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Abstract. In this contribution, new online EM algorithms are proposed
to perform inference in general hidden Markov models. These algorithms
update the parameter at some deterministic times and use Sequential
Monte Carlo methods to compute approximations of filtering distribu-
tions. Their convergence properties are addressed in [9] and [10]. In this
paper, the performance of these algorithms are highlighted in the chal-
lenging framework of Simultaneous Localization and Mapping.
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1 Introduction

The Expectation Maximization (EM, [6]) algorithm is a versatile tool for
maximum-likelihood based parameter estimation in latent data models. How-
ever, when processing large data sets or data stream, EM becomes intractable
since it requires the whole data set to be available at each iteration of the
algorithm.

In this contribution, we are interested in online-EM algorithms designed to
deal with data which are available sequentially in time. Online-EM algorithms
have been recently proposed. [4,14] address the case of independent and iden-
tically distributed (i.i.d.) observations. More complex incomplete data models
such as Hidden Markov Models (HMM) are of common use to represent time se-
ries in many fields such as statistics, information engineering, signal processing,
financial econometrics. . . [3] provides online-EM algorithms for HMM with finite
state space. These algorithms have been extended to general HMM by [3,5] in
the case of exponential complete-data likelihood, and by [8] for non exponential
and general HMM. Hereafter, we will write ”exponential HMM” as a shorthand
expression for ”HMM with exponential complete-data likelihood”.

These online-EM algorithms for HMM are iterative algorithms. Each itera-
tion consists in two steps: (i) the E step computes the expectation of the com-
plete log-likelihood under the conditional distribution of the hidden states given
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the observations (available up to the current time) and the current parameter;
(ii) the M step updates the parameter as a maximum of this mean complete
log-likelihood. Unfortunately, the algorithms mentioned above rely on many ap-
proximations. For example, the algorithms by [3,5,8] for general HMM combine
stochastic approximation methods, Sequential Monte Carlo (SMC) for the ap-
proximation of the filtering distributions and an approximation of the recursive
mechanism used to compute particle approximations of the filtering distribu-
tions. Therefore, it is really difficult to address the consistency of the estimators
and to assert the convergence of these EM-based algorithms.

In this contribution, we propose new online-EM algorithms for general (and
non necessarily exponential) HMM. The first algorithm, called Block Online EM
(BOEM), is designed for exponential HMM such that the filtering distributions
can be computed explicitly. Examples of such models are finite HMM and linear
Gaussian models. The second algorithm is a SMC approximation of BOEM (so
called Particle-BOEM or P-BOEM) designed for HMM with intractable E step.
For both algorithms, we also propose averaged versions which have better con-
vergence rates. All these algorithms are described in Section 2. The convergence
of these algorithms (BOEM, P-BOEM and their averaged versions) is out of the
scope of this paper: in [9,10], we provide sufficient conditions for these algorithms
to converge to the set of the stationary points of the limiting log-likelihood of
the observations. The convergence rates are also derived and it is proved that
the averaged versions converge at a faster rate.

We provide in Section 3 an application of the P-BOEM algorithm to non-
exponential HMM: P-BOEM is used as a new tool to solve the Simultaneous
Localization And Mapping (SLAM) problem. We compare our algorithm to the
OnlineEM SLAM of [8] and to MarginalSLAM of [12]. This numerical section
highlights the interest of our algorithm to solve the SLAM problem.

2 New Online EM Algorithms for General HMM

The goal is to fit a HMMmodel on Y-valued observations {Yt, t ≥ 0} sequentially
available. We denote by {mθ(x, x

′)dλ(x′), θ ∈ Θ} (resp. {gθ(x, y)dν(y), θ ∈ Θ})
the family of transition kernels onto X of the hidden states (resp. the conditional
distribution of the observation given the hidden state). For simplicity, we assume
that X ⊆ R

nx , Y ⊆ R
ny and Θ ⊆ R

nθ . The initial distribution χ of the hidden
state is assumed to be known. We propose algorithms for the computation of
a parameter θ� maximizing the limiting normalized log-likelihood of the obser-
vations on this class of model indexed by Θ. We consider the case when mθ, gθ
describes an exponential HMM i.e. there exist S : X× X× Y → R

d, ψ : Θ → R

and φ : Θ → R
d such that

log{mθ(x, x
′)gθ(x′, y)} = φ(θ) + 〈S(x, x′, y);ψ(θ)〉 . (1)

