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ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 11. IntrodutionMarkov Chain Monte-Carlo (MCMC) algorithms are well-known shemes to draw sample from anergodi Markov hain with given stationary distribution � on a state spae X . Theoretial workon MCMC algorithms has so far mainly onentrated on the properties of simple algorithms,suh as the Gibbs sampler (see, e.g. Sahu and Roberts (1999) and Hobert and Geyer (1998))or the full-dimensional Metropolis algorithm (see, e.g., Mengersen and Tweedie (1996), Robertsand Tweedie (1996), Jarner and Hansen (2000), Fort and Moulines )(2000). In many pratialsituations, and in partiular when the dimension of the state spae is large, these elementarysamplers are seldom used as they stand, but are rather used as building bloks for more omplexsampling strategies (see e.g. Robert and Casella (1999)).A rather intuitive idea to deal with large dimensional state spae X is (whenever possible)to write the state spae as a produt of lower dimensional ones, X = X1 � � � � � Xd, and toonstrut a Markov transition kernel P on X having the stationary distribution � by ombiningkernels Pi ating on Xi. The deterministi san Gibbs sampler is an example of this strategy,where we write P := QdQd�1 � � �Q1, where Qk is the Markov kernel that replaes the k-thoordinate by a draw from �(dxkjfxjgj 6=k), leaving xj �xed for j 6= k. The random sanGibbs sampler, P := d�1Pdi=1Qi is sometimes used instead (see Smith and Roberts (1993),Tierney (1994)). When the full onditional distributions �(dxijfxjgj 6=i) are diÆult to sample,one an instead de�ne new operators Pi (e.g. one-dimensional Metropolis algorithms) whih areeasily implemented, suh that Pni onverges to Qi (in an appropriate sense) as n goes to in�nity.This method is referred to as "variable-at-a-time Metropolis-Hastings" or "Metropolis-within-Gibbs" in the terminology of Tierney (1994) and Chan and Geyer (1994).Let C := (P1; P2; � � � ; Pd) be any olletion of Markov kernels on a state spae X = X1�� � ��Xd.The random san hybrid sampler for C is the sampler de�ned byPRS := d�1(P1 + � � �+ Pd):In this paper, we fous on the Random-San Metropolis (RSM) algorithm, where X = Rd, andwhere eah operator Pi arises from a symmetri random-walk Metropolis algorithm on the i-thoordinate.



2 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALThis algorithm was studied by Roberts and Rosenthal (1997,1998), and by Jarner and Hansen (2000).One of the assumptions in Roberts and Rosenthal (1998) is expressed in terms of the maximalurvature of all the geodesi urves on the ontour manifold fy 2 Rd; p(y) = p(x)g as jxj ! 1.This ondition is rather diÆult to hek even when d = 2; in addition, as suggested in Jarnerand Hansen (2000), it is not lear that this urvature ondition should really play a role, sinegeometri ergodiity an be established fairly easily for densities for whih the maximum urva-ture goes to in�nity as jxj ! 1, at least in some diretions. In this paper, we shall instead showthat geometri ergodiity holds under essentially no ondition on the geometry of the ontourmanifold.Let the state spae X be equal to Rd, equipped with its Borel �-�eld B(Rd). Let �d (resp. �)be Lebesgue measure on Rd (resp. R) and fe1; � � � ; edg be the oordinate unit vetors. Denoteby j � j the Eulidean norm. We shall assume that(A1) the target distribution � is absolutely ontinuous with respet to �d, with positive andontinuous density p on Rd.Let Pi be a symmetri random-walk Metropolis (with target density p) on the i-th oordinate:started from the d-vetor x = (x1; : : : ; xd), the proposal in the ei-diretion is given by x + yei,where y is sampled from a symmetri inrement density qi with respet to the one-dimensionalLebesgue measure �; this proposal is then aepted with probability 1 ^ fp(x+ yei)=p(x)g. Weshall assume for simpliity that(A2) fqig1�i�d is a family of symmetri densities with respet to �, suh that there exist someonstants �i > 0, Æi <1 (for i = 1; : : : ; d) suh that jyj � Æi =) qi(y) � �i:Condition (A2) ensures that the resulting Markov hain is �-irreduible and strongly aperiodi,and allows to identify small sets (see Setion 2). For x 2 Rd and i 2 f1; � � � ; dg, let A(x; i) bethe aeptane region in the i-th diretion:A(x; i) := fy 2 R; p(x+ yei) � p(x)g:Similarly, let R(x; i) be the potential rejetion region in the i-th diretion:R(x; i) := fy 2 R; p(x+ yei) < p(x)g: (1)



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 3That is, A(x; i) represents the set of inrements whih, if proposed as an inrement in the i-thdiretion, would always be aepted; R(x; i) represents those inrements whih ould be rejetedwith positive probability.With these notations, the transition kernels Pi, i 2 f1; � � � ; dg, on (Rd;B(Rd)) are more formallyde�ned as follows ; for x = (x1; : : : ; xd) 2 Rd; A = A1 � � � � �Ad 2 B(Rd),Pi(x;A) :=Yk 6=i Æxk (Ak) ZAi�xi �(x; x+ yei)qi(y)�(dy) + Æx(A) Z �1� �(x; x+ yei)�qi(y)�(dy);where Ai� xi := fy 2 R; xi+ y 2 Aig and �(x; z) := 1 ^ p(z)=p(x), (x; z) 2 Rd�Rd, so that forany Borel funtion V : Rd! R+, x 2 Rd,PiV (x) = ZA(x;i) V (x+ yei)qi(y)�(dy) + ZR(x;i) V (x+ yei)p(x+ yei)p(x) qi(y)�(dy)+ V (x) ZR(x;i) �1� p(x+ yei)p(x) �qi(y)�(dy): (2)The RSM kernel PRS is the hybrid sampler assoiated to the olletion C = (P1; P2; � � � ; Pd), i.e.PRS := 1dPdi=1 Pi. The kernel Pi is reversible with respet to the target distribution �, and thus� is stationary for Pi (and thus also for PRS).Note �nally that Pi(x;A) =Yk 6=i Æxk(Ak)Mi(xi; Ai; x�i) (3)where x�i := (x1; � � � ; xi�1; xi+1; � � � ; xd) and Mi(�; �; x�i) is the kernel of a random-walk Me-tropolis algorithm admitting the full-onditional distribution �(dxijx�i) as its unique invariantdistribution. The RSM is thus a speial instane of Metropolis-within-Gibbs sampling.2. Geometri ergodiity for sub-exponential densitiesIn this setion we present a suÆient ondition for geometri ergodiity of the RSM algorithmon Rd for sub-exponential densities.2.1. Bakground and assumptions. The proof of our result below uses the theory of drift andminorisation onditions for general Markov hains. We briey review the neessary de�nitionshere; see Meyn and Tweedie (1993) for further bakground.



