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This supplement provides a detailed proof of Lemma 4.2 and Proposi-
tions 3.1, 4.3 and 5.2 of Fort, Moulines and Priouret (2010). It also contains
a discussion on the setwise convergence of transition kernels (see Section 1).

For completeness and ease of references, we repeat the assumptions and
the main notations.

For V : X → [1,∞) and θ, θ′ ∈ Θ, denote by DV (θ, θ′) the V -variation of
the kernels Pθ and Pθ′

(1) DV (θ, θ′)
def
= sup

x∈X

‖Pθ(x, ·) − Pθ′(x, ·)‖V

V (x)
.

When V ≡ 1, we use the simpler notation D(θ, θ′). Consider the following
assumption:

A1 For any θ ∈ Θ, there exists a probability distribution πθ such that
πθPθ = πθ.

A2 (a) For any ε > 0, there exists a non-decreasing positive sequence
{rε(n), n ≥ 0} such that lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E

[
∥

∥

∥P
rε(n)
θn−rε(n)

(Xn−rε(n), ·) − πθn−rε(n)

∥

∥

∥

TV

]

≤ ε .

(b) For any ε > 0, limn→∞
∑rε(n)−1

j=0 E

[

D(θn−rε(n)+j , θn−rε(n))
]

= 0,

where D is defined in (1).

A3
∑∞

k=1 k
−1
(

Lθk
∨ Lθk−1

)6
DV (θk, θk−1) V (Xk) < +∞ P-a.s. , where

DV and Lθ are defined in (1) and (3).

A4 (a) lim supn πθn
(V ) < +∞, P-a.s.

(b) For some α > 1,
∑∞

k=0(k + 1)−α L2α
θk

Pθk
V α(Xk) < +∞, P-a.s.

.
∗Corresponding author
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2 G. FORT ET AL

A5 For all θ ∈ Θ, Pθ is phi-irreducible, aperiodic and there exist a function
V : X → [1,+∞), and for any θ ∈ Θ there exist some constants
bθ <∞, δθ ∈ (0, 1), λθ ∈ (0, 1) and a probability measure νθ on X such
that

PθV ≤ λθV + bθ ,

Pθ(x, ·) ≥ δθ νθ(·) 1{V ≤cθ}(x) cθ
def
= 2bθ(1 − λθ)

−1 − 1 .

For any ε > 0, x ∈ X, θ ∈ Θ, set

(2) Mε(x, θ)
def
= inf{n ≥ 0, ‖Pn

θ (x, ·) − πθ‖TV ≤ ε} .

For any θ ∈ Θ, set

(3) Lθ
def
= Cθ ∨ (1 − ρθ)

−1 ≤ C
{

bθ ∨ δ
−1
θ ∨ (1 − λθ)

−1
}γ

,

where Cθ and ρθ ∈ (0, 1) are finite constants such that

‖Pn
θ (x, ·) − πθ‖V ≤ Cθ ρ

n
θ V (x) .

1. Setwise convergence of kernels. In many situations (see e.g. (Fort,
Moulines and Priouret, 2010, Section 3)), we are able to prove that

for (a fixed) x ∈ X and any A ∈ X , there exists ΩA such that P(ΩA) = 1
and for any ω ∈ ΩA,

lim
n
Pθn(ω)(x,A) = Pθ⋆

(x,A) .

This implies that if B0 is a countable algebra generating the σ-algebra X ,
there exists Ω0 such that P(Ω0) = 1 and for any ω ∈ Ω0 and A ∈ B0,

lim
n
Pθn(ω)(x,A) = Pθ⋆

(x,A) .

Therefore, we are faced to the question: does it imply that there exists Ω⋆

such that P(Ω⋆) = 1 and for any ω ∈ Ω⋆ and A ∈ X ,

lim
n
Pθn(ω)(x,A) = Pθ⋆

(x,A) .

