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ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 11. Introdu
tionMarkov Chain Monte-Carlo (MCMC) algorithms are well-known s
hemes to draw sample from anergodi
 Markov 
hain with given stationary distribution � on a state spa
e X . Theoreti
al workon MCMC algorithms has so far mainly 
on
entrated on the properties of simple algorithms,su
h as the Gibbs sampler (see, e.g. Sahu and Roberts (1999) and Hobert and Geyer (1998))or the full-dimensional Metropolis algorithm (see, e.g., Mengersen and Tweedie (1996), Robertsand Tweedie (1996), Jarner and Hansen (2000), Fort and Moulines )(2000
). In many pra
ti
alsituations, and in parti
ular when the dimension of the state spa
e is large, these elementarysamplers are seldom used as they stand, but are rather used as building blo
ks for more 
omplexsampling strategies (see e.g. Robert and Casella (1999)).A rather intuitive idea to deal with large dimensional state spa
e X is (whenever possible)to write the state spa
e as a produ
t of lower dimensional ones, X = X1 � � � � � Xd, and to
onstru
t a Markov transition kernel P on X having the stationary distribution � by 
ombiningkernels Pi a
ting on Xi. The deterministi
 s
an Gibbs sampler is an example of this strategy,where we write P := QdQd�1 � � �Q1, where Qk is the Markov kernel that repla
es the k-th
oordinate by a draw from �(dxkjfxjgj 6=k), leaving xj �xed for j 6= k. The random s
anGibbs sampler, P := d�1Pdi=1Qi is sometimes used instead (see Smith and Roberts (1993),Tierney (1994)). When the full 
onditional distributions �(dxijfxjgj 6=i) are diÆ
ult to sample,one 
an instead de�ne new operators Pi (e.g. one-dimensional Metropolis algorithms) whi
h areeasily implemented, su
h that Pni 
onverges to Qi (in an appropriate sense) as n goes to in�nity.This method is referred to as "variable-at-a-time Metropolis-Hastings" or "Metropolis-within-Gibbs" in the terminology of Tierney (1994) and Chan and Geyer (1994).Let C := (P1; P2; � � � ; Pd) be any 
olle
tion of Markov kernels on a state spa
e X = X1�� � ��Xd.The random s
an hybrid sampler for C is the sampler de�ned byPRS := d�1(P1 + � � �+ Pd):In this paper, we fo
us on the Random-S
an Metropolis (RSM) algorithm, where X = Rd, andwhere ea
h operator Pi arises from a symmetri
 random-walk Metropolis algorithm on the i-th
oordinate.



2 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALThis algorithm was studied by Roberts and Rosenthal (1997,1998), and by Jarner and Hansen (2000).One of the assumptions in Roberts and Rosenthal (1998) is expressed in terms of the maximal
urvature of all the geodesi
 
urves on the 
ontour manifold fy 2 Rd; p(y) = p(x)g as jxj ! 1.This 
ondition is rather diÆ
ult to 
he
k even when d = 2; in addition, as suggested in Jarnerand Hansen (2000), it is not 
lear that this 
urvature 
ondition should really play a role, sin
egeometri
 ergodi
ity 
an be established fairly easily for densities for whi
h the maximum 
urva-ture goes to in�nity as jxj ! 1, at least in some dire
tions. In this paper, we shall instead showthat geometri
 ergodi
ity holds under essentially no 
ondition on the geometry of the 
ontourmanifold.Let the state spa
e X be equal to Rd, equipped with its Borel �-�eld B(Rd). Let �d (resp. �)be Lebesgue measure on Rd (resp. R) and fe1; � � � ; edg be the 
oordinate unit ve
tors. Denoteby j � j the Eu
lidean norm. We shall assume that(A1) the target distribution � is absolutely 
ontinuous with respe
t to �d, with positive and
ontinuous density p on Rd.Let Pi be a symmetri
 random-walk Metropolis (with target density p) on the i-th 
oordinate:started from the d-ve
tor x = (x1; : : : ; xd), the proposal in the ei-dire
tion is given by x + yei,where y is sampled from a symmetri
 in
rement density qi with respe
t to the one-dimensionalLebesgue measure �; this proposal is then a

epted with probability 1 ^ fp(x+ yei)=p(x)g. Weshall assume for simpli
ity that(A2) fqig1�i�d is a family of symmetri
 densities with respe
t to �, su
h that there exist some
onstants �i > 0, Æi <1 (for i = 1; : : : ; d) su
h that jyj � Æi =) qi(y) � �i:Condition (A2) ensures that the resulting Markov 
hain is �-irredu
ible and strongly aperiodi
,and allows to identify small sets (see Se
tion 2). For x 2 Rd and i 2 f1; � � � ; dg, let A(x; i) bethe a

eptan
e region in the i-th dire
tion:A(x; i) := fy 2 R; p(x+ yei) � p(x)g:Similarly, let R(x; i) be the potential reje
tion region in the i-th dire
tion:R(x; i) := fy 2 R; p(x+ yei) < p(x)g: (1)



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 3That is, A(x; i) represents the set of in
rements whi
h, if proposed as an in
rement in the i-thdire
tion, would always be a

epted; R(x; i) represents those in
rements whi
h 
ould be reje
tedwith positive probability.With these notations, the transition kernels Pi, i 2 f1; � � � ; dg, on (Rd;B(Rd)) are more formallyde�ned as follows ; for x = (x1; : : : ; xd) 2 Rd; A = A1 � � � � �Ad 2 B(Rd),Pi(x;A) :=Yk 6=i Æxk (Ak) ZAi�xi �(x; x+ yei)qi(y)�(dy) + Æx(A) Z �1� �(x; x+ yei)�qi(y)�(dy);where Ai� xi := fy 2 R; xi+ y 2 Aig and �(x; z) := 1 ^ p(z)=p(x), (x; z) 2 Rd�Rd, so that forany Borel fun
tion V : Rd! R+, x 2 Rd,PiV (x) = ZA(x;i) V (x+ yei)qi(y)�(dy) + ZR(x;i) V (x+ yei)p(x+ yei)p(x) qi(y)�(dy)+ V (x) ZR(x;i) �1� p(x+ yei)p(x) �qi(y)�(dy): (2)The RSM kernel PRS is the hybrid sampler asso
iated to the 
olle
tion C = (P1; P2; � � � ; Pd), i.e.PRS := 1dPdi=1 Pi. The kernel Pi is reversible with respe
t to the target distribution �, and thus� is stationary for Pi (and thus also for PRS).Note �nally that Pi(x;A) =Yk 6=i Æxk(Ak)Mi(xi; Ai; x�i) (3)where x�i := (x1; � � � ; xi�1; xi+1; � � � ; xd) and Mi(�; �; x�i) is the kernel of a random-walk Me-tropolis algorithm admitting the full-
onditional distribution �(dxijx�i) as its unique invariantdistribution. The RSM is thus a spe
ial instan
e of Metropolis-within-Gibbs sampling.2. Geometri
 ergodi
ity for sub-exponential densitiesIn this se
tion we present a suÆ
ient 
ondition for geometri
 ergodi
ity of the RSM algorithmon Rd for sub-exponential densities.2.1. Ba
kground and assumptions. The proof of our result below uses the theory of drift andminorisation 
onditions for general Markov 
hains. We brie
y review the ne
essary de�nitionshere; see Meyn and Tweedie (1993) for further ba
kground.