For s ∈ R
d, define

θ̄(s)
def
= argmaxθ∈Θ φ(θ) + 〈s;ψ(θ)〉 .
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Given a set of observations Y = {Y1, · · · ,YT }, the (n + 1)-th E step of the
batch EM algorithm would consist in computing

SEM
T (θn)

def
=

1

T

T∑

t=1

Φ0
θn,t,T (S,Y) , (2)

where Φ0
θ,t,T (S,Y) denotes the expectation of the function S under the condi-

tional distribution

Φrθ,s,t(h,y)

def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1,yi+1)} h(xs−1, xs,ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1
i=r mθ(xi, xi+1)gθ(xi+1,yi+1)} dλ(xr+1:t)

; (3)

and the M-step would update the parameter by θn+1 = θ̄(SEM
T (θn)). A natu-

ral extension to deal with sequential data is to update the parameter when a
new observation is available. Therefore, the T -th update of this Online EM is
computed from T observations by the iterative formula θT+1 = θ̄(SEM

T (θT )).
The new ideas of our approach is to update the parameter when a block

of observations have been (sequentially) processed: more precisely, every time
a new observation is available, the conditional expectation of the complete log-
likelihood given the observations from the beginning of the block is updated. Due
to the exponential assumption (1), such an update only requires an update of the
filtering distribution. Then, at some times, the parameter is updated according
to the same rule as in the EM algorithm. Let {τn, n ≥ 0} be positive integers,

and set Tn
def
= Tn−1 + τn =

∑n
i=1 τi , T0

def
= 0. τn is the length of block n and the

parameter will be updated at times Tn.
Block Online EM (BOEM) is an iterative algorithm: given the parameter θn

updated at time Tn,

block E step compute the BOEM statistic

SBOEM
Tn,τn+1

(θn)
def
=

1

τ

Tn+τn+1∑

t=Tn+1

ΦTn

θn,t,Tn+τn+1
(S,Y) .

M step At time Tn+1, update the parameter θn+1 = θ̄
(
SBOEM
Tn,τn+1

(θn)
)
.

Note that the quantity SBOEM
Tn,τn+1

(θn) corresponds to the intermediate quantity

(2) computed with the observations (YTn+1, · · · ,YTn+τn+1). This algorithm is
fully online if the E-step can be processed online: the observations along block
n have to be used once and the algorithm should not ask for a storage of the
data. To that goal, the key property is to observe that (see e.g. [3])

SBOEM
T,τ (θ) = φθT,τ (R

θ
T,τ ) (4)
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where φθT,t is the filtering distribution at time t w.r.t. the parameter θ and the

observations (YT+1, · · · ,YT+t), and the functions RθT,t : X → R
d, 1 ≤ t ≤ τ ,

satisfy the following equation

RθT,t(x) =
1

t
BθT,t (x, S(·, x, YT+t)) +

t− 1

t
BθT,t

(
x,RθT,t−1

)
, (5)

where Bθt denotes the backward smoothing kernel at time t: BθT,t(x, dx
′) ∝

mθ(x
′, x)φθT,t−1(dx

′). By convention, RθT,0 = 0.

When the expectation under the filtering distribution φθT,t is intractable, it
can be replaced by a particle approximation. This yields to the Particle-BOEM
(P-BOEM) algorithm.

block Particle E step compute the P-BOEM statistic SP−BOEM
Nn+1,Tn,τn+1

(θn), de-

fined as a SMC approximation of SBOEM
Tn,τn+1

(θn) computed withNn+1 particles.

M step. At time Tn+1, update the parameter θn+1 = θ̄
(
SP−BOEM
Nn+1,Tn,τn+1

(θn)
)
.

Here again, the Particle E step has to be computed online; this can be done
by applying the algorithm of [3] (see also [5]), which consists in replacing the
filtering distributions in Eqs (4) and (5), by a particle approximation.

