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Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Introduction

Bayesian Analysis

Statistical model

Learning about parameters through observations:

a likelihood of the observations y given some parameters of interest
x

p(y|x)

a prior on the parameters of interest

p(x)

yielding the a posteriori distribution of the parameters

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x′)p(x′)dx′

Hereafter

- the dependence upon the observations y is omitted: π(x).

- the likelihood p(y|x) is normalized.

- it is assumed x ∈ Rd and the prior has a density w.r.t. the Lebesgue measure.
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Introduction

Bayesian Analysis

Learn about the a posteriori distribution
for parameter estimation: maximum a posteriori; mean a posteriori

∫
xπ(x)dx.

for model comparison

e(Y ) =

∫
p(Y |x) p(x)dx evidence∫

p1(Y |x) p1(x)dx∫
p2(Y |x) p2(x)dx

Bayes factor

for predictive inference ∫
p(Y

?|x) π(x)dx.

↪→ Interested in

the exploration of the a posteriori distribution π

the computation of integrals w.r.t. π
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Introduction

Bayesian Analysis

Unfeasibility

dimension and complexity of the space:
π is a distribution on X ⊆ Rd.

π is (usually) known up to a normalizing constant

π(x) =
p(y|x)p(x)∫
p(y|x′)p(x′)dx′

∝ p(y|x)p(x)

Therefore,

exact exploration, exact integration are untractable.

numerical approximation such as Monte Carlo methods is required.
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Introduction

Monte Carlo methods

Monte Carlo methods (1/2)

Probabilistic approximation of a target distribution π - may be
known up to a normalizing constant.

Idea :

choose a proposal (trial, instrumental, · · · ) distribution, and draw at random
points X1, · · · ,Xk, · · ·
modify these points in order to obtain an approximation of π

Mecanism 1: associate a weight to each point.
Ex.: Importance Sampling

Mecanism 2: discard some points using an acceptance-rejection
rule.
Ex.: Markov chain Monte Carlo

General and flexible algorithms. But the convergence and the
efficiency of these methods depend upon the proposal distribution.
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Introduction

Monte Carlo methods

Monte Carlo methods (2/2)

Convergence: when the number of draws tends to infinity, do the
samples approximate the target π?

Efficiency: control/quantify the approximation

Role of the proposal distribution in the efficiency of the algorithm.

Adaptive methods for an automatic choice of the proposal
distribution.
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Markov chain Monte Carlo

Algorithm

Algorithm (Hastings-Metropolis) (1/2)
Let q : X× X→ R+ be the density of a transition kernel

∫
A
q(x,y)dy = probability of moving to the set A, starting from x

I Given the current sample Xk,

1 draw a point Y ∼ q(Xk,·)
2 accept or reject this point

Xk+1 =

{
Y with probability α(Xk,Y )
Xk otherwise

where

α(Xk,Y ) = 1 ∧ πu(Y )

πu(Xk)

q(Y,Xk)

q(Xk,Y )

I Approximate Eπ [h(X)] by 1
n

∑n
k=1 h(Xk).
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Markov chain Monte Carlo

Algorithm

Algorithm (Hastings-Metropolis) (2/2) Biblio

Independent HM: when q does not depend on the starting value x.
Then,

α(x,y) = 1 ∧ πu(y)

q(y)

q(x)

πu(x)

Symmetric random walk HM: when q depends on x,y through
‖x− y‖. Then,

α(x,y) = 1 ∧ πu(y)

πu(x)

- Ex. q(x,y) = Nd(x,Γ)[y]
- Proposed moved are on the form

Y = Xk + Z Z ∼ q(z)

- Any move to a point Y such that π(Y ) ≥ π(Xk) is accepted.
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Markov chain Monte Carlo

Convergence of the method

Convergence of the method (1/2)

By construction, (Xk)k is a Markov chain. There exist results on
Ergodicity for any x,

lim
n→∞

sup
{h:|h|≤1}

∣∣∣E [h(Xn)|X0 = x]− Eπ [h(X)]
∣∣∣ = 0.

Explicit control of ergodicity

sup
{h:|h|≤V }

∣∣∣E [h(Xn)|X0 = x]− Eπ [h(X)]
∣∣∣ ≤ C r(n) V (x)

Law of large numbers

lim
n

1

n

n∑
k=1

h(Xk) = Eπ [h(X)] a.s.

