Gersende FORT

LTCI / CNRS - TELECOM ParisTech, France

I. Examples of adaptive and interacting MCMC samplers

- 1. Adaptive Hastings-Metropolis algorithm [HAARIO ET AL. 1999]
- 2. Wang-Landau algorithm [WANG & LANDAU, 2001]
- 3. Equi-Energy algorithm [KOU ET AL. 2006]

Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

- Symmetric Random Walk Hastings-Metropolis algorithm
 - Goal: sample a Markov chain with known stationary distribution π on \mathbb{R}^d (known up to a normalizing constant)
 - Iterative mecanism: given the current sample X_n ,
 - propose a move to $X_n + Y$ $Y \sim q(\cdot X_n)$
 - · accept the move with probability

$$\alpha(X_n, X_n + Y) = 1 \land \frac{\pi(X_n)}{\pi(X_n + Y)}$$

and set $X_{n+1} = X_n + Y$; otherwise, $X_{n+1} = X_n$.

Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

- Symmetric Random Walk Hastings-Metropolis algorithm
 - Goal: sample a Markov chain with known stationary distribution π on \mathbb{R}^d (known up to a normalizing constant)
 - Iterative mecanism: given the current sample X_n ,
 - propose a move to $X_n + Y$ $Y \sim q(\cdot X_n)$
 - · accept the move with probability

$$\alpha(X_n, X_n + Y) = 1 \land \frac{\pi(X_n)}{\pi(X_n + Y)}$$

and set $X_{n+1} = X_n + Y$; otherwise, $X_{n+1} = X_n$.

• Design parameter: how to choose the proposal distribution q?

For example, in the case $q(\cdot - x) = \mathcal{N}_d(x; \theta)$ how to scale the proposal i.e. how to choose the covariance matrix θ ?

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1\\ \frac{\pi(Y+X_n)}{\pi(X_n)} \end{cases}$$

if
$$\pi(X_n) \leq \pi(Y + X_n)$$

otherwise

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1\\ \frac{\pi(Y+X_n)}{\pi(X_n)} \end{cases}$$

if
$$\pi(X_n) \leq \pi(Y + X_n)$$

otherwise

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1\\ \frac{\pi(Y+X_n)}{\pi(X_n)} \end{cases}$$

$$\text{if } \pi(\boldsymbol{X_n}) \leq \pi(Y + X_n) \\ \text{otherwise}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1\\ \frac{\pi(Y+X_n)}{\pi(X_n)} \end{cases}$$

if
$$\pi(X_n) \leq \pi(Y + X_n)$$

otherwise

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm

Acceptation-Rejection ratio:

$$= \begin{cases} 1 & \text{if } \pi(X_n) \le \pi(Y + X_n) \\ \frac{\pi(Y + X_n)}{\pi(X_n)} & \text{otherwise} \end{cases}$$

500 1000

100

-0.2

500 1000 0 500 1000 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2

0

50 100 0

0

50 100

"goldilock principle"

Too small, too large, better variance

Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Roberts et al. 1997; · · ·] when the proposal is Gaussian $\mathcal{N}_d(x, \theta)$, choose θ

• as the covariance structure of π [Haario et al. 1999]: $\theta \propto \Sigma_{\pi}$. In practice, Σ_{π} is unknown and this quantity is computed "online" with the past samples of the chain

$$\theta_{n+1} = \frac{n}{n+1}\theta_n + \frac{1}{n+1}\left\{ (X_{n+1} - \mu_{n+1})(X_{n+1} - \mu_{n+1})^T + \kappa \operatorname{Id}_d \right\}$$

where μ_{n+1} is the empirical mean. $\kappa > 0$, prevent from badly scaled matrix

Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Roberts et al. 1997; · · ·] when the proposal is Gaussian $\mathcal{N}_d(x, \theta)$, choose θ

• as the covariance structure of π [Haario et al. 1999]: $\theta \propto \Sigma_{\pi}$. In practice, Σ_{π} is unknown and this quantity is computed "online" with the past samples of the chain

$$\theta_{n+1} = \frac{n}{n+1}\theta_n + \frac{1}{n+1} \left\{ (X_{n+1} - \mu_{n+1})(X_{n+1} - \mu_{n+1})^T + \kappa \operatorname{Id}_d \right\}$$

where μ_{n+1} is the empirical mean. $\kappa > 0$, prevent from badly scaled matrix

• OR such that the mean acceptance rate converges to α_{\star} [Andrieu & Robert 2001]. In practice this θ is unknown and so this parameter is adapted during the run of the algorithm

$$\theta_n = \tau_n \operatorname{Id}$$
 with $\log \tau_{n+1} = \log \tau_n + \eta_{n+1} (\alpha_n - \alpha_\star)$

where α_n is the mean acceptance rate.

