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Convergence of Perturbed Gradient-based methods for non-smooth convex optimization

Problem:

argminθ∈ΘF (θ) with F (θ) = f(θ) + g(θ)

where

the function g: Rd → [0,∞] is convex, non smooth, not identically equal
to +∞, and lower semi-continuous

the function f :Rd → R is a smooth function

i.e. f is continuously differentiable and there exists L > 0 such that

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖ ∀θ, θ′ ∈ Rd

Θ ⊆ Rd is the domain of g: Θ = {θ : g(θ) <∞}.

when f and ∇f(θ) are not explicit
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

The function g

Can be evaluated, is convex but is not smooth

Typically: a constraint in the optimization problem
? optimization restricted to a set K

g(θ) ∈ {0,+∞} =

{
0 if θ ∈ K
+∞ otherwise

? Sparsity constraints

g(θ) ∝ ‖θ‖1 =

d∑
i=1

|θi|

g(θ) ∝ α
d∑
i=1

|θi|+
(1− α)

2

d∑
i=1

θ2
i
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

The function f : Ex. 1, Inference in Latent variable models

A vector of observations: Y

A vector of latent variables: U

A parametric model indexed by θ ∈ Θ

Minimize the negative log-likelihood:

f(θ) = − log

∫
p(Y|u; θ)φ(u)µ(du)

which is (usually) intractable; same thing for the gradient

∇f(θ) = −
∫
∇ log p(Y|u; θ)

p(Y, u; θ)∫
p(Y, x; θ)µ(dx)

µ(du)
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

The function f : Ex. 2, Inference in Markov Random Fields

Observations: i.i.d. samples Y1, · · · , YN from the distribution

πθ(y) =
γ(y; θ)

Zθ

with an intractable normalizing constant Zθ.

A parametric model indexed by θ ∈ Rd.

Minimize the negative log-likelihood, which is intractable

f(θ) = −
N∑
i=1

log γ(Yi; θ) +N logZθ

and with intractable gradient

∇f(θ) = −
N∑
i=1

∇θ log γ(Yi; θ) +N

∫
{∇θ log γ(Yi, θ)} πθ(du)
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

The function f : Ex.3, Learning on huge data set

Many component functions (ex. a cost function associated to each
observation)

Minimize an additive cost function

f(θ) =
1

N

N∑
i=1

fi(θ)

intractable since N is large, and same thing for its gradient

∇f(θ) =
1

N

N∑
i=1

∇fi(θ)
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

The function f : Ex.4, Online learning

Minimize a mean value

f(θ) =

∫
f̄(θ; u)π(du)

when the distribution π is unknown, and only examples/samples from π are
available online:

∇f(θ) =

∫ {
∇θ f̄(θ; u)

}
π(du)
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A first order method: the proximal gradient algorithm

The proximal-gradient algorithm (1/2)

argminθ∈Θ

 f(θ)︸︷︷︸
C1 with Lipschitz gradient

+ g(θ)︸︷︷︸
not differentiable, convex



Idea: majorization-minimization iterative method Nesterov (2004)

Since f is smooth: define a majorizing function θ 7→ Qγ(θ; θn)

f(θ) + g(θ) ≤ f(θn) + 〈∇f(θn), θ − θn〉+
1

2γ
‖θ − θn‖2 + g(θ)

where L ≤ 1/γ.

Update the current solution

θn+1 = argminθQγ(θ; θn) = argminθ

(
g(θ) +

1

2γ
‖θ − {θn − γ∇f(θn)} ‖2

)
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A first order method: the proximal gradient algorithm

The proximal-gradient algorithm (2/2)

A family of majorizing functions: for all γ ∈ (0, 1/L],

θ 7→ f(θn) + 〈∇f(θn), θ − θn〉+
1

2γ
‖θ − θn‖2 + g(θ)

All of them are equal to F (θn) at θ = θn
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We have:

F (θn+1) ≤ F (θn)

θn+1 = argminθ

(
g(θ) +

1

2γ
‖θ − {θn − γ∇f(θn)} ‖2

)
= Proxγ,g (θn − γ∇f(θn))
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A first order method: the proximal gradient algorithm

The proximal-gradient algorithm (2/2)

