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Examples of adaptive MCMC samplers

I. Examples of adaptive and interacting MCMC samplers

1. Adaptive Hastings-Metropolis algorithm [Haario et al. 1999]

2. Equi-Energy algorithm [Kou et al. 2006]

3. Wang-Landau algorithm [Wang & Landau, 2001]
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Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

I Symmetric Random Walk Hastings-Metropolis algorithm

Goal: sample a Markov chain with known stationary distribution π on Rd (known up

to a normalizing constant)

Iterative mecanism: given the current sample Xn,

propose a move to Xn + Y Y ∼ q(· −Xn)

accept the move with probability

α(Xn, Xn + Y ) = 1 ∧
π(Xn + Y )

π(Xn)

and set Xn+1 = Xn + Y ; otherwise, Xn+1 = Xn.

Design parameter: how to choose the proposal distribution q ?

For example, in the case q(· − x) = Nd(x; θ) how to scale the

proposal i.e. how to choose the covariance matrix θ ?
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Adaptive Hastings-Metropolis algorithm

“goldilock principle”

Too small, too large, better variance
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Adaptive Hastings-Metropolis algorithm

I Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Gelman et al. 1996; · · · ] when the proposal is Gaussian Nd(x, θ), choose θ

as the covariance structure of π [Haario et al. 1999]: θ ∝ Σπ . In practice, Σπ

is unknown and this quantity is computed “online” with the past samples of the

chain

θn+1 =
n

n+ 1
θn +

1

n+ 1

n
(Xn+1 − µn+1)(Xn+1 − µn+1)T+κ Idd

o
where µn+1 is the empirical mean. κ > 0, prevent from badly scaled matrix

OR such that the mean acceptance rate converges to α? [Andrieu & Robert 2001]. In

practice this θ is unknown and this parameter is adapted during the run of the

algorithm

θn = τnId with log τn+1 = log τn + γn+1 (αn+1 − α?)

where αn is the mean acceptance rate.

OR · · ·
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Adaptive Hastings-Metropolis algorithm

I In practice, simultaneous adaptation of the design parameter and simulation.

Given the current value of the chain Xn and the design parameter θn

Draw the next sample Xn+1 with the transition kernel Pθn (Xn, ·).

Update the design parameter: θn+1 = Ξn+1(θn, Xn+1, ·).

I In this MCMC context, we are interested in the behavior of the chain {Xn, n ≥ 0}
e.g.

Convergence of the marginals: E [f(Xn)]→ π(f) for f bounded.

Law of large numbers: n−1
Pn
k=1 f(Xk)→ π(f) (a.s. or P)

Central limit theorem

but

we have πPθ = π for any θ: all the transition kernels have the same inv.

distribution π

so, stability / convergence of the adaptation process {θn, n ≥ 0} is not the main

issue.
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Equi-Energy sampler

Equi-Energy sampler

I Proposed by Kou et al. (2006) for the simulation of multi-modal density π.

How to define a sampler that both allows

local moves for a local exploration of the density.

and large jumps in order to visit other modes of the target ?

I Idea: (a) build an auxiliary process that moves between the modes far more easily

and (b) define the process of interest

by running a “classical” MCMC algorithm

and sometimes, choose a value of the auxiliary process as the new value of the

process of interest: draw a point at random + acceptation-rejection mecanism

How to define such an auxiliary process ? Ans.: as a process with stationary

distribution πβ (β ∈ (0, 1)), a tempered version of the target π.
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Equi-Energy sampler

I On an example: a K-stage Equi-Energy sampler.
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Equi-Energy sampler

I Algorithm: (2 stages) Repeat:

Update the adaptation process

θn =
1

n

n−1X
k=0

δYk

where {Yn, n ≥ 0} is the auxiliary process with stationary distribution πβ .

Update the process of interest with transition : Xn+1 ∼ Pθn (Xn, ·) where

Pθn (x,A) = (1−ε)P (x,A)+ε

8>><>>:
Z
A

α(x, y)| {z }
accept/reject mecanism

θn(dy) + δx(A)

Z
(1− α(x, y))θn(dy)

9>>=>>;

I In this example, πPθ 6= π BUT πPπβ = π i.e. asymptotically, when θn

“is” πβ , the process of interest {Xn, n ≥ 0} behaves like a Markov chain with

invariant distribution π.