4 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALA transition kernel P (or a Markov Chain fXng) on a state spa
e X is said to be �-irredu
ibleif there is a non-zero measure � on B(X ), su
h that for all x 2 X , and for all measurable subsetsA � X with �(A) > 0, the 
hain has positive probability of hitting A when started at x, i.e.Px(�A < 1) > 0 where �A = minfn � 1; Xn 2 Ag is the �rst return time of A. The kernelP is said to be V -uniformly ergodi
 for some fun
tion V : X ! [1;1℄ if P is �-irredu
ible,with invariant probability measure � su
h that �(V ) <1, and there exist 
onstants r > 1 andR <1 su
h that for �-almost all x 2 X ,kPn(x; �)� �(�)kV � Rr�nV (x) ; n = 1; 2; : : : ;where for any signed measure �, k�kV := supjf j�V j�(f)j. (Furthermore, a 
hain is geometri
allyergodi
 if and only if it is V -uniformly ergodi
 for some su
h V .)Our proof 
onsists in proving a Foster-Lyapunov 
ondition outside a small set. Re
all thatC 2 B(Rd) is a small set if there exist an integer m � 1, a 
onstant � > 0 and a probabilitymeasure �m on B(Rd) su
h thatPm(x;A) � � �m(A) x 2 C;A 2 B(Rd): (4)From Theorems 15.0.1 and 16.0.1 of Meyn and Tweedie (1993), we haveTheorem 1. Let P be a �-irredu
ible aperiodi
 transition kernel. Assume that there exist some
onstants 0 < � < 1, b < 1, some Borel fun
tion V : X ! [1;1℄ with V (x0) < 1 for somex0 2 Rd, and a small set C satisfyingPV (x) � �V (x) + b1IC(x) ; x 2 X : (5)Then P is V -uniformly ergodi
.Remark 1. Conversely, if P is V -uniformly ergodi
, then there exist R < 1 and r > 1 su
hthat for all n, supx2fV<1g kPn(x; �)� �(�)kV =V (x) � Rr�n. If so, then there exists a fun
tionV0 equivalent to V , whi
h is a solution of the Foster-Lyapunov drift 
ondition (5) (see Meyn andTweedie (1993), Theorem 16.1.4).Remark 2. Expli
it expressions of the rate r and of the 
onstant R as a fun
tion of the terms in(4) and (5) 
an be found in Meyn and Tweedie (1994), Mengersen and Tweedie (1996), Rosen-thal (1995), Roberts and Tweedie (1998), Fort and Moulines (2000a), and Dou
 et al. (2001).Under (A2), it is easily shown that P dRS(x; :) has a nontrivial 
ontinuous 
omponent with respe
tto the Lebesgue measure and that this 
ontinuous 
omponent is bounded from below on a ball



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 5around x. From this, the positivity and the 
ontinuity of p, it is straightforward to prove thefollowing result (Roberts and Rosenthal (1998), Lemma 4 ).Proposition 2. Assume (A1) and (A2). Then PRS is Lebesgue-irredu
ible, aperiodi
, withinvariant probability measure �(dx) := p(x)�d(dx). In addition, any bounded set is small.To establish the Foster-Lyapunov 
ondition, we need to �nd a fun
tion V (whi
h will depend onthe dimension d) su
h that limjxj!1 PRSV (x)=V (x) < 1. Consider the drift fun
tion Vs(x) :=p(x)�s, for some 0 < s < 1. We have (Roberts and Rosenthal (1998), Proposition 3)Proposition 3. Let Pi be given by (2), and set Vs(x) := p(x)�s for some 0 < s < 1. For allx 2 Rd, PiVs(x) � r(s)Vs(x) where r(s) := 1 + s(1� s)1=s�1: (6)Hen
e, for all � > 0, there exists s with 0 < s < �, su
h that 1 < r(s) < 1 + �.Proof. We provide a proof for 
ompleteness. We havePiVs(x)Vs(x) = ZA(x;i)� p(x)p(x+ yei)�s qi(y)�(dy) + ZR(x;i) 1� p(x+ yei)p(x) + �p(x+ yei)p(x) �1�s! qi(y)�(dy)= Z I(y; x; i; s)qi(y)�(dy)where I(y; x; i; s) := 8<: (p(x)=p(x+ yei))s y 2 A(x; i);1� p(x+yei)p(x) + �p(x+yei)p(x) �1�s y 2 R(x; i): (7)The proof is 
on
luded by noting that supu2[0;1℄(1� u+ u1�s) � r(s). �Observe that lims!0 r(s) = 1, whi
h shows that for any � > 0, by 
hoosing s small enough, onemay �nd a fun
tion Vs = p�s su
h that for all i 2 f1; � � � ; dg, x 2 Rd, PiV (x) � (1 + �)V (x).To prove the geometri
 ergodi
ity of the RSM algorithm, we of 
ourse need to prove somethingstronger.The key assumption may be formulated as follows.(A3) There is 0 � Æ < � � +1 su
h that � := inf1�i�d R �Æ qi(y)�(dy) > 0, and for anysequen
e x := fxjg with limj jxjj = + 1, one may extra
t a subsequen
e ~x := f~xjg,



6 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALsu
h that, for some i 2 f1; : : : ; dg, and all y 2 [Æ;�℄limj p(~xj)p(~xj � sign(~xji ) y ei) = 0; and limj p(~xj + sign(~xji ) y ei)p(~xj) = 0: (8)This 
ondition is somewhat involved. However, we will dis
uss in se
tion 2.3 a simple 
riterionto 
he
k (A3).2.2. Main result. The key result of Se
tion 2 is the following.Theorem 4. Assume (A1), (A2), and (A3). Let 0 < s < 1 su
h thatr(s) < 1 + �d� 2� (9)where r(s) and � are given by (6) and (A3) respe
tively, and set Vs(x) := p(x)�s. Then thereexist 
onstants 0 < � < 1, b <1 and a small set C 2 B(Rd) su
h thatPRSVs(x) � �Vs(x) + b1IC(x) ; x 2 Rd :In parti
ular, PRS is V -uniformly ergodi
.Proof. The proof is by 
ontradi
tion. Assume that there exists a Rd-valued sequen
e x := fxjgsu
h that limj jxj j = + 1 and lim supj PRSVs(xj)=Vs(xj) � 1. Then, there exists a subsequen
ex̂ := fx̂jg su
h that limj PRSVs(x̂j)=Vs(x̂j) � 1. We shall show that there exist a furthersubsequen
e ~x := f~xjg and an integer i 2 f1; � � � ; dg su
h thatlimj PiVs(~xj)Vs(~xj) � r(s)� (2r(s)� 1) �: (10)The 
ontradi
tion will follow fromlimj PRSVs(~xj)Vs(~xj) = limj 1d dXk=1 PkVs(~xj)Vs(~xj) � 1d (r(s)� (2r(s)� 1)�) + 1d limj Xk 6=i PkVs(~xj)Vs(~xj)� 1d (r(s)� (2r(s)� 1)�) + d� 1d r(s) < 1;sin
e, by Proposition 3, PkVs(x)=Vs(x) � r(s) for all x 2 Rd. Under (A3), one may extra
t fromthe sequen
e x̂ a subsequen
e ~x in su
h a way that, for some i 2 f1; � � � ; dg, (8) is veri�ed andthat, for all j � 0, sign(~xji ) = �i 2 f�1;+1g; without loss of generality set �i = 1. We havePiVs(x)Vs(x) = ZÆ�jyj�� I(y; x; i; s)qi(y)�(dy) + Zfjyj�Æg[fjyj��g I(y; x; i; s)qi(y)�(dy);