Central Limit Theorem, deviation inequalities, · · ·
√
n
∣∣∣ 1
n

n∑
k=1

h(Xk)− Eπ [h(X)]
∣∣∣ D−→ N (0,Γ)
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Markov chain Monte Carlo

Convergence of the method

Convergence of the method (2/2) Biblio

Such convergence results are established under assumptions

on the target π and its support X

X is compact (simple theorey). Or not (a bit more technical!)
regularity on π
decaying rates of x 7→ π(x) in the tails.

on the function h (e.g. for CLT)

on the proposal kernel q

irreducibility of the chain
upper bounds and lower bounds

The user chooses the proposal - the convergence and the efficiency of the
algorithm depends upon q.
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Markov chain Monte Carlo

Accuracy of the approximation

Accuracy of the approximation: explicit control of
ergodicity Biblio

sup
{h:|h|≤V }

∣∣∣E [h(Xn)|X0 = x]− Eπ [h(X)]
∣∣∣ ≤ C r(n) V (x)

Could be used to determine the length n of the chain to reach a
fixed accuracy, depending upon the initial value x.

In practice, C is very large, lim|x|→∞ V (x) = +∞ · · ·
To my opinion, hopeless (given the current literature).
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Markov chain Monte Carlo

Accuracy of the approximation

Accuracy of the approximation: variance in the CLT (1/2)

When CLT holds, the limiting variance is

σ2 = Varπ(h(X)) + 2
∑
k≥1

Covπ

(
h(X0),h(Xk)

)
= γ(0) + 2

∑
k≥1

γ(k)︸︷︷︸
lag k autocovariance

.

If limn σ̂
2
n = σ2

a.s. or P, we can form confidence interval with half size

t?
σ̂n√
n
, t? appropriate quantile

↪→ How to estimate σ2 from the samples X1, · · · ,Xn?
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Markov chain Monte Carlo

Accuracy of the approximation

Accuracy of the approximation: variance in the CLT (2/2)

I Spectral methods

σ̂2
n =

bn∑
k=−bn

ωn(k) γ̂n(k)

where

γ̂n(k) =
1

n

n−|k|∑
`=1

X` − 1

n

n∑
j=1

Xj

X`+|k| − 1

n

n∑
j=1

Xj



Is is a consistent estimator of σ2 under conditions on
the lag window ωn(·) and bn. For example,

- Truncation : ωn(k) = 1 if |k| ≤ bn and 0 otherwise : NOT
possible.
- Parzen: ωn(k) = 1− |k|q/bqn if |k| ≤ bn. (q ∈ Z+).
- Tukey-Hanning: ωn(k) = 0.5(1 + cos(π|k|/bn)) if |k| ≤ bn.

the mixing properties of the chain uniform ergodicity, geometric ergodicity.

I (non overlapping) Batch means
I Overlapping batch means
I Regenerative simulation

Based on empirical results,

spectral, overlapping BM > BM > regenerative

Note that these estimators can be used to stop a MCMC run with
a fixed time rule. Then, check if the confidence interval is
undesirable wide or not.
a fixed width rule: stop when the interval is sufficiently narrow.

Biblio
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Accuracy of the approximation

Accuracy of the approximation: variance in the CLT (2/2)

I Spectral methods
I (non overlapping) Batch means n = an bn: an blocks of length bn.

σ̂2
n =

bn
an − 1

an−1∑
k=0

 1

bn

bn∑
`=1

h(Xkbn+`)︸ ︷︷ ︸
mean over block k

− 1

n

n∑
k=1

h(Xk)︸ ︷︷ ︸
mean over the full path


2

Is is a consistent estimator of σ2 under conditions on
the mixing properties of the chain
an,bn

- both of them have to increase with n, at some rate.
- this rate depends upon the mixing properties of the chain.

I Overlapping batch means
I Regenerative simulation

Based on empirical results,

spectral, overlapping BM > BM > regenerative

Note that these estimators can be used to stop a MCMC run with
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Accuracy of the approximation

Accuracy of the approximation: variance in the CLT (2/2)

I Spectral methods
I (non overlapping) Batch means
I Overlapping batch means n = (n− bn + 1) overlapping batches of
length bn.

