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We introduce
> a transformation of the Markov chain — continuous time process

» such that the stability of this process, is related to the ergodicity of
the Markov chain.

When applied to MCMC,

» the dynamic of this transformation depends upon the design
parameters of the algorithm;

» = learn from the dynamic, how to tune the design parameters.

Introduction
Theoretical results on the fluid limit

Tuning the design parameters for the Metropolis within Gibbs



We introduce
> a transformation of the Markov chain — continuous time process

» such that the stability of this process, is related to the ergodicity of
the Markov chain.

When applied to MCMC,

» the dynamic of this transformation depends upon the design
parameters of the algorithm;

» = learn from the dynamic, how to tune the design parameters.
— Outline of the talk
Introduction
Theoretical results on the fluid limit

Tuning the design parameters for the Metropolis within Gibbs



Fluid Limit : definition (1)

Let {®x, k > 0} be a Markov chain, on X (X =R9).
— Family of rescaled process 7,., for r > 0
(i) in the initial point : 0 (0;2) = 1&g =z, Oy =rz
(ii) in time and space : Nt ) = 2@ 4y
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Fluid Limit : definition (1)

Let {®4,k > 0} be a Markov chain, on X (X =R9).

— Family of rescaled process 7,., for > 0

(i) in the initial point : 0 (0;2) = 1&g =z, Oy =rz
(ii) in time and space : Nt ) = 2@ 4y
1 1
ie. n(hz)=—-P on [E, —(k + )>
r r’oor

— Distributions
- P, : distribution of {®y, k > 0} with initial distribution ¢,,.
- Q2 : image prob. of P, by 7,,
prob. on D(R+,X) the space of cad-lag functions R — X
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Fluid Limit : definition (I1)
< Definition @, probability on D(R™, X) - for z € X, is a fluid limit if
there exist scaling factors r,, — 400 such that

Qy,,;» converges weakly to Q.

— Existence

Opy = O+ E [q)k+1|fk] — &+ P — E [(I)k+1|]:k]
= B+ Eg [Ppyr — Ppl Fi] + (Prg1 — Eo [Prsa [Fi]) -
A(Cpk) €p41 martingale increment

» ReSult (Fort et al, 2007)
If

- dp>1, lmg —yoe SUPLex B [l€1PXje, > 5] — 0.
- 0 < supgex |A(z)] < oc.
Then
- Va,r, — 400, 3 subsequ. {ry,} s.t. an]_ z = Qy
- Qg prob. on the space of continuous functions.



Ex. : Plot of n,(-,z) on [0, 7], for diff. = on the unit sphere
» Random Walk Hastings-Metropolis on R?
| 4 Target dIStrIbUtlon m(xq, xg) o< (1 + z% + cc% +w§z%)exp(—(z% +m%))
» Gaussian proposal : ¢ ~ N(0,4)
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Ex. : Plot of n,(-,z) on [0, 7], for diff. = on the unit sphere
» Random Walk Hastings-Metropolis on R?
» Target distribution m oc NV5(0,T'1) + A(0,T'2)
» Gaussian proposal : ¢ ~ N(0,T)
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Level curves of and  r=100, r=1000, r=5000



Ex. : Draws from Q. for diff.  on the unit sphere

» Metropolis within Gibbs on R?
» Target distribution 7 = (mixture of) A
» Gaussian proposal : ¢; ~ N(0,¢) and w; = 0.5.

Level curves of w1 and  realizations of the fluid limit



Existence (1)

Opy1 =P +E[Ppyy — Pp|Fi] + €1 = P + A(P) + €xp1-

— Sufficient conditions :
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> 0 < sup,ex |A(z)| < oo
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Existence (1)

Qi1 =P, +E[Qpy1 — Pp|Fi] + €1 = O + A(Pr) + €y

— Sufficient conditions :
> dp>1, Mg —too SUPLex Ba [l€1[PX)e 5 k] — 0.
> 0 < sup,ex |A(z)| < oo

— Extension :
» IBE[0,1A(p—1), 0<supyex|zl? |A(z)] < 0.
In that case, change the definition of the re-scaled process :

P gr140

Nrp(t;x) = Nr3(0;2) = .

r



— Example : RWHM chains

Ppy1 =P + ]E[q)kJrl — (I)k|.7:k] + ex+1 = P + A((I)k) + €ky1-

> Eflers1[P] — E[|@pr1 — i) :
p-moment of the proposal distribution q.