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 7where I is given by (7). Sin
e I(y; x; i; s)� r(s), the se
ond term on the right hand side of theprevious equation is bounded by r(s)(1� 2 R �Æ qi(y)�(dy)). Consider now the �rst term and setJ(Æ;�) := [��;�Æ℄ [ [Æ;�℄. We �rst prove thatlimj R(~xj; i) \ J(Æ;�) = [Æ;�℄; (11)whi
h implies that limj A(~xj ; i) \ J(Æ;�) = [��;�Æ℄. To this end, we show that[Æ;�℄ � lim infj R(~xj; i) \ J(Æ;�) � lim supj R(~xj; i) \ J(Æ;�) � [Æ;�℄:For y 2 [Æ;�℄, limj p(~xj + yei)=p(~xj) = 0; hen
e, y 2 lim inf j R(~xj; i) \ J(Æ;�). Assume nowthat y 2 lim supj R(~xj; i) \ J(Æ;�). Then, lim inf j p(~xj)=p(~xj + yei) � 1, and sin
e y 2 J(Æ;�)the latter relation implies that y 2 [Æ;�℄, showing (11). By de�nition of the kernel Pi, we havePiVs(~xj)Vs(~xj) � ZR(~xj;i)\J(Æ;�) qi(y)�(dy) � ZA(~xj ;i)\J(Æ;�) hp(~xj + yei)p(~xj) i�sqi(y)�(dy)+ZR(~xj ;i)\J(Æ;�)nhp(~xj + yei)p(~xj) i1�s�hp(~xj + yei)p(~xj) ioqi(y)�(dy)+r(s)�1� 2 Z �Æ qi(y)�(dy)� :Note that for y 2 A(x; i), p(x+ yei)=p(x) � 1 and for y 2 R(x; i), p(x+ yei)=p(x) � 1. Thenby (11), (A3) and the dominated 
onvergen
e Theorem, we havelimj PiVs(~xj)Vs(~xj) � Z �Æ qi(y)�(dy) + r(s)�1� 2 Z �Æ qi(y)�(dy)�� r(s)� (2r(s)� 1) Z �Æ qi(y)�(dy) � r(s)� (2r(s)� 1) �whi
h 
on
ludes the proof of (10) and thus of the �rst part of the Theorem.Finally, we re
all that assumptions (A1) and (A2) imply that any 
ompa
t set is small. Fur-thermore, the above argument shows that assumption (A3) guarantees that outside a suÆ
ientlylarge 
ompa
t set C, we have PRSVs=Vs < 1. Furthermore, supC Vs <1, and by Proposition 3,supC PRSVs <1. The V -uniform ergodi
ity now follows from Theorem 1. �Remark 3. In fa
t, it may be dedu
ed from the proof of Theorem 4 thatlim supjxj!+1 PRSVs(x)Vs(x) � d� 2�d r(s) + �d:Remark 4. If instead the target density p is positive and 
ontinuous and bounded on anunbounded open subset X � Rd, then assumption (A3) 
an be modi�ed to still imply that thekernel PRS is V -uniformly ergodi
. (a) One has to repla
e \for any sequen
e x := fxjg su
hthat limj jxj j = +1" by \for any X -valued sequen
e x := fxjg su
h that xj ! �X ", where �X



8 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALis the boundary of X . (b) One has to set, by 
onvention, that for all y > 0, the ratio is zero forall j su
h that ~xj � sign(~xji ) y ei =2 X .Remark 5. In assumption (A3), instead of (8), one 
ould equivalently assume that there existsa fun
tion I : Rd! f1; : : : ; dg su
h thatlimj p(~xj)p(~xj � sign(~xjI(~xj)) y eI(~xj)) = 0; and limj p(~xj + sign(~xjI(~xj)) y eI(~xj))p(~xj) = 0: (12)In fa
t, sin
e j 7! I(~xj) takes at most d di�erent values, one may 
hoose i 2 f1; : : : ; dg su
hthat fj; I(~xj) = ig is in�nite, and extra
t a further subsequen
e x̂ := fx̂jg from ~x su
h thatI(x̂j) = i for all j � 0. This subsequen
e satis�es (8).Remark 6. If p is 
ontinuously di�erentiable, the 
ondition (A3) 
an be rewritten as follows:� Let 0 < � � +1. For any sequen
e x := fxjg su
h that limj jxj j = + 1, there exists asubsequen
e ~x := f~xjg and i 2 f1; � � � ; dg su
h that, for all 0 � y < �,limj!+1 supft;jtj�yg sign(~xji ) ri log p(~xj + t ei) = �1; (13)where ri := �=�xi.2.3. A 
riterion to 
he
k (A3). We say that a fun
tion � : R+ ! R+ is quasi-monotoni
 ifthe following 
ondition is satis�ed:limn �(tn) = +1 if and only if limn tn = +1:Non-de
reasing fun
tions � su
h that limx!+1 �(x) = +1 (e.g. the identity fun
tion �(x) = x)are quasi-monotoni
, but the set of quasi-monotoni
 fun
tions is mu
h larger than that. Considerthe following assumption:(A4) There is 0 � Æ < � � +1 su
h that inf1�i�d R �Æ qi(y)�(dy) > 0, and there exist quasi-monotoni
 fun
tions �k : R+! R+ for k = 1; : : : ; d, su
h that for all i 2 f1; � � � ; dg andall y 2 [Æ;�℄,limjxij!1 supfx�i:�j(jxjj)��i(jxij);j 6=ig p(x)p(x� sign(xi) y ei) = 0and limjxij!1 supfx�i:�j(jxjj)��i(jxij);j 6=ig p(x+ sign(xi) y ei)p(x) = 0:Proposition 5. Assume (A4). Then (A3) holds.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 9Proof. De�neI : Rd! f1; � � � ; dg; (x1; : : : ; xd) 7! min argmaxk2f1;��� ;dgf�k(jxkj)g:Let x := fxjg be a sequen
e su
h that limj!1 jxj j = +1. One may extra
t a subsequen
e f~xjgand �nd i 2 f1; � � � ; dg su
h that I(~xj) = i for all j, and the fun
tion j 7! sign(~xji ) is 
onstant. By
onstru
tion �i(j~xji j) � �k(j~xjkj), k 2 f1; � � � ; dg. In addition, sin
e jxj j ! +1, limj j~xjkj = +1for some k 2 f1; � � � ; dg. Thus limj �k(j~xjkj) = +1 whi
h implies that limj �i(j~xji j) = +1 andlimj j~xji j = +1. (A3) easily follows. �If p is di�erentiable, it is 
onvenient to 
onsider the 
riterion (A5):(A5) The density p is 
ontinuously di�erentiable, and there is 0 < � � 1 and quasi-monotoni
fun
tions �k : R+ ! R+, k 2 f1; : : : ; dg, su
h that for all i 2 f1; � � � ; dg, all 0 < y < �,and all � 2 f�1; 1g,limxi!�1 supfx�i:�j(jxjj)��i(jxij);j 6=ig supft; jtj�yg � ri log p(x+ tei) = �1: (14)It is easily 
he
ked by standard analyti
al arguments that (A5) implies (A4).2.4. Examples. We �rst 
onsider a toy example and prove that if the target density is sub-exponential then PRS is V -uniformly ergodi
. We then 
onsider the three examples proposedby Jarner and Hansen (2000) (Examples 2.4.2, 2.4.3 and 2.4.4) and a more realisti
 exampleproposed by Zeger (1988) (Example 2.4.5) and dedu
e from Theorem 4 the V -uniform ergodi
ityof the random s
an kernel PRS for ea
h model. We �nally 
onsider an example, for whi
h PRSis not V -uniformly ergodi
 and (A3) does not hold. This 
ounter-example demonstrates thatwhile (A3) is 
ertainly not a ne
essary 
ondition for geometri
 ergodi
ity, it is far from beingredundant.For the target density p 
onsidered in the Examples 2.4.1 to 2.4.5, the 
ondition (A1) triviallyholds. In addition, the proposal distributions qi 
an always be 
hosen in order to satisfy Assump-tion (A2). Assumption (A5) is established in all these examples with � = +1 and �k(t) = tfor all k 2 f1; : : : ; dg and t 2 R+.2.4.1. Example 1. On Rd, de�ne the densityp(x) / exp(�jxjl); l > 1; x = (x1; � � � ; xd):



