G. Fort

CNRS / Télécom Paris, France.

7 janvier 2008

We introduce

- \blacktriangleright a transformation of the Markov chain \longrightarrow continuous time process
- such that the *stability* of this process, is related to the ergodicity of the Markov chain.

When applied to MCMC,

- the dynamic of this transformation depends upon the design parameters of the algorithm;
- \blacktriangleright \Rightarrow learn from the dynamic, how to tune the design parameters.

Introduction

Theoretical results on the fluid limit

Tuning the design parameters for the Metropolis within Gibbs

We introduce

- \blacktriangleright a transformation of the Markov chain \longrightarrow continuous time process
- such that the *stability* of this process, is related to the ergodicity of the Markov chain.

When applied to MCMC,

- the dynamic of this transformation depends upon the design parameters of the algorithm;
- \blacktriangleright \Rightarrow learn from the dynamic, how to tune the design parameters.

$\hookrightarrow \mathsf{Outline} \text{ of the talk}$

Introduction

Theoretical results on the fluid limit

Tuning the design parameters for the Metropolis within Gibbs

Fluid limit : Definition

Fluid Limit : definition (I)

Let $\{\Phi_k, k \ge 0\}$ be a Markov chain, on X $(X = \mathbb{R}^d)$. \hookrightarrow Family of rescaled process η_r , for r > 0(i) in the initial point : $\eta_r(0; x) = \frac{1}{r} \Phi_0 = x$, $\Phi_0 = rx$ (ii) in time and space : $\eta_r(t; x) = \frac{1}{r} \Phi_{\lfloor tr \rfloor}$ i.e. $\eta_r(\cdot; x) = \frac{1}{r} \Phi_k$ on $\left[\frac{k}{r}; \frac{(k+1)}{r}\right]$.

Fluid limit : Definition

Fluid Limit : definition (I)

Let $\{\Phi_k, k \ge 0\}$ be a Markov chain, on X $(X = \mathbb{R}^d)$. \hookrightarrow Family of rescaled process η_r , for r > 0(i) in the initial point : $\eta_r(0; x) = \frac{1}{r} \Phi_0 = x$, $\Phi_0 = rx$ (ii) in time and space : $\eta_r(t; x) = \frac{1}{r} \Phi_{\lfloor tr \rfloor}$ i.e. $\eta_r(\cdot; x) = \frac{1}{r} \Phi_k$ on $\left[\frac{k}{r}; \frac{(k+1)}{r}\right]$.

$\hookrightarrow \mathsf{Distributions}$

- · \mathbb{P}_x : distribution of $\{\Phi_k, k \ge 0\}$ with initial distribution δ_x .
- $\cdot \ \mathbb{Q}_{r;x}$: image prob. of \mathbb{P}_{rx} by η_r ,

prob. on $\mathbb{D}(\mathbb{R}^+,X)$ the space of cad-lag functions $\mathbb{R}^+ \to x$

Introduction

Fluid limit : Definition

Fluid Limit : definition (II)

 \hookrightarrow Definition \mathbb{Q}_x probability on $\mathbb{D}(\mathbb{R}^+, X)$ - for $x \in X$, is a fluid limit if there exist scaling factors $r_n \to +\infty$ such that

 $\mathbb{Q}_{r_n;x}$ converges weakly to \mathbb{Q}_x .

Introduction

Fluid limit : Definition

Fluid Limit : definition (II)

 \hookrightarrow Definition \mathbb{Q}_x probability on $\mathbb{D}(\mathbb{R}^+, X)$ - for $x \in X$, is a fluid limit if there exist scaling factors $r_n \to +\infty$ such that

 $\mathbb{Q}_{r_n;x}$ converges weakly to \mathbb{Q}_x .

 $\hookrightarrow \mathsf{Existence}$

$$\begin{split} \Phi_{k+1} &= \Phi_k + \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k + \Phi_{k+1} - \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] \\ &= \Phi_k + \underbrace{\mathbb{E}_x\left[\Phi_{k+1} - \Phi_k|\mathcal{F}_k\right]}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \quad \text{martingale increment}}. \end{split}$$

Introduction

Fluid limit : Definition

Fluid Limit : definition (II)

 \hookrightarrow Definition \mathbb{Q}_x probability on $\mathbb{D}(\mathbb{R}^+, X)$ - for $x \in X$, is a fluid limit if there exist scaling factors $r_n \to +\infty$ such that

 $\mathbb{Q}_{r_n;x}$ converges weakly to \mathbb{Q}_x .