4 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALA transition kernel P (or a Markov Chain fXng) on a state spae X is said to be �-irreduibleif there is a non-zero measure � on B(X ), suh that for all x 2 X , and for all measurable subsetsA � X with �(A) > 0, the hain has positive probability of hitting A when started at x, i.e.Px(�A < 1) > 0 where �A = minfn � 1; Xn 2 Ag is the �rst return time of A. The kernelP is said to be V -uniformly ergodi for some funtion V : X ! [1;1℄ if P is �-irreduible,with invariant probability measure � suh that �(V ) <1, and there exist onstants r > 1 andR <1 suh that for �-almost all x 2 X ,kPn(x; �)� �(�)kV � Rr�nV (x) ; n = 1; 2; : : : ;where for any signed measure �, k�kV := supjf j�V j�(f)j. (Furthermore, a hain is geometriallyergodi if and only if it is V -uniformly ergodi for some suh V .)Our proof onsists in proving a Foster-Lyapunov ondition outside a small set. Reall thatC 2 B(Rd) is a small set if there exist an integer m � 1, a onstant � > 0 and a probabilitymeasure �m on B(Rd) suh thatPm(x;A) � � �m(A) x 2 C;A 2 B(Rd): (4)From Theorems 15.0.1 and 16.0.1 of Meyn and Tweedie (1993), we haveTheorem 1. Let P be a �-irreduible aperiodi transition kernel. Assume that there exist someonstants 0 < � < 1, b < 1, some Borel funtion V : X ! [1;1℄ with V (x0) < 1 for somex0 2 Rd, and a small set C satisfyingPV (x) � �V (x) + b1IC(x) ; x 2 X : (5)Then P is V -uniformly ergodi.Remark 1. Conversely, if P is V -uniformly ergodi, then there exist R < 1 and r > 1 suhthat for all n, supx2fV<1g kPn(x; �)� �(�)kV =V (x) � Rr�n. If so, then there exists a funtionV0 equivalent to V , whih is a solution of the Foster-Lyapunov drift ondition (5) (see Meyn andTweedie (1993), Theorem 16.1.4).Remark 2. Expliit expressions of the rate r and of the onstant R as a funtion of the terms in(4) and (5) an be found in Meyn and Tweedie (1994), Mengersen and Tweedie (1996), Rosen-thal (1995), Roberts and Tweedie (1998), Fort and Moulines (2000a), and Dou et al. (2001).Under (A2), it is easily shown that P dRS(x; :) has a nontrivial ontinuous omponent with respetto the Lebesgue measure and that this ontinuous omponent is bounded from below on a ball



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 5around x. From this, the positivity and the ontinuity of p, it is straightforward to prove thefollowing result (Roberts and Rosenthal (1998), Lemma 4 ).Proposition 2. Assume (A1) and (A2). Then PRS is Lebesgue-irreduible, aperiodi, withinvariant probability measure �(dx) := p(x)�d(dx). In addition, any bounded set is small.To establish the Foster-Lyapunov ondition, we need to �nd a funtion V (whih will depend onthe dimension d) suh that limjxj!1 PRSV (x)=V (x) < 1. Consider the drift funtion Vs(x) :=p(x)�s, for some 0 < s < 1. We have (Roberts and Rosenthal (1998), Proposition 3)Proposition 3. Let Pi be given by (2), and set Vs(x) := p(x)�s for some 0 < s < 1. For allx 2 Rd, PiVs(x) � r(s)Vs(x) where r(s) := 1 + s(1� s)1=s�1: (6)Hene, for all � > 0, there exists s with 0 < s < �, suh that 1 < r(s) < 1 + �.Proof. We provide a proof for ompleteness. We havePiVs(x)Vs(x) = ZA(x;i)� p(x)p(x+ yei)�s qi(y)�(dy) + ZR(x;i) 1� p(x+ yei)p(x) + �p(x+ yei)p(x) �1�s! qi(y)�(dy)= Z I(y; x; i; s)qi(y)�(dy)where I(y; x; i; s) := 8<: (p(x)=p(x+ yei))s y 2 A(x; i);1� p(x+yei)p(x) + �p(x+yei)p(x) �1�s y 2 R(x; i): (7)The proof is onluded by noting that supu2[0;1℄(1� u+ u1�s) � r(s). �Observe that lims!0 r(s) = 1, whih shows that for any � > 0, by hoosing s small enough, onemay �nd a funtion Vs = p�s suh that for all i 2 f1; � � � ; dg, x 2 Rd, PiV (x) � (1 + �)V (x).To prove the geometri ergodiity of the RSM algorithm, we of ourse need to prove somethingstronger.The key assumption may be formulated as follows.(A3) There is 0 � Æ < � � +1 suh that � := inf1�i�d R �Æ qi(y)�(dy) > 0, and for anysequene x := fxjg with limj jxjj = + 1, one may extrat a subsequene ~x := f~xjg,



6 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALsuh that, for some i 2 f1; : : : ; dg, and all y 2 [Æ;�℄limj p(~xj)p(~xj � sign(~xji ) y ei) = 0; and limj p(~xj + sign(~xji ) y ei)p(~xj) = 0: (8)This ondition is somewhat involved. However, we will disuss in setion 2.3 a simple riterionto hek (A3).2.2. Main result. The key result of Setion 2 is the following.Theorem 4. Assume (A1), (A2), and (A3). Let 0 < s < 1 suh thatr(s) < 1 + �d� 2� (9)where r(s) and � are given by (6) and (A3) respetively, and set Vs(x) := p(x)�s. Then thereexist onstants 0 < � < 1, b <1 and a small set C 2 B(Rd) suh thatPRSVs(x) � �Vs(x) + b1IC(x) ; x 2 Rd :In partiular, PRS is V -uniformly ergodi.Proof. The proof is by ontradition. Assume that there exists a Rd-valued sequene x := fxjgsuh that limj jxj j = + 1 and lim supj PRSVs(xj)=Vs(xj) � 1. Then, there exists a subsequenex̂ := fx̂jg suh that limj PRSVs(x̂j)=Vs(x̂j) � 1. We shall show that there exist a furthersubsequene ~x := f~xjg and an integer i 2 f1; � � � ; dg suh thatlimj PiVs(~xj)Vs(~xj) � r(s)� (2r(s)� 1) �: (10)The ontradition will follow fromlimj PRSVs(~xj)Vs(~xj) = limj 1d dXk=1 PkVs(~xj)Vs(~xj) � 1d (r(s)� (2r(s)� 1)�) + 1d limj Xk 6=i PkVs(~xj)Vs(~xj)� 1d (r(s)� (2r(s)� 1)�) + d� 1d r(s) < 1;sine, by Proposition 3, PkVs(x)=Vs(x) � r(s) for all x 2 Rd. Under (A3), one may extrat fromthe sequene x̂ a subsequene ~x in suh a way that, for some i 2 f1; � � � ; dg, (8) is veri�ed andthat, for all j � 0, sign(~xji ) = �i 2 f�1;+1g; without loss of generality set �i = 1. We havePiVs(x)Vs(x) = ZÆ�jyj�� I(y; x; i; s)qi(y)�(dy) + Zfjyj�Æg[fjyj��g I(y; x; i; s)qi(y)�(dy);