The answer is no, in general, as illustrated by the following counter-example.
Counter-Example: Set Pθ⋆

(x,A) = µ(A) and Pθn(ω)(x,A) = µn(ω,A)
where

• µ is a probability distribution such that for any x ∈ X, µ({x}) = 0.
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• µn(ω,A)
def
= n−1∑n

k=1 1A (Xk(ω)) with {Xk, k ≥ 1} i.i.d. r.v. defined
on (Ω,F ,P) taking value in (X,X ), with distribution µ.

Then, by the strong law of large numbers, for any A ∈ X , limn µn(·, A) =
µ(A) P-a.s. İf we take a countable family of measurable sets B0, then we
may find a P-full set D ⊆ Ω, such that for any ω ∈ D, and A ∈ B0,
limn→∞ µn(ω,A) = µ(A). Of course, B0 can be an algebra, and even an
algebra generating X . Nevertheless, it is wrong to assume that this condi-
tion implies the setwise convergence, i.e. that limn→∞ µn(ω,A) = µ(A) for

any ω ∈ D and A ∈ X . To see why this is wrong, choose ω⋆ ∈ D and set A
def
=

⋃

n{Xn(ω⋆)}. Then µn(ω⋆, A) = 1 for any n, and µ(A) = 0 6= limn µn(ω⋆, A).

2. Proof of (Fort, Moulines and Priouret, 2010, Proposition 3.1).

I1 π is a continuous positive density on X and ‖π‖∞ < +∞.

I2 (a) P is a phi-irreducible aperiodic Feller transition kernel on (X,X )
such that πP = π.

(b) There exist τ ∈ (0, 1/T ), λ ∈ (0, 1) and b < +∞ such that

(4) PW ≤ λW + b with W (x)
def
= (π(x)/‖π‖∞)−τ .

(c) For any p ∈ (0, ‖π‖∞), the sets {π ≥ p} are 1-small (w.r.t. the
transition kernel P ).

Proposition (Proposition 3.1 in Fort, Moulines and Priouret (2010)).
Assume I1, I2. There exist λ̃ ∈ (0, 1), b̃ <∞, such that, for any θ ∈ Θ,

PθW (x) ≤ λ̃W (x) + b̃θ(W ) .

In addition, for any p ∈ (0, ‖π‖∞), the level sets {π ≥ p} are 1-small w.r.t.
the transition kernels Pθ (whatever θ) and the minorization constant does
not depend upon θ.

Proof. We prove the drift inequality with a = 1. The proof for a < 1
follows from the Jensen’s inequality. The proof is adapted from (Atchadé,
2010, Lemma 4.1.). Under I2b, we have

PθW (x) ≤ (1 − υ) λ W (x) + (1 − υ) b+ υW (x)

+ υ

∫

α(x, y) {W (y) −W (x)} θ(dy) .
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By definition of W and of the acceptance ratio α,
∫

α(x, y) {W (y) −W (x)} θ(dy)

=

∫

W (y)

(

1 ∧
πβ(y)

πβ(x)

)

{

1 −
πτ (y)

πτ (x)

}

θ(dy)

≤

∫

{y,π(y)≤π(x)}
W (y)

πβ(y)

πβ(x)

{

1 −
πτ (y)

πτ (x)

}

θ(dy)

≤ Ψ(τ/β) θ(W )

where we have used that, for a > 0,

sup
z∈[0,1]

z(1 − za) ≤ Ψ(a)
def
= a/(a+ 1)(a+1)/a ,

as in (Atchadé, 2010, Lemma 1.5.1). Combining the two latter inequalities
yield

PθW (x) ≤ [(1 − υ) λ+ υ]W (x) + υΨ(τ/β)θ(W ) + (1 − υ)b .

The proof of the smallness condition relies on the inequality Pθ(x,A) ≥
(1 − υ)P (x,A).