A family of majorizing functions: for all γ ∈ (0, 1/L],

θ 7→ f(θn) + 〈∇f(θn), θ − θn〉+
1

2γ
‖θ − θn‖2 + g(θ)

All of them are equal to F (θn) at θ = θn
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We have:

F (θn+1) ≤ F (θn)

θn+1 = argminθ

(
g(θ) +

1

2γn+1
‖θ − {θn − γn+1∇f(θn)} ‖2

)
= Proxγn+1,g (θn − γn+1∇f(θn))
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A first order method: the proximal gradient algorithm

In practice

θn+1 = Proxγn+1,g(θn − γn+1∇f(θn))

A gradient step w.r.t. the smooth part of f + g

A correction mecanism through the ”prox” operator

? when g is the indicator of K

θn+1 = ProjK (θn − γn+1∇f(θn))

? when g is the elastic net penalty

θn+1 = (componentwise soft-thresholding of θn − γn+1∇f(θn))

In practice, it may happen that

? the gradient is not explicit but an approximation is available.
? the Prox operator is not explicit.
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A first order method: the proximal gradient algorithm

When the gradient can not computed

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

Run a Perturbed Proximal-Gradient Algorithm

θn+1 = Proxγn+1,g (θn − γn+1 Hn+1)

= Proxγn+1,g (θn − γn+1 {∇f(θn) + ηn+1})

Questions:

Conditions on ηn+1, γn for the convergence of the algorithm

Rates of convergence

When Hn+1 is a Monte Carlo sum
? how many points at each iteration (fixed/increasing batch size;
constant/increasing number of draws)
? how to choose the stepsize γn : constant or decreasing ?



Convergence of Perturbed Gradient-based methods for non-smooth convex optimization

A first order method: the proximal gradient algorithm

When the gradient can not computed

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

Run a Perturbed Proximal-Gradient Algorithm

θn+1 = Proxγn+1,g (θn − γn+1 Hn+1)

= Proxγn+1,g (θn − γn+1 {∇f(θn) + ηn+1})

Questions:

Conditions on ηn+1, γn for the convergence of the algorithm

Rates of convergence

When Hn+1 is a Monte Carlo sum
? how many points at each iteration (fixed/increasing batch size;
constant/increasing number of draws)
? how to choose the stepsize γn : constant or decreasing ?



Convergence of Perturbed Gradient-based methods for non-smooth convex optimization

A first order method: the proximal gradient algorithm

When the gradient can not computed

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

Run a Perturbed Proximal-Gradient Algorithm

θn+1 = Proxγn+1,g (θn − γn+1 Hn+1)

= Proxγn+1,g (θn − γn+1 {∇f(θn) + ηn+1})

Questions:

Conditions on ηn+1, γn for the convergence of the algorithm

Rates of convergence

When Hn+1 is a Monte Carlo sum
? how many points at each iteration (fixed/increasing batch size;
constant/increasing number of draws)
? how to choose the stepsize γn : constant or decreasing ?



Convergence of Perturbed Gradient-based methods for non-smooth convex optimization

Convergence of the Perturbed Proximal Gradient algorithm

Outline

Examples of problems of the form: argminθ{f(θ) + g(θ)}

A first order method: the proximal gradient algorithm

Convergence of the Perturbed Proximal Gradient algorithm
A deterministic result
Case of (possibly biased) Monte Carlo approximation

Rates of convergence

Acceleration

References



Convergence of Perturbed Gradient-based methods for non-smooth convex optimization

Convergence of the Perturbed Proximal Gradient algorithm

A deterministic result

A deterministic result for the convergence of {θn, n ≥ 0}

Set
L = argminΘ(f + g) ηn+1 = Hn+1 −∇f(θn)

Theorem (Atchadé, F., Moulines (2015))

Assume

1 g convex, lower semi-continuous.

2 f convex, lipschitz gradient.

3
∑
n γn = +∞

4 Convergence of the series∑
n

γ2
n+1‖ηn+1‖2,

∑
n

γn+1ηn+1,
∑
n

γn+1 〈Sn, ηn+1〉

where Sn = Proxγn+1,g(θn − γn+1∇f(θn)).

