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Examples of adaptive MCMC samplers

I. Examples of adaptive and interacting MCMC samplers

1. Adaptive Hastings-Metropolis algorithm [Haario et al. 1999]

2. Wang-Landau algorithm [Wang & Landau, 2001]

3. Equi-Energy algorithm [Kou et al. 2006]



Stochastic approximation for adaptive Markov chain Monte Carlo algorithms

Examples of adaptive MCMC samplers

Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

I Symmetric Random Walk Hastings-Metropolis algorithm

Goal: sample a Markov chain with known stationary distribution π on Rd (known up

to a normalizing constant)

Iterative mecanism: given the current sample Xn,

propose a move to Xn + Y Y ∼ q(· −Xn)

accept the move with probability

α(Xn, Xn + Y ) = 1 ∧
π(Xn)

π(Xn + Y )

and set Xn+1 = Xn + Y ; otherwise, Xn+1 = Xn.

Design parameter: how to choose the proposal distribution q ?

For example, in the case q(· − x) = Nd(x; θ) how to scale the

proposal i.e. how to choose the covariance matrix θ ?
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Adaptive Hastings-Metropolis algorithm

I Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Roberts et al. 1997; · · · ] when the proposal is Gaussian Nd(x, θ),

choose θ

as the covariance structure of π [Haario et al. 1999]: θ ∝ Σπ . In practice, Σπ

is unknown and this quantity is computed “online” with the past samples of the

chain

θn+1 =
n

n+ 1
θn +

1

n+ 1

n
(Xn+1 − µn+1)(Xn+1 − µn+1)T+κ Idd

o
where µn+1 is the empirical mean. κ > 0, prevent from badly scaled matrix

OR such that the mean acceptance rate converges to α? [Andrieu & Robert 2001]. In

practice this θ is unknown and so this parameter is adapted during the run of the

algorithm

θn = τnId with log τn+1 = log τn + ηn+1 (αn − α?)

where αn is the mean acceptance rate.

OR · · ·
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I In practice, simultaneous adaptation of the design parameter and simulation.

Given the current value of the chain Xn and the design parameter θn

Draw the next sample Xn+1 with the transition kernel Pθn (Xn, ·).

Update the design parameter: θn+1 = Ξn+1(θn, Xn+1, ·).

I In this MCMC context, we are interested in the behavior of the chain {Xn, n ≥ 0}
e.g.

Convergence of the marginals: E [f(Xn)]→ π(f) for f bounded.

Law of large numbers: n−1
Pn
k=1 f(Xk)→ π(f) (a.s. or P)

Central limit theorem

but not necessarily in the stability / convergence of the adaptation process

{θn, n ≥ 0}.
Note that in this example πPθ = π for any θ: the convergence of θn is NOT crucial

for the convergence of {Xn, n ≥ 0}.
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Equi-Energy sampler

I Proposed by Kou et al. (2006) for the simulation of multi-modal density π.

In a Hastings-Metropolis algorithm, how to choose a proposal distribution q that both

allows

local moves for a local exploration of the density.

and large jumps in order to visit other modes of the target ?

I Idea: (a) build an auxiliary process that moves between the modes far more easily

and (b) define the process of interest

by running a “classical” Hastings-Metropolis algorithm

and sometimes, choose a value of the auxiliary process as the new value of the

process of interest: draw a point at random + acceptation-rejection mecanism

How to define such an auxiliary process ? Ans.: as a process with stationary

distribution πβ (β ∈ (0, 1)), a tempered version of the target π.
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Equi-Energy sampler

I On an example: a K-stage Equi-Energy sampler.
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Equi-Energy sampler

I An example of interacting MCMC (2 stages)

Repeat:

Update the adaptation process

θn =
1

n

n−1X
k=0

δYk

where {Yn, n ≥ 0} is the auxiliary process with stationary distribution πβ .

Update the process of interest with transition : Xn+1 ∼ Pθn (Xn, ·) where

Pθn (x,A) = (1−ε)P (x,A)+ε

8>><>>:
Z
A

α(x, y)| {z }
accept/reject mecanism

θn(dy) + δx(A)

Z
(1− α(x, y))θn(dy)

9>>=>>;

Pθ is such that when θn ∝ πβ , πPπβ = π: asymptotically, when θn “is” πβ , the

process of interest {Xn, n ≥ 0} behaves like a Markov chain with invariant

distribution π.

In this MCMC context, we are again interested in the behavior of {Xn, n ≥ 0} but

convergence of θn is crucial since the algorithm is designed to “sample from” π only

when θn = πβ .
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Wang-Landau algorithm

I Proposed by Wang & Landau ( ) to favor the moves between elements of a

partition of the state space, when the weights of these elements is unknown.

Context:

Partition {Xi, i ≤ d} of the state space X.

θ?(i)
def
=
R

Xi
π(x)dx is unknown.

Goal:

build a chain on
Qd
i=1(Xi × {i}) with stationary distribution

Π(Ai × {i}) =
1

d

Z
Ai

π(x)

θ?(i)
1Xi

(x) dx ,

and/ or estimate the normalizing constants θ?(i).

Tool :

A family of transition kernels Pθ on
Qd
i=1(Xi × {i})

where θ = (θ(1), · · · , θ(d)) is a probability on {1, · · · , d}
with invariant distribution known up to a normalizing constant

Πθ(Ai × {i}) =

0@ dX
j=1

θ?(j)

θ(j)

1A−1 Z
Ai

π(x)

θ(i)
1Xi

(x) dx ,
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Wang-Landau algorithm

I Algorithm: repeat

Draw (Xn+1, In+1) ∼ Pθn ((Xn, In), ·)

Update the adaptation process

θn+1(i) ∝ θn(i) + γn+1θn(i)1In+1 (i)

I In this MCMC context, we are also interested in the convergence of the sequence

{θn, n ≥ 0}: at a first order,

θn+1(i) ≈ θn(i) + γn+1θn(i)
“
1In+1 (i)− θn(In+1)

”
and when (Xn, In) ∼ Πθn

E
»
θn(i)

„
1In+1

(i) − θn(In+1)
«
|Fn

–
= XXXX

i.e. {θn, n ≥ 0} should converge to θ? !
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Conclusion

Conclusion

In adaptive MCMC,

given a family of transition kernels {Pθ, θ ∈ Θ}

with invariant distribution πθ

we define a bivariate process {(Xn, θn), n ≥ 0} such that

P (Xn+1 ∈ ·|Fn) = Pθn (Xn, ·)

What kind of conditions on the adaptation mecanism, for the convergence of the

process {Xn, n ≥ 0} to a target distribution π ?

In the sequel, “convergence” means “ convergence of the marginals”

E [f(Xn)]→ π(f) f bounded
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Convergence of adaptive/interacting MCMC samplers