3. Proof of (Fort, Moulines and Priouret, 2010, Lemma 4.2) .

Lemma (Lemma 4.2 Fort, Moulines and Priouret (2010)). Assume A5.
For any θ ∈ Θ, let Fθ : X → R

+ be a measurable function such that
supθ ‖Fθ‖V < +∞ and define

F̂θ
def
=
∑

n≥0

Pn
θ {Fθ − πθ(Fθ)} .

For any θ, θ′ ∈ Θ,

(5) ‖πθ − πθ′‖V ≤ L2
θ′

{

πθ(V ) + L2
θ V (x)

}

DV (θ, θ′) ,

and

(6)
∣

∣

∣PθF̂θ − Pθ′F̂θ′

∣

∣

∣

V
≤ sup

θ∈Θ
‖Fθ‖V L2

θ′
(

Lθ DV (θ, θ′) + ‖πθ − πθ′‖V

)

+ L2
θ′ ‖Fθ − Fθ′‖V .

where Lθ is given by (3).
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Proof. The proof of this Lemma is closely related to (Andrieu and
Moulines, 2006, Proposition 3) and its refinement in Andrieu et al. (2011).
These types of results have a rather long history: Benveniste, Métivier and
Priouret (1990) and Glynn and Meyn (1996) and the references therein for
early references.

We first establish (5). For any k ≥ 1, we decompose P k
θ f −P

k
θ′f as follows

P k
θ f − P k

θ′f =
k−1
∑

j=0

P j
θ (Pθ − Pθ′)

(

P k−j−1
θ′ f − πθ′(f)

)

.

Under A5, there exist constants Cθ and ρθ ∈ (0, 1) such that
∥

∥

∥P k
θ (x, ·) − πθ

∥

∥

∥

V
≤

Cθρ
k
θV (x). Therefore, for any k ≥ 1 and x⋆ ∈ X,

‖πθ − πθ′‖V

≤
∥

∥

∥πθ − P k
θ (x⋆, ·)

∥

∥

∥

V
+
∥

∥

∥P k
θ (x⋆, ·) − P k

θ′(x⋆, ·)
∥

∥

∥

V
+
∥

∥

∥P k
θ′(x⋆, ·) − πθ′

∥

∥

∥

V

≤
(

Cθρ
k
θ + Cθ′ρ

k
θ′

)

V (x⋆)

+ sup
‖f‖

V
≤1

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

P j
θ (Pθ − Pθ′)

(

P k−j−1
θ′ f − πθ′(f)

)

(x⋆)

∣

∣

∣

∣

∣

∣

.

The second term on the RHS is upper bounded by

Cθ′ DV (θ, θ′)
k−1
∑

j=0

ρk−j−1
θ′ P j

θ V (x⋆)

≤ Cθ′ DV (θ, θ′)
k−1
∑

j=0

ρk−j−1
θ′

{

πθ(V ) + Cθρ
j
θV (x⋆)

}

≤
Cθ′

1 − ρθ′
DV (θ, θ′) (πθ(V ) + CθV (x⋆)) .

Therefore

‖πθ − πθ′‖V ≤
(

Cθρ
k
θ + Cθ′ρ

k
θ′

)

V (x⋆)

+
Cθ′

1 − ρθ′
DV (θ, θ′) (πθ(V ) + CθV (x⋆))

which implies the desired result by taking the limit as k → +∞.
We then establish (6). Under A5, F̂θ exists (see (20) of Fort, Moulines

and Priouret (2010)) and

PθF̂θ(x) − Pθ′F̂θ′(x) =
∑

n≥1

Pn
θ {Fθ − πθ(Fθ)} −

∑

n≥1

Pn
θ′{Fθ′ − πθ′(Fθ′)} .
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We first show

(7) PθF̂θ − Pθ′F̂θ′ =
∑

n≥1

n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ Fθ − πθ′(Fθ)

)

−
∑

n≥1

{Pn
θ′(Fθ′ − Fθ) − πθ′(Fθ′ − Fθ)} −

∑

n≥1

πθ{P
n
θ′Fθ − πθ′(Fθ)} .