$\hookrightarrow \mathsf{Existence}$

$$\begin{split} \Phi_{k+1} &= \Phi_k + \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k + \Phi_{k+1} - \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] \\ &= \Phi_k + \underbrace{\mathbb{E}_x\left[\Phi_{k+1} - \Phi_k|\mathcal{F}_k\right]}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \quad \text{martingale increment}}. \end{split}$$

$$\begin{array}{l} \cdot \ \exists p > 1, \quad \lim_{K \to +\infty} \ \sup_{x \in \mathsf{X}} \mathbb{E}_x \left[|\epsilon_1|^p \mathbb{1}_{|\epsilon_1| > K} \right] \to 0. \\ \cdot \ 0 < \sup_{x \in \mathsf{X}} |\Delta(x)| < \infty. \end{array}$$

Then

- $\forall x, r_n \to +\infty, \exists \text{ subsequ. } \{r_{n_j}\} \text{ s.t. } \mathbb{Q}_{r_{n_j};x} \Rightarrow \mathbb{Q}_x$
 - $\cdot \ \mathbb{Q}_x$ prob. on the space of continuous functions.

Introduction

Examples

Ex. : Plot of $\eta_r(\cdot,x)$ on [0,T], for diff. x on the unit sphere

- Random Walk Hastings-Metropolis on \mathbb{R}^2
- Target distribution $\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$
- Gaussian proposal : $q \sim \mathcal{N}_2(0, 4\mathbb{I})$

Level curves of π and r=100, r=1000, r=5000

Introduction

Examples

Ex. : Plot of $\eta_r(\cdot,x)$ on [0,T] , for diff. x on the unit sphere

- ▶ Random Walk Hastings-Metropolis on \mathbb{R}^2
- Target distribution $\pi \propto \mathcal{N}_2(0,\Gamma_1) + \mathcal{N}(0,\Gamma_2)$
- Gaussian proposal : $q \sim \mathcal{N}_2(0, \mathbb{I})$

Level curves of π and r=100, r=1000, r=5000

```
Fluid limit-based tuning of some hybrid MCMC samplers
Introduction
Examples
```

Ex. : Draws from \mathbb{Q}_x for diff. x on the unit sphere

- Metropolis within Gibbs on \mathbb{R}^2
- Target distribution $\pi = (mixture of) \mathcal{N}_2$
- Gaussian proposal : $q_i \sim \mathcal{N}(0, c)$ and $\omega_i = 0.5$.

Level curves of π \quad and \quad realizations of the fluid limit

- Theoretical results on the fluid limit

Existence

Existence (I)

$$\Phi_{k+1} = \Phi_k + \mathbb{E}[\Phi_{k+1} - \Phi_k | \mathcal{F}_k] + \epsilon_{k+1} = \Phi_k + \Delta(\Phi_k) + \epsilon_{k+1}.$$

$\hookrightarrow \mathsf{Sufficient}\ \mathsf{conditions}\ :$

 $\blacktriangleright \ \exists p>1, \qquad \lim_{K\to+\infty} \ \sup_{x\in\mathsf{X}} \mathbb{E}_x\left[|\epsilon_1|^p 1\!\!1_{|\epsilon_1|>K}\right]\to 0.$

$$\blacktriangleright \ 0 < \sup_{x \in \mathsf{X}} |\Delta(x)| < \infty.$$

- Theoretical results on the fluid limit

Existence

Existence (I)

$$\Phi_{k+1} = \Phi_k + \mathbb{E}[\Phi_{k+1} - \Phi_k | \mathcal{F}_k] + \epsilon_{k+1} = \Phi_k + \Delta(\Phi_k) + \epsilon_{k+1}.$$

