F_{\theta}\right)\right\}-\sum_{n \geq 1} \pi_{\theta}\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\}
$$

Following the same lines as in (Andrieu and Moulines, 2006, Proposition 3), we have for any $n \geq 1$,

$$
\begin{aligned}
& P_{\theta}^{n} f-P_{\theta^{\prime}}^{n} f \\
& =\sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} f-\pi_{\theta^{\prime}}(f)\right) \\
& \quad+\sum_{j=0}^{n-1}\left\{\pi_{\theta} P_{\theta^{\prime}}^{n-j-1} f-\pi_{\theta} P_{\theta^{\prime}}^{n-j} f\right\} \\
& =\sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} f-\pi_{\theta^{\prime}}(f)\right)+\pi_{\theta}(f)-\pi_{\theta} P_{\theta^{\prime}}^{n} f
\end{aligned}
$$

where we used that $\pi_{\theta} P_{\theta}=\pi_{\theta}$. Hence, for any $n \geq 1$,

$$
\begin{aligned}
P_{\theta}^{n} F_{\theta}-P_{\theta^{\prime}}^{n} F_{\theta^{\prime}} & =\sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right) \\
& +\pi_{\theta}\left(F_{\theta}\right)-\pi_{\theta} P_{\theta^{\prime}}^{n} F_{\theta}+P_{\theta^{\prime}}^{n}\left(F_{\theta}-F_{\theta^{\prime}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& P_{\theta}^{n}\left\{F_{\theta}-\pi_{\theta}\left(F_{\theta}\right)\right\}-P_{\theta^{\prime}}^{n}\left\{F_{\theta^{\prime}}-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}\right)\right\} \\
& =\sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right)-\left\{P_{\theta^{\prime}}^{n} F_{\theta^{\prime}}-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}\right)\right\} \\
& \quad+\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\}-\pi_{\theta}\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\}
\end{aligned}
$$

This yields (7). We consider the first term in (7): by Lemma 2.3 in Fort, Moulines and Priouret (2010)

$$
\begin{aligned}
&\left\|\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right)\right\|_{V} \\
& \leq C_{\theta} C_{\theta^{\prime}} \rho_{\theta^{\prime}}^{n-1-j} \rho_{\theta}^{j} \sup _{\theta}\left\|F_{\theta}\right\|_{V} D_{V}\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

thus implying

$$
\begin{array}{r}
\left\|\sum_{n \geq 1} \sum_{j=0}^{n-1}\left(P_{\theta}^{j}-\pi_{\theta}\right)\left(P_{\theta}-P_{\theta^{\prime}}\right)\left(P_{\theta^{\prime}}^{n-j-1} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right)\right\|_{V} \\
\leq L_{\theta}^{2} L_{\theta^{\prime}}^{2} \sup _{\theta}\left\|F_{\theta}\right\|_{V} D_{V}\left(\theta, \theta^{\prime}\right)
\end{array}
$$

Consider now the second term on the RHS of (7). By Lemma 2.3 in Fort, Moulines and Priouret (2010),

$$
\left|P_{\theta^{\prime}}^{n}\left(F_{\theta^{\prime}}-F_{\theta}\right)(x)-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}-F_{\theta}\right)\right| \leq C_{\theta^{\prime}} \rho_{\theta^{\prime}}^{n} V(x)\left\|F_{\theta^{\prime}}-F_{\theta}\right\|_{V}
$$

thus implying

$$
\sum_{n \geq 1}\left|P_{\theta^{\prime}}^{n}\left(F_{\theta^{\prime}}-F_{\theta}\right)(x)-\pi_{\theta^{\prime}}\left(F_{\theta^{\prime}}-F_{\theta}\right)\right| \leq L_{\theta^{\prime}}^{2} V(x)\left\|F_{\theta^{\prime}}-F_{\theta}\right\|_{V}
$$