Following the same lines as in (Andrieu and Moulines, 2006, Proposition 3),
we have for any n ≥ 1,

Pn
θ f − Pn

θ′f

=
n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ f − πθ′(f)

)

+
n−1
∑

j=0

{

πθP
n−j−1
θ′ f − πθP

n−j
θ′ f

}

=
n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ f − πθ′(f)

)

+ πθ(f) − πθP
n
θ′f ,

where we used that πθPθ = πθ. Hence, for any n ≥ 1,

Pn
θ Fθ − Pn

θ′Fθ′ =
n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ Fθ − πθ′(Fθ)

)

+ πθ(Fθ) − πθP
n
θ′Fθ + Pn

θ′ (Fθ − Fθ′)

and

Pn
θ {Fθ − πθ(Fθ)} − Pn

θ′{Fθ′ − πθ′(Fθ′)}

=
n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ Fθ − πθ′(Fθ)

)

− {Pn
θ′Fθ′ − πθ′(Fθ′)}

+ {Pn
θ′Fθ − πθ′(Fθ)} − πθ{P

n
θ′Fθ − πθ′(Fθ)} .

This yields (7). We consider the first term in (7): by Lemma 2.3 in Fort,
Moulines and Priouret (2010)

∥

∥

∥

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ Fθ − πθ′(Fθ)

)
∥

∥

∥

V

≤ CθCθ′ρ
n−1−j
θ′ ρj

θ sup
θ

‖Fθ‖V DV (θ, θ′)
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thus implying

∥

∥

∥

∥

∥

∥

∑

n≥1

n−1
∑

j=0

(

P j
θ − πθ

)

(Pθ − Pθ′)
(

Pn−j−1
θ′ Fθ − πθ′(Fθ)

)

∥

∥

∥

∥

∥

∥

V

≤ L2
θL

2
θ′ sup

θ
‖Fθ‖V DV (θ, θ′).

Consider now the second term on the RHS of (7). By Lemma 2.3 in Fort,
Moulines and Priouret (2010),

|Pn
θ′(Fθ′ − Fθ)(x) − πθ′(Fθ′ − Fθ)| ≤ Cθ′ ρ

n
θ′ V (x) ‖Fθ′ − Fθ‖V

thus implying

∑

n≥1

|Pn
θ′(Fθ′ − Fθ)(x) − πθ′(Fθ′ − Fθ)| ≤ L2

θ′V (x) ‖Fθ′ − Fθ‖V .

Finally, the third term on the RHS of (7) can be bounded by

‖πθ{P
n
θ′Fθ − πθ′(Fθ)}‖V = ‖(πθ − πθ′) {P

n
θ′Fθ − πθ′(Fθ)}‖V

≤ ‖πθ − πθ′‖V Cθ′ ρ
n
θ′ sup

θ
‖Fθ‖V ,

so that
∥

∥

∥

∥

∥

∑

n

πθ{P
n
θ′Fθ − πθ′(Fθ)}

∥

∥

∥

∥

∥

V

≤ ‖πθ − πθ′‖V L2
θ′ sup

θ
‖Fθ‖V .

4. Proof of (Fort, Moulines and Priouret, 2010, Proposition 4.3).

Proposition (Proposition 4.3 Fort, Moulines and Priouret (2010)). Let
X be a Polish space endowed with its Borel σ-field X . Let µ and {µn, n ≥ 1}
be probability distributions on (X,X ). Let {fn, n ≥ 0} be an equicontinuous
family of functions from X to R. Assume

(i) the sequence {µn, n ≥ 0} converges weakly to µ.
(ii) for any x ∈ X, limn→∞ fn(x) exists, and there exists α > 1 such that

supn µn(|fn|
α) + µ(| limn fn|) < +∞.