$\hookrightarrow \mathsf{Sufficient}\ \mathsf{conditions}\ :$

 $\blacktriangleright \ \exists p>1, \qquad \lim_{K\to+\infty} \ \sup_{x\in\mathsf{X}}\mathbb{E}_x\left[|\epsilon_1|^p\mathrm{1}\!\!\mathrm{I}_{|\epsilon_1|>K}\right]\to 0.$

$$\bullet \ 0 < \sup_{x \in \mathsf{X}} |\Delta(x)| < \infty.$$

 $\hookrightarrow \mathsf{Extension} \,:\,$

 $\blacktriangleright \ \exists \beta \in [0,1 \wedge (p-1)[, \quad 0 < \sup_{x \in \mathsf{X}} |x|^\beta \ |\Delta(x)| < \infty.$

- Theoretical results on the fluid limit

Existence

Existence (I)

$$\Phi_{k+1} = \Phi_k + \mathbb{E}[\Phi_{k+1} - \Phi_k | \mathcal{F}_k] + \epsilon_{k+1} = \Phi_k + \Delta(\Phi_k) + \epsilon_{k+1}.$$

$\hookrightarrow \mathsf{Sufficient}\ \mathsf{conditions}\ :$

► $\exists p > 1$, $\lim_{K \to +\infty} \sup_{x \in \mathsf{X}} \mathbb{E}_x \left[|\epsilon_1|^p \mathbb{1}_{|\epsilon_1| > K} \right] \to 0.$

►
$$0 < \sup_{x \in \mathsf{X}} |\Delta(x)| < \infty$$

 $\hookrightarrow \mathsf{Extension} \,:\,$

$$\exists \beta \in [0, 1 \land (p-1)[, \quad 0 < \sup_{x \in \mathsf{X}} |x|^{\beta} \ |\Delta(x)| < \infty.$$

In that case, change the definition of the re-scaled process :

$$\eta_{r,\beta}(t;x) = \frac{\Phi_{\lfloor tr^{1+\beta} \rfloor}}{r} \qquad \qquad \eta_{r,\beta}(0;x) = x.$$

- Theoretical results on the fluid limit

Existence

 $\hookrightarrow \mathsf{Example}:\mathsf{RWHM}\ \mathsf{chains}$

 $\Phi_{k+1} = \Phi_k + \mathbb{E}[\Phi_{k+1} - \Phi_k | \mathcal{F}_k] + \epsilon_{k+1} = \Phi_k + \Delta(\Phi_k) + \epsilon_{k+1}.$

$$\mathbb{E}[|\epsilon_{k+1}|^p] \longleftrightarrow \mathbb{E}[|\Phi_{k+1} - \Phi_k|^p]:$$
 p-moment of the proposal distribution q.

- Theoretical results on the fluid limit

Existence

 $\hookrightarrow \mathsf{Example}:\mathsf{RWHM}\ \mathsf{chains}$

$$\Phi_{k+1} = \Phi_k + \mathbb{E}[\Phi_{k+1} - \Phi_k | \mathcal{F}_k] + \epsilon_{k+1} = \Phi_k + \Delta(\Phi_k) + \epsilon_{k+1}.$$

•
$$\mathbb{E}[|\epsilon_{k+1}|^p] \longleftrightarrow \mathbb{E}[|\Phi_{k+1} - \Phi_k|^p] :$$

p-moment of the proposal distribution *q*.

Since

$$\Delta(x) = \int_{\{y,\pi(x+y)<\pi(x)\}} y\left(\frac{\pi(x+y)}{\pi(x)} - 1\right)q(y)dy,$$

 $\beta=0,$ and p-moment of the proposal distribution q.

Theoretical results on the fluid limit

Stability

Stability

 \hookrightarrow Stable fluid limit model : if there exist T>0 and $\rho<1$ s.t. for any x on the unit sphere,

$$\mathbb{Q}_x\left(\eta\in\mathbb{D}(\mathbb{R}^+,\mathsf{X}),\inf_{[0,T]}|\eta(t)|\leq\rho\right)=1.$$

- Theoretical results on the fluid limit

└─ Stability

Stability

 \hookrightarrow Stable fluid limit model : if there exist T>0 and $\rho<1$ s.t. for any x on the unit sphere,

$$\mathbb{Q}_x\left(\eta\in\mathbb{D}(\mathbb{R}^+,\mathsf{X}),\inf_{[0,T]}|\eta(t)|\leq\rho\right)=1.$$