— Example : RWHM chains

Ppy1 =P + ]E[(I)k+1 — (I)k|.7:k] + ex+1 = P + A((I)k) + €ky1-

> Eflers1[P] — E[|@pr1 — i) :
p-moment of the proposal distribution q.
» Since

A(w) = /{ I (% - 1) a(y)dy,

(=0, and p-moment of the proposal distribution ¢.
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Stability

— Stable fluid limit model : if there exist T > 0 and p < 1 s.t. for any =
on the unit sphere,

Q. (n € DR, X), nf [3(0)| < p) Y

» Result ort et a1, 200m

If
- {®y,k > 0} is phi-ireducible and aperiodic; and compact
sets are petite.
- fluid limit model exists and is stable,
Then the Markov chain is (f, r)-ergodic

(n+1)q—1 Sup |Ez[f(q)n)] - ’/T(f)| ——n—+4oo 07 1 < q < p-
{£1fIS1+|z|P—a}



Characterisation : case 1
» If
- 3 h continuous s.t. for any compact set H of X\ {0},

lim sup|A(rz) — h(z)| = 0.
z€H

r—-+00

- the ODE  fi= h(u) is stable.
Then the fluid limit model is stable.



Characterisation : case 1
» If
- 3 h continuous s.t. for any compact set H of X\ {0},

lim sup|A(rz) — h(z)| = 0.
z€H

r—400

- the ODE  fi= h(u) is stable.
Then the fluid limit model is stable.
» Example : RWHM

m(x1,w2) o (1+ 2f + 23 + xY23) exp(— (2] + 23))
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Level curves of 7 and Rejection area and the fields A, h and realizations of the fluid limit




Characterisation : case 2a
» If
- 3 h continuous s.t. for any compact set H of cone of
X\ {0},
lim sup |A(rz) — h(z)| = 0.

T=+00 yeH

- the ODE = h(p)  started in the cone is stable.

- the cone is “ attractive”.

Then the fluid limit model is stable.



Characterisation : case 2a
» If
- 3 h continuous s.t. for any compact set H of cone of
X\ {0},
lim sup |A(rz) — h(z)| = 0.

T=+00 yeH

- the ODE = h(p)  started in the cone is stable.

- the cone is “ attractive”.

Then the fluid limit model is stable.
» Example : RWHM
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Characterisation : case 2b (X = R?)
>

X =, 0o UUg {=, fho =0}
-3 X, s.t. for any compact set H of O,

lim sup|A(rz) — 3u| = 0.

r—400 z€eH

- “attractive” hyperplanes.
Then the fluid limit model is stable.



Characterisation : case 2b (X = R?)
>

X =, 0o UUg {=, fho =0}
-3 X, s.t. for any compact set H of O,

lim sup|A(rz) — 3u| = 0.
r—400 z€H
- “attractive” hyperplanes.

Then the fluid limit model is stable.
» Example : RW Metropolis within Gibbs

Level curves of 7 and fluid limits when wy = 0.25 and fluid limits when wy = 0.5




Characterisation : Conclusion / Perspectives

» Characterisation based on the radial behavior of
A(:L‘) = IEac[(I)l - QO].

lim sup|A(rz) — h(z)| =0,

=400 zeH

for all compact subset H C 7 —— quite complex.



Characterisation : Conclusion / Perspectives

» Characterisation based on the radial behavior of
A(:E) = IEac[q:'l - QO].

lim sup|A(rz) — h(z)| =0,

=400 zeH

for all compact subset H C 7 —— quite complex.

> Deterministic ﬂuid |imit more or less everywhere SinCe

@ t 1+8
rp(tie) = —— (03 2) =
with 0 < 6 < 1.

When ,8 == ]. — dlfFuSlOn (work in progress, M. Bédart and E. Moulines).



The design parameters

— At each iteration,
» Choose a component i € {1,---,d} with probability w;.
» Update the i-th component with a RW move, with distribution ¢;.



The design parameters

— At each iteration,
» Choose a component i € {1,---,d} with probability w;.
» Update the i-th component with a RW move, with distribution ¢;.

< Design parameters when Gaussian proposal

» Selection weights : wq, -+ ,wqy.

» Variances of the Gaussian proposals : o7, ,03.



Radial behavior of A (1)

m(x + ye;
Ai(z) = w; / Yy (w - 1) a:(y) dy.
{yeR,m(z+ye;)<m(x)} m(z)

— For the target densities 7 in the class
climy oo [VInm(rz)| = +oo.

- £ given by lim, 4o lg};‘—m ={(z) is
continuous.



Radial behavior of A (1)

m(x + ye;
Ai(z) = w; / Yy (w - 1) a:(y) dy.
{yeR,m(z+ye;)<m(x)} m(z)

— For the target densities 7 in the class
climy oo [VInm(rz)| = +oo.
- £ given by By oo o220 — p(g) is

i [Vinz(rz)] —
continuous.

— As r — +o00

Wi 04

s

Aulra) — sign(6(@) i [ vy = sign((2)



Radial behavior of A (I1)

— This implies
» The radial limit depends upon the design parameters through the
product w;o;.
» The radial limit is constant on the sets

On = {x,sign(4(z)) = va}
where v, € {-1,1}%.



Radial behavior of A (I1)

Ai (rx) I Slgn(&(l‘)) \/ﬂ .

— This implies
» The radial limit depends upon the design parameters through the
product w;o;.
» The radial limit is constant on the sets

Ou = {z,sign(€(z)) = 7a}
where v, € {-1,1}%.