Finally, the third term on the RHS of (7) can be bounded by

$$
\begin{aligned}
&\left\|\pi_{\theta}\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\}\right\|_{V}=\|\left(\pi_{\theta}-\pi_{\theta^{\prime}}\right)\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\} \|_{V} \\
& \leq\left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V} C_{\theta^{\prime}} \rho_{\theta^{\prime}}^{n} \sup _{\theta}\left\|F_{\theta}\right\|_{V}
\end{aligned}
$$

so that

$$
\left\|\sum_{n} \pi_{\theta}\left\{P_{\theta^{\prime}}^{n} F_{\theta}-\pi_{\theta^{\prime}}\left(F_{\theta}\right)\right\}\right\|_{V} \leq\left\|\pi_{\theta}-\pi_{\theta^{\prime}}\right\|_{V} L_{\theta^{\prime}}^{2} \sup _{\theta}\left\|F_{\theta}\right\|_{V}
$$

4. Proof of (Fort, Moulines and Priouret, 2010, Proposition 4.3).

Proposition (Proposition 4.3 Fort, Moulines and Priouret (2010)). Let X be a Polish space endowed with its Borel σ-field \mathcal{X}. Let μ and $\left\{\mu_{n}, n \geq 1\right\}$ be probability distributions on $(\mathbf{X}, \mathcal{X})$. Let $\left\{f_{n}, n \geq 0\right\}$ be an equicontinuous family of functions from \times to \mathbb{R}. Assume
(i) the sequence $\left\{\mu_{n}, n \geq 0\right\}$ converges weakly to μ.
(ii) for any $x \in \mathrm{X}, \lim _{n \rightarrow \infty} f_{n}(x)$ exists, and there exists $\alpha>1$ such that $\sup _{n} \mu_{n}\left(\left|f_{n}\right|^{\alpha}\right)+\mu\left(\left|\lim _{n} f_{n}\right|\right)<+\infty$.
Then, $\mu_{n}\left(f_{n}\right) \rightarrow \mu\left(\lim _{n} f_{n}\right)$.

Proof. Set $f \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{n}$. Under the stated assumptions, f is continuous. We can assume without loss of generality that f_{n}, f are non-negative functions. Let c, ε be positive constants. We decompose $\mu_{n}\left(f_{n}\right)-\mu(f)$
$\mu_{n}\left(f_{n}\right)-\mu(f)=\mu_{n}\left(f_{n} \wedge c\right)-\mu(f \wedge c)+\mu_{n}\left(\left(f_{n}-c\right) \mathbb{1}_{\left\{f_{n}>c\right\}}\right)-\mu\left((f-c) \mathbb{1}_{\{f>c\}}\right)$.
Choose c large enough so that $\sup _{n} \mu_{n}\left(f_{n}^{\alpha}\right) / c^{\alpha-1}+\mu\left(f \mathbb{1}_{\{f>c\}}\right) \leq \varepsilon$. Then upon noting that $\mathbb{1}_{\{f>c\}} \leq(f / c)^{\alpha-1}$,

$$
\left|\mu_{n}\left(\left(f_{n}-c\right) \mathbb{1}_{\left\{f_{n}>c\right\}}\right)-\mu\left((f-c) \mathbb{1}_{\{f>c\}}\right)\right| \leq \frac{\mu_{n}\left(f_{n}^{\alpha}\right)}{c^{\alpha-1}}+\mu\left(f \mathbb{1}_{\{f>c\}}\right) \leq \varepsilon
$$

Consider now the bounded functions $\left\{f_{n} \wedge c, n \geq 0\right\}$ and $f \wedge c$. We write
(8) $\left|\mu_{n}\left(f_{n} \wedge c\right)-\mu(f \wedge c)\right| \leq \mu_{n}\left(\left|f_{n} \wedge c-f \wedge c\right|\right)+\left|\mu_{n}(f \wedge c)-\mu(f \wedge c)\right|$.

