Convergence and Efficiency of the Wang Landau algorithm

Gersende FORT

CNRS & Telecom ParisTech Paris, France

Joint work with

- Benjamin Jourdain, Tony Lelièvre and Gabriel Stoltz from ENPC, France.
- Estelle Kuhn from INRA Jouy-en-Josas, France.

Convergence and Efficiency of the Wang Landau algorithm

Convergence analysis of a Monte Carlo sampler to sample from

 $\pi(x) \ d\lambda(x) \qquad \text{on } \mathbb{X} \subseteq \mathbb{R}^p$

when π is multimodal

Wang Landau : a biasing potential approach

• Instead of sampling from π , sample from π_{\star}

```
\pi_{\star}(x) \propto \pi(x) \exp(A_{\star}(x))
```

where A_{\star} is a biasing potential chosen such that π_{\star} satisfies some efficiency criterion.

- Such a "perfect" A_{\star} is unknown: it has to be estimated on the fly, when running the sampler.
- To obtain samples approximating π , use an *importance sampling* strategy.

Wang Landau : definition of π_* ?

$$\pi_{\star}(x) \propto \pi(x) \exp(-A_{\star}(x))$$

- Choose a partition X_1, \dots, X_d of X
- and choose A_{\star} constant on \mathbb{X}_{i}

$$\pi_\star(x) \propto \sum_{i=1}^d \ {\rm I\hspace{-0.5mm}I}_{{\mathbb X}_i}(x) \ \pi(x) \ \exp(-A_\star(i))$$

• and such that under π_{\star} , each subset X_i has the same weight: $\pi_{\star}(\mathbb{X}_i) = 1/d$ 1))

$$\frac{1}{d} = \pi(\mathbb{X}_i) \, \exp(-A_\star(i$$

Then,

$$\pi_{\star}(x) = \frac{1}{d} \sum_{i=1}^{d} \frac{\pi(x)}{\pi(\mathbb{X}_i)} \mathbb{I}_{\mathbb{X}_i}(x)$$

Wang Landau: an adaptive biasing potential algorithm

 $\pi(\mathbb{X}_i)$ is unknown and we can not sample under $\pi_\star.$

• Define the family of biased densities, indexed by a weight vector $\boldsymbol{\theta} = (\theta(1), \cdots, \theta(d)),$

$$\pi_{\theta}(x) \propto \sum_{i=1}^{d} \frac{\pi(x)}{\theta(i)} \mathbb{I}_{\mathbb{X}_{i}}(x)$$

• The algorithm produces iteratively a sequence $((\theta_t, X_t))_t$ s.t.

Wang Landau: Update rules for the bias θ_t

By definition, $\pi_{\star}(\mathbb{X}_i) = 1/d$. The update rules consist in penalizing the subsets \mathbb{X}_i which are visited in order to force the sampler to spend the same time in each subset \mathbb{X}_i .

Since $\pi_{\theta}(\mathbb{X}_{i}) \propto \pi(\mathbb{X}_{i})/\theta(i)$ Rules: $\begin{cases} \text{if } X_{t+1} \in \mathbb{X}_{i} & \theta_{t+1}(i) > \theta_{t}(i) \\ \lim_{t \to 0} \theta_{t} = (\pi(\mathbb{X}_{1}), \cdots, \pi(\mathbb{X}_{d})) \end{cases} \qquad \theta_{t+1}(k) < \theta_{t}(k), \ k \neq i \end{cases}$

Wang Landau: Update rules for the bias θ_t

By definition, $\pi_{\star}(\mathbb{X}_i) = 1/d$. The update rules consist in penalizing the subsets \mathbb{X}_i which are visited in order to force the sampler to spend the same time in each subset \mathbb{X}_i .

Since $\pi_{\theta}(\mathbb{X}_{i}) \propto \pi(\mathbb{X}_{i})/\theta(i)$ Rules: $\begin{cases} \text{if } X_{t+1} \in \mathbb{X}_{i} & \theta_{t+1}(i) > \theta_{t}(i) \\ \lim_{t \to 0} \theta_{t} = (\pi(\mathbb{X}_{1}), \cdots, \pi(\mathbb{X}_{d})) \end{cases} \qquad \theta_{t+1}(k) < \theta_{t}(k), \ k \neq i \end{cases}$

Ex. Strategy 1: Non-linear update with deterministic step size $(\gamma_t)_t$

$$\theta_{t+1}(i) = \theta_t(i) \frac{1 + \gamma_{t+1}}{1 + \gamma_{t+1}\theta_t(i)} \qquad \qquad \theta_{t+1}(k) = \theta_t(k) \frac{1}{1 + \gamma_{t+1}\theta_t(i)}$$

Since $\pi_{\theta}(\mathbb{X}_i) \propto \pi(\mathbb{X}_i)/\theta(i)$

Wang Landau: Update rules for the bias θ_t

By definition, $\pi_{\star}(\mathbb{X}_i) = 1/d$. The update rules consist in penalizing the subsets \mathbb{X}_i which are visited in order to force the sampler to spend the same time in each subset \mathbb{X}_i .