In this MCMC context, we are again interested in the behavior of {Xn, n ≥ 0} but

convergence of θn is crucial since the algorithm is designed to “sample from π” only

when θn = πβ .
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Wang-Landau algorithm

Wang-Landau algorithm

I Proposed by Wang & Landau (2001) to favor the moves between elements of a

partition of the state space, when the weights of these elements are unknown.

Goal:

sample a chain on
Qd
i=1(Xi × {i}) with stationary distribution

Π(Ai × {i}) =
1

d

Z
Ai

hi(x)

θ?(i)
1Xi

(x) dx ,

when θ? is unknown

and/ or estimate the normalizing constants θ?(i).

Tool :

A family of transition kernels Pθ on
Qd
i=1(Xi × {i})

where θ = (θ(1), · · · , θ(d)) is a probability on {1, · · · , d}
with invariant distribution known up to a normalizing constant

Πθ(Ai × {i}) =

0@ dX
j=1

θ?(j)

θ(j)

1A−1 Z
Ai

π(x)

θ(i)
1Xi

(x) dx ,
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Wang-Landau algorithm

I Algorithm: repeat

Draw (Xn+1, In+1) ∼ Pθn ((Xn, In), ·)

Update the adaptation process

θn+1(i) ∝ θn(i) + γn+1θn(i)1In+1 (i)

I In this MCMC context, we are also interested in the convergence of the sequence

{θn, n ≥ 0}: at a first order,

θn+1(i) ≈ θn(i) + γn+1θn(i)
“
1In+1 (i)− θn(In+1)

”
and when (Xn, In) ∼ Πθn

E
»
θn(i)

„
1In+1

(i) − θn(In+1)
«
|Fn

–
=

0@ dX
j=1

θ?(j)

θn(j)

1A−1

(θ?(i) − θn(i))

i.e. {θn, n ≥ 0} should converge to θ? !
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Conclusion

Conclusion (I)

In adaptive MCMC,

given a family of transition kernels {Pθ, θ ∈ Θ}

ergodic with invariant distribution πθ

we define a bivariate process {(Xn, θn), n ≥ 0} such that

P (Xn+1 ∈ ·|Fn) = Pθn (Xn, ·)

θn is updated s.t. it should converge to θ?

Two cases: πθ = π for any θ OR πθ? = π.

What kind of conditions on the adaptation mecanism, in order the process

{Xn, n ≥ 0} to converge to the target distribution π ?

In the sequel, “convergence” means “ convergence of the marginals”

E [f(Xn)]→ π(f) f bounded
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Conclusion

Conclusion (II)

Trois exemples illustrant des situations différente :

1 Hastings Metropolis adaptatif :

tous les noyaux Pθ ont même mesure invariante π.

2 Equi-Energy sampler :

Chaque noyau Pθ a sa propre mesure invariante πθ .

On sait que πθ existe mais on n’a pas d’expression explicite (régularité en θ · · · )

3 Wang-Landau :

Chaque noyau Pθ a sa propre mesure invariante πθ .

On a l’expression de πθ (en fonction de θ).
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II. Convergence of adaptive / interacting MCMC samplers

(Joint work with E. Moulines (Telecom ParisTech, France) and P. Priouret (Paris VI, France))
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L’adaptation peut détruire la convergence

L’adaptation peut détruire la convergence

I Consider a family of transition kernels on {0, 1}:

Pθ =

 
1− θ θ

θ 1− θ

!
θ ∈ (0, 1)

Then, for any θ ∈ (0, 1), πPθ = π with π = (1/2; 1/2).

I Choose t0, t1 ∈ (0, 1). Define the adaptive process:(
Xn+1 ∼ Pθn (Xn, ·)
θn+1 = tXn+1

Then, the transition kernel is

 
1− t0 t0

t1 1− t1

!
and the invariant distribution is π ∝ (t1, t0).
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Conditions for convergence of the marginals

Conditions pour la convergence

On écrit

E [f(Xn)]− π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− πθn−N (f)
i
+ E

h
πθn−N (f)

i
− π(f)

Soit trois groupes de conditions

1 Terme 1 : dû à l’adaptation: comparaison du processus adapté à une châıne

“gelée” (que l’on n’adapte plus).