Eq. (5) shows that the sufficient statistic along block n follows a stochastic
approximation dynamic. It is known that the convergence of such algorithms can
be improved by replacing the updated quantity with its averaged one (see [9]).
In our case, this yields to the averaged BOEM algorithm: each block E step and
M step of BOEM are followed by

averaged block E step. compute the statistic

S̃BOEM
n+1

def
=

Tn
Tn+1

S̃BOEM
n +

τn+1

Tn+1
SBOEM
Tn,τn+1

(θn) =
1

Tn+1

n∑

j=1

τj+1SBOEM
Tj ,τj+1

(θj) .

averaged block M step. Update the parameter θ̃n+1 = θ̄
(
S̃BOEM
n+1

)
.

The same averaged steps can be done for the E and M P-BOEM steps, thus
yielding to the averaged P-BOEM. The convergence properties of both BOEM
and P-BOEM and their averaged versions have been derived in [9] and in [10].
These algorithms are seen as perturbations of a limiting EM recursion and it can
be proved that they inherit the asymptotic behavior of this limiting EM. This has
to be compared to the online EM of [5] which introduces many approximations
and which theoretical analysis remains quite challenging.

3 Experiments

In this section, the performance of the algorithms presented in Section 2 are
illustrated through Monte Carlo experiments. The SLAM problem has been
addressed in different works [2]. When both the robot motion and the robot
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perception are perturbed by Gaussian noises, EKF-based algorithms proposed
to approximate the joint distribution of the map and the robot pose. It has been
successfully applied to numerous SLAM problems. Despite encouraging exper-
imental results, the EKF-based SLAM algorithms do not converge due to the
required Taylor expansion and the necessity to approximate a joint distribution
between the pose and the map which is a static parameter, see [1,7]. On the other
hand, the most famous SLAM solution proposed is the FastSLAM algorithm and
its different variants, see [13]. In this case, the model is not linearized and the
motion noise is not necessarily Gaussian. In the FastSLAM framework, the joint
distribution of the robot trajectories and the map is approximated. The robot
path is estimated with sequential Monte Carlo methods and, for each particle
representing a trajectory, landmark positions are estimated using EKF steps. A
linearization step is required to perform the update of each landmark position.
Once again, experimental results and the possibility to keep a map estimate for
each possible trajectory made these methods successful. However, the issue of
the joint estimation of the static parameter and the robot path still remain: in
this case it comes from the well known path degeneracy issue when comput-
ing joint distribution with SMC methods. As a map estimate is associated to
each particle, after successive resampling steps, all the particles share the same
estimation for old landmarks.

To overcome this difficulty, [12] introduced the MarginalSLAM algorithm and
[8] the OnlineEM SLAM. The SLAM problem is seen as an inference task in
HMM. The map parameterizes a latent data model and is estimated in the max-
imum likelihood sense. The localization procedure is answered by SMC methods.
In [12], the map is estimated by a stochastic gradient algorithm (see e.g. [11]). In
[8], this estimation procedure is replaced by an online EM based algorithm. In
this paper, we propose to use the P-BOEM algorithm to sequentially estimate
the map and to produce weighted particles to solve the localization problem. As
said in Section 1, the convergence properties of P-BOEM have been addressed in
[10], justifying the use of this algorithm to give a solution to the SLAM problem.

The robot evolves in a 2-dimensional landmark based map: its pose xt
def
=

{xt,i}3i=1 consists in cartesian coordinates xt,1 and xt,2 and a heading direction
xt,3. At each time step, the robot motion is controlled by deterministic com-
mands: a velocity vt and a heading direction ψt. The evolution of the robot pose
can be written:

xt = f(xt−1, v̂t, ψ̂t) , (6)

where (v̂t, ψ̂t) ∼ N2(0, Q). Q is assumed to be known. From now on, f is the
kinematic model of the front wheel of a bicycle (see e.g. [1]):

f(xt−1, v̂t, ψ̂t) = xt−1 +

⎛

⎜⎝
v̂tdt cos(xt−1,3 + ψ̂t)

v̂tdt sin(xt−1,3 + ψ̂t)

v̂tdt
sin(ψ̂t)
B

⎞

⎟⎠ ,

where dt is the time period between two successive poses and B is the robot
wheelbase.
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Each landmark is represented by a vector θj . It is assumed that the total
number of landmarks q and the association between observations and landmarks
are known. The robot is equipped with range and bearing sensors: it observes the
distance and the angular position of all landmarks in its neighborhood denoted
by At at time t. The observation yt,i ∈ R