 $\mathsf{Rules:} \ \left\{ \begin{array}{ll} \text{if } X_{t+1} \in \mathbb{X}_i & \theta_{t+1}(i) > \theta_t(i) \\ \lim_t \theta_t = (\pi(\mathbb{X}_1), \cdots, \pi(\mathbb{X}_d)) \end{array} \right. \qquad \theta_{t+1}(k) < \theta_t(k), \, k \neq i$

Ex. Strategy 1: Non-linear update with deterministic step size $(\gamma_t)_t$

$$\theta_{t+1}(i) = \theta_t(i) \frac{1 + \gamma_{t+1}}{1 + \gamma_{t+1} \theta_t(i)} \qquad \qquad \theta_{t+1}(k) = \theta_t(k) \frac{1}{1 + \gamma_{t+1} \theta_t(i)}$$

Ex. Strategy 2: Linear update with deterministic step size $(\gamma_t)_t$

$$\theta_{t+1}(i) = \theta_t(i) + \gamma_{t+1}\theta_t(i) (1 - \theta_t(i))$$

$$\theta_{t+1}(k) = \theta_t(k) - \gamma_{t+1}\theta_t(i) \ \theta_t(k)$$

Herefater, in the talk

WL is an iterative algorithm: each iteration consists in

- (i) sampling a point $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$ where $\pi_{\theta} P_{\theta} = \pi_{\theta}$
- (ii) updating the biasing potential: $\theta_{t+1} = \Xi(\theta_t, X_{t+1}, t)$

We now prove that

 $lim_t \theta_t = (\pi(\mathbb{X}_1), \cdots, \pi(\mathbb{X}_d)) a.s.$

2) as $t \to \infty$, X_t "approximates" π_\star : for a large class of functions f

$$\lim_t \mathbb{E}[f(X_t)] = \pi_\star(f)$$
$$\lim_T T^{-1} \sum_{t=1}^T f(X_t) = \pi_\star(f) \text{ a.s.}$$

and we propose an adaptive importance sampling estimator of π .

Convergence and Efficiency of the Wang Landau algorithm \square Asymptotic behavior of the weights $(\theta_t)_t$

Outline

The Wang Landau algorithm Conclusion

Asymptotic behavior of the weights $(\theta_t)_t$

WL as a Stochastic Approximation algorithm Convergence of the weight sequence Rate of convergence

Asymptotic distribution of X_t

WL as a sampler Ergodicity and Law of large numbers Approximation of π

Efficiency of the WL algorithm

A toy example A second example

References

In this section, the update of θ_t is one of the tow previous strategies

$$\theta_{t+1} = \Xi(\theta_t, X_{t+1}, \gamma_{t+1})$$

where $(\gamma_t)_t$ is a non increasing positive sequence chosen by the user controlling the adaption rate of the weight sequence $(\theta_t)_t$.

We address

- the convergence
- 2 the rate of convergence
- of the weight sequence $(\theta_t)_t$

Convergence and Efficiency of the Wang Landau algorithm \Box Asymptotic behavior of the weights $(\theta_t)_t$

WL as a Stochastic Approximation algorithm

WL as a Stochastic Approximation algorithm

WL is a stochastic approximation algorithm with Markov controlled dynamics

• it produces a sequence of weights $(\theta_t)_t$ defined by

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) + O\left(\gamma_{t+1}^2\right)$$

where

$$H_i(\theta, x) = \theta(i) \left(\mathbb{1}_{\mathbb{X}_i}(x) - \theta(I(x)) \right) \qquad i \in \{1, \cdots, d\}$$

Convergence and Efficiency of the Wang Landau algorithm Asymptotic behavior of the weights $(\theta_t)_t$

WL as a Stochastic Approximation algorithm

WL as a Stochastic Approximation algorithm

WL is a stochastic approximation algorithm with Markov controlled dynamics

• it produces a sequence of weights $(\theta_t)_t$ defined by

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) + O\left(\gamma_{t+1}^2\right)$$

where

$$H_i(\theta, x) = \theta(i) \left(\mathbb{1}_{\mathbb{X}_i}(x) - \theta(I(x)) \right) \qquad i \in \{1, \cdots, d\}$$