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 7where I is given by (7). Sine I(y; x; i; s)� r(s), the seond term on the right hand side of theprevious equation is bounded by r(s)(1� 2 R �Æ qi(y)�(dy)). Consider now the �rst term and setJ(Æ;�) := [��;�Æ℄ [ [Æ;�℄. We �rst prove thatlimj R(~xj; i) \ J(Æ;�) = [Æ;�℄; (11)whih implies that limj A(~xj ; i) \ J(Æ;�) = [��;�Æ℄. To this end, we show that[Æ;�℄ � lim infj R(~xj; i) \ J(Æ;�) � lim supj R(~xj; i) \ J(Æ;�) � [Æ;�℄:For y 2 [Æ;�℄, limj p(~xj + yei)=p(~xj) = 0; hene, y 2 lim inf j R(~xj; i) \ J(Æ;�). Assume nowthat y 2 lim supj R(~xj; i) \ J(Æ;�). Then, lim inf j p(~xj)=p(~xj + yei) � 1, and sine y 2 J(Æ;�)the latter relation implies that y 2 [Æ;�℄, showing (11). By de�nition of the kernel Pi, we havePiVs(~xj)Vs(~xj) � ZR(~xj;i)\J(Æ;�) qi(y)�(dy) � ZA(~xj ;i)\J(Æ;�) hp(~xj + yei)p(~xj) i�sqi(y)�(dy)+ZR(~xj ;i)\J(Æ;�)nhp(~xj + yei)p(~xj) i1�s�hp(~xj + yei)p(~xj) ioqi(y)�(dy)+r(s)�1� 2 Z �Æ qi(y)�(dy)� :Note that for y 2 A(x; i), p(x+ yei)=p(x) � 1 and for y 2 R(x; i), p(x+ yei)=p(x) � 1. Thenby (11), (A3) and the dominated onvergene Theorem, we havelimj PiVs(~xj)Vs(~xj) � Z �Æ qi(y)�(dy) + r(s)�1� 2 Z �Æ qi(y)�(dy)�� r(s)� (2r(s)� 1) Z �Æ qi(y)�(dy) � r(s)� (2r(s)� 1) �whih onludes the proof of (10) and thus of the �rst part of the Theorem.Finally, we reall that assumptions (A1) and (A2) imply that any ompat set is small. Fur-thermore, the above argument shows that assumption (A3) guarantees that outside a suÆientlylarge ompat set C, we have PRSVs=Vs < 1. Furthermore, supC Vs <1, and by Proposition 3,supC PRSVs <1. The V -uniform ergodiity now follows from Theorem 1. �Remark 3. In fat, it may be dedued from the proof of Theorem 4 thatlim supjxj!+1 PRSVs(x)Vs(x) � d� 2�d r(s) + �d:Remark 4. If instead the target density p is positive and ontinuous and bounded on anunbounded open subset X � Rd, then assumption (A3) an be modi�ed to still imply that thekernel PRS is V -uniformly ergodi. (a) One has to replae \for any sequene x := fxjg suhthat limj jxj j = +1" by \for any X -valued sequene x := fxjg suh that xj ! �X ", where �X



8 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALis the boundary of X . (b) One has to set, by onvention, that for all y > 0, the ratio is zero forall j suh that ~xj � sign(~xji ) y ei =2 X .Remark 5. In assumption (A3), instead of (8), one ould equivalently assume that there existsa funtion I : Rd! f1; : : : ; dg suh thatlimj p(~xj)p(~xj � sign(~xjI(~xj)) y eI(~xj)) = 0; and limj p(~xj + sign(~xjI(~xj)) y eI(~xj))p(~xj) = 0: (12)In fat, sine j 7! I(~xj) takes at most d di�erent values, one may hoose i 2 f1; : : : ; dg suhthat fj; I(~xj) = ig is in�nite, and extrat a further subsequene x̂ := fx̂jg from ~x suh thatI(x̂j) = i for all j � 0. This subsequene satis�es (8).Remark 6. If p is ontinuously di�erentiable, the ondition (A3) an be rewritten as follows:� Let 0 < � � +1. For any sequene x := fxjg suh that limj jxj j = + 1, there exists asubsequene ~x := f~xjg and i 2 f1; � � � ; dg suh that, for all 0 � y < �,limj!+1 supft;jtj�yg sign(~xji ) ri log p(~xj + t ei) = �1; (13)where ri := �=�xi.2.3. A riterion to hek (A3). We say that a funtion � : R+ ! R+ is quasi-monotoni ifthe following ondition is satis�ed:limn �(tn) = +1 if and only if limn tn = +1:Non-dereasing funtions � suh that limx!+1 �(x) = +1 (e.g. the identity funtion �(x) = x)are quasi-monotoni, but the set of quasi-monotoni funtions is muh larger than that. Considerthe following assumption:(A4) There is 0 � Æ < � � +1 suh that inf1�i�d R �Æ qi(y)�(dy) > 0, and there exist quasi-monotoni funtions �k : R+! R+ for k = 1; : : : ; d, suh that for all i 2 f1; � � � ; dg andall y 2 [Æ;�℄,limjxij!1 supfx�i:�j(jxjj)��i(jxij);j 6=ig p(x)p(x� sign(xi) y ei) = 0and limjxij!1 supfx�i:�j(jxjj)��i(jxij);j 6=ig p(x+ sign(xi) y ei)p(x) = 0:Proposition 5. Assume (A4). Then (A3) holds.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 9Proof. De�neI : Rd! f1; � � � ; dg; (x1; : : : ; xd) 7! min argmaxk2f1;��� ;dgf�k(jxkj)g:Let x := fxjg be a sequene suh that limj!1 jxj j = +1. One may extrat a subsequene f~xjgand �nd i 2 f1; � � � ; dg suh that I(~xj) = i for all j, and the funtion j 7! sign(~xji ) is onstant. Byonstrution �i(j~xji j) � �k(j~xjkj), k 2 f1; � � � ; dg. In addition, sine jxj j ! +1, limj j~xjkj = +1for some k 2 f1; � � � ; dg. Thus limj �k(j~xjkj) = +1 whih implies that limj �i(j~xji j) = +1 andlimj j~xji j = +1. (A3) easily follows. �If p is di�erentiable, it is onvenient to onsider the riterion (A5):(A5) The density p is ontinuously di�erentiable, and there is 0 < � � 1 and quasi-monotonifuntions �k : R+ ! R+, k 2 f1; : : : ; dg, suh that for all i 2 f1; � � � ; dg, all 0 < y < �,and all � 2 f�1; 1g,limxi!�1 supfx�i:�j(jxjj)��i(jxij);j 6=ig supft; jtj�yg � ri log p(x+ tei) = �1: (14)It is easily heked by standard analytial arguments that (A5) implies (A4).2.4. Examples. We �rst onsider a toy example and prove that if the target density is sub-exponential then PRS is V -uniformly ergodi. We then onsider the three examples proposedby Jarner and Hansen (2000) (Examples 2.4.2, 2.4.3 and 2.4.4) and a more realisti exampleproposed by Zeger (1988) (Example 2.4.5) and dedue from Theorem 4 the V -uniform ergodiityof the random san kernel PRS for eah model. We �nally onsider an example, for whih PRSis not V -uniformly ergodi and (A3) does not hold. This ounter-example demonstrates thatwhile (A3) is ertainly not a neessary ondition for geometri ergodiity, it is far from beingredundant.For the target density p onsidered in the Examples 2.4.1 to 2.4.5, the ondition (A1) triviallyholds. In addition, the proposal distributions qi an always be hosen in order to satisfy Assump-tion (A2). Assumption (A5) is established in all these examples with � = +1 and �k(t) = tfor all k 2 f1; : : : ; dg and t 2 R+.2.4.1. Example 1. On Rd, de�ne the densityp(x) / exp(�jxjl); l > 1; x = (x1; � � � ; xd):