10 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALNote that ri log p(x) = �l jxjl�2 xi and for all y > 0,8xi > y; 8x�i 2 [�xi; xi℄d�1; 8jtj � y; ri log p(x+ tei) � �l (xi + y)l�dx2i + y2 + 2yxi�1=2 ;8xi < �y; 8x�i 2 [xi;�xi℄d�1; 8jtj � y; ri log p(x+ tei) � l jxi + yjl�dx2i + y2 + 2yxi�1=2 :Sin
e l > 1, (A5) easily follows by setting � = +1 and by 
hoosing �k as the identity fun
tionon R+, k 2 f1; � � � ; dg. Hen
e, the RSM sampler is V -uniformly ergodi
 for any fun
tionV (x) / p(x)�s where s(1� s)1=s�1 < (2d� 2)�1.2.4.2. Example 2. In this example, we 
onsider the sum of two Gaussian densities on R2. De�nefor some a2 > 1p(x) / 0:5 exp��(x21 + a2x22)�+ 0:5 exp ��(a2x21 + x22)� ; x = (x1; x2):As shown in Jarner and Hansen (2000), the 
ontour 
urves have some sharp bends that do notdisappear in the limit (even though the 
ontour 
urves of the two 
omponents of the mixtureare smooth ellipses). In parti
ular the 
urvature on the diagonals (x1; x2) = (t; t), t 2 R, tendsto in�nity as t!1. For su
h target density, the main result of Roberts and Rosenthal (1998)does not apply (be
ause the 
urvature does not tend to zero). We now show that neverthelessthe RSM is V -uniformly ergodi
.We 
ompute that r1 log p(x) = �2x1 e�(x21+a2x22) + a2e�(a2x21+x22)e�(x21+a2x22) + e�(a2x21+x22) ;r2 log p(x) = �2x2a2e�(x21+a2x22) + e�(a2x21+x22)e�(x21+a2x22) + e�(a2x21+x22) ;from whi
h it easily follows that for all x 2 R2,1 � r1 log p(x)�2x1 � a2 1 � r2 log p(x)�2x2 � a2:(A5) easily follows by setting � = +1 and by 
hoosing �k as the identity fun
tion on R+,k 2 f1; � � � ; dg. Hen
e, the RSM sampler is V -uniformly ergodi
 for any fun
tion V (x) / p(x)�swhere s(1� s)1=s�1 < 1=2.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 112.4.3. Example 3. Consider the sub-exponential density p on R2 given byp(x) / exp ��(x21 + x21x22 + x22)� ; x = (x1; x2):A 
ontour plot of the surfa
e is given in Figure 1. This example has also been given in Jarnerand Hansen (2000). These authors show that the full-dimensional random walk Metropolisalgorithm is not geometri
ally ergodi
 for this target density. We will nevertheless show thatthe RSM algorithm is geometri
ally ergodi
. This shows, perhaps surprisingly, that: the RSMalgorithm 
an be geometri
ally ergodi
 even in situations where the full-dimensional Metropolisalgorithm is not geometri
ally ergodi
.Here (A5) easily follows by setting � = +1 and by 
hoosing �k as the identity fun
tion onR+, k 2 f1; � � � ; dg, and noting that1 � r1 log p(x)�2x1 = 1 + x22 and 1 � r2 log p(x)�2x2 = 1 + x21:Hen
e, the RSM sampler is V -uniformly ergodi
 for any fun
tion V (x) / p(x)�s where s is
hosen to satisfy s(1� s)1=s�1 < 1=2.2.4.4. Example 4. Consider the sub-exponential density p on R2p(x) / (1 + x21 + x22 + x81x22) exp ��(x21 + x22)� ; x = (x1; x2);introdu
ed in Jarner and Hansen (2000). On
e again, neither the 
urvature 
ondition nor
ondition (5) in Roberts and Rosenthal (1998) hold (the 
urvature tends to in�nity along thex-axis). Nevertheless, it is on
e again extremely simple to show that PRS is V -uniformly ergodi
.To that purpose, observe that�2x1 � 2jx1jx21 � 8jx1j7x81 � r1 log p(x) = �2x1 + 2x1 + 8x71x221 + x21 + x22 + x81x22 � �2x1 + 2jx1jx21 + 8jx1j7x81 ;and�2x2 � 2jx2jx22 � 2jx2jx22 � r2 log p(x) = �2x2 + 2x2 + 2x81x21 + x21 + x22 + x81x22 � �2x2 + 2jx2jx22 + 2jx2jx22 :(A5) follows by setting � = +1 and by 
hoosing �k as the identity fun
tion on R+, k 2f1; � � � ; dg. Hen
e, the RSM sampler is V -uniformly ergodi
 for any fun
tion V (x) / p(x)�swhere s(1� s)1=s�1 < 1=2.



