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ABSTRACT The fastSLAM algorithm [12] is a particular instance of

. ) ) particle filtering taking advantage of the conditional ipde-
In this paper, a new algorithm - namely toelineEM-SLAM  jence of the landmarks given the observations, the controls
- Is proposed to solve the simultaneous localization and-mapynq the robot trajectories. For each particle represerting
ping problem (SLAM). The mapping problem is seen as angpot path, the position of each observed landmark is update
instance of inference in latent models, and the localimatio gjng standard EKF steps. This algorithm allows to maintain
partis dealt with a particle approximation method. This newseyeral map hypothesis (one for each particle). However, th
Fec;hnlgue relies on an online version of.the Expectatlor)-l\/laxpresence of a static parameter (the map) in the state space pr
imization (EM) algorithm: the algorithm includes a stodhas  yenis the particle approximation from converging uniforml
approximation version of the E-step to incorporate therinfo i, time: see [5].
maﬁ‘?” brought by th_e newly availaple observation. _By lin- To overcome this difficulty, [11] introduced a marginal
earizing the observation model, _the stochastic appr_oxlmat SLAM algorithm: the key difference with the previous al-
part is reduced to the computation of the expectation of adyq it ms relies on the nature of the map which is treated as
ditive functionals of the robot pose. Therefore, eachftera parameter used to drive a latent data model. This param-
‘?f the onhngEl\/_I-SL_AM both provides a part_lcle approxima- oter js estimated by a recursive maximum likelinood proce-
tion of thg dlstr_lbut|0n_ofthe pose, and a point e_stlmatsheft dure, solved in practice by a stochastic gradient algorithm
map. This online v_arlant of EM d_oes r_10t require the WholeSee also [10]. Consequently, this marginal algorithm ptesi
data set to be available at each iteration. The performan%gpoint estimate of the map and a particle approximation of

of this algonthm IS |IIustrated.through simulations ussgn- ¢ marginal posterior distribution of the robot pose atheac
pled observations and experimental data.

time.
Index Terms— SLAM, Sequential Monte Carlo methods, The new algorithm we present in this paper also treats the
additive functionals, Expectation Maximization. map as a parameter in a latent model. The parameter is esti-

mated in the maximum likelihood sense and this estimation is
dealt with an online EM-type algorithm.

The paper is organized as follows. In section 2 we present
) ] the robot dynamical model and its observation model. Sectio
The SLAM problem arises when a robot evolves in an uny s geyoted to thenlineEM-SLAM algorithm. This new tech-
known environment without knowing its pose. The first S0-jq e is llustrated in section 4 and compared to the matgina

lutions of this problem involved the estimation of the joint g Ap.
distribution of the robot pose (or of the full path) and of the
map given all the controls and observations up to the current

1. INTRODUCTION

time; see [2]. This problem can be solved analytically as- 2. FRAMEWORK
suming the underlying transition and observation modeds ar
linear and gaussian. It is based on the Kalman filter whehet x; = (xm 4,2 .Tt_rg)T be the robot pose, where

the models are linear, or the extended Kalman filter (EKF)éfEt s 2)T stands for robot's cartesian coordinates and

when the models have to be linearized. In this case, thepost .5 is its angular coordinate. The robot evolves ir2-a

rior distribution of the robot pose and of the map is gaussiagjimensional unknown environment which will be represented

and thus the covariance matrix contains information abduat t by a feature based map formed by a set of landmarks. Con-
correlation between the robot pose and the landmarks. Unfo{rols are denoted by, = (v; 1 )T wherey, stands for the

. . . — t t
tunately, the use of a Taylor expansion to linearize both th?obot’s heading direz:tion and its velocity. tThe state tran-

transition and the observation models is known to lead to fil- .. . L ) .
i ) sition model gives the robot pose at tirhgiven its previous
ter divergence; see [1, 8]. ~

pose at time — 1 and the noisy control&;, ¢;):
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where ({;t 1[)t)T is a 2-dimensional Gaussian distribution for the SLAM framework since the data sets are too large.
with meanu; and known covariance matri®. We denote In [3] (resp. in [13]), the authors present an online version
by m(x|x¢_1, u ) the density function of the state transition of EM for hidden Markov models (HMM) with finite state
model which does not depend on the parameter (i.e the magpace (resp. with general state space). In these extensions
Let® = (0i), ;0 1<;<, D€ all the landmarks in the since the number of observations increases at each iteratio
map; the vectof. ; represents the cartesian coordinates of thdl IS €xpected that the limiting points of these algorithms a
j—th landmark. The total number of landmatkis assumed the stationary points of the limiting normalized log-likedod
to be known and, in addition, the association between obsef-— imr—c T~ {(y1.r;0). Insights for such an asymp-
vations and landmarks is done without error (this hypothesitotic result are given in [3] for HMM with finite state-space.
is relaxed in the experiment with true data, see Section#). A These extensions (and more generally any EM-type pro-
time ¢, the set of observed landmarks is denoted4y For cedures) are mostly useful in case where the complete data