10 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALNote that ri log p(x) = �l jxjl�2 xi and for all y > 0,8xi > y; 8x�i 2 [�xi; xi℄d�1; 8jtj � y; ri log p(x+ tei) � �l (xi + y)l�dx2i + y2 + 2yxi�1=2 ;8xi < �y; 8x�i 2 [xi;�xi℄d�1; 8jtj � y; ri log p(x+ tei) � l jxi + yjl�dx2i + y2 + 2yxi�1=2 :Sine l > 1, (A5) easily follows by setting � = +1 and by hoosing �k as the identity funtionon R+, k 2 f1; � � � ; dg. Hene, the RSM sampler is V -uniformly ergodi for any funtionV (x) / p(x)�s where s(1� s)1=s�1 < (2d� 2)�1.2.4.2. Example 2. In this example, we onsider the sum of two Gaussian densities on R2. De�nefor some a2 > 1p(x) / 0:5 exp��(x21 + a2x22)�+ 0:5 exp ��(a2x21 + x22)� ; x = (x1; x2):As shown in Jarner and Hansen (2000), the ontour urves have some sharp bends that do notdisappear in the limit (even though the ontour urves of the two omponents of the mixtureare smooth ellipses). In partiular the urvature on the diagonals (x1; x2) = (t; t), t 2 R, tendsto in�nity as t!1. For suh target density, the main result of Roberts and Rosenthal (1998)does not apply (beause the urvature does not tend to zero). We now show that neverthelessthe RSM is V -uniformly ergodi.We ompute that r1 log p(x) = �2x1 e�(x21+a2x22) + a2e�(a2x21+x22)e�(x21+a2x22) + e�(a2x21+x22) ;r2 log p(x) = �2x2a2e�(x21+a2x22) + e�(a2x21+x22)e�(x21+a2x22) + e�(a2x21+x22) ;from whih it easily follows that for all x 2 R2,1 � r1 log p(x)�2x1 � a2 1 � r2 log p(x)�2x2 � a2:(A5) easily follows by setting � = +1 and by hoosing �k as the identity funtion on R+,k 2 f1; � � � ; dg. Hene, the RSM sampler is V -uniformly ergodi for any funtion V (x) / p(x)�swhere s(1� s)1=s�1 < 1=2.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 112.4.3. Example 3. Consider the sub-exponential density p on R2 given byp(x) / exp ��(x21 + x21x22 + x22)� ; x = (x1; x2):A ontour plot of the surfae is given in Figure 1. This example has also been given in Jarnerand Hansen (2000). These authors show that the full-dimensional random walk Metropolisalgorithm is not geometrially ergodi for this target density. We will nevertheless show thatthe RSM algorithm is geometrially ergodi. This shows, perhaps surprisingly, that: the RSMalgorithm an be geometrially ergodi even in situations where the full-dimensional Metropolisalgorithm is not geometrially ergodi.Here (A5) easily follows by setting � = +1 and by hoosing �k as the identity funtion onR+, k 2 f1; � � � ; dg, and noting that1 � r1 log p(x)�2x1 = 1 + x22 and 1 � r2 log p(x)�2x2 = 1 + x21:Hene, the RSM sampler is V -uniformly ergodi for any funtion V (x) / p(x)�s where s ishosen to satisfy s(1� s)1=s�1 < 1=2.2.4.4. Example 4. Consider the sub-exponential density p on R2p(x) / (1 + x21 + x22 + x81x22) exp ��(x21 + x22)� ; x = (x1; x2);introdued in Jarner and Hansen (2000). One again, neither the urvature ondition norondition (5) in Roberts and Rosenthal (1998) hold (the urvature tends to in�nity along thex-axis). Nevertheless, it is one again extremely simple to show that PRS is V -uniformly ergodi.To that purpose, observe that�2x1 � 2jx1jx21 � 8jx1j7x81 � r1 log p(x) = �2x1 + 2x1 + 8x71x221 + x21 + x22 + x81x22 � �2x1 + 2jx1jx21 + 8jx1j7x81 ;and�2x2 � 2jx2jx22 � 2jx2jx22 � r2 log p(x) = �2x2 + 2x2 + 2x81x21 + x21 + x22 + x81x22 � �2x2 + 2jx2jx22 + 2jx2jx22 :(A5) follows by setting � = +1 and by hoosing �k as the identity funtion on R+, k 2f1; � � � ; dg. Hene, the RSM sampler is V -uniformly ergodi for any funtion V (x) / p(x)�swhere s(1� s)1=s�1 < 1=2.