12 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHAL2.4.5. Example 5. Consider the following density, studied by Zeger (1988) and Chan and Ledolter (1995).Zeger proposed to �t the monthly number of 
ases of poliomyelitis with a generalised linear modelwith random e�e
t: it is assumed that the observations y := (y1; � � � ; yd) are generated from aPoisson distribution with mean �k := exp(�k +Xk), where � := (�1; � � � ; �d) 2 Rd is determin-isti
 and Xk is a stationary Gaussian AR(1) latent pro
ess Xk = aXk�1 + �k , �k � N (0; ��1),jaj < 1. Chan and Ledolter (1995) 
onsidered the estimation of (�; a; ��1) by maximum like-lihood using the Monte-Carlo EM algorithm. To assess the 
onvergen
e of this algorithm, itis required to show the V -uniform ergodi
ity of the RSM when p is the density of the latentpro
ess X = (X1; � � � ; Xd) given the observations y (see Fort and Moulines )(2000b). Thus, p isgiven for �xed y byp(x) / exp� dXk=1fyk(�k + xk)� exp(�k + xk)g � �=2 dXk=2(xk � axk�1)2 � �(1� a2)x21=2�:Note that r1 log p(x) = y1 � exp(�1 + x1)� �x1 + �ax2;rk log p(x) = yk � exp(�k + xk)� �(1 + a2)xk + �a(xk+1 � xk�1); k 2 f2; : : : ; d� 1g;rd log p(x) = yd � exp(�d + xd)� �xd + �axd�1:It easily holds that for jx2j � jx1j, t 2 R,y1��t�exp(�1+t+x1)��x1��jajjx1j � r1 log p(x+te1) � y1��t�exp(�1+t+x1)��x1+�jajjx1j;for jxd�1j � jxdj, t 2 R,yd��t�exp(�d+t+xd)��xd��jajjxdj � rd log p(x+ted) � yd��t�exp(�d+t+xd)��xd+�jajjxdj;and for all i 2 f2; : : : ; d� 1g, given jxi�1j � jxij and jxi+1j � jxij, t 2 R,yi � �(1 + a2)t� exp(�i + t + xi)� �(1 + a2)xi � 2�jajjxij � ri log p(x+ tei)� yi � �(1 + a2)t� exp(�i + t + xi)� �(1 + a2)xi + 2�jajjxij:As jaj < 1, (A5) follows easily by setting � = +1 and by 
hoosing �k as the identity fun
tionon R+, k 2 f1; � � � ; dg. Hen
e, the RSM sampler is V -uniformly ergodi
 for any fun
tionV (x) / p(x)�s where s(1� s)1=s�1 < (2d� 2)�1.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 132.4.6. Example 6. Consider now the RSM with target density p on R2 given byp(x) / exp ��(x21 + (x21 � x22)2=4 + x22)� ; x = (x1; x2);whi
h is the density p studied in Example 2.4.3 in the new orthonormal basis (�e1; �e2), �e1 :=p2=2(e1 + e2) and �e2 := p2=2(e2 � e1). A 
ontour plot of the surfa
e is given in Figure 2. Forthis target density, (A3) is not veri�ed (
onsider for example the sequen
e xj = (j; j)). We shallshow that the RSM algorithm is not geometri
ally ergodi
. To prove this, we use a 
riterionoutlined in Roberts and Tweedie (1996), Theorem 6.1. Let P be a �-irredu
ible transition kernel,with invariant measure � not 
on
entrated at a single point. Let h(x) := P (x; fxg), and assumethat x 7! h(x) is a measurable fun
tion. Ifesssup x2Xh(x) := supfh0; �(h(x) > h0) > 0g = 1;then P is not geometri
ally ergodi
.To pro
eed, let � � 2, and for all j � p�, let Xj = [pj2 � �; j℄� [pj2 � �; j℄. Note that�(Xj) > 0. We shall prove that limj infx2Xj h(x) = 1; (15)whi
h shows that the RSM is not geometri
ally ergodi
 for this target density. Towards thatgoal, we writePRS(x; fxg)� 12 Z (1� �(x; x+ ye1)) q1(y)�2(dy) + 12 Z (1� �(x; x+ ye2)) q2(y)�2(dy)� 1� 12 2Xi=1 Z �(x; x+ yei)qi(y)�2(dy);and show that limj supx2Xj R �(x; x + yei)qi(y)�2(dy) = 0, i = f1; 2g. We 
onsider only the
ase i = 1; the 
ase i = 2 is similar. Observe that for all x = (x1; x2) 2 R+ � R su
h that2x22 � x21 � 4 � 0, the a

eptan
e regions A(x; i) satisfyA(x; 1) = 8<: h�2x1;�x1 �p2x22 � x21 � 4i [ h�x1 +p2x22 � x21 � 4; 0i ; if x21 � x22 � 2;h�x1 �p2x22 � x21 � 4;�2x1i [ h0;�x1 +p2x22 � x21 � 4i otherwise(see Figure 3). For suÆ
iently large j, and x 2 XjA(x; 1) � 8<: h�2j;�pj2 � ��pj2 � 2(�+ 2)i [ hpj2 � 2(�+ 2)� j; 0i ; if x21 � x22 � 2;h�pj2 + �� 4� j;�2pj2 � �i [ h0;pj2 + �� 4�pj2 � �i otherwise



14 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALHen
e limj supx2Xj RA(x;1) q1(y)�2(dy) = 0 (see Figure 4). Note that, for y 6= 0,log p(x+ ye1)� log p(x) = �y(2x1 + y) �1 + x21=2� x22=2 + y2=4 + yx1=2� :Then, for large enough j, x 2 Xj , and y > 0,log p(x+ ye1)p(x) � �y �2pj2 � �+ y��1� �=2 + y2=4 + ypj2 � �=2�whereas, for y < 0,log p(x+ ye1)p(x) � �y (2j + y)�1 + �=2 + y2=4 + ypj2 � �=2� :In both 
ases, for all y 6= 0, limj!+1 supx2Xj p(x+ye1)=p(x) = 0. Hen
e, by applying Lebesgue'sdominated 
onvergen
e theorem, limj supx2Xj RR(x;1) p(x+ye1)p(x) q1(y)�2(dy) = 0. It follows thatlimj supx2Xj Z �(x; x+ ye1)q1(y)�2(dy) = 0;and the RSM algorithm 
annot be geometri
ally ergodi
.3. Geometri
 ergodi
ity for densities whi
h are log-
on
ave in the tailsCondition (A3) does not 
over target densities whi
h are log-
on
ave in the tails. When d = 1,a target density is said to be log-
on
ave in the tails, if there exist � > 0 and some x1 > 0 su
hthat for all x � x1 and h � 0, log p(x)� log p(x+ h) � �h (16)and similarly for all x � �x1, log p(x)� log p(x� h) � �h: (17)It has been shown in Mengersen and Tweedie, Theorem 3.2 (1996), that if (a) the target densityp satis�es (A1) and is log-
on
ave in the tails, and (b) the proposal density satis�es (A2) andhas a bounded exponential moment (a 
ondition whi
h 
an be avoided by adapting the proof),then the full dimensional random walk Metropolis algorithm is V -uniformly ergodi
, and thedrift fun
tion V may be 
hosen as V (x) = esjxj, for any s < �.The main purpose of this se
tion is to adapt these results to the RSM algorithm. Su
hextensions are also 
onsidered in Roberts and Rosenthal (1998), under the additional 
onditionsthat the target density has smooth 
ontours in an expli
it sense. We show that these 
onditionsare in fa
t not needed. The �rst step in the 
onstru
tion is to extend the notion of log-
on
avity



