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Stochastic approximation for adaptive Markov chain Monte Carlo algorithms

Examples of adaptive MCMC samplers

|. Examples of adaptive and interacting MCMC samplers

1. Adaptive Hastings-Metropolis algorithm [Haario st aL. 1999]
2. Wang-Landau algorithm [waxc & Laxpau, 2001]

3. Equi-Energy algorithm [kou er ac. 2006]
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Adaptive Hastings-Metropolis algorithm

» Symmetric Random Walk Hastings-Metropolis algorithm

@ Goal: sample a Markov chain with known stationary distribution 7 on R® (known up
to a normalizing constant)
@ lIterative mecanism: given the current sample X,

e propose a move to X, +Y Y ~q(-— Xp)
o accept the move with probability

m(Xn)
(X, +Y)
and set X,, 11 = X,, +Y; otherwise, X411 = X,,.

a(Xp, Xpn +Y)=1A
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Adaptive Hastings-Metropolis algorithm

» Symmetric Random Walk Hastings-Metropolis algorithm

@ Goal: sample a Markov chain with known stationary distribution 7 on R® (known up
to a normalizing constant)
@ lIterative mecanism: given the current sample X,

e propose a move to X,, +Y Y ~q(-— Xp)
o accept the move with probability

m(Xn)
(X, +Y)
and set X,, 11 = X,, +Y; otherwise, X411 = X,,.

a(Xp, Xpn +Y)=1A

@ Design parameter: how to choose the proposal distribution g ?

For example, in the case  g(- — ) = Ny(z;0) how to scale the

proposal i.e. how to choose the covariance matrix 6 7
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Acceptation-Rejection ratio:

" %%2 otherwise
n

| 3 1 if (X)) <mw(Y + X,)
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Acceptation-Rejection ratio:

1 if T(Xp) <m(Y + X))
(Y +X,)

%) otherwise
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Acceptation-Rejection ratio:

1 if T(Xp) <m(Y + X))

(Y X0)

%) otherwise
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: =Yy X :
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Acceptation-Rejection ratio:

1 if (X)) < m(
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» Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Roberts et al. 1997; - - -] when the proposal is Gaussian Ny(z, 0),
choose 0
@ as the covariance structure of 7 [Haario et al. 1999]: 0 xXr . In practice, X1

is unknown and this quantity is computed “online” with the past samples of the

chain

1
Ony1 = On + m {(Xn+1 — pn41)(Xn41 — ﬂnJrl)T"‘“ Idd}

n
n+1

where p, 41 is the empirical mean. K > 0, prevent from badly scaled matrix
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» Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Roberts et al. 1997; - - -] when the proposal is Gaussian Ny(z, 0),
choose 0
@ as the covariance structure of 7 [Haario et al. 1999]: 0 xXr . In practice, X1

is unknown and this quantity is computed “online” with the past samples of the

chain

n 1

Ops1 = ——0p + —— { Xpt1 — Xpt1 — Tk 1d }
nt1 =t (Xn+1 = pnt1)(Xnt+1 — pnt1) d
where py,4+1 is the empirical mean. K > 0, prevent from badly scaled matrix

@ OR such that the mean acceptance rate converges to (4 [Andrieu & Robert 2001]. In
practice this 6 is unknown and so this parameter is adapted during the run of the

algorithm
On = mId  with logTny1 =logmn + Nn+1 (an — ax)

where o, is the mean acceptance rate.

o OR:--
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» In practice, simultaneous adaptation of the design parameter and simulation.

Given the current value of the chain X, and the design parameter 6,
o Draw the next sample X, 1 with the transition kernel Py (X, ).

o Update the design parameter: 0,41 = Ept1(O0n, Xnt1, ).
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» In practice, simultaneous adaptation of the design parameter and simulation.

Given the current value of the chain X, and the design parameter 6,
o Draw the next sample X, 1 with the transition kernel Py (X, ).

o Update the design parameter: 0,41 = Ept1(O0n, Xnt1, ).