σ̂2
n =

nbn
(n− bn + 1)(n− bn)

n−bn∑
k=0

 1

bn

bn∑
`=1

h(Xk+`)︸ ︷︷ ︸
mean from k to k + bn − 1

− 1

n
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h(Xk)︸ ︷︷ ︸
mean over the full path


2

Is is a consistent estimator of σ2 under conditions on
the mixing properties of the chain
an,bn

- both of them have to increase with n, at some rate.
- this rate depends upon the mixing properties of the chain.

I Regenerative simulation

Based on empirical results,

spectral, overlapping BM > BM > regenerative

Note that these estimators can be used to stop a MCMC run with
a fixed time rule. Then, check if the confidence interval is
undesirable wide or not.
a fixed width rule: stop when the interval is sufficiently narrow.

Biblio



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Accuracy of the approximation

Accuracy of the approximation: variance in the CLT (2/2)

I Spectral methods
I (non overlapping) Batch means
I Overlapping batch means
I Regenerative simulation

Sample the chain in order to introduce some regeneration times
τ1, · · · ,τRn
Estimate the variance by

σ̂2
n =

Rn
τ2
Rn

Rn∑
k=1

 τk∑
`=τk−1+1

{h(X`)−

 1

τRn

τRn∑
j=1

h(Xj)

}
2

Consistency is established.
In practice, it is difficult to obtain many regeneration times.

Based on empirical results,

spectral, overlapping BM > BM > regenerative

Note that these estimators can be used to stop a MCMC run with
a fixed time rule. Then, check if the confidence interval is
undesirable wide or not.
a fixed width rule: stop when the interval is sufficiently narrow.

Biblio
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Markov chain Monte Carlo

Proposal distribution and efficiency

Proposal distribution and efficiency (1/3)

I The direction of the moves
Symmetric Random Walk chain on R2 , with target density N(0,Γ) and proposal distribution N(0,I)

Level curves of the target and proposal densities
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Markov chain Monte Carlo

Proposal distribution and efficiency

Proposal distribution and efficiency (2/3)

I The size of the moves
Symmetric Random Walk chain on R, with Gaussian proposal of variance σ2 .
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Three different values of σ : [top] a path of the chain [bottom]
auto-correlation function



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Proposal distribution and efficiency

Proposal distribution and efficiency (3/3)

I The curse of dimensionality Symmetric Random Walk chain on Rd , with target distribution N(0,I) and

Gaussian proposal N(0,σ2I).
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For
d ∈ {2,8,32,64} : projection of the chain (x1, · · · ,xd) on R2. [top] σ does
not depend on d and α is resp. 25%, 1%, 0. [bottom] σ is of the form
c/
√
d and α is resp. 36%, 27%, 24% and 23%.
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Markov chain Monte Carlo

Proposal distribution and efficiency

Optimal scaling

I Theoretical results:
Biblio

study the skeleton process (when d → ∞) associated to the chain.

optimize the speed of this process.

These results are obtained

when the target π has independent marginals.

when the chain is stationary : X0 ∼ π.

In the case of Sym. Random Walk HM with proposal N (0,c2/d Γ)

c? = 2.382 Γ? = covariance matrix of the target π

yielding to a so-called optimal mean acceptance-rejection ratio

α? = 0.234

I In practice:

- What about the transient phase and “small” d?

- The covariance matrix of π is unknown.
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Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (1/3) Biblio

I Pioneering work: Adaptive Monte Carlo
which is an adaptive Sym. Random Walk HM sampler,

start with an initial covariance matrix Γ(0) for the Gaussian proposal
distribution,

update the covariance matrix Γ(t)
at every iteration, or after a block of iterations, or · · · by

using the past samples of the chain.

The convergence of this sampler is now established (LLN, CLT).

I Now, many adaptive MCMC algorithms for an automatic tuning of a
design parameter

define an accuracy criterion; usually no explicit optimum for this
criterion

update the parameter by using the current draws, in order to
asymptotically, when n → ∞, optimize this accuracy criterion.
tool for the update rule: stochastic gradient algorithm, stochastic

approximation alg., expectation-maximization alg., · · ·
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Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (2/3)

Unfortunately, adaptation can destroy the convergence to π !

Let θ ∈ (0,1). Consider the transition matrix

Pθ =

(
1− θ θ
θ 1− θ

)
A Markov chain with this transition matrix converges to the stationary
distribution π = (1/2; 1/2).