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 15to distributions overRd. Following the approa
h of the previous se
tion, this is most 
onvenientlyexpressed in terms of limits of sub-sequen
es.3.1. Main result. We shall repla
e (A3) with the following.(A30) There is � > 0 and 1=� � Æ < � � 1 su
h that for any sequen
e x := fxjg withlimj jxj j = + 1, one may extra
t a subsequen
e ~x := f~xjg, su
h that for some i 2f1; � � � ; dg, we have, for all y 2 [Æ;�℄,limj p(~xj)p(~xj � sign(xji ) y ei) � exp(��y) and limj p(~xj + sign(~xji ) y ei)p(~xj) � exp(��y): (18)It is easily seen that this notion of log-
on
avity in the tails generalises (16) and (17).Theorem 6. Assume (A1), (A2), and (A3'). Assume in addition thatinfi2f1;:::;dgZ �Æ y qi(y)�(dy) � d�(e� 1) : (19)Then there exist 0 < s < 1, some 
onstants 0 < � < 1, b < 1 and a small set C 2 B(Rd) su
hthat PRSVs(x) � �Vs(x) + b1IC(x); x 2 X ;where Vs(x) := p�s(x). In parti
ular, PRS is V -uniformly ergodi
.Proof. The proof is along the same lines as the proof of Theorem 4. Assume that there existsa sequen
e x := fxjg su
h that limj jxj j = +1 and lim supj PRSVs(xj)=Vs(xj) � 1. We shallshow that there exists a further subsequen
e ~x := f~xjg su
h that limj PRSVs(~xj)Vs(~xj) < 1, therebyobtaining a 
ontradi
tion.We �rst show that there exists a further subsequen
e ~x := f~xjg and i 2 f1; � � � ; dg su
h thatlimj PiVs(~xj)Vs(~xj) � r(s)� (2r(s)� 1)Ji(0) + Ji(�s) + Ji(�(1� s))� Ji(�) ; (20)where for b � 0, Ji(b) := Z �Æ_1=� e�byqi(y)�(dy):Indeed, let ~x and i be given by (A30). We assume without loss of generality that sign(~xji ) = 1.Observe thatlimj R(~xj; i) \ J(Æ;�) = [Æ;�℄ and limj A(~xj ; i)\ J(Æ;�) = [��;�Æ℄;



16 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALwhere J(Æ;�) := [��;�Æ℄[ [Æ;�℄. (The proof of this assertion is along the same lines than theproof of (11), and is omitted here.) Proposition 3 impliesPiVs(~xj)Vs(~xj) = ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) + Zfjyj�Æg[fjyj��g I(y; ~xj ; i; s)qi(y)�(dy)� ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) + r(s) (1� 2Ji(0)) ; (21)where I is given by (7). In addition,ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) = 2Ji(0) + ZA(~xj;i)\J(Æ;�) �p(~xj + yei)p(~xj) ��s � 1! qi(y)�(dy)+ ZR(~xj;i)\J(Æ;�) �p(~xj + yei)p(~xj) �1�s � �p(~xj + yei)p(~xj) �! qi(y)�(dy):Re
all now that if y 2 A(~xj ; i), p(~xj+yei) � p(~xj) whereas if y 2 R(~xj; i), p(~xj+yei) � p(~xj).Hen
e, using Lebesgue's dominated 
onvergen
e theorem,limj ZÆ�jyj�� I(y; ~xj ; i; s)qi(y)�(dy) = 2Ji(0) + Z[��;�Æ℄ �limj p(~xj + yei)p(~xj) ��s � 1! qi(y)�(dy)+ Z[Æ;�℄ �limj p(~xj + yei)p(~xj) �1�s � �limj p(~xj + yei)p(~xj) �! qi(y)�(dy):Sin
e qid� is a symmetri
 distribution and u 7! u1�s � u is non-de
reasing on [0; e�1℄ for all0 < s < 1, we havelimj ZÆ�jyj�� I(y; ~xj; i; s)qi(y)�(dy) � Ji(0) + Ji(�s) + Ji(�(1� s))� Ji(�): (22)Combining (21) and (22) yields (20).Applying Proposition 3 again, we 
on
lude that PRSVs(~xj)=Vs(~xj) � Hi(�; s), whereHi(�; s) := r(s)� 1d ((2r(s)� 1)Ji(0) + Ji(�)� Ji(�s)� Ji(�(1� s))) : (23)The result will follow if we 
an �nd s > 0 su
h that Hi(�; s) < 1. Sin
e Hi(�; 0) = 1 ands 7! Hi(�; s) is di�erentiable at 0, it suÆ
es to show ��sHi(�; 0) < 0. This 
ondition is ful�lledunder (19), sin
e��sHi(�; 0) = (d� 2Ji(0))e�1 � � Z �Æ y qi(y)�(dy) + � Z �Æ y e��yqi(y)�(dy);� de�1 � �(1� e�1) Z �Æ y qi(y)�(dy) < 0:



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 17�Remark 7. When � = +1, the 
ondition (19) is satis�ed by 
hoosing for example proposaldistributions whi
h are uniform on [�Q;Q℄ forQ large enough, or 
entered gaussian distributionswith large enough varian
es.Remark 8. As shown by the proof, the Foster-Lyapunov drift 
ondition in Theorem 6 holdsfor any fun
tion Vs := p�s where 0 < s < 1 is 
hosen su
h that supi2f1;:::;dgHi(�; s) < 1.If � = +1, then (a) this 
ondition essentially be
omes r(s) < 1 + �=(d � 2�) where � :=inf1�i�d R �Æ qi(y)�(dy); (b) the assumptions (A3) and (A30) be
ome similar; and (
) the 
ondition(19) is always veri�ed. Thus Theorem 4 and Theorem 6 essentially 
oin
ide in this 
ase.3.2. Examples. We �rst 
onsider a toy-example and prove that if the target density is expo-nential then PRS is V -uniformly ergodi
. We then 
onsider two examples adapted from exam-ples 2.4.2 and 2.4.3. In example 3.2.2, the target density p is a mixture of exponential densitieson R2. For that density, the 
urvature 
ondition of Roberts and Rosenthal (1998) fails to holdand their result does not apply. In example 3.2.3, we prove that the full dimensional randomwalk Metropolis algorithm 
an not be geometri
ally ergodi
 for the given target density whereas,as it is veri�ed by appli
ation of our result, the random s
an PRS is V -uniformly ergodi
. Inthese examples, assumption (A1) trivially holds; in addition, one 
an always 
hoose the proposaldensities fqkg, k 2 f1; � � � ; dg, in su
h a way that (A2) and (19) hold. Hen
e, in Paragraphs 3.2.1to 3.2.3, if the 
ondition (A30) is proved, then it may be dedu
ed from Theorem 6 that PRS isV -uniformly ergodi
 for some fun
tion V (x) / p(x)�s, 0 < s < 1.3.2.1. Example 7. On Rd, de�ne for � > 0 the densityp(x) / exp(��jxj); x = (x1; � � � ; xd):Let x := fxjg be a sequen
e su
h that limj jxj j = +1. Let ~x := f~xjg be a subsequen
e su
hthat there exist i 2 f1; � � � ; dg and �i 2 f�1; 1g and (a) for all j � 0 and k 2 f1; � � � ; dg, we havej~xjkj � j~xji j; (b) for all j � 0, sign(~xji ) = �i and (
) limj j~xji j=j~xjj exists. Then, for all y � 0,log p �~xj + �iyei�p(~xj) = �� j~xjj 24 1 + y2j~xj j2 + 2y j~xji jj~xj j2!1=2 � 135 :



