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ABSTRACT

In this paper, a new algorithm - namely theonlineEM-SLAM
- is proposed to solve the simultaneous localization and map-
ping problem (SLAM). The mapping problem is seen as an
instance of inference in latent models, and the localization
part is dealt with a particle approximation method. This new
technique relies on an online version of the Expectation Max-
imization (EM) algorithm: the algorithm includes a stochastic
approximation version of the E-step to incorporate the infor-
mation brought by the newly available observation. By lin-
earizing the observation model, the stochastic approximation
part is reduced to the computation of the expectation of ad-
ditive functionals of the robot pose. Therefore, each iteration
of the onlineEM-SLAM both provides a particle approxima-
tion of the distribution of the pose, and a point estimate of the
map. This online variant of EM does not require the whole
data set to be available at each iteration. The performance
of this algorithm is illustrated through simulations usingsam-
pled observations and experimental data.

Index Terms— SLAM, Sequential Monte Carlo methods,
additive functionals, Expectation Maximization.

1. INTRODUCTION

The SLAM problem arises when a robot evolves in an un-
known environment without knowing its pose. The first so-
lutions of this problem involved the estimation of the joint
distribution of the robot pose (or of the full path) and of the
map given all the controls and observations up to the current
time; see [2]. This problem can be solved analytically as-
suming the underlying transition and observation models are
linear and gaussian. It is based on the Kalman filter when
the models are linear, or the extended Kalman filter (EKF)
when the models have to be linearized. In this case, the poste-
rior distribution of the robot pose and of the map is gaussian
and thus the covariance matrix contains information about the
correlation between the robot pose and the landmarks. Unfor-
tunately, the use of a Taylor expansion to linearize both the
transition and the observation models is known to lead to fil-
ter divergence; see [1, 8].
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The fastSLAM algorithm [12] is a particular instance of
particle filtering taking advantage of the conditional indepen-
dence of the landmarks given the observations, the controls,
and the robot trajectories. For each particle representinga
robot path, the position of each observed landmark is updated
using standard EKF steps. This algorithm allows to maintain
several map hypothesis (one for each particle). However, the
presence of a static parameter (the map) in the state space pre-
vents the particle approximation from converging uniformly
in time; see [5].

To overcome this difficulty, [11] introduced a marginal
SLAM algorithm: the key difference with the previous al-
gorithms relies on the nature of the map which is treated as
a parameter used to drive a latent data model. This param-
eter is estimated by a recursive maximum likelihood proce-
dure, solved in practice by a stochastic gradient algorithm;
see also [10]. Consequently, this marginal algorithm provides
a point estimate of the map and a particle approximation of
the marginal posterior distribution of the robot pose at each
time.

The new algorithm we present in this paper also treats the
map as a parameter in a latent model. The parameter is esti-
mated in the maximum likelihood sense and this estimation is
dealt with an online EM-type algorithm.

The paper is organized as follows. In section 2 we present
the robot dynamical model and its observation model. Section
3 is devoted to theonlineEM-SLAM algorithm. This new tech-
nique is illustrated in section 4 and compared to the marginal
SLAM.

2. FRAMEWORK

Let xt =
(
xt,1 xt,2 xt,3

)T
be the robot pose, where

(
xt,1 xt,2

)T
stands for robot’s cartesian coordinates and

xt,3 is its angular coordinate. The robot evolves in a2-
dimensional unknown environment which will be represented
by a feature based map formed by a set of landmarks. Con-

trols are denoted byut =
(
vt ψt

)T
whereψt stands for the

robot’s heading direction andvt its velocity. The state tran-
sition model gives the robot pose at timet given its previous
pose at timet− 1 and the noisy controls(v̂t, ψ̂t):

xt = f(xt−1, v̂t, ψ̂t) , (1)



where
(
v̂t ψ̂t

)T
is a 2-dimensional Gaussian distribution

with meanut and known covariance matrixQ. We denote
bym(xt|xt−1,ut) the density function of the state transition
model which does not depend on the parameter (i.e the map).