12 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHAL2.4.5. Example 5. Consider the following density, studied by Zeger (1988) and Chan and Ledolter (1995).Zeger proposed to �t the monthly number of ases of poliomyelitis with a generalised linear modelwith random e�et: it is assumed that the observations y := (y1; � � � ; yd) are generated from aPoisson distribution with mean �k := exp(�k +Xk), where � := (�1; � � � ; �d) 2 Rd is determin-isti and Xk is a stationary Gaussian AR(1) latent proess Xk = aXk�1 + �k , �k � N (0; ��1),jaj < 1. Chan and Ledolter (1995) onsidered the estimation of (�; a; ��1) by maximum like-lihood using the Monte-Carlo EM algorithm. To assess the onvergene of this algorithm, itis required to show the V -uniform ergodiity of the RSM when p is the density of the latentproess X = (X1; � � � ; Xd) given the observations y (see Fort and Moulines )(2000b). Thus, p isgiven for �xed y byp(x) / exp� dXk=1fyk(�k + xk)� exp(�k + xk)g � �=2 dXk=2(xk � axk�1)2 � �(1� a2)x21=2�:Note that r1 log p(x) = y1 � exp(�1 + x1)� �x1 + �ax2;rk log p(x) = yk � exp(�k + xk)� �(1 + a2)xk + �a(xk+1 � xk�1); k 2 f2; : : : ; d� 1g;rd log p(x) = yd � exp(�d + xd)� �xd + �axd�1:It easily holds that for jx2j � jx1j, t 2 R,y1��t�exp(�1+t+x1)��x1��jajjx1j � r1 log p(x+te1) � y1��t�exp(�1+t+x1)��x1+�jajjx1j;for jxd�1j � jxdj, t 2 R,yd��t�exp(�d+t+xd)��xd��jajjxdj � rd log p(x+ted) � yd��t�exp(�d+t+xd)��xd+�jajjxdj;and for all i 2 f2; : : : ; d� 1g, given jxi�1j � jxij and jxi+1j � jxij, t 2 R,yi � �(1 + a2)t� exp(�i + t + xi)� �(1 + a2)xi � 2�jajjxij � ri log p(x+ tei)� yi � �(1 + a2)t� exp(�i + t + xi)� �(1 + a2)xi + 2�jajjxij:As jaj < 1, (A5) follows easily by setting � = +1 and by hoosing �k as the identity funtionon R+, k 2 f1; � � � ; dg. Hene, the RSM sampler is V -uniformly ergodi for any funtionV (x) / p(x)�s where s(1� s)1=s�1 < (2d� 2)�1.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 132.4.6. Example 6. Consider now the RSM with target density p on R2 given byp(x) / exp ��(x21 + (x21 � x22)2=4 + x22)� ; x = (x1; x2);whih is the density p studied in Example 2.4.3 in the new orthonormal basis (�e1; �e2), �e1 :=p2=2(e1 + e2) and �e2 := p2=2(e2 � e1). A ontour plot of the surfae is given in Figure 2. Forthis target density, (A3) is not veri�ed (onsider for example the sequene xj = (j; j)). We shallshow that the RSM algorithm is not geometrially ergodi. To prove this, we use a riterionoutlined in Roberts and Tweedie (1996), Theorem 6.1. Let P be a �-irreduible transition kernel,with invariant measure � not onentrated at a single point. Let h(x) := P (x; fxg), and assumethat x 7! h(x) is a measurable funtion. Ifesssup x2Xh(x) := supfh0; �(h(x) > h0) > 0g = 1;then P is not geometrially ergodi.To proeed, let � � 2, and for all j � p�, let Xj = [pj2 � �; j℄� [pj2 � �; j℄. Note that�(Xj) > 0. We shall prove that limj infx2Xj h(x) = 1; (15)whih shows that the RSM is not geometrially ergodi for this target density. Towards thatgoal, we writePRS(x; fxg)� 12 Z (1� �(x; x+ ye1)) q1(y)�2(dy) + 12 Z (1� �(x; x+ ye2)) q2(y)�2(dy)� 1� 12 2Xi=1 Z �(x; x+ yei)qi(y)�2(dy);and show that limj supx2Xj R �(x; x + yei)qi(y)�2(dy) = 0, i = f1; 2g. We onsider only thease i = 1; the ase i = 2 is similar. Observe that for all x = (x1; x2) 2 R+ � R suh that2x22 � x21 � 4 � 0, the aeptane regions A(x; i) satisfyA(x; 1) = 8<: h�2x1;�x1 �p2x22 � x21 � 4i [ h�x1 +p2x22 � x21 � 4; 0i ; if x21 � x22 � 2;h�x1 �p2x22 � x21 � 4;�2x1i [ h0;�x1 +p2x22 � x21 � 4i otherwise(see Figure 3). For suÆiently large j, and x 2 XjA(x; 1) � 8<: h�2j;�pj2 � ��pj2 � 2(�+ 2)i [ hpj2 � 2(�+ 2)� j; 0i ; if x21 � x22 � 2;h�pj2 + �� 4� j;�2pj2 � �i [ h0;pj2 + �� 4�pj2 � �i otherwise



14 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALHene limj supx2Xj RA(x;1) q1(y)�2(dy) = 0 (see Figure 4). Note that, for y 6= 0,log p(x+ ye1)� log p(x) = �y(2x1 + y) �1 + x21=2� x22=2 + y2=4 + yx1=2� :Then, for large enough j, x 2 Xj , and y > 0,log p(x+ ye1)p(x) � �y �2pj2 � �+ y��1� �=2 + y2=4 + ypj2 � �=2�whereas, for y < 0,log p(x+ ye1)p(x) � �y (2j + y)�1 + �=2 + y2=4 + ypj2 � �=2� :In both ases, for all y 6= 0, limj!+1 supx2Xj p(x+ye1)=p(x) = 0. Hene, by applying Lebesgue'sdominated onvergene theorem, limj supx2Xj RR(x;1) p(x+ye1)p(x) q1(y)�2(dy) = 0. It follows thatlimj supx2Xj Z �(x; x+ ye1)q1(y)�2(dy) = 0;and the RSM algorithm annot be geometrially ergodi.3. Geometri ergodiity for densities whih are log-onave in the tailsCondition (A3) does not over target densities whih are log-onave in the tails. When d = 1,a target density is said to be log-onave in the tails, if there exist � > 0 and some x1 > 0 suhthat for all x � x1 and h � 0, log p(x)� log p(x+ h) � �h (16)and similarly for all x � �x1, log p(x)� log p(x� h) � �h: (17)It has been shown in Mengersen and Tweedie, Theorem 3.2 (1996), that if (a) the target densityp satis�es (A1) and is log-onave in the tails, and (b) the proposal density satis�es (A2) andhas a bounded exponential moment (a ondition whih an be avoided by adapting the proof),then the full dimensional random walk Metropolis algorithm is V -uniformly ergodi, and thedrift funtion V may be hosen as V (x) = esjxj, for any s < �.The main purpose of this setion is to adapt these results to the RSM algorithm. Suhextensions are also onsidered in Roberts and Rosenthal (1998), under the additional onditionsthat the target density has smooth ontours in an expliit sense. We show that these onditionsare in fat not needed. The �rst step in the onstrution is to extend the notion of log-onavity