- $\cdot \; \{ \Phi_k, k \geq 0 \}$ is phi-ireducible and aperiodic; and compact sets are petite.
- · fluid limit model exists and is stable,

Then the Markov chain is (f, r)-ergodic

$$(n+1)^{q-1} \sup_{\{f, |f| \le 1+|x|^{p-q}\}} |\mathbb{E}_x[f(\Phi_n)] - \pi(f)| \longrightarrow_{n \to +\infty} 0, \qquad 1 \le q \le p.$$

- Theoretical results on the fluid limit

Characterisation

Characterisation : case 1

 $\cdot \exists h \text{ continuous s.t. for any compact set H of X \setminus \{0\},$

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

· the ODE $\mu = h(\mu)$ is stable.

Then the fluid limit model is stable.

- Theoretical results on the fluid limit

Characterisation

Characterisation : case 1

 $\cdot \exists h$ continuous s.t. for any compact set H of X \ $\{0\}$,

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

· the ODE $\mu = h(\mu)$ is stable.

Then the fluid limit model is stable.

► Example : RWHM

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

- Theoretical results on the fluid limit

Characterisation

Characterisation : case 2a ► If

· $\exists h \text{ continuous s.t.}$ for any compact set H of cone of X \ {0},

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

- \cdot the ODE $\quad \stackrel{\cdot}{\mu}=h(\mu)\quad$ started in the cone is stable.
- the cone is " attractive".

Then the fluid limit model is stable.

- Theoretical results on the fluid limit

Characterisation

Characterisation : case 2a ► If

· $\exists h \text{ continuous s.t.}$ for any compact set H of cone of X \ {0},

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

- \cdot the ODE $\quad \stackrel{\cdot}{\mu}=h(\mu)\quad$ started in the cone is stable.
- · the cone is " attractive".

Then the fluid limit model is stable.

► Example : RWHM

- Theoretical results on the fluid limit

Characterisation

►

Characterisation : case 2b $(X = \mathbb{R}^2)$

$$\begin{array}{l} \cdot \ \mathsf{X} = \bigcup_{\alpha=1}^{a} \mathsf{O}_{\alpha} \cup \bigcup_{\beta=1}^{b} \{x, f_{\beta}' x = 0\}. \\ \cdot \ \exists \ \Sigma_{\alpha} \text{ s.t. for any compact set } \mathsf{H} \text{ of } \mathsf{O}_{\alpha}, \end{array}$$

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - \Sigma_{\alpha}| = 0.$$

Then the fluid limit model is stable.

- Theoretical results on the fluid limit

Characterisation

Characterisation : case 2b $(X = \mathbb{R}^2)$

•
$$\mathsf{X} = \bigcup_{\alpha=1}^{a} \mathsf{O}_{\alpha} \cup \bigcup_{\beta=1}^{b} \{x, f'_{\beta}x = 0\}.$$

• $\exists \Sigma_{\alpha} \text{ s.t. for any compact set H of } \mathsf{O}_{\alpha}.$

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - \Sigma_{\alpha}| = 0.$$

· "attractive" hyperplanes.

Then the fluid limit model is stable. Example : RW Metropolis within Gibbs

and fluid limits when $\omega_1 = 0.5$

- Theoretical results on the fluid limit

Characterisation

Characterisation : Conclusion / Perspectives

• Characterisation based on the radial behavior of $\Delta(x) = \mathbb{E}_x[\Phi_1 - \Phi_0]$,

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0,$$

for all compact subset $\mathsf{H} \subset \ ? \ \longrightarrow$ quite complex.

- Theoretical results on the fluid limit

Characterisation

Characterisation : Conclusion / Perspectives

• Characterisation based on the radial behavior of $\Delta(x) = \mathbb{E}_x[\Phi_1 - \Phi_0],$

$$\lim_{r\to+\infty} \sup_{x\in \mathsf{H}} |\Delta(rx) - h(x)| = 0,$$

for all compact subset $\mathsf{H} \subset \ ? \ \longrightarrow$ quite complex.