• with dynamics $(X_t)_t$: controlled Markov chain

$$\mathbb{P}(X_{t+1} \in A | \mathsf{past}_t) = P_{\theta_t}(X_t, A)$$

Note that the field $H(\theta, X_{t+1})$ is a (random) approximation of the *mean field*

$$h(\theta) = \int H(\theta, x) \, \pi_{\theta}(x) \, \lambda(dx).$$

Asymptotic behavior of the weights (σ_t)

Convergence of the weight sequence

Almost-sure convergence of the WL weight sequence

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

- The target distribution $\pi d\lambda$ satisfies $0 < \inf_{\mathbb{X}} \pi \le \sup_{\mathbb{X}} \pi < \infty$ and $\inf_i \pi(\mathbb{X}_i) > 0$.
- **②** For any θ , P_{θ} is a Hastings-Metropolis kernel with invariant distribution

$$\pi_{\theta}(x) \propto \sum_{i=1}^{d} \frac{\pi(x)}{\theta(i)} \ \mathbb{I}_{\mathbb{X}_{i}}(x)$$

and proposal distribution $q(x,y)d\lambda(y)$ such that $\inf_{\mathbb{X}^2} q > 0$.

③ The step-size sequence is non-increasing, positive,

$$\sum_{t} \gamma_t = \infty \qquad \sum_{t} \gamma_t^2 < \infty$$

Then

$$\lim_t heta_t = (\pi(\mathbb{X}_1), \cdots, \pi(\mathbb{X}_d))$$
 almost-surely

Convergence and Efficiency of the Wang Landau algorithm Asymptotic behavior of the weights $(\theta_t)_t$ Convergence of the weight sequence

Sketch of the proof (1/2)

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) + \gamma_{t+1}^2 O(1)$$

(1.) Rewrite the update rule as a perturbation of a discretized O.D.E. $\dot{u} = h(u)$

$$u_{t+1} = u_t + \gamma_{t+1}h(u_t) + \gamma_{t+1}\xi_{t+1}$$

In our case

$$h(\theta) = \left(\sum_{j=1}^{d} \frac{\theta(j)}{\pi(\mathbb{X}_j)}\right)^{-1} \left(\begin{bmatrix} \pi(\mathbb{X}_1) \\ \cdots \\ \pi(\mathbb{X}_d) \end{bmatrix} - \theta \right)$$

(2.) Show that the ODE $\dot{u} = h(u)$ converges to the set

$$\mathcal{L} = \{\theta : h(\theta) = 0\} = \{(\pi(\mathbb{X}_1), \cdots, \pi(\mathbb{X}_d))\}$$

(3.) Show that the noisy discretization $(u_t)_t$ inherits the same limiting behavior and converges to \mathcal{L} .

Convergence and Efficiency of the Wang Landau algorithm Asymptotic behavior of the weights $(\theta_t)_t$ Convergence of the weight sequence

Sketch of the proof (2/2)

The last step is the most technical (3a.) The noisy discretization has to visit infinitely often an attractive neighborhood of the limiting set \mathcal{L}

(3b.) The noise ξ_t has to be small (at least when t is large)

$$\xi_{t+1} = H(\theta_t, X_{t+1}) - h(\theta_t) + \gamma_{t+1}O(1)$$

and this holds true since we have

- Uniform geometric ergodicity: There exists $\rho \in (0,1)$ s.t.

$$\sup_{x \in \mathbb{X}, \theta \in \Theta} \|P_{\theta}^{n}(x, \cdot) - \pi_{\theta}\|_{\mathrm{TV}} \le 2(1-\rho)^{n}.$$

- Regularity-in- θ of π_{θ} and P_{θ} : There exists C such that for any $\theta, \theta' \in \Theta$ and any $x \in \mathbb{X}$

$$\|P_{\theta}(x,\cdot) - P_{\theta'}(x,\cdot)\|_{\mathrm{TV}} + \|\pi_{\theta} \, d\lambda - \pi_{\theta'} \, d\lambda\|_{\mathrm{TV}} \le C \sum_{i=1}^{d} \left|1 - \frac{\theta'(i)}{\theta(i)}\right|$$

Convergence and Efficiency of the Wang Landau algorithm \Box Asymptotic behavior of the weights $(\theta_t)_t$ \Box Rate of convergence

Rate of convergence (1/2)

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

- (the same assumptions as for the convergence result)
- One of the following conditions
 - (i) $\gamma_t \sim \gamma_0/t^a$ for some $a \in (1/2,1)$ (ii) $\gamma_t \sim \gamma_\star/t$ with $\gamma_\star > d/2$.