Let θ =
(
θi,j

)
1≤i≤2,1≤j≤q

be all the landmarks in the
map; the vectorθ·,j represents the cartesian coordinates of the
j−th landmark. The total number of landmarksq is assumed
to be known and, in addition, the association between obser-
vations and landmarks is done without error (this hypothesis
is relaxed in the experiment with true data, see Section 4). At
time t, the set of observed landmarks is denoted byAt. For
anyi ∈ At, the observationyt,i ∈ R

2 of landmarki at timet
is modeled by

yt,i = h(xt, θ.,i) + δt,i (2)

whereh is defined by

h(x, τ) =

(√
(τ1 − x1)2 + (τ2 − x2)2

arctan τ2−x2

τ1−x1

− x3

)
. (3)

The noise vectors
(
δt,i

)
t,i∈At

are i.i.d Gaussian mixtures

with two componentsN
(
0, σ2

0R
)
, N

(
0, σ2

1R
)

and weights
(ω0, ω1). We denote byIt = (It,i)i∈At

the latent variables
specifying the identity of the mixture component of each ob-
servation at timet. R, σ2

0 andσ2
1 are assumed to be known.

In the sequel we denote byZt = (Xt, It) the extended latent
variable. When the map is equal toθ, the likelihood ofyt

givenzt is denoted bygθ(yt|zt).

3. ONLINE EM SLAM

3.1. Online EM algorithm for curved exponential family

The EM algorithm, introduced in [7], is a popular itera-
tive technique to perform maximum likelihood estimation in
latent models, when the observations are known in batch.
Given a set of observationsy1:T = (y1, · · · ,yT), EM
produces iteratively a sequence of parameter estimates such
that the (normalized) log-likelihood of the observationsθ 7→
T−1ℓ(y1:T; θ) is non-decreasing over iterations. Each iter-
ation is decomposed into an Expectation step (E-step) and a
Maximization step (M-step). The E-step involves the com-
putation of the conditional expectation of the complete data
log-likelihoodpθ

QT (θ, θ′) =
1

T
Eθ′ [log pθ(Z1:T,y1:T)|y1:T] ,

whereEθ′ [·|y1:T] denotes the conditional expectation of the
latent data given the observations and the current valueθ′ of
the parameter. The M-step updates the parameter as a maxi-
mum of the functionθ 7→ QT (θ, θ′). When processing large
data sets or data streams, EM becomes impractical due to the
requirement that the whole data be available at each itera-
tion of the algorithm. Hence, EM algorithm is not designed

for the SLAM framework since the data sets are too large.
In [3] (resp. in [13]), the authors present an online version
of EM for hidden Markov models (HMM) with finite state
space (resp. with general state space). In these extensions,
since the number of observations increases at each iteration,
it is expected that the limiting points of these algorithms are
the stationary points of the limiting normalized log-likelihood
θ 7→ limT→+∞ T−1ℓ(y1:T; θ). Insights for such an asymp-
totic result are given in [3] for HMM with finite state-space.

These extensions (and more generally any EM-type pro-
cedures) are mostly useful in case where the complete data
likelihood belongs to the exponential family. In that case,for
anyt, there exist functionsSt andΞ such that

Qt(θ, θ
′) = 〈Eθ′ [St(Z1:t,y1:t)|y1:t] ,Ξ(θ)〉 .

The E-step thus reduces to the computation of a single expec-
tation. In HMM, the sufficient statisticsSt is of the form

St(Z1:t,y1:t) = t−1
t∑

s=1

S(Zs−1,Zs,ys) . (4)

By standard properties of the conditional expectation, we
have

Eθ′ [St(Z1:t,y1:t)|y1:t] = Eθ′ [St,θ′(Zt)|y1:t] (5)

where, by (4) an properties of HMM

St,θ′(Zt) =
1

t
Eθ′ [S(Zt−1,Zt,yt)|Zt,y1:t−1]

+

(
1 −

1

t

)
Eθ′ [St−1,θ′(Zt−1)|Zt,y1:t−1] . (6)

Equations (5) and (6) show that the E-step necessitates(a)
the filtering and backward retrospective (i.e. the conditional
distribution ofZt−1 given(Zt,y1:t−1)) distributions at time
t and, (b) a recursive computation ofSt,θ′ . Except in triv-
ial models, neither the filtering distribution nor the recursive
formula (6) are available explicitly and these computations
have to be approximated. The filtering and the backward ret-
rospective distributions at timet are replaced by particle-type
approximations; see e.g. [4] and [6]. In (6), the quantities
St,θ′(x) are updated using a stochastic approximation step.
As a conclusion, an iteration of the online EM is defined by an
online E-step which is divided into a sequential Monte Carlo
step and a stochastic approximation step; and a M-step. The
main feature of this online algorithm is that there is no need
to store the data since they are used sequentially.