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 15to distributions overRd. Following the approah of the previous setion, this is most onvenientlyexpressed in terms of limits of sub-sequenes.3.1. Main result. We shall replae (A3) with the following.(A30) There is � > 0 and 1=� � Æ < � � 1 suh that for any sequene x := fxjg withlimj jxj j = + 1, one may extrat a subsequene ~x := f~xjg, suh that for some i 2f1; � � � ; dg, we have, for all y 2 [Æ;�℄,limj p(~xj)p(~xj � sign(xji ) y ei) � exp(��y) and limj p(~xj + sign(~xji ) y ei)p(~xj) � exp(��y): (18)It is easily seen that this notion of log-onavity in the tails generalises (16) and (17).Theorem 6. Assume (A1), (A2), and (A3'). Assume in addition thatinfi2f1;:::;dgZ �Æ y qi(y)�(dy) � d�(e� 1) : (19)Then there exist 0 < s < 1, some onstants 0 < � < 1, b < 1 and a small set C 2 B(Rd) suhthat PRSVs(x) � �Vs(x) + b1IC(x); x 2 X ;where Vs(x) := p�s(x). In partiular, PRS is V -uniformly ergodi.Proof. The proof is along the same lines as the proof of Theorem 4. Assume that there existsa sequene x := fxjg suh that limj jxj j = +1 and lim supj PRSVs(xj)=Vs(xj) � 1. We shallshow that there exists a further subsequene ~x := f~xjg suh that limj PRSVs(~xj)Vs(~xj) < 1, therebyobtaining a ontradition.We �rst show that there exists a further subsequene ~x := f~xjg and i 2 f1; � � � ; dg suh thatlimj PiVs(~xj)Vs(~xj) � r(s)� (2r(s)� 1)Ji(0) + Ji(�s) + Ji(�(1� s))� Ji(�) ; (20)where for b � 0, Ji(b) := Z �Æ_1=� e�byqi(y)�(dy):Indeed, let ~x and i be given by (A30). We assume without loss of generality that sign(~xji ) = 1.Observe thatlimj R(~xj; i) \ J(Æ;�) = [Æ;�℄ and limj A(~xj ; i)\ J(Æ;�) = [��;�Æ℄;



16 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALwhere J(Æ;�) := [��;�Æ℄[ [Æ;�℄. (The proof of this assertion is along the same lines than theproof of (11), and is omitted here.) Proposition 3 impliesPiVs(~xj)Vs(~xj) = ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) + Zfjyj�Æg[fjyj��g I(y; ~xj ; i; s)qi(y)�(dy)� ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) + r(s) (1� 2Ji(0)) ; (21)where I is given by (7). In addition,ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) = 2Ji(0) + ZA(~xj;i)\J(Æ;�) �p(~xj + yei)p(~xj) ��s � 1! qi(y)�(dy)+ ZR(~xj;i)\J(Æ;�) �p(~xj + yei)p(~xj) �1�s � �p(~xj + yei)p(~xj) �! qi(y)�(dy):Reall now that if y 2 A(~xj ; i), p(~xj+yei) � p(~xj) whereas if y 2 R(~xj; i), p(~xj+yei) � p(~xj).Hene, using Lebesgue's dominated onvergene theorem,limj ZÆ�jyj�� I(y; ~xj ; i; s)qi(y)�(dy) = 2Ji(0) + Z[��;�Æ℄ �limj p(~xj + yei)p(~xj) ��s � 1! qi(y)�(dy)+ Z[Æ;�℄ �limj p(~xj + yei)p(~xj) �1�s � �limj p(~xj + yei)p(~xj) �! qi(y)�(dy):Sine qid� is a symmetri distribution and u 7! u1�s � u is non-dereasing on [0; e�1℄ for all0 < s < 1, we havelimj ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) � Ji(0) + Ji(�s) + Ji(�(1� s))� Ji(�): (22)Combining (21) and (22) yields (20).Applying Proposition 3 again, we onlude that PRSVs(~xj)=Vs(~xj) � Hi(�; s), whereHi(�; s) := r(s)� 1d ((2r(s)� 1)Ji(0) + Ji(�)� Ji(�s)� Ji(�(1� s))) : (23)The result will follow if we an �nd s > 0 suh that Hi(�; s) < 1. Sine Hi(�; 0) = 1 ands 7! Hi(�; s) is di�erentiable at 0, it suÆes to show ��sHi(�; 0) < 0. This ondition is ful�lledunder (19), sine��sHi(�; 0) = (d� 2Ji(0))e�1 � � Z �Æ y qi(y)�(dy) + � Z �Æ y e��yqi(y)�(dy);� de�1 � �(1� e�1) Z �Æ y qi(y)�(dy) < 0:



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 17�Remark 7. When � = +1, the ondition (19) is satis�ed by hoosing for example proposaldistributions whih are uniform on [�Q;Q℄ forQ large enough, or entered gaussian distributionswith large enough varianes.Remark 8. As shown by the proof, the Foster-Lyapunov drift ondition in Theorem 6 holdsfor any funtion Vs := p�s where 0 < s < 1 is hosen suh that supi2f1;:::;dgHi(�; s) < 1.If � = +1, then (a) this ondition essentially beomes r(s) < 1 + �=(d � 2�) where � :=inf1�i�d R �Æ qi(y)�(dy); (b) the assumptions (A3) and (A30) beome similar; and () the ondition(19) is always veri�ed. Thus Theorem 4 and Theorem 6 essentially oinide in this ase.3.2. Examples. We �rst onsider a toy-example and prove that if the target density is expo-nential then PRS is V -uniformly ergodi. We then onsider two examples adapted from exam-ples 2.4.2 and 2.4.3. In example 3.2.2, the target density p is a mixture of exponential densitieson R2. For that density, the urvature ondition of Roberts and Rosenthal (1998) fails to holdand their result does not apply. In example 3.2.3, we prove that the full dimensional randomwalk Metropolis algorithm an not be geometrially ergodi for the given target density whereas,as it is veri�ed by appliation of our result, the random san PRS is V -uniformly ergodi. Inthese examples, assumption (A1) trivially holds; in addition, one an always hoose the proposaldensities fqkg, k 2 f1; � � � ; dg, in suh a way that (A2) and (19) hold. Hene, in Paragraphs 3.2.1to 3.2.3, if the ondition (A30) is proved, then it may be dedued from Theorem 6 that PRS isV -uniformly ergodi for some funtion V (x) / p(x)�s, 0 < s < 1.3.2.1. Example 7. On Rd, de�ne for � > 0 the densityp(x) / exp(��jxj); x = (x1; � � � ; xd):Let x := fxjg be a sequene suh that limj jxj j = +1. Let ~x := f~xjg be a subsequene suhthat there exist i 2 f1; � � � ; dg and �i 2 f�1; 1g and (a) for all j � 0 and k 2 f1; � � � ; dg, we havej~xjkj � j~xji j; (b) for all j � 0, sign(~xji ) = �i and () limj j~xji j=j~xjj exists. Then, for all y � 0,log p �~xj + �iyei�p(~xj) = �� j~xjj 24 1 + y2j~xj j2 + 2y j~xji jj~xj j2!1=2 � 135 :