Fix t0,t1 ∈ (0,1). Define a chain as follows: given Xk,

Xk+1 ∼
{
Pt0(Xk,·) if Xk = 0
Pt1(Xk,·) if Xk = 1

Then, (Xn)n is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)
but it converges to the distribution π̃ ∝ (t1,t0) 6= π.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (2/3)

Unfortunately, adaptation can destroy the convergence to π !

Let θ ∈ (0,1). Consider the transition matrix

Pθ =

(
1− θ θ
θ 1− θ

)
A Markov chain with this transition matrix converges to the stationary
distribution π = (1/2; 1/2).

Fix t0,t1 ∈ (0,1). Define a chain as follows: given Xk,

Xk+1 ∼
{
Pt0(Xk,·) if Xk = 0
Pt1(Xk,·) if Xk = 1

Then, (Xn)n is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)
but it converges to the distribution π̃ ∝ (t1,t0) 6= π.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (2/3)

Unfortunately, adaptation can destroy the convergence to π !

Let θ ∈ (0,1). Consider the transition matrix

Pθ =

(
1− θ θ
θ 1− θ

)
A Markov chain with this transition matrix converges to the stationary
distribution π = (1/2; 1/2).

Fix t0,t1 ∈ (0,1). Define a chain as follows: given Xk,

Xk+1 ∼
{
Pt0(Xk,·) if Xk = 0
Pt1(Xk,·) if Xk = 1

Then, (Xn)n is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)
but it converges to the distribution π̃ ∝ (t1,t0) 6= π.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (2/3)

Unfortunately, adaptation can destroy the convergence to π !

Let θ ∈ (0,1). Consider the transition matrix

Pθ =

(
1− θ θ
θ 1− θ

)
A Markov chain with this transition matrix converges to the stationary
distribution π = (1/2; 1/2).

Fix t0,t1 ∈ (0,1). Define a chain as follows: given Xk,

Xk+1 ∼
{
Pt0(Xk,·) if Xk = 0
Pt1(Xk,·) if Xk = 1

Then, (Xn)n is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)
but it converges to the distribution π̃ ∝ (t1,t0) 6= π.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Markov chain Monte Carlo

Adaptive MCMC

Adaptive MCMC (3/3) Biblio

In Adaptive MCMC, there is a family of kernel (Pθ,θ ∈ Θ) and all
these kernels have the same invariant distribution π.

At each iteration, pick one of this kernel Pθk with a random
mecanism e.g. depending upon the past samples.

The resulting chain is not necessarily a Markov chain, and may
converge to a distribution π̃ 6= π.

I Sufficient conditions for the convergence (convergence to π, Law of large numbers, CLT) of
adaptive algorithms. Essentially,

Diminishing adaption: d(Pθk ,Pθk+1
)→ 0 at some rate, in some

sense.

Containment condition: the transition kernels (Pθ,θ ∈ Θ) have a
similar ergodic behavior.
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Due to
the curse of dimensionality

the multimodality of the target π

new MCMC methodologies are about interacting algorithms

I Idea:

Run K chains in parallel, each with its own invariant distribution
π(k) by allowing interaction between neighboring chains.

π(k) chosen so that the associated chain has good mixing properties.
And π(K) = π.

Ex. π(k) is a tempered version of π. Tempering, Equi-Energy sampler,

Wang-Landau, · · · many ideas from numerical Statistical Physics and

Molecular Dynamics

I Convergence results: Few answers, mainly an open question !
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Algorithm

Algorithm

Choose a proposal distribution q(x).

1 Draw independently points X1, · · · ,Xn, · · · under q.

2 Compute an importance weight for each point

ωk =
πu(Xk)

q(Xk)

3 Approximate π by the weighted points∫
h(x) π(x)dx= Eπ [h(X)] ≈

n∑
k=1

ωk∑n
`=1 ω`

h(Xk)

When the normalizing constant of π is known, replace this approximation with

1

n

n∑
k=1

ωk h(Xk).