Deterministic fluid limit more or less everywhere since

$$\eta_{r,\beta}(t;x) = \frac{\Phi_{\lfloor tr^{1+\beta} \rfloor}}{r} \qquad \qquad \eta_{r,\beta}(0;x) = x,$$

with $0 \leq \beta < 1$.

When $\beta=1\longrightarrow {\rm diffusion}$ (work in progress, M. Bédart and E. Moulines).

Tuning the design parameters for the Metropolis within Gibbs

Design parameters

The design parameters

$\hookrightarrow \mathsf{At} \text{ each iteration,}$

- Choose a component $i \in \{1, \dots, d\}$ with probability ω_i .
- Update the *i*-th component with a RW move, with distribution q_i .

- Tuning the design parameters for the Metropolis within Gibbs

Design parameters

The design parameters

$\hookrightarrow \mathsf{At} \text{ each iteration,}$

- Choose a component $i \in \{1, \dots, d\}$ with probability ω_i .
- Update the *i*-th component with a RW move, with distribution q_i .

\hookrightarrow Design parameters when Gaussian proposal

- Selection weights : $\omega_1, \cdots, \omega_d$.
- Variances of the Gaussian proposals : $\sigma_1^2, \cdots, \sigma_d^2$.

- Tuning the design parameters for the Metropolis within Gibbs
 - Characterization of the fluid limits

Radial behavior of Δ (I)

$$\Delta_i(x) = \omega_i \, \int_{\{y \in \mathbb{R}, \pi(x+ye_i) < \pi(x)\}} y \, \left(\frac{\pi(x+ye_i)}{\pi(x)} - 1\right) \, q_i(y) \, dy.$$

\hookrightarrow For the target densities π in the class

- $|\lim_{r \to +\infty} |\nabla \ln \pi(rx)| = +\infty.$
- · ℓ given by $\lim_{r \to +\infty} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|} = \ell(x)$ is continuous.

- Tuning the design parameters for the Metropolis within Gibbs
 - Characterization of the fluid limits

Radial behavior of Δ (I)

$$\Delta_i(x) = \omega_i \, \int_{\{y \in \mathbb{R}, \pi(x+ye_i) < \pi(x)\}} y \, \left(\frac{\pi(x+ye_i)}{\pi(x)} - 1\right) \, q_i(y) \, dy.$$

\hookrightarrow For the target densities π in the class

- $|\lim_{r \to +\infty} |\nabla \ln \pi(rx)| = +\infty.$
- · ℓ given by $\lim_{r \to +\infty} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|} = \ell(x)$ is continuous.

 $\hookrightarrow \mathsf{As} \ r \to +\infty$

$$\Delta_i(rx) \longrightarrow \operatorname{sign}(\ell_i(x)) \,\omega_i \, \int_{\mathbb{R}^+} y q_i(y) dy = \operatorname{sign}(\ell_i(x)) \, \frac{\omega_i \, \sigma_i}{\sqrt{2\pi}}$$

- Tuning the design parameters for the Metropolis within Gibbs
 - Characterization of the fluid limits

Radial behavior of Δ (II)

$$\Delta_i(rx) \longrightarrow \operatorname{sign}(\ell_i(x)) \ \frac{\omega_i \ \sigma_i}{\sqrt{2\pi}}.$$

 $\hookrightarrow \mathsf{This} \ \mathsf{implies}$

- The radial limit depends upon the design parameters through the product ω_iσ_i.
- The radial limit is constant on the sets

$$O_{\alpha} = \{x, \operatorname{sign}(\ell(x)) = \gamma_{\alpha}\}$$

where $\gamma_{\alpha} \in \{-1, 1\}^d$.

- Tuning the design parameters for the Metropolis within Gibbs
 - Characterization of the fluid limits

Radial behavior of Δ (II)

$$\Delta_i(rx) \longrightarrow \operatorname{sign}(\ell_i(x)) \; \frac{\omega_i \; \sigma_i}{\sqrt{2\pi}}.$$

 $\hookrightarrow \mathsf{This} \ \mathsf{implies}$

- The radial limit depends upon the design parameters through the product ω_iσ_i.
- The radial limit is constant on the sets

$$O_{\alpha} = \{x, \operatorname{sign}(\ell(x)) = \gamma_{\alpha}\}$$

where $\gamma_{\alpha} \in \{-1, 1\}^d$.