» In this MCMC context, we are interested in the behavior of the chain {X,,n > 0}
e.g.

o Convergence of the marginals:  E[f(Xy)] — w(f) for f bounded.

o Law of large numbers:  n=1 Y7 | f(Xi) — n(f) (as. or P)

o Central limit theorem

but not necessarily in the stability / convergence of the adaptation process
{0n,n > 0}.
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» In practice, simultaneous adaptation of the design parameter and simulation.

Given the current value of the chain X, and the design parameter 6,
o Draw the next sample X, 1 with the transition kernel Py (X, ).

o Update the design parameter: 0,41 = Ept1(O0n, Xnt1, ).

» In this MCMC context, we are interested in the behavior of the chain {X,,n > 0}
e.g.
o Convergence of the marginals:  E[f(Xy)] — w(f) for f bounded.
o Law of large numbers:  n=1 Y7 | f(Xi) — n(f) (as. or P)
o Central limit theorem
but not necessarily in the stability / convergence of the adaptation process
{0n,n > 0}.
Note that in this example mPy = 7 for any 6: the convergence of 6, is NOT crucial

for the convergence of {X,,n > 0}.
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Equi-Energy sampler

» Proposed by Kou et al. (2006) for the simulation of multi-modal density .
In a Hastings-Metropolis algorithm, how to choose a proposal distribution ¢ that both

allows
@ local moves for a local exploration of the density.

@ and large jumps in order to visit other modes of the target 7
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Equi-Energy sampler

» Proposed by Kou et al. (2006) for the simulation of multi-modal density 7.
In a Hastings-Metropolis algorithm, how to choose a proposal distribution ¢ that both

allows
@ local moves for a local exploration of the density.
@ and large jumps in order to visit other modes of the target ?

» Idea: (a) build an auxiliary process that moves between the modes far more easily

and (b) define the process of interest
@ by running a “classical” Hastings-Metropolis algorithm

@ and sometimes, choose a value of the auxiliary process as the new value of the

process of interest: draw a point at random + acceptation-rejection mecanism
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Equi-Energy sampler

» Proposed by Kou et al. (2006) for the simulation of multi-modal density 7.
In a Hastings-Metropolis algorithm, how to choose a proposal distribution ¢ that both

allows
@ local moves for a local exploration of the density.
@ and large jumps in order to visit other modes of the target ?

» Idea: (a) build an auxiliary process that moves between the modes far more easily

and (b) define the process of interest
@ by running a “classical” Hastings-Metropolis algorithm

@ and sometimes, choose a value of the auxiliary process as the new value of the

process of interest: draw a point at random + acceptation-rejection mecanism

How to define such an auxiliary process ? Ans.: as a process with stationary

distribution 78 (8 € (0,1)), a tempered version of the target .
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» On an example: a K-stage Equi-Energy sampler.

Tagetdensiy : mixture o 2-6m Gaussian

*»
‘d s o target density: ™ = Zfil No(pi, 25)
- - Q‘ o K auxiliary processes: with targets 71/7i
-
B © T1>T2>"'>TK+1=1

Target donsiy a temperature 2 Targetdensty at omporaure 3

[ — M;m - [— _
i sl - ’ - ¥ . -
° - 3 . - :
l %" 1 = = i
o i *’3 b ) - - - 4 - o
’;ﬂvm—‘ “draws. 1 .
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» An example of interacting MCMC (2 stages)
Repeat:

o Update the adaptation process

where {Y,,,n > 0} is the auxiliary process with stationary distribution B,

@ Update the process of interest with transition : X, 11 ~ Py (Xn,:) where

Py, (z,A) = (1—€)P(x, A)+e /A a(z,y) 0, (dy) + 6, (A) /(1 — a(z,y))0,(dy)

accept/reject mecanism
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» An example of interacting MCMC (2 stages)
Repeat:
o Update the adaptation process