The sequence $\left\{\mu_{n}, n \geq 0\right\}$ is relatively compact and thus tight since X is Polish ((Billingsley, 1999, Theorem 5.2.)). Then, for $\varepsilon>0$, there exists a compact set \mathcal{K} such that $\sup _{n} \mu_{n}\left(\mathcal{K}^{c}\right) \leq \varepsilon$. Then
$\mu_{n}\left(\left|f_{n} \wedge c-f \wedge c\right|\right) \leq \sup _{\mathcal{K}}\left|f_{n} \wedge c-f \wedge c\right|+2 c \mu_{n}\left(\mathcal{K}^{c}\right) \leq \sup _{\mathcal{K}}\left|f_{n} \wedge c-f \wedge c\right|+2 c \varepsilon$.
Under the stated assumptions, the family of functions $\left\{\bar{f}_{n} \stackrel{\text { def }}{=} f_{n} \wedge c-f \wedge c, n \geq\right.$ $0\}$ are equicontinuous, and $\lim _{n \rightarrow \infty} \bar{f}_{n}=0$. By (Royden, 1988, Lemma 39, Chapter 7), the convergence is uniform on compact sets. Consider now the second term on the RHS of (8). Since $f \wedge c$ is a bounded continuous function and $\left\{\mu_{n}, n \geq 0\right\}$ converges weakly to $\mu, \lim _{n \rightarrow \infty} \mu_{n}(f \wedge c)=\mu(f \wedge c)$. This concludes the proof.

5. Proof of (Fort, Moulines and Priouret, 2010, Proposition 5.2).

 Let (\mathbb{U}, δ) be a metric space; recall that for a real-valued function f on \mathbb{U}, the Lipschitz semi-norm is defined by$$
|f|_{\operatorname{Lip}(\mathbb{U}, \delta)} \stackrel{\text { def }}{=} \sup _{x \neq y,(x, y) \in \mathbb{U}^{2}} \frac{|f(x)-f(y)|}{\delta(x, y)} .
$$

Denote the supremum norm

$$
\|f\|_{\infty, \mathbb{U}} \stackrel{\text { def }}{=} \sup _{x \in \mathbb{U}}|f(x)|
$$

Let $|f|_{\mathrm{BL}(\mathbb{U}, \delta)} \stackrel{\text { def }}{=}|f|_{\operatorname{Lip}(\mathbb{U}, \delta)}+\|f\|_{\infty, \mathbb{U}}$. Here, "BL" stands for "bounded Lipschitz" and $\mathrm{BL}(\mathbb{U}, \delta)$ is the set of all bounded real valued Lipschitz functions on (\mathbb{U}, δ).

Recall the following extension Theorem for bounded Lipschitz functions (Dudley, 2002, Proposition 11.2.3.)

Theorem 5.1. If $\mathbb{U} \subset \mathbb{V}$ and $f \in \operatorname{BL}(\mathbb{U}, \delta)$ then f can be extended to a function $h \in \operatorname{BL}(\mathbb{V}, \delta)$ with $h=f$ on \mathbb{V} and $|h|_{\mathrm{BL}(\mathbb{V}, \delta)}=|f|_{\mathrm{BL}(\mathbb{U}, \delta)}$.

Recall also that if (\mathbb{U}, δ) is compact, then the set of continuous functions coincides with the set of continuous bounded functions $\mathrm{C}_{b}(\mathbb{U}, \delta)$.

Theorem 5.2. If (\mathbb{V}, δ) is a compact metric space, the space of bounded Lipschitz functions $\mathrm{BL}(\mathbb{V}, \delta)$ equipped with the supremum norm $\|\cdot\|_{\infty, \mathbb{V}}$ is a separable space.

Proof. By (Dudley, 2002, Corollary 11.2.5), the space of bounded continuous function $C_{b}(\mathbb{V}, \delta)$ equipped with the supremum norm $\|\cdot\|_{\infty, \mathbb{V}}$ is separable; denote by $\left\{f_{i}, i \in \mathbb{N}\right\} \subset C_{b}(\mathbb{V}, \delta)$ a dense family of bounded functions in $\mathrm{C}_{b}(\mathbb{V}, \delta)$ for the supremum norm. Since, (Dudley, 2002, Proposition 11.2.4), $\mathrm{BL}(\mathbb{V}, \delta)$ is dense in $\mathrm{C}_{b}(\mathbb{V}, \delta)$ for the supremum norm $\|\cdot\|_{\infty, \mathbb{V}}$, for any $n \in \mathbb{N}$ and then any $p \in \mathbb{N}$, we may choose $f_{n, p} \in \operatorname{BL}(\mathbb{V}, \delta)$ such that $\left\|f_{n}-f_{n, p}\right\|_{\infty, \mathbb{V}} \leq 1 / p$.