anyi € A,, the observatiowy, ; € R? of landmark: at timet likelihood belongs to the exponential family. In that caee,
is modeled by ' anyt, there exist functionS, and= such that
Vi = h(x¢,0.:) + ¢4 2) Q:(0,0") = (Egr [St(Z1:t, y1:t)y1:e] . 2(0)) -
whereh is defined by The E-step thus reduces to the computation of a single expec-

tation. In HMM, the sufficient statisticS; is of the form

h(x,7) = (\/(71 —x1)?+ (12 — X2)2> _ 3)

t
t, T2—X2 _
T Se(Zit,yra) =t D> S(Zso1.Zeys) . (4)
The noise vectorgd:;), .., are iid Gaussian mixtures o=t

with two components\V’ (0,083), N(O,O—%R) and weights By standard properties of the conditional expectation, we
(wo,w1). We denote byl; = (It=i)ie,4t the latent variables have

specifying the identity of the mixture component of each ob-

servation at time¢. R, 02 ando? are assumed to be known. By [5e(Zae yaee)lyre] = By [Seor(Ze)lyre] - (5)

In the sequel we denote t%; = (X4, I;) the extended latent
variable. When the map is equal & the likelihood ofy
givenz, is denoted byjy (y¢|zt).

where, by (4) an properties of HMM

1
Sto(Zy) = ;Egr (S(Z¢-1,Z4,y1)|Zt, y1:4-1]
3. ONLINE EM SLAM 1
+ (1 - ;) Ey [Si—1,0/(Zt—1)|Zt, y1:4-1] - (6)
3.1. Online EM algorithm for curved exponential family
Equations (5) and (6) show that the E-step necessifa)es

The EM algorithm, introduced in [7], is a popular itera- yq fitering and backward retrospective (i.e. the condéio
tive technique to perform maximum likelihood estimation in yistribution 0fZs_1 given(Ze, y1.c_1)) distributions at time
latent models, when the observations are known in batch. o4 (b) a recursive computation &, . Exceptin triv-

Given a set Of_ observationgi.r = (yi,--- 7yT)_' EM models, neither the filtering distribution nor the resive
produces iteratively a sequence of parameter estimatés sUg, 5 (6) are available explicitly and these computation
that the (normalized) log-likelihood of the observations- 46 (o be approximated. The filtering and the backward ret-

-1 . 0) i i i ; i
T~ {(y1:7;0) is non-decreasing over iterations. Each iter-,qhative distributions at tinteare replaced by particle-type
ation is decomposed into an Expectation step (E-step) andaapproximations; see e.g. [4] and [6]. In (6), the quantities

Maximization step (M-step). The E-step involves the Com-Styg/(IE) are updated using a stochastic approximation step.

puta_tion_ of the conditional expectation of the completeadat 5 5 conclusion, an iteration of the online EM is defined by an
log-likelihoodps online E-step which is divided into a sequential Monte Carlo

1 step and a stochastic approximation step; and a M-step. The
Qr(0,0') = 7Eo [logpe(Zur, yuer)lyrr] main feature of this online algorithm is that there is no need

- ) to store the data since they are used sequentially.
whereE,, [-|y1.t] denotes the conditional expectation of the

latent data given the observations and the current loé 3.2. Application to the SLAM problem

the parameter. The M-step updates the parameter as a maxi-

mum of the functiord — Qr(6,6"). When processing large We now describe more precisely the steps of the algorithm.
data sets or data streams, EM becomes impractical due to tRer the stochastic approximation step, we choose for each
requirement that the whole data be available at each iter@f the landmarki a stepsize sequendg; ;).>1 such that
tion of the algorithm. Hence, EM algorithm is not designed) , v;; = +oo and)_, VtQ,z' < 400 [9]; for example,y;; =



ci/t* for a € (1/2,1]. In the sequel, we denote tiythe

Algorithm 1 Online E-Step of the OnlineEM-SLAM

current estimate of the parameter.
Linearization step Under the model assumptions de-

Require: Controlsug, observationgy, current map estimate
6, weighted sample§(&/_,,wi_;) }évzl and{p;_, ,;}.

scribed in Section 2, the density of the state transitiorsdoe

not depend upo# so that the complete data log-likelihood at
timet is equal to

q t

1
- Z 2t Z Lica, [ysi — h(Xs,0.:)]"
=1 s=1

X o7 R [ysi — h(Xs,0.2)] (7)
up to an additive term that does not depend ufxddue to the
expression ofi (see (3)), the complete data likelihood does
not belong to the exponential family. At each iteration, Hie
stepis thus preceded byiaearization step of the observation
model. For any € A, h(xs, 0. ;) is replaced by a first order
Taylor expansion:

~

h(xs,0..0) + Voh(xs,0..) (0. — 0..).

) )

(8)

Plugging (8) in (7) implies that (7) is replaced by a quadrati
function iné so that(i) the complete data likelihood is in the
exponential family andii) the update of the parameter con-
sists in computing the unique maximum of a quadratic func
tion.