18 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALNow, as j ! +1, j~xjj ! +1, so thatlimj log p �~xj + �iyei�p(~xj) = �� y limj j~xji jj~xj j :Similarly, limj log p(~xj)p (~xj � �iyei) = �� y limj j~xji jj~xj j :Hene, for all y � 0, limj p �~xj + �iyei�p(~xj) = limj p(~xj)p (~xj � �iyei) � exp(��y=pd)sine 1=pd � limj j~xji j=j~xjj � 1. (A30) is thus veri�ed with � = 1=pd, Æ = pd and � = +1. Forproposal distributions satisfying (A2) and (19), Theorem 6 asserts that there exists 0 < s < 1suh that PRS is V -uniformly ergodi with V (x) / p(x)�s.3.2.2. Example 8. In this example, we onsider the sum of two exponential densities on R2.De�ne for some a > 1p(x) / 0:5 exp (� (jx1j+ ajx2j)) + 0:5 exp (� (ajx1j+ jx2j)) ; x = (x1; x2):A ontour plot is given in Figure 5 when a = 4. Similarly to what is done in Jarner andHansen (2000) for a mixture of Gaussian densities, it may be proved that the urvature on thediagonal (x1; x2) = (t; t), t 2 R+, is a positive onstant. Let the ontour urve orresponding toa given level be given by (x1; h(x1)) in the �rst quadrant (that is x1 > 0 and h(x1) > 0). Thenthe urvature K((x1; h(x1))) of the urve at (x1; h(x1)) is given byK((x1; h(x1))) := jh00(x1)j�1 + h02(x1)�3=2 ;(see (46) in Jarner and Hansen (2000) or (1.11) in Laugwitz )(1965). In the present ase, we �ndby impliit di�erentiation that for (x1; h(x1)) = (t; t), h0(x1) = �1 and h00(x1) = 2(1�a)2=(1+a)so that K((t; t)) = 1p2 (1� a)21 + a > 0:Consequently, the result by Roberts and Rosenthal (1998) does not apply. We now show thatthe RSM is V -uniformly ergodi by appliation of Theorem 6. Let x := fxjg be a sequene suhthat, without loss of generality, limj xj1 = +1. We may extrat a subsequene ~x := f~xjg suh



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 19that (a) j~xj2j � ~xj1; (b) for all j � 0, ~xj1 > 0; and () limj(~xj1 � j~xj2j) = L, L 2 [0;+1℄. For ally � 0, we havelimj p �~xj + ye1�p(~xj) = 8<: exp(�y) L = +1;exp(�y)+exp((1�aL)) exp(�ay)1+exp((1�aL)) � exp(�y) L < +1and similarlylimj p �~xj�p(~xj � ye1) = 8<: exp(�y) L = +1;1+exp((1�aL))exp(y)+exp((1�aL)) exp(ay) exp(�y) � exp(�y) L < +1Hene (A30) is veri�ed by setting � = Æ = 1 and � = +1, and the RSM is V -uniformly ergodi.3.2.3. Example 9. Consider the density p on R2 given byp(x) / exp (� (jx1j+ jx1jjx2j+ jx2j)) x = (x1; x2):The ontour plot of the surfae is given in Figure 6. The full-dimensional random walk Metropoliskernel PHM is not geometrially ergodi for this target density. As above, we may �nd a sequeneof sets Xj � R2, suh that �(Xj) > 0 and limj infx2Xj PHM(x; fxg) = 1; the riterion (15) showsthat PHM annot be geometrially ergodi. Consider for example Xj := [j�1; j℄� [0; 1=j℄. Usingstraightforward alulations, it is shown that for all y 2 R2, there exists j large enough suhthat supx2Xj �(x; x+ y) � exp (�j(jy2j � 2=j) + jy1j(1 + 1=j + jy2j)) :Hene, if y2 6= 0, limj supx2Xj �(x; x+ y) = 0 and Lebesgue's dominated onvergene theoremthus shows thatlim infj infx2Xj PHM(x; fxg) � 1� lim supj Z supx2Xj �(x; x+ y)q(y)�2(dy) = 1:For this target density, the RSM is V -uniformly ergodi. Indeed, let x := fxjg be a sequenesuh that, without loss of generality, limj xj1 = +1. Let ~x := f~xjg be a subsequene suh that(a) for all j � 0, j~xj2j � ~xj1; (b) for all j � 0, ~xj1 > 0; and () limj j~xj2j = L 2 [0;+1℄. We havefor all y � 0, log p �~xj + ye1�p(~xj) = ��~xj1 + y � ~xj1��1 + j~xj2j� = �y �1 + j~xj2j� ;so that limj p �~xj + ye1�p(~xj) = exp(�y(1 + L)):



20 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALSimilarly, limj p(~xj)p (~xj � ye1) = exp(�y(1 + L)):Hene, limj p �~xj + ye1�p(~xj) = limj p(~xj)p (~xj � ye1) = exp(�y(1 + L)) � exp(�y);and (A30) is veri�ed with � = Æ = 1 and � = +1. For proposal distributions satisfying (A2)and (19), Theorem 6 asserts that there exists 0 < s < 1 suh that PRS is V -uniformly ergodiwith V (x) / p(x)�s.3.3. A neessary ondition for V -uniform ergodiity of the RSM algorithm. It isof interest to �nd neessary onditions for V -uniform ergodiity. Theorem 3.3 of Mengersenand Tweedie (1996) states that, if (a) the target density is positive and ontinuous on R, (b)the full dimensional random walk Metropolis algorithm is V -uniformly ergodi (here the statespae is R), and () the proposal distribution is symmetri, bounded away from zero in aneighborhood of zero and has a bounded mean R jyj q(y)�(dy) <1, then the target density hasan exponential moment, i.e. R esjxjp(x)�(dx) <1 for some s > 0. This result has been extendedto the multidimensional ase (i.e. to the full dimensional random walk Metropolis algorithm) byJarner and Hansen (2000), Theorem 3.3. A similar result holds for the RSM. The proof belowis adapted from the proof of Theorem 3.3. of Jarner and Hansen .Proposition 7. Assume (A1) and (A2). Assume in addition that for all i 2 f1; : : : ; dg,R jyj qi(y)�(dy) < 1. Then, if the RSM is V -uniformly ergodi, there exists si > 0, i 2f1; : : : ; dg suh that ZRd ePdi=1 sijxijp(x)�d(dx) <1:Proof. By Theorem 16.3.2 in Meyn and Tweedie (1993), it is known that if PRS is V -uniformlyergodi, there exists � > 1 suh thatZ �Ex [�C℄p(x)�d(dx) <1;where �C is the hitting time on some small set C suh that �(C) > 0, and Ex is the expetationwith respet to the hain fXkg starting from X0 = x with transition kernel PRS. In addition,C an be assumed to be on the form C := [�; ℄d.Denote by fIn+1g the i.i.d. sequene of proposed inrements and de�ne, for k 2 f1; : : : ; dg,