By construction, the countable family of function $\left\{f_{n, p},(n, p) \in \mathbb{N}^{2}\right\}$ is dense in $\operatorname{BL}(\mathbb{V}, \delta)$ equipped with the supremum norm.

Finally, the set of bounded Lipschitz functions is convergence determining (Dudley, 2002, Theorem 11.3.3)

Theorem 5.3. Let μ and $\left\{\mu_{n}, n \geq 0\right\}$ be distributions on a separable metric space (\mathbb{U}, δ) endowed with its Borel σ-field. The following properties are equivalent
(a) $\left\{\mu_{n}, n \geq 0\right\}$ converges weakly to μ.
(b) $\left\{\mu_{n}(f), n \geq 0\right\}$ converges to $\mu(f)$ for any function $f \in \operatorname{BL}(\mathbb{U}, \delta)$.

Lemma 5.4. Let (\mathbb{U}, d) be a separable metric space. There exists a metric δ on \mathbb{U} defining the same topology as d, such that the space of bounded Lipschitz functions $\operatorname{BL}(\mathbb{U}, \delta)$ equipped with the supremum norm $\|\cdot\|_{\infty, \mathbb{U}}$ is separable.

Proof. By (Dudley, 2002, Theorem 2.8.2), there exist a space \mathbb{V} and a metric δ on \mathbb{V} such that $\mathbb{U} \subseteq \mathbb{V},(\mathbb{V}, \delta)$ is a compact metric space and \mathbb{U} is dense in \mathbb{V} for the metric δ.

Denote by $\left\{\psi_{k}, k \in \mathbb{N}\right\} \subset \mathrm{BL}(\mathbb{V}, \delta)$ be a countable family of functions which is dense in $\operatorname{BL}(\mathbb{V}, \delta)$ equipped with the supremum norm; see Theorem 5.2. For any $k \in \mathbb{N}$, denote by ϕ_{k} the restriction of the function ψ_{k} to \mathbb{U}. Clearly, for any $k \in \mathbb{N}, \phi_{k} \in \operatorname{BL}(\mathbb{U}, \delta)$. By Theorem 5.1, for any $f \in \operatorname{BL}(\mathbb{U}, \delta)$,
there is a function $h \in \mathrm{BL}(\mathbb{V}, \delta)$ with $f=h$ on \mathbb{U} and $|h|_{\mathrm{BL}(\mathbb{V}, \delta)}=|f|_{\mathrm{BL}(\mathbb{U}, \delta)}$. Since for any $k \geq 0$,

$$
\sup _{x \in \mathbb{U}}\left|f(x)-\phi_{k}(x)\right| \leq \sup _{x \in \mathbb{V}}\left|h(x)-\psi_{k}(x)\right|
$$

the set $\left\{\phi_{k}, k \geq 0\right\}$ is dense in $\operatorname{BL}(\mathbb{U}, \delta)$ equipped with the supremum norm $\|\cdot\|_{\infty, \mathbb{U}}$.

Proposition (Proposition 5.2 in Fort, Moulines and Priouret (2010)). Let (\mathbb{U}, d) be a metric space equipped with its Borel σ-field $\mathcal{B}(\mathbb{U})$. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, μ be a distribution on $(\mathbb{U}, \mathcal{B}(\mathbb{U}))$ and $\left\{K_{n}, n \geq 0\right\}$ be a family of Markov transition kernels $K_{n}: \Omega \times \mathcal{B}(\mathbb{U}) \rightarrow[0,1]$. Assume that, for any $f \in \mathrm{C}_{b}(\mathbb{U}, d)$

$$
\Omega_{f} \stackrel{\text { def }}{=}\left\{\omega \in \Omega: \limsup _{n \rightarrow \infty}\left|K_{n}(\omega, f)-\mu(f)\right|=0\right\}
$$

is a \mathbb{P}-full set. Then

$$
\left\{\omega \in \Omega: \forall f \in \mathrm{C}_{b}(\mathbb{U}, d) \quad \limsup _{n \rightarrow \infty}\left|K_{n}(\omega, f)-\mu(f)\right|=0\right\}
$$