Hereafter, only the case ”π is known up to a normalizing constant” is considered
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Convergence of the method (1/4)

I Consistent estimator

For any function h s.t. Supp(π|h|) ⊂ Supp(q) ∗

lim
n→∞

n∑
k=1

ωk∑n
`=1 ω`

h(Xk)
a.s.−→

∫
h(x) π(x)dx

which implies that∫
∆

π(x)dx ≈
n∑
k=1

ωk∑n
`=1 ω`

1I∆(Xk)

∗ for example, choose q so that {q = 0} ⊆ {π|h| = 0}
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Convergence of the method (2/4)

I Toy example

compute

∫
R
|x|π(x)dx when π(x) ∼ t(3) ∝ 1

(1 + x2

3 )2

Consider in turn the proposal q equal to

a Student t(1)

a Normal N (0,1)
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The efficiency of the algorithm depends
upon the proposal distribution q: if
few large weights and the others ne-
gligible, the approximation is likely
not accurate
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Convergence of the method (3/4)

I Variance of the estimator

Var

 n∑
k=1

ωk∑n
`=1

ω`

h(Xk)

 = n
−1

σ
2

+ o

( 1

n

)

with

σ
2

= Eπ

[
(h(X) − Eπ [h(X)])

2 π(X)

q(X)

]

Note that, as a function of q, σ2 is minimal by choosing q as a function of π,h namely

q? ∝ |h − Eπ [h(X)]| π

Rule of thumb: choose the proposal so that

sup
x

πu(x)

q(x)
<∞.

q has heavier tails than π;

q does not depend on h.
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Convergence of the method (4/4)

I Asymptotic normality

σ
2

= Eπ

[
(h(X) − Eπ [h(X)])

2 π(X)

q(X)

]

It holds:

lim
n
n

n∑
k=1

(
ωk∑n
`=1 ω`

)2
h(Xk)−

n∑
j=1

ωj∑n
`=1 ω`

h(Xj)

2

= σ2,

and
√
n

(
n∑
k=1

ωk∑n
`=1 ω`

h(Xk)− Eπ [h(X)]

)
D−→ N

(
0,σ2

)

so that

- it is possible to estimate the asymptotic variance from the samples.
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Convergence of the method (4/4)

I Asymptotic normality

σ
2

= Eπ

[
(h(X) − Eπ [h(X)])

2 π(X)

q(X)

]

It holds:

lim
n
n

n∑
k=1

(
ωk∑n
`=1 ω`

)2
h(Xk)−

n∑
j=1

ωj∑n
`=1 ω`

h(Xj)

2

= σ2,

and
√
n

(
n∑
k=1

ωk∑n
`=1 ω`

h(Xk)− Eπ [h(X)]

)
D−→ N

(
0,σ2

)
so that

- it is possible to estimate the asymptotic variance from the samples.

- (asymptotic) confidence intervals for the approximation of
Eπ[h(X)].
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Monitoring the convergence: Coefficient of Variation

CVn =

√√√√n

n∑
k=1

(
ωk∑n
`=1 ω`

− 1

n

)2

a measure of the number of ineffective particles:

CVn is minimal (= 0) when the weights are equal.
CVn is maximal (=

√
n− 1) when all weights are null but one.

When n→∞,

lim
n

CVn = Dχ2(π,q) (Pearson-χ2 distance)

where (
D
χ2 (π,q)

)2
=

∫ (
π(x)

q(x)
− 1

)
π(x)dx = Varq

(
π(X)

q(X)

)
.
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Monitoring the convergence: Effective Sample Size

ESSn =

(
n∑
k=1

(
ωk∑n
`=1 ω`

)2
)−1

=
n

1 + CVn

a measure of the number of effective particles:
ESSn is maximal (= n) when the weights are equal.
ESSn is minimal (= 1) when all weights are null but one.

Heuristically,

Varπ (h)

σ2
≈ 1

1 + Varq

(
π(X)
q(X)

) = lim
n

1

1 + CVn
,

Asymptotically,

n
Varπ (h)

σ2
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,

Asymptotically, the number of points of i.i.d. samples drawn from π

equivalent to the n weighted samples in terms of accuracy is

n
Varπ (h)

σ2
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Monitoring the convergence: Effective Sample Size

ESSn =

(
n∑
k=1

(
ωk∑n
`=1 ω`

)2
)−1

=
n

1 + CVn

a measure of the number of effective particles:
ESSn is maximal (= n) when the weights are equal.
ESSn is minimal (= 1) when all weights are null but one.