Then there exists θ? ∈ L such that limn θn = θ?.
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Convergence of the Perturbed Proximal Gradient algorithm

Case of (possibly biased) Monte Carlo approximation

Result available for both deterministic and stochastic perturbations

If stochastic perturbations: both biased and unbiased approximation of
∇f(θn)

Sketch of proof:

1 For any minimizer θ? of F

‖θn+1−θ?‖2 ≤ ‖θn−θ?‖2−γn+1 (F (θn+1)−minF )+γn+1noisen+1 (1)

2 Use a (deterministic) Siegmund-Robbins lemma:
If ∑

n

γn =∞,
∑
n

γn+1 noisen+1 <∞

then the limiting points of {θn, n ≥ 0} are minimizers of F .

3 Use again (1) to show the convergence of {θn}n to a minimizer of F .
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Convergence of the Perturbed Proximal Gradient algorithm

Case of (possibly biased) Monte Carlo approximation

Case of a Monte Carlo approximation

When

∇f(θ) =

∫
Hθ(x)πθ(dx)

replace ∇f(θn) by a Monte Carlo approximation

ηn+1 =
1

mn+1

mn+1∑
j=1

Hθn(Xn+1,j)−∇f(θn)

where {Xn+1,j , j ≥ 0} is a Markov chain with inv. dist. πθn

with an increasing number of samples mn+1 and a step-size γn s.t.∑
n

γn+1 = +∞,
∑
n

γ2
n+1

mn+1
<∞,

∑
n

γn+1

mn+1
<∞ when biased approx.

or with a constant number of samples mn+1 = m and a decreasing
step-size γn s.t.∑
n

γn+1 = +∞
∑
n

γ2
n+1 <∞, + ergodicity cond. on the chains
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Rates of convergence

A deterministic result

For non negative weights ak

n∑
k=1

ak{F (θk)−minF} ≤ Un(θ?)

Theorem (Atchadé, F., Moulines (2016))

For any θ? ∈ L,

Un(θ?) =
1

2

n∑
k=1

(
ak
γk
− ak−1

γk−1

)
‖θk−1 − θ?‖2 +

a0

2γ0
‖θ0 − θ?‖2

−
n∑
k=1

akγk‖ηk‖2 −
n∑
k=1

ak 〈Sk−1 − θ?, ηk〉
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Rates of convergence

Case of a Monte Carlo approximation

When

∇f(θ) =

∫
Hθ(x)πθ(dx) ≈ 1

mn+1

mn+1∑
j=1

Hθn(Xn+1,j)

From the previous result, convergence rates in expectation, in Lq, · · · : e.g.

with mn = m and γn = O(1/
√
n)∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq
≤
∥∥∥ 1

n

n∑
k=1

F (θk)−minF
∥∥∥
Lq

= O

(
1√
n

)

with mn ∼ n and γn = γ∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq
≤
∥∥∥ 1

n

n∑
k=1

F (θk)−minF
∥∥∥
Lq

= O

(
lnn

n

)
but · · · with O(n2) Monte Carlo samples.
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Rates of convergence

Case of a Monte Carlo approximation
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Acceleration

Accelerated Proximal Gradient algorithm

Similarly to the Nesterov acceleration of the gradient algorithm (1983),

θn+1 = Proxγn+1,g (τn − γn+1∇f(τn))

τn = θn +
tn−1 − 1

tn
(θn − θn−1)

where tn is a positive sequence s.t.

γn+1tn(tn − 1) ≤ γnt2n−1

The rate of convergence of the exact Proximal-Gradient algorithm:

F (θn)−minF = O

(
1

n

)
For the Accelerated Proximal-Gradient algorithm Beck and Teboulle, 2009, the rate is

F (θn)−minF = O

(
1

n2

)
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Acceleration

Perturbed Accelerated Proximal Gradient Algorithm

Sufficient conditions on the stepsizes γn, the coefficient tn and on the
perturbation

ηn+1 = Hn+1 −∇f(τn)

for the convergence of {θn, n ≥ 0}

Rate of convergence:

? deterministic case: F (θn+1)−minF = O(t−2
n γ−1

n+1)

? Monte Carlo case, with γn = γ, tn = O(n), mn ∼ n3:

E [F (θn)]−minF = O

(
1

n2

)
but · · · after n4 Monte Carlo samples

? (works in progress)
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