3.2. Application to the SLAM problem

We now describe more precisely the steps of the algorithm.
For the stochastic approximation step, we choose for each
of the landmarki a stepsize sequence(γt,i)t≥1 such that∑
t γt,i = +∞ and

∑
t γ

2
t,i < +∞ [9]; for example,γt,i =



ci/t
α for α ∈ (1/2, 1]. In the sequel, we denote bŷθ the

current estimate of the parameter.
Linearization step Under the model assumptions de-

scribed in Section 2, the density of the state transition does
not depend uponθ so that the complete data log-likelihood at
time t is equal to

−

q∑

i=1

1

2t

t∑

s=1

1i∈As
[ys,i − h(Xs, θ.,i)]

T

× σ−2
Is,i
R−1 [ys,i − h(Xs, θ.,i)] (7)

up to an additive term that does not depend uponθ. Due to the
expression ofh (see (3)), the complete data likelihood does
not belong to the exponential family. At each iteration, theE-
step is thus preceded by alinearization step of the observation
model. For anyi ∈ As, h(xs, θ·,i) is replaced by a first order
Taylor expansion:

h(xs, θ̂·,i) + ∇θh(xs, θ̂·,i) (θ·,i − θ̂·,i). (8)

Plugging (8) in (7) implies that (7) is replaced by a quadratic
function inθ so that(i) the complete data likelihood is in the
exponential family and(ii) the update of the parameter con-
sists in computing the unique maximum of a quadratic func-
tion.

Online E-stepThe linearization step leads to a particular

form of the quantityQt(θ, θ̂)
def
=

∑q

i=1Qt,i(θ.,i, θ̂), where:

Qt,i(θ.,i, θ̂)
def
= 〈E

θ̂
[St,i(Z1:t,y1:t)|y1:t] ,Ξi(θ.,i)〉 (9)

and, for the model given in Section 2:

St,i(Z1:t,y1:t) = t−1
t∑

s=1

1i∈As
Si(Zs,ys,i) .

Denote byS
t,i,θ̂

(Zt)
def
= E

θ̂
[St,i(Z1:t,y1:t)|Zt,y1:t−1]. As

described in Section 3.1, the online E-step for exponential
family combines a Sequential Monte Carlo step and a stochas-
tic approximation step; see algorithm 1. New poses are sam-
pled using the kernelr andρkt,i is the particle approximation
of S

t,θ̂
(x) whenx = ξk

t
. Finally, the coefficients1/t and

1− 1/t are replaced byγt,i and1− γt,i, additional flexibility
improves the stochastic approximation scheme; see [9].

M-step Based on the equation (9), the maximum ofθ 7→
Qt(θ, θ̂) on R

2q is obtained from the maximization ofτ 7→

Qt,i(τ, θ̂) on R
2 for anyi ∈ {1, · · · , q} so that the update of

each landmark can be done independently of the others. In
addition, each functionτ 7→ Qt,i(τ, θ̂) is quadratic and its
maximization is explicit.

1B(r) denotes the Bernoulli distribution with parameterr.

Algorithm 1 Online E-Step of the OnlineEM-SLAM
Require: Controlsut, observationsyt, current map estimate

θ̂, weighted samples
{(
ξℓt−1, ω

ℓ
t−1

)}N
ℓ=1

and{ρℓt−1,i}.

Online E-Step
for ℓ = 1 toN do

Draw Jℓ in {1, · · · , N} with probabilities{ωjt−1}
N
j=1

and sample independentlyξℓ
t
∼ π(·|ξJ

ℓ

t−1
,ut,yt) and

for all i ∈ At, Iℓt,i ∼ B(r)1.