Then when $t \to \infty$

$$\frac{1}{\sqrt{\gamma_t}} \left(\theta_t - \begin{bmatrix} \pi(\mathbb{X}_1) \\ \cdots \\ \pi(\mathbb{X}_d) \end{bmatrix} \right) \xrightarrow{w} \mathcal{N}_d \left(0, \sigma^2 U_\star \right)$$

where

$$U_{\star} = \int_{\mathbb{X}} \left\{ \widehat{H}_{\star}(x) \widehat{H}_{\star}^{T}(x) - P_{\star} \widehat{H}_{\star}(x) P_{\star} \widehat{H}_{\star}^{T}(x) \right\} \pi_{\star}(x) \, d\lambda(x)$$

and

$$\sigma^2 = \begin{cases} d/2 & \text{in case (i)} \\ \gamma_\star d/(2\gamma_\star - d) & \text{in case (ii)} \end{cases}$$

```
Convergence and Efficiency of the Wang Landau algorithm 

\Box Asymptotic behavior of the weights (\theta_t)_t

\Box Rate of convergence
```

Rate of convergence (2/2)

• The limiting variance is the same as in a Stochastic Approximation algorithm with dynamics $(X_t)_t$ sampled from a Markov chain with invariant distribution π_\star

```
Convergence and Efficiency of the Wang Landau algorithm 

\Box Asymptotic behavior of the weights (\theta_t)_t

\Box Rate of convergence
```

Rate of convergence (2/2)

- The limiting variance is the same as in a Stochastic Approximation algorithm with dynamics $(X_t)_t$ sampled from a Markov chain with invariant distribution π_\star
- What is the optimal rate of convergence?

$$\hookrightarrow$$
 answer: $\gamma_t = rac{\gamma_\star}{t}$ which yields a rate $O(\sqrt{t})$

```
Convergence and Efficiency of the Wang Landau algorithm

\square Asymptotic behavior of the weights (\theta_t)_t

\square Rate of convergence
```

Rate of convergence (2/2)

- The limiting variance is the same as in a Stochastic Approximation algorithm with dynamics $(X_t)_t$ sampled from a Markov chain with invariant distribution π_\star
- What is the optimal rate of convergence?

$$\hookrightarrow$$
 answer: $\gamma_t = \frac{\gamma_\star}{t}$ which yields a rate $O(\sqrt{t})$

When γ_t = γ_{*}/t, the limiting variance is dγ²_{*}(2γ_{*} − d) U_{*} so: is there an optimal γ_{*}?

 \hookrightarrow answer: optimal with $\gamma_{\star} = d$ and this yields the variance $d^2 U_{\star}$

Convergence and Efficiency of the Wang Landau algorithm \square Asymptotic behavior of the weights $(\theta_t)_t$ \square Rate of convergence

Rate of convergence (2/2)

- The limiting variance is the same as in a Stochastic Approximation algorithm with dynamics $(X_t)_t$ sampled from a Markov chain with invariant distribution π_\star
- What is the optimal rate of convergence?

$$\hookrightarrow$$
 answer: $\gamma_t = \frac{\gamma_\star}{t}$ which yields a rate $O(\sqrt{t})$

When γ_t = γ_{*}/t, the limiting variance is dγ²_{*}(2γ_{*} − d) U_{*} so: is there an optimal γ_{*}?

 \hookrightarrow answer: optimal with $\gamma_{\star} = d$ and this yields the variance $d^2 U_{\star}$

• In practice: choose $\gamma_t = \gamma_\star/t^{\alpha}$ with α close to 1/2 (but larger) and consider an averaging technique:

$$\pi(\mathbb{X}_i) \approx \frac{1}{T} \sum_{t=1}^T \theta_t(i)$$

We will have the optimal rate of convergence.

Outline

The Wang Landau algorithm Conclusion

Asymptotic behavior of the weights $(\theta_t)_t$

WL as a Stochastic Approximation algorithm Convergence of the weight sequence Rate of convergence

Asymptotic distribution of X_t

WL as a sampler Ergodicity and Law of large numbers Approximation of π

Efficiency of the WL algorithm

A toy example A second example

References

In this section, the update of θ_t is one of the tow previous strategies

$$\theta_{t+1} = \Xi(\theta_t, X_{t+1}, \gamma_{t+1})$$

where $(\gamma_t)_t$ is a decreasing positive sequence chosen by the user.