where {Y,,,n > 0} is the auxiliary process with stationary distribution 7B,

@ Update the process of interest with transition : X, 11 ~ Py (Xn,:) where

Po (@A) = (1=9P@, A+ed [ atey) 0.0y +5.(4) (1 - alw )6 (@)
A —_—
accept/reject mecanism
P, is such that when 0, « 7%, mP s = m: asymptotically, when 0, "“is" 78, the
process of interest {X,,,n > 0} behaves like a Markov chain with invariant

distribution .
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» An example of interacting MCMC (2 stages)
Repeat:
o Update the adaptation process

where {Y,,,n > 0} is the auxiliary process with stationary distribution 7B,

@ Update the process of interest with transition : X, 11 ~ Py (Xn,:) where

Py, (2, A) = (1—€)P(z, A)+e /A alz,y)  On(dy) +6:(A) /(1 —a(z,y))0n(dy)

accept/reject mecanism

P, is such that when 0, « 7%, mP s = m: asymptotically, when 0, "“is" 78, the
process of interest {X,,,n > 0} behaves like a Markov chain with invariant
distribution 7.

In this MCMC context, we are again interested in the behavior of {X,,n > 0} but
convergence of #,, is crucial since the algorithm is designed to “sample from” 7 only

when 0,, = 7°.
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Wang-Landau algorithm

» Proposed by Wang & Landau ( ) to favor the moves between elements of a
partition of the state space, when the weights of these elements is unknown.
o Context:

o Partition {X;,% < d} of the state space X.

e 0,(7) def Jx, w(x)dz is unknown.
7
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» Proposed by Wang & Landau ( ) to favor the moves between elements of a
partition of the state space, when the weights of these elements is unknown.
o Context:

o Partition {X;,% < d} of the state space X.

e 0,(7) def Jx, w(x)dz is unknown.
7

o Goal:

o build a chain on [T, (X; x {i}) with stationary distribution
1 ()
TM(A; x {i}) = =
( ‘ {’L}) d A 0, (2)

e and/ or estimate the normalizing constants 0., ().

Ix, (%) dz ,
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» Proposed by Wang & Landau () to favor the moves between elements of a
partition of the state space, when the weights of these elements is unknown.
o Context:

o Partition {X;,% < d} of the state space X.

e 0,(7) def Jx, w(x)dz is unknown.
7

o Goal:

o build a chain on [T, (X; x {i}) with stationary distribution

1 ()
II(A; x {i}) = — Ix, d
(A D=5 [ G ix @ de,
e and/ or estimate the normalizing constants 0., ().
@ Tool :
o A family of transition kernels Py on Hle (Xi x {4})
o where 6§ = (6(1),---,0(d)) is a probability on {1,--- ,d}

e with invariant distribution known up to a normalizing constant

d .

i=1
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» Algorithm: repeat
e Draw (Xn+17[n+1) ~ Pgn((Xn,In), )

o Update the adaptation process

Ont1(1) < 00 (3) + Ynt+10n ()11, 4 (3)
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» Algorithm: repeat
o Draw (Xn41, Int1) ~ P, (Xn,In), ")

o Update the adaptation process

On41(2) o< On(3) + Ynt+16n (i)]lln+1 (4)

» In this MCMC context, we are also interested in the convergence of the sequence

{0,,,n > 0}: at a first order,
O 1(1) 2 0 (1) + 4100 (0) (11,1, () = On(Ins1))
and when (X, In) ~ Mg,
2 [0n(0) (11,4, O = 0n(ng1)) 17n] = X XXX

i.e. {6n,n > 0} should converge to 0, !
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Conclusion

In adaptive MCMC,
@ given a family of transition kernels {Py,0 € ©}
@ with invariant distribution 7y

we define a bivariate process {(Xpn,0,),n > 0} such that

IP)(XnJrl € |-7'-n) = PHn (Xnv )

What kind of conditions on the adaptation mecanism, for the convergence of the
process {X,,n > 0} to a target distribution 7 ?

In the sequel, “convergence” means " convergence of the marginals”

E[f(Xn)] — w(f) f bounded
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Convergence of adaptive/interacting MCMC samplers