Then, µn(fn) → µ(limn fn).
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Proof. Set f
def
= limn→∞ fn. Under the stated assumptions, f is contin-

uous. We can assume without loss of generality that fn, f are non-negative
functions. Let c, ε be positive constants. We decompose µn(fn) − µ(f)

µn(fn)−µ(f) = µn(fn∧c)−µ(f∧c)+µn

(

(fn−c)1{fn>c}

)

−µ

(

(f−c)1{f>c}

)

.

Choose c large enough so that supn µn(fα
n )/cα−1 + µ(f1{f>c}) ≤ ε. Then

upon noting that 1{f>c} ≤ (f/c)α−1,
∣

∣

∣

∣

µn

(

(fn − c)1{fn>c}

)

− µ

(

(f − c)1{f>c}

)∣

∣

∣

∣

≤
µn(fα

n )

cα−1
+ µ(f1{f>c}) ≤ ε .

Consider now the bounded functions {fn ∧ c, n ≥ 0} and f ∧ c. We write

(8) |µn(fn ∧ c) − µ(f ∧ c)| ≤ µn(|fn ∧ c− f ∧ c|)+ |µn(f ∧ c) − µ(f ∧ c)| .

The sequence {µn, n ≥ 0} is relatively compact and thus tight since X is
Polish ((Billingsley, 1999, Theorem 5.2.)). Then, for ε > 0, there exists a
compact set K such that supn µn(Kc) ≤ ε. Then

µn(|fn ∧ c− f ∧ c|) ≤ sup
K

|fn∧c−f∧c|+2cµn(Kc) ≤ sup
K

|fn∧c−f∧c|+2cε .

Under the stated assumptions, the family of functions {f̄n
def
= fn∧c−f∧c, n ≥

0} are equicontinuous, and limn→∞ f̄n = 0. By (Royden, 1988, Lemma 39,
Chapter 7), the convergence is uniform on compact sets. Consider now the
second term on the RHS of (8). Since f ∧c is a bounded continuous function
and {µn, n ≥ 0} converges weakly to µ, limn→∞ µn(f ∧ c) = µ(f ∧ c). This
concludes the proof.

5. Proof of (Fort, Moulines and Priouret, 2010, Proposition 5.2).
Let (U, δ) be a metric space; recall that for a real-valued function f on U,
the Lipschitz semi-norm is defined by

|f |Lip(U,δ)
def
= sup

x 6=y,(x,y)∈U2

|f(x) − f(y)|

δ(x, y)
.

Denote the supremum norm

‖f‖∞,U
def
= sup

x∈U

|f(x)| .

Let |f |BL(U,δ)
def
= |f |Lip(U,δ) + ‖f‖∞,U. Here, “BL” stands for “bounded Lips-

chitz” and BL(U, δ) is the set of all bounded real valued Lipschitz functions
on (U, δ).

Recall the following extension Theorem for bounded Lipschitz functions
(Dudley, 2002, Proposition 11.2.3.)
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Theorem 5.1. If U ⊂ V and f ∈ BL(U, δ) then f can be extended to a
function h ∈ BL(V, δ) with h = f on V and |h|BL(V,δ) = |f |BL(U,δ).

Recall also that if (U, δ) is compact, then the set of continuous functions
coincides with the set of continuous bounded functions Cb(U, δ).

Theorem 5.2. If (V, δ) is a compact metric space, the space of bounded
Lipschitz functions BL(V, δ) equipped with the supremum norm ‖ · ‖∞,V is a
separable space.

Proof. By (Dudley, 2002, Corollary 11.2.5), the space of bounded con-
tinuous function Cb(V, δ) equipped with the supremum norm ‖ · ‖∞,V is
separable; denote by {fi, i ∈ N} ⊂ Cb(V, δ) a dense family of bounded
functions in Cb(V, δ) for the supremum norm. Since, (Dudley, 2002, Propo-
sition 11.2.4), BL(V, δ) is dense in Cb(V, δ) for the supremum norm ‖ · ‖∞,V,
for any n ∈ N and then any p ∈ N, we may choose fn,p ∈ BL(V, δ) such that
‖fn − fn,p‖∞,V ≤ 1/p.