SetIℓt
def
=

∑
i∈At

Iℓt,i and

ωℓt ∝
g
θ̂
(yt|ξℓt , I

ℓ
t )m(ξℓ

t
|ξJ

ℓ

t−1
,ut)

π(ξℓ
t
|ξJ

ℓ

t−1
,ut,yt)

×
(ω1

r

)Iℓ
t

(
1 − ω1

1 − r

)|At|−Iℓ
t

.

end for
Stochastic approximation step
For anyi ∈ {1, . . . , q}, for anyk ∈ {1, . . . , N}, set

ρkt,i = 1i∈At
γt,iSi(ξ

k

t
, Ikt,i, yt,i)

+ (1 − γt,i)

∑N

ℓ=1 ω
ℓ
t−1m(ξkt |ξ

ℓ
t−1,ut)ρ

ℓ
t−1,i∑N

ℓ=1 ω
ℓ
t−1m(ξk

t
|ξℓ

t−1
,ut)

.

ApproximateE
θ̂
[St,i(Z1:t,y1:t)|y1:t] by

∑N

k=1 ω
k
t ρ
k
t,i.

4. EXPERIMENTS

4.1. Simulated data

This new algorithm is compared to the marginal SLAM algo-
rithm of [11]. In this section, the functionf in (1) is given
by

f(xt−1, v̂t, ψ̂t) = xt−1 +




v̂tdt cos(xt−1,3 + ψ̂t)

v̂tdt sin(xt−1,3 + ψ̂t)

v̂tdt
sin(ψ̂t)
B



 ,

wheredt is the time period between two successive pose and
B = 1.5m is the robot wheelbase. Starting with atrue
map θ∗, observations are sampled by setting:ω0 = 0.8,

σ0 = 1, σ1 = 5 andR =

(
σ2
r ρ
ρ σ2

b

)
, whereσr = 0.5m,

σb = π
60 rad andρ = 0.01. The robot path was sampled using

Q = diag(σ2
v , σ

2
φ) whereσv = 0.5m.s−1 andσψ = π

60 rad.
All the simulations were performed usingN = 100 parti-
cles. For the SMC step,ξkt were sampled from the prior
kernelm(·|XJ

k

t−1,ut) andIt,i from a Bernoulli distribution
with parameterω0. Finally, the sequences of steps for the
stochastic approximation were set toγt,i = 1/t0.8 for any
i ∈ {1, · · · , q}. For each run the estimated path (equal to the



weighted mean of the particles) and the estimated map at the
end of the loop (T = 1626) are stored. Figure 1 represents the
mean estimated path and the mean map over50 independent
Monte Carlo runs. Using the same data, Figure 2 presents

Fig. 1: Map and path estimates with simulated data given by
the OnlineEM-SLAM algorithm (dashed line and stars) and
the marginal SLAM (doted line and crosses). The true path
(bold line) and the true landmark locations (dots) are also rep-
resented.

boxplots (over the50 Monte Carlo runs) for the estimation
of the error on the robot x-coordinate (difference between the
true and the estimated pose) at different time steps.
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Fig. 2: Error on the robot x-coordinate estimation at different
time step with theOnlineEM-SLAM algorithm [right] and the
marginal SLAM [left].

4.2. Experimental data

Figure 3 shows the performance of theOnlineEM-SLAM al-
gorithm with true experimental data. We tried the algorithm
with the car park data set2 which is a landmark based SLAM
situation. In this context the association process is not as-
sumed to be known. Then, each time a new observation is
available, its likelihood is computed for each landmark in the
current map and in a neighborhoodof the observation (follow-
ing the same procedure as in this data set). If all likelihoods
are lower than a given threshold, a new landmark is created.
Otherwise, this observation is associated to the landmark cor-
responding to the largest likelihood. The algorithm is started
with an empty map and landmarks are created with the first

2Thanks tohttp://www.cas.kth.se/SLAM

set of observations. In Figure 3 the estimated path and the
estimated map (withN = 100 particles) at the end of the run
(T = 5565) is represented.

Fig. 3: Map and path estimates using the car park datasets.
The estimated path (dashed line) and the estimated landmark
positions (stars) given by theOnlineEM-SLAM algorithm are
compared to the true data (bold line and dots).
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