2 Terme 2 : ergodicité des noyaux de transitions Pθ.

3 Terme 3 : uniquement si πθ 6= π; c’est le plus délicat · · · surtout lorsque

l’expression de πθ n’est pas connue.
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Conditions for convergence of the marginals

E [f(Xn)]− π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− πθn−N (f)
i

+ E
h
πθn−N (f)

i
− π?(f)

I [Terme 3] quand πθ 6= π?, conditions pour limn πθn (f) = π?(f)

Puisque

πθ?+∆(f)− πθ? (f) = πθ? (Pθ?+∆ − Pθ? ) (I − Pθ? )−1 (I − πθ? ) (f) + “Reste”

la convergence de {πθn (f), n ≥ 0} vers πθ? (f) est une conséquence de la

convergence des noyaux Pθn vers Pθ? .

Cas favorable : convergence en “norme opérateur”.

Sinon : résultats plus fins! Par exemple, si on sait que

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A)

que peut-on en déduire sur limn πθn (f) ?
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Conditions for convergence of the marginals

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A) .

the steps are:
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Conditions for convergence of the marginals

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·)

↪→ Tool: separable metric space X (ex. Polish)
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Conditions for convergence of the marginals

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω
′
) = 1 ∀ω ∈ Ω

′
, x ∈ X lim

n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·) ,

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ?f, θ ∈ Θ}



Stochastic approximation for adaptive Markov chain Monte Carlo algorithms

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω
′
) = 1 ∀ω ∈ Ω

′
, x ∈ X lim

n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·) ,

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ?f, θ ∈ Θ}

∃Ω?, P(Ω?) = 1 ∀ω ∈ Ω? lim
n
P
k
θn(ω)(x, ·)

D−→ P
k
θ?

(x, ·) ,

↪→ Tool: Feller properties of the kernels {Pθ, θ ∈ Θ}
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Conditions for convergence of the marginals

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n
Pθn(ω)(x,A) = Pθ? (x,A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω
′
) = 1 ∀ω ∈ Ω

′
, x ∈ X lim

n
Pθn(ω)(x, ·)

D−→ Pθ? (x, ·) ,

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ?f, θ ∈ Θ}

∃Ω?, P(Ω?) = 1 ∀ω ∈ Ω? lim
n
P
k
θn(ω)(x, ·)

D−→ P
k
θ?

(x, ·) ,

↪→ Tool: Feller properties of the kernels {Pθ, θ ∈ Θ}
Then

|πθn (f)− πθ? (f)| ≤ |Pkθnf(x)− πθn (f)|+ |Pkθ?f(x)− πθ? (f)|+
˛̨̨
P
k
θn
f(x)− Pkθ?f(x)

˛̨̨
↪→ Tool: ergodicity
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Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

E [f(Xn)]− π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− πθn−N (f)
i

+ E
h
πθn−N (f)

i
− π(f)

I [Terme 2] condition on the ergodicity of the transition kernels “Usually”, the

transition kernels {Pθ, θ ∈ Θ} are geometrically ergodic :

sup
f,|f |∞≤1

|Pnθ f(x)− πθ(f)| ≤ Cθ ρnθ V (x) ρθ ∈ (0, 1)

BUT the rate of convergence may depend upon θ · · · in such a way that

ρθ → 1 when θ → ∂Θ .

Therefore, the rate at which θn → ∂Θ has to be controlled.
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Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

En pratique,

le contrôle de l’ergodicité se fait via des conditions de drift + minoration

Si

PθV ≤ λθV + bθ Pθ(x, ·) ≥ δθνθ(·)

alors

‖Pnθ (x, ·)− πθ‖TV ≤ Cθ ρnθ V (x)

où

Cθ ∨ (1− ρθ)
−1 ≤ C

“
bθ ∨ δ−1

θ ∨ (1− λθ)
−1
”3

et la non-détérioration de ce contrôle quand θ → ∂Θ se règle au cas par cas

imposer que le paramètre θ “reste loin des bords” (reprojection dans un compact par

ex.)

laisser vivre la procédure d’adaptation mais contrôler la croissance [Vihola & Saksman,

2010], [Vihola, 2010]

Ex. pour HM adaptatif, [Vihola & Saksman, 2010] montrent que

Cθ ∨ (1− ρθ)
−1 ≤ c

√
detθ

∀τ > 0, n
−τ |θn| < +∞ p.s.
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où