Online E-stepThe linearization step leads to a particular

form of the quantity®, (6, 9) def Q0. é), where:

Qui(6.4,0) € (E (9)

and, for the model given in Section 2:

Z 11€A S

o [Sti(Zae, yae) |yl , Ei(0.0))

St.(zlt,}’u S7yS,i) .

ef
Denote bysS, ; ;(Z¢) %! E; [Sti(Z1:¢, y1:¢)|Ze, y1:e-1). As

described in' Section 3. 1 the online E-step for exponential

family combines a Sequential Monte Carlo step and a stocha;

Online E-Step
for ¢ =1to N do .
Draw J* in {1,---, N} with probabilities{w;_,},

and sample independently ~ (/& ug,ys) and
foralli € Ay, If; ~ B(r)".

¢ def ‘
SetZ{ = ZieA,, I{ ; and

¢
gé(ytlgfa Ité)m(g'{'ggflv ut)
W(fﬂfgjl, Ug, Yt>

4
)Zt <
end for

Stochastic approximation step
Foranyi € {1,...,q}, foranyk € {1,...,

¢
Wy o

w1 1—w

x (2

r

1—1r

|A: |-}
1>

N}, set

fii = 11'6./41,715,7;51'(6(1;() If;u yt,i)
N
Sy wiam(EEE 1 ue)pf

t—1m
N
D=1 Wf—lm(gﬁgf—la uy)

p

+ (1 =)

Approximatel [Si(Za.. y1:¢)|y1.e] by Y, wfok .

4. EXPERIMENTS

4.1. Simulated data

This new algorithm is compared to the marginal SLAM algo-
rithm of [11]. In this section, the functiolfi in (1) is given
by

O¢dy cos(wi—1.3 + 'l[it)
e sin(z-1,3 + 1)
'IAJtdt :ﬂn(l/),,)

F(Xeo1,01,) = Xp_1 +

)

S_

tic approximation step; see algorithm 1. New poses are sanynered, is the time period between two successive pose and

pled using the kernet andpt is the particle approximation
of S, 5(z) whenz = ¢k. Finally, the coefficientd /¢ and
1— 1/t are replaced by, ; and1 — ; ;, additional flexibility
improves the stochastic approximation scheme; see [9].

M-step Based on the equation (9), the maximunfof>
Q:(0, é) on R?¢ is obtained from the maximization of —
Qqi(T, é) onR? for anyi € {1,---,q} so that the update of
each landmark can be done independently of the others.
addition, each functiom — Q (7, é) is quadratic and its
maximization is explicit.

1B(r) denotes the Bernoulli distribution with parameter

B = 1.5m is the robot wheelbase. Starting withtraue
map 0*, observations are sampled by settingy; = 0.8,
2
op = 1,00 =5andR = oy ;é , whereo,, = 0.5m,

b

gorad andp = 0.01. The robot path was sampled using
= dlag(a % ) whereo, = 0.5m.s ! andoy, = Zorad.
AII the simulations were performed usin§ = 100 parti-
fles. For the SMC steptk were sampled from the prior
kernelm (-] X{" l,ut) andI;; from a Bernoulli distribution
with parametetyy. Finally, the sequences of steps for the
stochastic approximation were set4p; = 1/t%% for any
i€ {l,---,q}. For each run the estimated path (equal to the

Ub



weighted mean of the particles) and the estimated map at ttset of observations. In Figure 3 the estimated path and the

end of the loop " = 1626) are stored. Figure 1 represents the€stimated map (wittN' = 100 particles) at the end of the run

mean estimated path and the mean map 60endependent
Monte Carlo runs. Using the same data, Figure 2 presents

(T" = 5565) is represented.

Fig. 1: Map and path estimates with simulated data given b
the OnlineEM-SLAM algorithm (dashed line and stars) and
the marginal SLAM (doted line and crosses). The true pat
(bold line) and the true landmark locations (dots) are ago r
resented.

boxplots (over thes0 Monte Carlo runs) for the estimation [1]
of the error on the robot x-coordinate (difference betwéen t

true and the estimated pose) at different time steps. 2
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Fig. 2: Error on the robot x-coordinate estimation at different
time step with theOnlineEM-SLAM algorithm [right] and the
marginal SLAM [left].

(8]

9]
4.2. Experimental data

Figure 3 shows the performance of t@alineEM-SLAM al-
gorithm with true experimental data. We tried the algorithm[10]

with the car park data setvhich is a landmark based SLAM
situation. In this context the association process is not agll]
sumed to be known. Then, each time a new observation is
available, its likelihood is comﬁuted for each landmarkie t 17
current map and in a neighborhood of the observation (fellow
ing the same procedure as in this data set). If all likeliteood
are lower than a given threshold, a new landmark is created.
Otherwise, this observation is associated to the landnark ¢
responding to the largest likelihood. The algorithm istsgr (23]
with an empty map and landmarks are created with the first

2Thanks toht t p: / / www. cas. kt h. se/ SLAM

Fig. 3: Map and path estimates using the car park datasets.
The estimated path (dashed line) and the estimated landmark
)f)ositions (stars) given by th@nlineEM-SLAM algorithm are
ﬁompared to the true data (bold line and dots).
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