18 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALNow, as j ! +1, j~xjj ! +1, so thatlimj log p �~xj + �iyei�p(~xj) = �� y limj j~xji jj~xj j :Similarly, limj log p(~xj)p (~xj � �iyei) = �� y limj j~xji jj~xj j :Hen
e, for all y � 0, limj p �~xj + �iyei�p(~xj) = limj p(~xj)p (~xj � �iyei) � exp(��y=pd)sin
e 1=pd � limj j~xji j=j~xjj � 1. (A30) is thus veri�ed with � = 1=pd, Æ = pd and � = +1. Forproposal distributions satisfying (A2) and (19), Theorem 6 asserts that there exists 0 < s < 1su
h that PRS is V -uniformly ergodi
 with V (x) / p(x)�s.3.2.2. Example 8. In this example, we 
onsider the sum of two exponential densities on R2.De�ne for some a > 1p(x) / 0:5 exp (� (jx1j+ ajx2j)) + 0:5 exp (� (ajx1j+ jx2j)) ; x = (x1; x2):A 
ontour plot is given in Figure 5 when a = 4. Similarly to what is done in Jarner andHansen (2000) for a mixture of Gaussian densities, it may be proved that the 
urvature on thediagonal (x1; x2) = (t; t), t 2 R+, is a positive 
onstant. Let the 
ontour 
urve 
orresponding toa given level be given by (x1; h(x1)) in the �rst quadrant (that is x1 > 0 and h(x1) > 0). Thenthe 
urvature K((x1; h(x1))) of the 
urve at (x1; h(x1)) is given byK((x1; h(x1))) := jh00(x1)j�1 + h02(x1)�3=2 ;(see (46) in Jarner and Hansen (2000) or (1.11) in Laugwitz )(1965). In the present 
ase, we �ndby impli
it di�erentiation that for (x1; h(x1)) = (t; t), h0(x1) = �1 and h00(x1) = 2(1�a)2=(1+a)so that K((t; t)) = 1p2 (1� a)21 + a > 0:Consequently, the result by Roberts and Rosenthal (1998) does not apply. We now show thatthe RSM is V -uniformly ergodi
 by appli
ation of Theorem 6. Let x := fxjg be a sequen
e su
hthat, without loss of generality, limj xj1 = +1. We may extra
t a subsequen
e ~x := f~xjg su
h



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 19that (a) j~xj2j � ~xj1; (b) for all j � 0, ~xj1 > 0; and (
) limj(~xj1 � j~xj2j) = L, L 2 [0;+1℄. For ally � 0, we havelimj p �~xj + ye1�p(~xj) = 8<: exp(�y) L = +1;exp(�y)+exp((1�aL)) exp(�ay)1+exp((1�aL)) � exp(�y) L < +1and similarlylimj p �~xj�p(~xj � ye1) = 8<: exp(�y) L = +1;1+exp((1�aL))exp(y)+exp((1�aL)) exp(ay) exp(�y) � exp(�y) L < +1Hen
e (A30) is veri�ed by setting � = Æ = 1 and � = +1, and the RSM is V -uniformly ergodi
.3.2.3. Example 9. Consider the density p on R2 given byp(x) / exp (� (jx1j+ jx1jjx2j+ jx2j)) x = (x1; x2):The 
ontour plot of the surfa
e is given in Figure 6. The full-dimensional random walk Metropoliskernel PHM is not geometri
ally ergodi
 for this target density. As above, we may �nd a sequen
eof sets Xj � R2, su
h that �(Xj) > 0 and limj infx2Xj PHM(x; fxg) = 1; the 
riterion (15) showsthat PHM 
annot be geometri
ally ergodi
. Consider for example Xj := [j�1; j℄� [0; 1=j℄. Usingstraightforward 
al
ulations, it is shown that for all y 2 R2, there exists j large enough su
hthat supx2Xj �(x; x+ y) � exp (�j(jy2j � 2=j) + jy1j(1 + 1=j + jy2j)) :Hen
e, if y2 6= 0, limj supx2Xj �(x; x+ y) = 0 and Lebesgue's dominated 
onvergen
e theoremthus shows thatlim infj infx2Xj PHM(x; fxg) � 1� lim supj Z supx2Xj �(x; x+ y)q(y)�2(dy) = 1:For this target density, the RSM is V -uniformly ergodi
. Indeed, let x := fxjg be a sequen
esu
h that, without loss of generality, limj xj1 = +1. Let ~x := f~xjg be a subsequen
e su
h that(a) for all j � 0, j~xj2j � ~xj1; (b) for all j � 0, ~xj1 > 0; and (
) limj j~xj2j = L 2 [0;+1℄. We havefor all y � 0, log p �~xj + ye1�p(~xj) = ��~xj1 + y � ~xj1��1 + j~xj2j� = �y �1 + j~xj2j� ;so that limj p �~xj + ye1�p(~xj) = exp(�y(1 + L)):



20 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHALSimilarly, limj p(~xj)p (~xj � ye1) = exp(�y(1 + L)):Hen
e, limj p �~xj + ye1�p(~xj) = limj p(~xj)p (~xj � ye1) = exp(�y(1 + L)) � exp(�y);and (A30) is veri�ed with � = Æ = 1 and � = +1. For proposal distributions satisfying (A2)and (19), Theorem 6 asserts that there exists 0 < s < 1 su
h that PRS is V -uniformly ergodi
with V (x) / p(x)�s.3.3. A ne
essary 
ondition for V -uniform ergodi
ity of the RSM algorithm. It isof interest to �nd ne
essary 
onditions for V -uniform ergodi
ity. Theorem 3.3 of Mengersenand Tweedie (1996) states that, if (a) the target density is positive and 
ontinuous on R, (b)the full dimensional random walk Metropolis algorithm is V -uniformly ergodi
 (here the statespa
e is R), and (
) the proposal distribution is symmetri
, bounded away from zero in aneighborhood of zero and has a bounded mean R jyj q(y)�(dy) <1, then the target density hasan exponential moment, i.e. R esjxjp(x)�(dx) <1 for some s > 0. This result has been extendedto the multidimensional 
ase (i.e. to the full dimensional random walk Metropolis algorithm) byJarner and Hansen (2000), Theorem 3.3. A similar result holds for the RSM. The proof belowis adapted from the proof of Theorem 3.3. of Jarner and Hansen .Proposition 7. Assume (A1) and (A2). Assume in addition that for all i 2 f1; : : : ; dg,R jyj qi(y)�(dy) < 1. Then, if the RSM is V -uniformly ergodi
, there exists si > 0, i 2f1; : : : ; dg su
h that ZRd ePdi=1 sijxijp(x)�d(dx) <1:Proof. By Theorem 16.3.2 in Meyn and Tweedie (1993), it is known that if PRS is V -uniformlyergodi
, there exists � > 1 su
h thatZ �Ex [�C℄p(x)�d(dx) <1;where �C is the hitting time on some small set C su
h that �(C) > 0, and Ex is the expe
tationwith respe
t to the 
hain fXkg starting from X0 = x with transition kernel PRS. In addition,C 
an be assumed to be on the form C := [�
; 
℄d.Denote by fIn+1g the i.i.d. sequen
e of proposed in
rements and de�ne, for k 2 f1; : : : ; dg,