 \hookrightarrow Example : RW MwG, $\pi \sim \mathcal{N}_2(0, \Gamma) \implies \ell(x) = -\frac{\Gamma^{-1}x}{|\Gamma^{-1}x|}.$

Tuning the design parameters for the Metropolis within Gibbs

Characterization of the fluid limits

Piecewise Linear Fluid limits

 $\stackrel{\hookrightarrow}{\to} \text{Linear till the first time it reaches } \partial[\cup_{\alpha=1}^{a} \mathsf{O}_{\alpha}] \\ \triangleright \quad \forall x \in \mathsf{O}_{\alpha},$

 $\forall t \leq T(x) \qquad \eta(t) = x + t \ \gamma_\alpha \circ \omega \circ \sigma, \qquad \mathbb{Q}_x - \mathsf{a.s.}$

where T(x): hitting-time of ∂O_{α} .

- Tuning the design parameters for the Metropolis within Gibbs
 - Characterization of the fluid limits

Piecewise Linear Fluid limits

 $\stackrel{\hookrightarrow}{\to} \text{Linear till the first time it reaches } \partial[\cup_{\alpha=1}^{a} \mathsf{O}_{\alpha}] \\ \triangleright \quad \forall x \in \mathsf{O}_{\alpha}.$

 $\forall t \leq T(x) \qquad \eta(t) = x + t \ \gamma_\alpha \circ \omega \circ \sigma, \qquad \mathbb{Q}_x - \mathsf{a.s.}$

where T(x) : hitting-time of ∂O_{α} .

Attractive boundaries (Results in the case : d = 2 and boundaries are hyperplanes)
 If the reached boundary is "attractive", the fluid limit is trapped on the boundary.

• Example : RW MwG, $\pi \sim \mathcal{N}_2(0,\Gamma)$

Tuning the design parameters for the Metropolis within Gibbs
 Stability

Stability of the fluid limit

→ Stable attractive boundaries (Results in the case : d = 2 and boundaries are hyperplanes)
 ▶ The fields in the neighborhood of the boundaries, "point" towards the origin.

► Example : RW MwG, $\pi \sim \mathcal{N}_2(0, \Gamma)$. Any attractive boundary is stable.

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

Adaptive strategies : state-dependent design parameters

Since the fluid limit depends upon the design parameters through $\omega_i \sigma_i$,

Strategy 1. Fix $\omega_i = 1/d$ and choose $\sigma_i(x)$.

Strategy 2. Fix $\sigma_i = c$ and choose $\omega_i(x)$.

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

Adaptive strategies : state-dependent design parameters

Since the fluid limit depends upon the design parameters through $\omega_i \sigma_i$,

Strategy 1. Fix $\omega_i = 1/d$ and choose $\sigma_i(x)$.Strategy 2. Fix $\sigma_i = c$ and choose $\omega_i(x)$.

Choose

$$[\omega_i \sigma_i](x) = c |\ell_i(x)| \qquad \qquad \ell_i(x) = \lim_r \frac{\nabla_i \ln \pi(rx)}{|\nabla \ln \pi(rx)|}.$$

so that in both strategies, the fluid limit $\longleftrightarrow \mathsf{ODE} \stackrel{}{\mu}=h(\mu)$ with

$$h(x) = \frac{c}{\sqrt{2\pi}} \ell(x) \qquad \qquad \ell_i(x) = \lim_r \frac{\nabla_i \ln \pi(rx)}{|\nabla \ln \pi(rx)|}.$$

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

Ex. : Fluid limits [left] non-adaptive [right] adaptive \blacktriangleright When $\pi \sim \mathcal{N}_2(0, \Gamma_1)$ Γ_1 diagonal

• When $\pi \sim \mathcal{N}_2(0, \Gamma_2)$ Γ_2 non-diagonal

▶ When $\pi \sim \mathcal{N}_2(0,\Gamma_1) + \mathcal{N}_2(0,\Gamma_2)$

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

Assessing efficiency (I)

 \hookrightarrow Criterion 1 : Based on the Limit fluid and on the time the fluid limit started on the unit sphere, enters a ball of radius $\rho \in]0,1[$.