2 of the landmark i is written yt,i =
h(xt, θ.,i) + δt,i, where h is defined by

h(x, τ) =

(√
(τ1 − x1)2 + (τ2 − x2)2

arctan τ2−x2

τ1−x1
− x3

)
.

The noise vectors {δt,i}t,i are i.i.d Gaussian N2 (0, R), where R is assumed to
be known. In this example, the complete-data log-likelihood is not exponential.
The marginal log-likelihood is written (up to an additive constant independent
from θ),

∑

i∈At

ln gθ(xt, yt,i) ∝
∑

i∈At

[yt,i − h(xt, θi)]
�
R−1 [yt,i − h(xt, θi)] .

P-BOEM cannot be directly applied: therefore, at the beginning of each block,
the function τ �→ h(x, τ) is approximated by its first order Taylor expansion at
all the current landmark estimates. This kind of first order approximations is
of common use in the SLAM literature (e.g. in EKF-SLAM or in FastSLAM).
In our case, this leads to a quadratic approximation of the likelihood of the
observation and to an approximate exponential-HMM (see [8]).

Observations are sampled using R = diag(σ2
r , σ

2
b ) , where σr = 0.5m and

σb = π
60 rad. The robot path is sampled with a given set of controls and using

Q = diag(σ2
v , σ

2
φ) where σv = 0.5m.s−1 and σψ = π

60 rad. In this experiment, the
proposed algorithm is compared to the MarginalSLAM and to the OnlineEM
SLAM. The block size sequence is slowly increasing {τn ∝ n1.1}n≥1 to allow a
sufficiently large number of updates. The number of particles is constant on each
block and fixed at 50. For the SMC step, new particles are sampled using the
prior model, this method is known in the SMC literature as the Bootstrap filter.
The step-size sequence used in the MarginalSLAM and in the OnlineEM SLAM
for the stochastic approximation step are chosen such that γn ∝ n−0.8.

For each run the weighted mean of the particles and the estimated map are
stored. Figure 1 displays the estimated path given by the MarginalSLAM and
the P-BOEM SLAM for one of the 50 Monte Carlo runs. The path estimate given
by the P-BOEM is clearly better than the one given by the MarginalSLAM.

Figure 2 displays boxplots of the landmark estimation error over 50 Monte
Carlo runs for the MarginalSLAM and the P-BOEM SLAM. Both algorithms
give similar results for the estimation of the landmarks observed at the beginning
of the experiment. However, when considering the other landmarks, P-BOEM
SLAM shows better results. Figure 3 compares the result given by the P-BOEM
and the Online EM SLAM. As noted in [10], both algorithms have a similar
behaviors.
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Fig. 1. True trajectory (bold line) and true landmark positions (balls) with the esti-
mated path given by the P-BOEM SLAM (dashed line) and by the MarginalSLAM
(dashed and dotted line)
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Fig. 2. Distance between the estimate at the end of the loop (T = 1800) and the true
position using the P-BOEM SLAM (left) and the Marginal SLAM (right)
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Fig. 3. Distance between the estimate at the end of the loop (T = 1800) and the true
position using the P-BOEM SLAM (left) and the OnlineEM SLAM (right)
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4 Conclusion

New algorithms for online Maximum-Likelihood based inference in exponential
HMM have been proposed. These new online-EM procedures have been applied
to solve the SLAM problem which is a case of non-exponential HMM. The ex-
periments show that the our algorithm provides better result than the Marginal-
SLAM algorithm when estimating the map online. The results are quite similar
to those given by the online EM algorithm of [5]. Nevertheless, the asymptotic
behavior of our algorithms has been addressed showing that they answer to
the Maximum-Likelihood estimation problem. On the contrary, it remains quite
challenging to analyze the convergence properties of the online EM of [5].
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