Cθ ∨ (1− ρθ)
−1 ≤ C

“
bθ ∨ δ−1

θ ∨ (1− λθ)
−1
”3
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2010], [Vihola, 2010]
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Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

E [f(Xn)]− π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− πθn−N (f)
i

+ E
h
πθn−N (f)

i
− π(f)

I [Terme 1] condition sur le mécanisme d’adaptation

since˛̨̨
E
h
f(Xn)− PNθn−N f(Xn−N )

i˛̨̨

≤
N−1X
j=1

(N − j)E

266664sup
x

‚‚‚Pθn−N+j (x, ·)− Pθn−N+j−1 (x, ·)
‚‚‚

TV| {z }
“distance” between two successive transition kernels

377775
Therefore, the adaptation has to be diminishing.
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Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

Adaptation and Ergodicity

E [f(Xn)] − π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− π(f)
i

I Example: Xn+1 ∼ Pθn (Xn, ·) θn = n−1/4 Pθ =

 
1− θ θ

θ 1− θ

!
In this case, since θn → 0˛̨̨

E
h
P
N
θn−N

f(Xn−N )− π(f)
i˛̨̨
≤ |1− 2θn−N |N → 1 N is fixed

Therefore, we choose N depending upon n: Nn → +∞ and the adaptation has to be

such that

Nn−1X
j=1

(Nn − j)E

26664sup
x

‚‚‚Pθn−Nn+j (x, ·)− Pθn−Nn+j−1 (x, ·)
‚‚‚

TV| {z }
“distance” between two successive transition kernels

37775→ 0

↪→ The “rate” of adaptation depends on the ergodic behavior of the transition kernels
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Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

Adaptation and Ergodicity

E [f(Xn)] − π(f) = E
h
f(Xn)− PNθn−N f(Xn−N )

i
+ E

h
P
N
θn−N

f(Xn−N )− π(f)
i

I Example: Xn+1 ∼ Pθn (Xn, ·) θn = n−1/4 Pθ =

 
1− θ θ

θ 1− θ

!
In this case, since θn → 0,˛̨̨

E
h
P
Nn
θn−Nn

f(Xn−Nn )− π(f)
i˛̨̨
≤ |1− 2θn−Nn |

Nn → 0 for convenient Nn

Therefore, we choose N depending upon n: Nn → +∞ and the adaptation has to be

such that

Nn−1X
j=1

(Nn − j)E

26664sup
x

‚‚‚Pθn−Nn+j (x, ·)− Pθn−Nn+j−1 (x, ·)
‚‚‚

TV| {z }
“distance” between two successive transition kernels

37775→ 0

↪→ The “rate” of adaptation depends on the ergodic behavior of the transition kernels
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Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

III. Conclusion
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Conclusion

Tools for convergence of adaptive MCMC samplers

1 Markov chain theory (ergodicity, Poisson equation, · · · )

2 Stochastic approximation (stability/convergence, control of “non-stability”)

I When the transition kernels have the same invariant distribution π

Ergodicity of transition kernels.

Diminishing adaptation

Ex. convergence of {θn, n ≥ 0} is not required BUT the control of “divergence to ∂Θ” in needed

I When they have their own invariant distribution and πθ? = π.

Ergodicity, Diminishing adaptation

Convergence of θn to θ?
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Ergodicity of transition kernels.
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Ergodicity, Diminishing adaptation

Convergence of θn to θ?
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Conclusion

Procédures d’approximation stochastique

Est-il nécessaire de modifier l’adaptation pour que la procédure d’approximation

stochastique

soit récurrente

soit p.s. bornée (stabilité)

converge vers l’ensemble d’intérêt.

par exemple en introduisant

une reprojection sur un compact fixe

une reprojection sur des compacts croissants

...

doublée d’une “troncation” de la châıne

↪→ pas toujours utile de forcer la récurrence / stabilité puisqu’on sait s’accomoder

d’une non-stabilité du paramètre · · ·
↪→ travaux de recherche en cours pour éviter ces reprojections / troncations.
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Y. Atchadé, G. Fort. Stoch. Processes Appl., 2010.

G. Fort, E. Moulines, P. Priouret. Preprint, 2010.

3 Convergence of some adaptive MCMC

C. Andrieu, A. Jasra, A. Doucet, P. DelMoral Preprint 2007
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