► Example

x-axes : polar coordinate of the initial value.

y-axes : hitting-time.

for the three algorithms Adaptive strategy Non-Adaptive, $\omega_1 = 0.25$ Non-Adaptive, $\omega_1 = 0.5$

 $\pi \sim \mathcal{N}_2(0, \Gamma_1) \quad \Gamma_1 \text{ diagonal}$

 $\pi \sim \mathcal{N}_2(0, \Gamma_2) \ \Gamma_2$ non diagonal

 $\pi \sim \mathcal{N}_2(0,\Gamma_1) + \mathcal{N}_2(0,\Gamma_2)$

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

Assessing efficiency (II)

 \hookrightarrow Criterion 2 : Based on the Markov chain and the hitting-time of the "center of the space" when started "far" from the center.

• Example : $\pi \sim \mathcal{N}_8(0, \Gamma)$ d = 8

 Γ : diagonal, with entries $\Gamma_{i,i} \sim \mathcal{E}(1)$. 5000 adaptive chains, started from $x \in \{z'\Gamma^{-1}z = d\}$.

 $x\text{-}\mathsf{axes}$: hitting-time of the ball of radius \sqrt{d} with the Strat 1 $_{(\texttt{adapt }\sigma)}$ $y\text{-}\mathsf{axes}$: hitting-time of the ball of radius \sqrt{d} with the Strat 2 $_{(\texttt{adapt }\omega)}$

Tuning the design parameters for the Metropolis within Gibbs

Adaptive design parameters

► Example : $\pi \sim \mathcal{N}_8(0, \Gamma)$ d = 8 Γ : diagonal, with entries $\Gamma_{i,i} \sim \mathcal{E}(1)$. 5000 adaptive chains, started from $x \in \{z'\Gamma^{-1}z = d\}$.

 $x\text{-}\mathsf{axes}$: hitting-time of the ball of radius \sqrt{d} with the non-adaptive strategy _

 $y\text{-}\mathsf{axes}$: hitting-time of the ball of radius \sqrt{d} with the Strat 2 $_{\scriptscriptstyle (\mathsf{adapt}\;\omega)}$

Tuning the design parameters for the Metropolis within Gibbs

Conclusion

Conclusion

1. Normalisation : how does the chain behave when started far in the tails ?

normalisation NOT as in Roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007), Bédard (2007), \cdots

Tuning the design parameters for the Metropolis within Gibbs

Conclusion

Conclusion

1. Normalisation : how does the chain behave when started far in the tails ?

normalisation NOT as in Roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007), Bédard (2007), \cdots

2. To prove ergodicity : fluid Limit or Drift techniques?

Tuning the design parameters for the Metropolis within Gibbs

Conclusion

Conclusion

1. Normalisation : how does the chain behave when started far in the tails ?

normalisation NOT as in Roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007), Bédard (2007), \cdots

- 2. To prove ergodicity : fluid Limit or Drift techniques?
- 3. Based on the fluid limit, modify the chain
 - 3.1 state-dependent procedures more efficient.
 - 3.2 adapt the weights ω_i or the standard deviations σ_i .
 - **3.3** $\sigma_i = Cst$: which constant? [work in progress]

Tuning the design parameters for the Metropolis within Gibbs

Conclusion

Conclusion

1. Normalisation : how does the chain behave when started far in the tails ?

normalisation NOT as in Roberts et al. (1997), Roberts and Rosenthal (2001), Neal et al. (2007), Bédard (2007), \cdots

- 2. To prove ergodicity : fluid Limit or Drift techniques?
- 3. Based on the fluid limit, modify the chain
 - 3.1 state-dependent procedures more efficient.
 - 3.2 adapt the weights ω_i or the standard deviations σ_i .
 - **3.3** $\sigma_i = Cst$: which constant? [work in progress]

Talk based on the papers

- G. Fort, S. Meyn, E. Moulines and P. Priouret. The ODE method for the stability of skip-free Markov Chains with applications to MCMC. To be published, Ann. Appl. Probab. (2007)
- · G. Fort. Fluid limit-based tuning of some hybrid MCMC samplers. Submitted (2007).