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 21J(k)n+1 := sign(Xn � ek) In+1 � ek 1Isign(Xn�ek) In+1�ek < 0, n � 0. Observe that P (J(k)n+1 � vjXn =x) = 1 for any v � 0 whereas for any v < 0,P(J(k)n+1 � vjXn = x) = P(sign(x � ek) In+1 � ek � v):Sine qkd� is a symmetri distribution, it follows that J(k)n+1 and Xn are independant, fJ(k)n+1g isan i.i.d. sequene and E[jJ(k)n+1 j℄ = Z 10 t qk(t) dt =: k: (24)De�ne, for k 2 f1; : : : ; dg, the R-valued random walk W (k) byW (k)0 := jX0 � ekj; W (k)n+1 = W (k)n + Jn+1; n � 0:We prove by indution that W (k)n � jXn � ek j. This is true for n = 0. Assume that the propertyholds for n. ThenjXn+1 � ek j = jjXn � ek j+ sign(Xn � ek) In+1 � ekj � jXn � ek j+ J(k)n+1:Using the indution assumption, it follows that jXn+1 � ekj � W (k)n+1, whih onludes the proof.Thus for all x = (x1; : : : ; xd), k 2 f1; : : : ; dg,Ejxk j h�(k) i � Ex [�C ℄ (25)where Eu h�(k) i is the mean of the �rst hitting time on (�1; ℄ of the random walk W (k) startedfrom u. Finally, sine Ex [�C ℄ <1 for p�d-a.a. x, the optional stoppping theorem for martingaleand the monotone onvergene theorem imply that for all u > ,Eu h�(k) i k = u� Eu hW (k)�(k) i � u� ; (26)where k is given by (24). Combining (25) and (26) givesEx [�C ℄ � supk2f1;:::;dg�1k (jxkj � ) _ 0 � 1d dXk=1 �1k (jxkj � ) _ 0:The result follows. �This result is of interest beause it is not straightforward to show that (A30) implies theexistene of exponential moments.Remark 9. The previous proposition still holds if instead of (A1), it is assumed that the targetdensity p is positive and ontinuous on an unbounded subset X � Rd.



22 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHAL3.3.1. Example 10. The so-alled Normal-Inverse Gamma model appears as the posterior dis-tribution in one of the simplest two-dimensional Bayesian analyses of an i.i.d. Gaussian model.Although there are many other ways to simulate from this distribution without having to re-sort to MCMC, it provides a fruitful testing ground for simple algorithms (see Roberts andTweedie (2001)). The model assumes an i.i.d. olletion of data fy1; : : : ; yng from the N(�; ��1)distribution, with unknown mean � and preision � (so that the variane of the Gaussian is just��1). The distribution p that we will onsider is the joint posterior density for these parametersrepresented by p(�; �) / � (n+1)=2 nYi=1 expf��(yi � �)2=2g � 2 R; � > 0: (27)This posterior is obtained if we assume a at prior on � (that is, the prior is an improperdistribution with onstant density on R) and the prior density ��1=2 on R+ on the preision.The ontours of an example of this distribution is given in Figure 7. Notie how the ontoursare strethed into long thin ridges for small values of the preision parameter � .For this target density, the random san Metropolis kernel is not be geometrially ergodi.Indeed, set �y := n�1Pnk=1 yk and S2 :=Pnk=1(yk � �y)2. Thenp(�; �) / � (n+1)=2 exp ��� �S2 + n(�� �y)2� =2� :Using the equality ba RR+ xa�1 exp(�bx)dx = RR+ xa�1 exp(�x)dx, a; b > 0, we have, for s1 >0; 0 < s2 < S2=2 thatZRd� Z 10 d� exp(s1�+ s2�)p(�; �) / ZRexp(s1�) �S2 + n(� � �y)2 � 2s2��(n+3)=2 d�;whih shows that the target density does not have exponential moments. Hene, Proposition 7is not satis�ed and the RSM algorithm annot be geometrially ergodi.The same onlusion an also be reahed by using the notion of apaitane of a Markovhain. Reall that for a given Markov hain P with stationary distribution �, the ondutane(A) of a measurable set A is given by(A) := ZA �(dx)�(A) P (x;A);and the apaitane of the Markov hain is de�ned as� := infA;�(A)�1=2 (A):



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 23The following result, whih applies generally to a large number of appliations of the Metropolis-within-Gibbs algorithm, is proved in Roberts and Tweedie (2001), Theorem 9.7.1 (see alsoRoberts and Rosenthal (1998), Lemma 11).Theorem 8. Suppose that � is a d�dimensional distribution, and for eah i, Pi is a Markovhain whih is reversible with respet to �, and updates just the i-th oordinate. Consider runninga random san of the Pi's, that is a hain P withP = P1 + P2 + : : :+ Pdd :Suppose that for some omponent i, Pi is a random walk Metropolis algorithm with �xed inre-ment proposal density q, and thatlimK!1 log �(Xi 2 (K;1))K = 0 : (28)Then lim infK!1 (fXi 2 (K;1g) = 0 ; (29)and onsequently � = 0, so that P is not geometrially ergodi.We prove that for the present model, � has an heavy tailed distribution (dereasing as j�j�(n+3)in the tails) so that (28) is veri�ed with i = 1. Indeed�(f� � Kg) = Z[K;1) d� ZR+ d� p(�; �) / Z[K;1) d� �S2=2 + n(� � �y)2=2��(n+3)=2 :Hene, limK!1 log �(� � K)=K / limK!1 logK=K = 0, and (28) is veri�ed.Now, for this target density, one of the onditions (A3), (A3') must fail. Consider the sequenexj = (a2; 1=j), whih tends to �X as j tends to in�nity. For any z > 0,log p(xj)� log p(xj � ze1) = �z nXk=1(2yk � 2a2 + z)=(2j)! 0 as j ! 1:In addition, for large j, p(xj)=p(xj � ze2) = 0 (see Remark 4) andlog p(xj + ze2)� log p(xj) = n+ 12 log(1 + jz)� z nXk=1(yk � a2)2=2! +1 as j !1:Hene, neither (A3) nor (A3') an hold.
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Figure 1. A ontour plot of the surfae of the density p(x1; x2) = exp ��(x21 + x21x22 + x22)�.
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Figure 2. A ontour plot of the surfae of the density p(x1; x2) =exp ��(x21 + (x21 � x22)2=4 + x22)�.
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Figure 5. A ontour plot of the surfae of the density p(x1; x2) =0:5 exp(�(jx1j+ 4jx2j)) + 0:5 exp(�(4jx1j+ jx2j)).
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Figure 6. A ontour plot of the surfae of the density p(x1; x2) = exp(�(jx1j+jx1jjx2j+ jx2j)).
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Figure 7. A ontour plot of the surfae of a Normal-Inverse Gamma density funtion.
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