By construction, the countable family of function {fn,p, (n, p) ∈ N
2} is

dense in BL(V, δ) equipped with the supremum norm.

Finally, the set of bounded Lipschitz functions is convergence determining
(Dudley, 2002, Theorem 11.3.3)

Theorem 5.3. Let µ and {µn, n ≥ 0} be distributions on a separable
metric space (U, δ) endowed with its Borel σ-field. The following properties
are equivalent

(a) {µn, n ≥ 0} converges weakly to µ.
(b) {µn(f), n ≥ 0} converges to µ(f) for any function f ∈ BL(U, δ).

Lemma 5.4. Let (U, d) be a separable metric space. There exists a metric
δ on U defining the same topology as d, such that the space of bounded
Lipschitz functions BL(U, δ) equipped with the supremum norm ‖ · ‖∞,U is
separable.

Proof. By (Dudley, 2002, Theorem 2.8.2), there exist a space V and a
metric δ on V such that U ⊆ V, (V, δ) is a compact metric space and U is
dense in V for the metric δ.

Denote by {ψk, k ∈ N} ⊂ BL(V, δ) be a countable family of functions
which is dense in BL(V, δ) equipped with the supremum norm; see Theo-
rem 5.2. For any k ∈ N, denote by φk the restriction of the function ψk to U.
Clearly, for any k ∈ N, φk ∈ BL(U, δ). By Theorem 5.1, for any f ∈ BL(U, δ),
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there is a function h ∈ BL(V, δ) with f = h on U and |h|BL(V,δ) = |f |BL(U,δ).
Since for any k ≥ 0,

sup
x∈U

|f(x) − φk(x)| ≤ sup
x∈V

|h(x) − ψk(x)|

the set {φk, k ≥ 0} is dense in BL(U, δ) equipped with the supremum norm
‖ · ‖∞,U.

Proposition (Proposition 5.2 in Fort, Moulines and Priouret (2010)).
Let (U, d) be a metric space equipped with its Borel σ-field B(U). Let (Ω,A,P)
be a probability space, µ be a distribution on (U,B(U)) and {Kn, n ≥ 0} be
a family of Markov transition kernels Kn : Ω ×B(U) → [0, 1]. Assume that,
for any f ∈ Cb(U, d)

Ωf
def
= {ω ∈ Ω : lim sup

n→∞
|Kn(ω, f) − µ(f)| = 0} ,

is a P-full set. Then

{

ω ∈ Ω : ∀f ∈ Cb(U, d) lim sup
n→∞

|Kn(ω, f) − µ(f)| = 0

}

,

is a P-full set.

Proof. By Lemma 5.4, there is a metric δ on U defining the same topol-
ogy as d and a countable family {φk, k ≥ 0} ⊂ BL(U, δ) which is dense in
the space BL(U, δ) equipped with supremum norm ‖ · ‖∞,U. For any ε > 0
and any function f ∈ BL(U, δ), there exists k ≥ 0 such that ‖f −φk‖∞ ≤ ε.

By Theorem 5.3, it suffices to show that there exists a P-full set Ω1 such
that for any ω ∈ Ω1 and any function f ∈ BL(U, δ), lim supn→∞ |µn(ω, f)−

µ(f)| = 0. Set Ω1
def
=
⋂

k Ωφk
. Since P(Ωφk

) = 1, then P(Ω1) = 1. For any
ω ∈ Ω1, we have

|µn(ω, f) − µ(f)|

≤ |µn(ω, f) − µn(φk)| + |µn(ω, φk) − µ(φk)| + |µ(φk) − µ(f)|

≤ 2‖f − φk‖∞ + |µn(ω, φk) − µ(φk)|

≤ 2ε+ |µn(ω, φk) − µ(φk)| .

and this concludes the proof since by definition of Ω1, limn µn(ω, φk) =
µ(φk).
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