• OR · · ·

► In practice, simultaneous adaptation of the design parameter and simulation. Given the current value of the chain X_n and the design parameter θ_n

- Draw the next sample X_{n+1} with the transition kernel $P_{\theta_n}(X_n, \cdot)$.
- Update the design parameter: $\theta_{n+1} = \Xi_{n+1}(\theta_n, X_{n+1}, \cdot).$

► In practice, simultaneous adaptation of the design parameter and simulation. Given the current value of the chain X_n and the design parameter θ_n

- Draw the next sample X_{n+1} with the transition kernel $P_{\theta_n}(X_n, \cdot)$.
- Update the design parameter: $\theta_{n+1} = \Xi_{n+1}(\theta_n, X_{n+1}, \cdot).$

▶ In this MCMC context, we are interested in the behavior of the chain $\{X_n, n \ge 0\}$ e.g.

- Convergence of the marginals: $\mathbb{E}\left[f(X_n)\right] \to \pi(f)$ for f bounded.
- Law of large numbers: $n^{-1} \sum_{k=1}^n f(X_k) \to \pi(f)$ (a.s. or \mathbb{P})
- Central limit theorem

but not necessarily in the stability / convergence of the adaptation process $\{\theta_n, n \geq 0\}.$

► In practice, simultaneous adaptation of the design parameter and simulation. Given the current value of the chain X_n and the design parameter θ_n

- Draw the next sample X_{n+1} with the transition kernel $P_{\theta_n}(X_n, \cdot)$.
- Update the design parameter: $\theta_{n+1} = \Xi_{n+1}(\theta_n, X_{n+1}, \cdot).$

▶ In this MCMC context, we are interested in the behavior of the chain $\{X_n, n \ge 0\}$ e.g.

- Convergence of the marginals: $\mathbb{E}\left[f(X_n)\right] \to \pi(f)$ for f bounded.
- Law of large numbers: $n^{-1} \sum_{k=1}^n f(X_k) \to \pi(f)$ (a.s. or \mathbb{P})
- Central limit theorem

but not necessarily in the stability / convergence of the adaptation process $\{\theta_n, n\geq 0\}.$

Note that in this example $\pi P_{\theta} = \pi$ for any θ : the convergence of θ_n is NOT crucial for the convergence of $\{X_n, n \ge 0\}$.

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π .

In a Hastings-Metropolis algorithm, how to choose a proposal distribution q that both allows

- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π .

In a Hastings-Metropolis algorithm, how to choose a proposal distribution q that both allows

- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

► Idea: (a) build an auxiliary process that moves between the modes far more easily and (b) define the process of interest

- by running a "classical" Hastings-Metropolis algorithm
- and sometimes, choose a value of the auxiliary process as the new value of the process of interest: draw a point at random + acceptation-rejection mecanism

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π . In a Hastings-Metropolis algorithm, how to choose a proposal distribution q that both allows

- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

▶ Idea: (a) build an auxiliary process that moves between the modes far more easily and (b) define the process of interest

- by running a "classical" Hastings-Metropolis algorithm
- and sometimes, choose a value of the auxiliary process as the new value of the process of interest: draw a point at random + acceptation-rejection mecanism

How to define such an auxiliary process ? Ans.: as a process with stationary distribution π^{β} ($\beta \in (0, 1)$), a tempered version of the target π .

▶ On an example: a *K*-stage Equi-Energy sampler.

- target density: $\pi = \sum_{i=1}^{20} \mathcal{N}_2(\mu_i, \Sigma_i)$
- K auxiliary processes: with targets π^{1/T_i}

$$T_1 > T_2 > \dots > T_{K+1} = 1$$

► An example of interacting MCMC (2 stages)

Repeat:

• Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n, n \ge 0\}$ is the auxiliary process with stationary distribution π^{β} .

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

$$P_{\boldsymbol{\theta}_{n}}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_{A} \underbrace{\alpha(x,y)}_{\text{accept/reject meanism}} \frac{\boldsymbol{\theta}_{n}(dy) + \delta_{x}(A) \int (1-\alpha(x,y))\boldsymbol{\theta}_{n}(dy) \right\}$$

► An example of interacting MCMC (2 stages)

Repeat:

Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n,n\geq 0\}$ is the auxiliary process with stationary distribution $\pi^\beta.$

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

$$P_{\boldsymbol{\theta}_{n}}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_{A} \underbrace{\alpha(x,y)}_{\text{accept/reject mecanism}} \boldsymbol{\theta}_{n}(dy) + \delta_{x}(A) \int (1-\alpha(x,y))\boldsymbol{\theta}_{n}(dy) \right\}$$

 P_{θ} is such that when $\theta_n \propto \pi^{\beta}$, $\pi P_{\pi^{\beta}} = \pi$: asymptotically, when θ_n "is" π^{β} , the process of interest $\{X_n, n \ge 0\}$ behaves like a Markov chain with invariant distribution π .

► An example of interacting MCMC (2 stages)

Repeat:

• Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n,n\geq 0\}$ is the auxiliary process with stationary distribution $\pi^\beta.$

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

$$P_{\boldsymbol{\theta}_{n}}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_{A} \underbrace{\alpha(x,y)}_{\text{accept/reject mecanism}} \boldsymbol{\theta}_{n}(dy) + \delta_{x}(A) \int (1-\alpha(x,y))\boldsymbol{\theta}_{n}(dy) \right\}$$

 P_{θ} is such that when $\theta_n \propto \pi^{\beta}$, $\pi P_{\pi^{\beta}} = \pi$: asymptotically, when θ_n "is" π^{β} , the process of interest $\{X_n, n \ge 0\}$ behaves like a Markov chain with invariant distribution π .