is a \mathbb{P}-full set.
Proof. By Lemma 5.4, there is a metric δ on \mathbb{U} defining the same topology as d and a countable family $\left\{\phi_{k}, k \geq 0\right\} \subset \mathrm{BL}(\mathbb{U}, \delta)$ which is dense in the space $\operatorname{BL}(\mathbb{U}, \delta)$ equipped with supremum norm $\|\cdot\|_{\infty, \mathbb{U}}$. For any $\varepsilon>0$ and any function $f \in \operatorname{BL}(\mathbb{U}, \delta)$, there exists $k \geq 0$ such that $\left\|f-\phi_{k}\right\|_{\infty} \leq \varepsilon$.

By Theorem 5.3, it suffices to show that there exists a \mathbb{P}-full set Ω_{1} such that for any $\omega \in \Omega_{1}$ and any function $f \in \mathrm{BL}(\mathbb{U}, \delta), \lim \sup _{n \rightarrow \infty} \mid \mu_{n}(\omega, f)-$ $\mu(f) \mid=0$. Set $\Omega_{1} \stackrel{\text { def }}{=} \bigcap_{k} \Omega_{\phi_{k}}$. Since $\mathbb{P}\left(\Omega_{\phi_{k}}\right)=1$, then $\mathbb{P}\left(\Omega_{1}\right)=1$. For any $\omega \in \Omega_{1}$, we have

$$
\begin{aligned}
& \left|\mu_{n}(\omega, f)-\mu(f)\right| \\
& \leq\left|\mu_{n}(\omega, f)-\mu_{n}\left(\phi_{k}\right)\right|+\left|\mu_{n}\left(\omega, \phi_{k}\right)-\mu\left(\phi_{k}\right)\right|+\left|\mu\left(\phi_{k}\right)-\mu(f)\right| \\
& \leq 2\left\|f-\phi_{k}\right\|_{\infty}+\left|\mu_{n}\left(\omega, \phi_{k}\right)-\mu\left(\phi_{k}\right)\right| \\
& \leq 2 \varepsilon+\left|\mu_{n}\left(\omega, \phi_{k}\right)-\mu\left(\phi_{k}\right)\right|
\end{aligned}
$$

and this concludes the proof since by definition of $\Omega_{1}, \lim _{n} \mu_{n}\left(\omega, \phi_{k}\right)=$ $\mu\left(\phi_{k}\right)$.

References.

Andrieu, C. and Moulines, E. (2006). On the ergodicity property of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 1462-1505.
Andrieu, C., Jasra, A., Doucet, A. and Del Moral, P. (2011). On non-linear Markov chain Monte Carlo. Bernoulli 17 987-1014.
Atchadé, Y. (2010). A cautionary tale on the efficiency of some adaptive Monte Carlo schemes. Ann. Appl. Probab. 20 841-868.
Benveniste, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations 22. Springer, Berlin. Translated from the French by Stephen S. S. Wilson.

Billingsley, P. (1999). Convergence of probability measures, Second ed. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley \& Sons Inc., New York. A Wiley-Interscience Publication.
Dudley, R. M. (2002). Real Analysis and Probability. Cambridge University Press.
Fort, G., Moulines, E. and Priouret, P. (2010). Convergence of adaptive MCMC algorithms: ergodicity and law of large numbers Technical Report. submitted to Ann. Statist.
Glynn, P. W. and Meyn, S. P. (1996). A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24 916-931.
Royden, H. L. (1988). Real analysis, Third ed. Macmillan Publishing Company, New York. MR1013117 (90g:00004)
G. Fort and E. Moulines

LTCI, TELECOM ParisTech-CNRS
46 rue Barrault
75634 Paris Cédex 13, France,
E-MAIL: gersende.fort@telecom-paristech.fr
E-MAIL: eric.moulines@telecom-paristech.fr
P. Priouret

LPMA, Université Pierre et Marie Curie (P6)
Boîte courrier 188
75252 PARIS Cedex 05, France,
E-mail: priouret@ccr.jussieu.fr

[^0]: *Corresponding author