< Example : RW MwG, 7 ~ N3(0,T)




Piecewise Linear Fluid limits
< Linear till the first time it reaches 9[U%_;0,]
» Va € O,,

vt < T(x) nt)=xz+1t yaowoo, Qg —as.

where T'(x) : hitting-time of 90,



Piecewise Linear Fluid limits

< Linear till the first time it reaches 9[U%_;0,]
> Vz e O,,

vt < T(x) nt)=x+t yuowoo, Qg —as.

where T'(x) : hitting-time of 90,

— Attractive boundaries (Results in the case : d — 2 and boundaries are hyperplanes)

» If the reached boundary is “attractive”, the fluid limit is trapped on
the boundary.

» Example : RW MwG, 7 ~ N>(0,T)

gm0




Stability of the fluid limit

— Stable attract“/e bOU ndarieS (Results in the case : d = 2 and boundaries are hyperplanes)
» The fields in the neighborhood of the boundaries, “point” towards the
origin.

» Example : RW MwG, 7 ~ N>(0,T).
Any attractive boundary is stable.



Adaptive strategies : state-dependent design parameters

Since the fluid limit depends upon the design parameters through  w;o;,
Strategy 1. Fix w; =1/d and choose o;(z).
Strategy 2. Fix o, =¢ and choose w;(x).



Adaptive strategies : state-dependent design parameters

Since the fluid limit depends upon the design parameters through  w;o;,
Strategy 1. Fix w; =1/d and choose o;(z).
Strategy 2. Fix 0; = ¢ and choose w;(x).

Choose

e (@) = lim ()
[wio:](x) |€i(x)] li(z) lr [Vinz(rz)|

so that in both strategies, the fluid limit «— ODE f1= h(u) with

e (2) =l Vi)
h(z) = {(z) ti(z) fir |VInn(rz)l




Ex. : FIUld IlmltS [left] non-adaptive [right] adaptive
» When 7 ~ N5(0,T) I’y diagonal

» When 7 ~ N5(0,T5) I'; non-diagonal

» When 7 ~ NQ(O,Fl) +./\/2(0,F2)




Assessing efficiency (1)

« Criterion 1 : Based on the Limit fluid and on the time the fluid limit
started on the unit sphere, enters a ball of radius p €]0, 1].

» Example
x-axes : polar coordinate of the initial value.
y-axes : hitting-time.

fOr the th ree a|g0rlthms Adaptive strategy  Non-Adaptive, w1 = 0.25 Non-Adaptive, wi = 0.5
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7 ~ No(0,T';) Ty diagonal 7 ~ N2 (0,T3) I'y non diagonal 7w~ N2(0,T1) + N2(0,T3)



Assessing efficiency (1)
< Criterion 2 : Based on the Markov chain and the hitting-time of the
“center of the space” when started “far” from the center.

» Example : m ~ N3(0,T) d=38
T : diagonal, with entries T'; ; ~ £(1).
5000 adaptive chains, started from z € {z'I'"'z = d}.

x-axes : hitting-time of the ball of radius V/d with the Strat 1 (st o)
y-axes : hitting-time of the ball of radius V/d with the Strat 2 (s «)

Suategy 2
s 5 8 % 8 8§ &8




» Example : m ~ N3(0,T) d=38
I" : diagonal, with entries I'; ; ~ £(1).
5000 adaptive chains, started from z € {z'I'"'z = d}.

z-axes : hitting-time of the ball of radius v/d with the non-adaptive

strategy
y-axes : hitting-time of the ball of radius V/d with the Strat 2 (s «)




Conclusion

1. Normalisation : how does the chain behave when started far in the
tails ?
normalisation NOT as in roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007),

Bédard (2007), - - -
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Conclusion

1.

Normalisation : how does the chain behave when started far in the
tails ?
normalisation NOT as in roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007),

Bédard (2007), - - -

. To prove ergodicity : fluid Limit or Drift techniques?
. Based on the fluid limit, modify the chain

3.1 state-dependent procedures more efficient.
3.2 adapt the weights w; or the standard deviations o;.
3.3 0y = Cst : which constant ? [work in progress]



Fluid limit-based tuning of some hybrid MCMC samplers
I—Tuning the design parameters for the Metropolis within Gibbs

Conclusion

Conclusion
1. Normalisation : how does the chain behave when started far in the
tails ?

normalisation NOT as in Roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007),
Bédard (2007), - - -
2. To prove ergodicity : fluid Limit or Drift techniques?
3. Based on the fluid limit, modify the chain
3.1 state-dependent procedures more efficient.

3.2 adapt the weights w; or the standard deviations ;.
3.3 0y = Cst : which constant ? [work in progress]

Talk based on the papers
- G. Fort, S. Meyn, E. Moulines and P. Priouret. The ODE
method for the stability of skip-free Markov
Chains with applications to MCMC. To be published,
Ann. Appl. Probab. (2007)
- G. Fort. Fluid limit-based tuning of some hybrid
MCMC samplers. Submitted (2007).