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 21J(k)n+1 := sign(Xn � ek) In+1 � ek 1Isign(Xn�ek) In+1�ek < 0, n � 0. Observe that P (J(k)n+1 � vjXn =x) = 1 for any v � 0 whereas for any v < 0,P(J(k)n+1 � vjXn = x) = P(sign(x � ek) In+1 � ek � v):Sin
e qkd� is a symmetri
 distribution, it follows that J(k)n+1 and Xn are independant, fJ(k)n+1g isan i.i.d. sequen
e and E[jJ(k)n+1 j℄ = Z 10 t qk(t) dt =: 
k: (24)De�ne, for k 2 f1; : : : ; dg, the R-valued random walk W (k) byW (k)0 := jX0 � ekj; W (k)n+1 = W (k)n + Jn+1; n � 0:We prove by indu
tion that W (k)n � jXn � ek j. This is true for n = 0. Assume that the propertyholds for n. ThenjXn+1 � ek j = jjXn � ek j+ sign(Xn � ek) In+1 � ekj � jXn � ek j+ J(k)n+1:Using the indu
tion assumption, it follows that jXn+1 � ekj � W (k)n+1, whi
h 
on
ludes the proof.Thus for all x = (x1; : : : ; xd), k 2 f1; : : : ; dg,Ejxk j h�(k)
 i � Ex [�C ℄ (25)where Eu h�(k)
 i is the mean of the �rst hitting time on (�1; 
℄ of the random walk W (k) startedfrom u. Finally, sin
e Ex [�C ℄ <1 for p�d-a.a. x, the optional stoppping theorem for martingaleand the monotone 
onvergen
e theorem imply that for all u > 
,Eu h�(k)
 i 
k = u� Eu hW (k)�(k)
 i � u� 
; (26)where 
k is given by (24). Combining (25) and (26) givesEx [�C ℄ � supk2f1;:::;dg
�1k (jxkj � 
) _ 0 � 1d dXk=1 
�1k (jxkj � 
) _ 0:The result follows. �This result is of interest be
ause it is not straightforward to show that (A30) implies theexisten
e of exponential moments.Remark 9. The previous proposition still holds if instead of (A1), it is assumed that the targetdensity p is positive and 
ontinuous on an unbounded subset X � Rd.
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alled Normal-Inverse Gamma model appears as the posterior dis-tribution in one of the simplest two-dimensional Bayesian analyses of an i.i.d. Gaussian model.Although there are many other ways to simulate from this distribution without having to re-sort to MCMC, it provides a fruitful testing ground for simple algorithms (see Roberts andTweedie (2001)). The model assumes an i.i.d. 
olle
tion of data fy1; : : : ; yng from the N(�; ��1)distribution, with unknown mean � and pre
ision � (so that the varian
e of the Gaussian is just��1). The distribution p that we will 
onsider is the joint posterior density for these parametersrepresented by p(�; �) / � (n+1)=2 nYi=1 expf��(yi � �)2=2g � 2 R; � > 0: (27)This posterior is obtained if we assume a 
at prior on � (that is, the prior is an improperdistribution with 
onstant density on R) and the prior density ��1=2 on R+ on the pre
ision.The 
ontours of an example of this distribution is given in Figure 7. Noti
e how the 
ontoursare stret
hed into long thin ridges for small values of the pre
ision parameter � .For this target density, the random s
an Metropolis kernel is not be geometri
ally ergodi
.Indeed, set �y := n�1Pnk=1 yk and S2 :=Pnk=1(yk � �y)2. Thenp(�; �) / � (n+1)=2 exp ��� �S2 + n(�� �y)2� =2� :Using the equality ba RR+ xa�1 exp(�bx)dx = RR+ xa�1 exp(�x)dx, a; b > 0, we have, for s1 >0; 0 < s2 < S2=2 thatZRd� Z 10 d� exp(s1�+ s2�)p(�; �) / ZRexp(s1�) �S2 + n(� � �y)2 � 2s2��(n+3)=2 d�;whi
h shows that the target density does not have exponential moments. Hen
e, Proposition 7is not satis�ed and the RSM algorithm 
annot be geometri
ally ergodi
.The same 
on
lusion 
an also be rea
hed by using the notion of 
apa
itan
e of a Markov
hain. Re
all that for a given Markov 
hain P with stationary distribution �, the 
ondu
tan
e
(A) of a measurable set A is given by
(A) := ZA �(dx)�(A) P (x;A
);and the 
apa
itan
e of the Markov 
hain is de�ned as� := infA;�(A)�1=2 
(A):
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h applies generally to a large number of appli
ations of the Metropolis-within-Gibbs algorithm, is proved in Roberts and Tweedie (2001), Theorem 9.7.1 (see alsoRoberts and Rosenthal (1998), Lemma 11).Theorem 8. Suppose that � is a d�dimensional distribution, and for ea
h i, Pi is a Markov
hain whi
h is reversible with respe
t to �, and updates just the i-th 
oordinate. Consider runninga random s
an of the Pi's, that is a 
hain P withP = P1 + P2 + : : :+ Pdd :Suppose that for some 
omponent i, Pi is a random walk Metropolis algorithm with �xed in
re-ment proposal density q, and thatlimK!1 log �(Xi 2 (K;1))K = 0 : (28)Then lim infK!1 
(fXi 2 (K;1g) = 0 ; (29)and 
onsequently � = 0, so that P is not geometri
ally ergodi
.We prove that for the present model, � has an heavy tailed distribution (de
reasing as j�j�(n+3)in the tails) so that (28) is veri�ed with i = 1. Indeed�(f� � Kg) = Z[K;1) d� ZR+ d� p(�; �) / Z[K;1) d� �S2=2 + n(� � �y)2=2��(n+3)=2 :Hen
e, limK!1 log �(� � K)=K / limK!1 logK=K = 0, and (28) is veri�ed.Now, for this target density, one of the 
onditions (A3), (A3') must fail. Consider the sequen
exj = (a2; 1=j), whi
h tends to �X as j tends to in�nity. For any z > 0,log p(xj)� log p(xj � ze1) = �z nXk=1(2yk � 2a2 + z)=(2j)! 0 as j ! 1:In addition, for large j, p(xj)=p(xj � ze2) = 0 (see Remark 4) andlog p(xj + ze2)� log p(xj) = n+ 12 log(1 + jz)� z nXk=1(yk � a2)2=2! +1 as j !1:Hen
e, neither (A3) nor (A3') 
an hold.
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Figure 1. A 
ontour plot of the surfa
e of the density p(x1; x2) = exp ��(x21 + x21x22 + x22)�.
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Figure 2. A 
ontour plot of the surfa
e of the density p(x1; x2) =exp ��(x21 + (x21 � x22)2=4 + x22)�.
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Figure 3. For some �xed jx2j > p2, this is the plot of the fun
tion Lx2 :R+ ! R�; x1 7! �(x21 + (x21 � x22)2=4 + x22). For all x1;� > 0, the set fx1 2R; Lx2(x1) � Lx2(x1;�)g is the a

eptan
e region on R+ in the e1-dire
tion at thepoint (x1;�; x2), that is A((x1;�; x2); 1)\R+. The set A((x1;�; x2); 1)\R� is foundeasily by symmetry.
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ase i = 1 and the �gures on x1 > 0. For � = 2 and two di�erent valuesof j, we plot (a) log p(x) for di�erent values of x 2 Xj [solid lines℄, and (b) thetranslated a

eptan
e region A((j; x2); 1)+ j [grey surfa
e℄.



26 G. FORT, E. MOULINES, G. O. ROBERTS, AND J. S. ROSENTHAL
−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 5. A 
ontour plot of the surfa
e of the density p(x1; x2) =0:5 exp(�(jx1j+ 4jx2j)) + 0:5 exp(�(4jx1j+ jx2j)).
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Figure 6. A 
ontour plot of the surfa
e of the density p(x1; x2) = exp(�(jx1j+jx1jjx2j+ jx2j)).
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ontour plot of the surfa
e of a Normal-Inverse Gamma density fun
tion.
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