Heuristically,

Varπ (h)

σ2
≈ 1

1 + Varq

(
π(X)
q(X)

) = lim
n

1

1 + CVn
,

Asymptotically, the number of points of i.i.d. samples drawn from π

equivalent to the n weighted samples to achieve a fixed accuracy

n
Varπ (h)

σ2
= ESSn
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Monitoring the convergence: Normalized perplexity

En =
1

n
exp

(
−

n∑
i=1

ωi∑n
`=1 ω`

log

(
ωi∑n
`=1 ω`

))

The normalized perplexity is

maximal (= 1) when the weights are equal.
minimal (= 1/n) when all weights are zero but one.

As n→ +∞,

lim
n
En = exp

(
−
∫

log

(
π(x)

q(x)

)
π(x) dx

)
= exp (−dKL (π,q)) (Kullback-Leibler divergence)

En is a measure of fit of the proposal distribution q.
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Adaptive Importance sampling (1/3) Biblio

The choice of q is crucial for the efficiency of Importance Sampling.

Methods were proposed to reach the objective:

choose the distribution q in a family of densities Q, as the
optimum of an adequacy criterion

I Example (Population Monte Carlo): solve

argminq∈Q dKL (π,q) = argminq∈Q

I Example (Cross-Entropy method): solve

argminq∈Q dKL

(
|h|π∫

|h(x)|π(x)d(x)
,q

)

Nevertheless, (most of) the adequacy criterions depends on integrals
w.r.t. π, which is precisely what we are not able to compute.
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Adaptive Importance sampling (2/3)

Therefore, determine the optimal proposal distribution q adaptively:
I Example (Population Monte Carlo) - to follow

argminq∈Q
∫

log
π(x)

q(x)
π(x)dx ⇐⇒ argmaxq∈Q

∫
log q(x) π(x)dx

1 Choose an initial distribution q(0), and compute an Importance
Sampling approximation of the criterion

n∑
k=1

ω
(0)
k

log q(Xk)

2 Udpate the proposal: q(1) is an optimum of the approximated
criterion.

3 Repeat until convergence.

In this example, Step 2 is explicit when Q is the family of mixture of
Gaussian distributions, or mixture of t-distributions.
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Adaptive Importance sampling (3/3)

I Population Monte Carlo - numerical application The target distribution
in R10. Below marginal distribution of (x1,x2)

x1

x 2
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and (x3, · · · ,x10) are independent N (0,1).



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Importance Sampling

Adaptive Importance sampling

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

Fig.: Iterations 1,3,5,7,9,11. 10k points per plot, except 100k in the lase one. Mixture of 9 t-distributions, with 9 degrees of freedom
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Monitoring convergence: the Normalized perplexity (top panel) and the
Normalized Effective Sample size (bottom panel)

Fig.: for the first 10 iterations, over 500 simulation runs.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Importance Sampling

Curse of dimensionality

Curse of dimensionality
Is Importance Sampling robust to the dimension of the sampling space?

π(x1,··· ,xd)=
∏d
k=1 t4(xk) q(x1,··· ,xd)=

∏d
k=1 t2(xk)
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MCMC vs Importance Sampling

MCMC vs Importance Sampling

Computational cost: (e.g. for the evaluation of π)

- MCMC can not be parallelized , well, most of them

- Importance Sampling allows for parallel computation.

Monitoring the convergence

- Importance Sampling: simple tools (CV, ESS, Perplexity)
- MCMC: estimators of the asymptotic variance

Proposal distribution

Both the methods depend upon this design parameter −→
adaptive algorithms.

Curse of dimensionality

MCMC more robust than Importance Sampling.
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Burn In in MCMC Biblio

The chain is started at X0 which is not drawn under π.

Hence, there is a bias:

E [h(Xk)] 6= Eπ [h(X)] , E

[
1

n

n∑
k=1

h(Xk)

]
6= Eπ [h(X)] .

and discarding the first sample X1, · · · ,XB can reduce the bias.

But it is possible (even likely) that

Var

(
1

n−B

n∑
k=B

h(Xk)

)
≥ Var

(
1

n

n∑
k=1

h(Xk)

)
;

the variance increases for the same computational cost n

Trade off ... Open question !
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Parallelization

Parallelization Biblio

I Importance Sampling
YES ! sampling and computing the importance weights can easily be
parallelized.