In this MCMC context, we are again interested in the behavior of $\{X_n, n \ge 0\}$ but convergence of θ_n is crucial since the algorithm is designed to "sample from" π only when $\theta_n = \pi^{\beta}$.

▶ Proposed by Wang & Landau () to favor the moves between elements of a partition of the state space, when the weights of these elements is unknown.

- Context:
 - Partition $\{X_i, i \leq d\}$ of the state space X.
 - $\theta_{\star}(i) \stackrel{\text{def}}{=} \int_{\mathsf{X}_{i}} \pi(x) dx$ is unknown.

▶ Proposed by Wang & Landau () to favor the moves between elements of a partition of the state space, when the weights of these elements is unknown.

- Context:
 - Partition $\{X_i, i \leq d\}$ of the state space X.
 - $\theta_{\star}(i) \stackrel{\text{def}}{=} \int_{\mathsf{X}_{i}} \pi(x) dx$ is unknown.

• Goal:

• build a chain on $\prod_{i=1}^d (\mathsf{X}_i imes \{i\})$ with stationary distribution

$$\Pi(A_i \times \{i\}) = \frac{1}{d} \int_{A_i} \frac{\pi(x)}{\theta_{\star}(i)} \mathbb{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

• and/ or estimate the normalizing constants $\theta_{\star}(i)$.

▶ Proposed by Wang & Landau () to favor the moves between elements of a partition of the state space, when the weights of these elements is unknown.

- Context:
 - Partition {X_i, i ≤ d} of the state space X.
 - $\theta_{\star}(i) \stackrel{\text{def}}{=} \int_{\mathsf{X}_{i}} \pi(x) dx$ is unknown.

• Goal:

• build a chain on $\prod_{i=1}^d (\mathsf{X}_i imes \{i\})$ with stationary distribution

$$\Pi(A_i \times \{i\}) = \frac{1}{d} \int_{A_i} \frac{\pi(x)}{\theta_{\star}(i)} \mathbb{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

• and/ or estimate the normalizing constants $\theta_{\star}(i)$.

• Tool :

- A family of transition kernels P_{θ} on $\prod_{i=1}^d (\mathsf{X}_i \times \{i\})$
- where $\theta = (\theta(1), \cdots, \theta(d))$ is a probability on $\{1, \cdots, d\}$
- · with invariant distribution known up to a normalizing constant

$$\Pi_{\theta}(A_i \times \{i\}) = \left(\sum_{j=1}^{d} \frac{\theta_{\star}(j)}{\theta(j)}\right)^{-1} \int_{A_i} \frac{\pi(x)}{\theta(i)} \mathbb{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

► Algorithm: repeat

- Draw $(X_{n+1}, I_{n+1}) \sim P_{\theta_n}((X_n, I_n), \cdot)$
- Update the adaptation process

$$\theta_{n+1}(i) \propto \theta_n(i) + \gamma_{n+1}\theta_n(i)\mathbb{1}_{I_{n+1}}(i)$$

Stochastic approximation for adaptive Markov chain Monte Carlo algorithms Examples of adaptive MCMC samplers Wang-Landau algorithm

► Algorithm: repeat

• Draw
$$(X_{n+1}, I_{n+1}) \sim P_{\theta_n}((X_n, I_n), \cdot)$$

Update the adaptation process

$$\theta_{n+1}(i) \propto \theta_n(i) + \gamma_{n+1}\theta_n(i)\mathbb{1}_{I_{n+1}}(i)$$

▶ In this MCMC context, we are also interested in the convergence of the sequence $\{\theta_n, n \ge 0\}$: at a first order,

$$\theta_{n+1}(i) \approx \theta_n(i) + \gamma_{n+1}\theta_n(i) \left(\mathbb{1}_{I_{n+1}}(i) - \theta_n(I_{n+1}) \right)$$

and when $(X_n, I_n) \sim \Pi_{\theta_n}$

$$\mathbb{E}\left[\theta_{n}(i)\left(\mathbbm{1}_{I_{n+1}}(i)-\theta_{n}(I_{n+1})\right)|\mathcal{F}_{n}\right]=XXXX$$

i.e. $\{\theta_n, n \geq 0\}$ should converge to θ_\star !

Conclusion

In adaptive MCMC,

- given a family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$
- with invariant distribution π_{θ}

we define a bivariate process $\{(X_n, \theta_n), n \ge 0\}$ such that

$$\mathbb{P}\left(X_{n+1} \in \cdot | \mathcal{F}_n\right) = P_{\theta_n}(X_n, \cdot)$$

What kind of conditions on the adaptation mecanism, for the convergence of the process $\{X_n,n\geq 0\}$ to a target distribution π ?

In the sequel, "convergence" means " convergence of the marginals"

 $\mathbb{E}[f(X_n)] \to \pi(f)$ f bounded

Convergence of adaptive/interacting MCMC samplers