I MCMC

Part of independent-HM can be parallelized. Otherwise, difficult due
to the Markov chain structure of the process.

One long run or r parallel chains?

there is values in trying a variety of initial distributions. E.g.: for
multimodal target, with r starting points widely dispersed, better
chance to recover the modes.
Parallel chains are superior if initialized from a distribution close to π.
r has to be large for an efficient estimation of the variance.
for a fixed computational cost N and with the same burn in B:
N −B points vs r chains with (N −B)/r points.

Open question !
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Atchadé, Y. and Fort, G. (2010). Limit theorems for some adaptive MCMC algorithms
with subgeometric kernels (I). Bernoulli 16:116-154.

Fort, G., Moulines, E. and Priouret, P. (2012). Convergence of interacting MCMC:
ergodicity and law of large numbers. Ann. Statist. 39:3262-3289.

Fort, G., Moulines, E., Priouret, P. and Vandekerkhove, P. (2010). Convergence of
interacting MCMC: central limit theorem. submitted arXiv math.ST 1107-257

Roberts, G.O. and Rosenthal, J.S. (2007). Coupling and ergodicity of adaptive MCMC.
J. Appl. Probab. 44:458-475

Saksman, E. and Vihola, M. (2010). On the ergodicity of the adaptive Metropolis
algorithm on unbounded domains. Ann. Appl. Probab. 20:2178-2203.

Vihola, M. (2011). On the stability and ergodicity of adaptive scaling Metropolis
algorithms. Stochastic Processes and Their Applications, 121:2839-2860.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Bibliography

Interacting samplers : algorithms and theory

Andrieu,, C. and Jasra, A. and Doucet, A. and Del Moral P. (2011) On nonlinear
Markov chain Monte Carlo. Bernoulli 17:987-1014.

Chauveau, D. and Vandekerkhove, P. (2001). Improving convergence of the
Hastings-Metropolis algorithm with an adaptive proposal. Scand. J. Statist.
29:13-29.

Fort, G., Moulines, E. and Priouret, P. (2012). Convergence of interacting MCMC:
ergodicity and law of large numbers. Ann. Statist. 39:3262-3289.

Fort, G., Moulines, E., Priouret, P. and Vandekerkhove, P. (2010). Convergence of
interacting MCMC: central limit theorem. submitted arXiv math.ST 1107-257

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. Com- puting
Science and Statistics: Proc. 23rd Symposium on the Interface, Interface
Foundation, Fairfax Station, VA 156-163.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with
applications to ancestral inference. J. Am. Statist. Assoc. 90:909-920.

Kou, S., Zhou, Q. and Wong, W. (2006). Equi-energy sampler with applications to
statistical inference and statistical mechanisms (with discussion). Ann. Statist.
34:1581-1619.

Marinari, E. and Parisi, G. (1992). Simulated tempering: A new Monte Carlo schemes.
Europhysics letters 19:451-458.

Schreck, A. and Fort, G. and Moulines, E. (2012). Adaptive Equi-Energy sampler:
Convergence and Illustration. To appear in ACM Transactions on Modeling and
Computer Simulation.



Adaptive and Interacting Monte Carlo methods for Bayesian analysis

Bibliography

Adaptive Importance Sampling
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Optimal scaling - to follow

I Pioneering work: About the Sym. random walk HM with Gaussian
proposal N (0,Γ), in the case

π(x1, · · · ,xd) =

d∏
k=1

f(xk) Γ =
s2

d
I

what is the optimal value for s2 ?

- Asymptotically, all the components of the chain X(d) are independent and behave as the first one {X(d)
k

(1),k ≥ 0}

- Jumps divided by d, so the clock is multiplied by d:

Z
(d)
t = X

(d)
[td]

(1)

- When d → ∞, (Z
(d)
t )t converges to a diffusion process

dZt =
√
φ(s)dBt + φ(s)

∇ log f(Zt)

2
dt.

- φ(s) is the diffusion coefficient = speed of the diffusion.

- s 7→ φ(s) is optimal at s = 2.38.
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Skeleton process obtained from a Sym. Random Walk HM chain with target N (0,I)

and proposal N (0, 2.38
2

d
I).

In the case d = 5,10 (top) and d = 30,60 (bottom).
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