We address

- **(**) the convergence of $(X_t)_t$ to π_{\star} in some sense.
- **2** how to approximate π with the points $(X_t)_t$.

Convergence and Efficiency of the Wang Landau algorithm $\[\] Asymptotic distribution of X_t $$ WL as a sampler $$$

WL as a sampler

WL is an adaptive MCMC sampler

• it produces points $(X_t)_t$:

$$\mathbb{P}\left(X_{t+1} \in A | \text{past}_t\right) = P_{\theta_t}(X_t, A)$$

• and at the same time, updates the adaption parameter

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) + O(\gamma_{t+1}^2)$$

Here, each kernel P_{θ} has its own invariant distribution π_{θ} BUT we know that $(\theta_t)_t$ converges and $\pi_{\lim_{t \to t} \theta_t} = \pi_{\star}$. Convergence and Efficiency of the Wang Landau algorithm \square Asymptotic distribution of X_t \square Ergodicity and Law of large numbers

Ergodicity and Law of large numbers

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

• (the same assumptions as those for the convergence of $(\theta_t)_t$)

Then for any bounded measurable function f

$$\lim_{t} \mathbb{E}\left[f(X_t)\right] = \int f(x) \ \pi_{\star}(x) \ d\lambda(x)$$
$$\lim_{T} \frac{1}{T} \sum_{t=1}^{T} f(X_t) = \int f(x) \ \pi_{\star}(x) \ d\lambda(x) \text{ almost-surely}$$

Convergence and Efficiency of the Wang Landau algorithm \square Asymptotic distribution of X_t \square Ergodicity and Law of large numbers

Sketch of proof

(1.) The containment condition: There exist $\rho \in (0,1)$ and C such that

$$\sup_{x} \sup_{\theta} \|P_{\theta}^{t}(x,\cdot) - \pi_{\theta}\|_{\mathrm{TV}} \le C \,\rho^{t}$$

(2.) The diminishing adaption condition: There exists C such that for any θ, θ'

$$\sup_{x} \|P_{\theta}(x,\cdot) - P_{\theta'}(x,\cdot)\|_{\mathrm{TV}} \le C \sum_{i=1}^{d} \left|1 - \frac{\theta(i)}{\theta'(i)}\right|$$

The update of the parameter satisfies: there exists C' such that $\forall t$

$$\|\theta_{t+1} - \theta_t\| \le C' \,\gamma_{t+1}$$

Convergence and Efficiency of the Wang Landau algorithm Asymptotic distribution of X_t Approximation of π

Approximation of π (1/2)

By definition of π_{\star} , on the set \mathbb{X}_i : $\pi_{\star}(x) = \frac{1}{d} \frac{\pi(x)}{\pi(\mathbb{X}_i)}$

Then

$$\int f \ \pi d\lambda = \sum_{i=1}^{d} \int_{\mathbb{X}_{i}} f \ \pi d\lambda$$
$$= d \ \sum_{i=1}^{d} \ \pi(\mathbb{X}_{i}) \underbrace{\int_{\mathbb{X}_{i}} f \ \pi_{\star} d\lambda}_{\text{approximated by a Monte Carlo sum}}$$
$$\frac{1}{T} \sum_{t=1}^{T} f(X_{t}) \mathbb{I}_{\mathbb{X}_{i}}(X_{t})$$
$$\approx \frac{d}{T} \sum_{t=1}^{T} f(X_{t}) \sum_{i=1}^{d} \underbrace{\pi(\mathbb{X}_{i})}_{\text{approximated by } \theta_{t}(i)} \mathbb{I}_{\mathbb{X}_{i}}(X_{t})$$

so that

$$\int f \ \pi \ d\lambda \approx \frac{d}{T} \sum_{t=1}^{T} f(X_t) \sum_{i=1}^{d} \theta_t(i) \mathbb{I}_{\mathbb{X}_i}(X_t)$$

Approximation of π (2/2)

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

(the same assumptions as those for the convergence of $(\theta_t)_t$)

Then, for any bounded measurable function f

$$\lim_{t} d \mathbb{E}\left[f(X_{t})\sum_{i=1}^{d}\theta_{t}(i)\mathbb{I}_{\mathbb{X}_{i}}(X_{t})\right] = \int f(x) \ \pi(x) \ d\lambda(x)$$
$$\lim_{T} \frac{d}{T}\sum_{t=1}^{T} f(X_{t}) \left(\sum_{i=1}^{d}\theta_{t}(i)\mathbb{I}_{\mathbb{X}_{i}}(X_{t})\right) = \int f \ \pi \ d\lambda \qquad \text{almost-surely}$$

Outline

The Wang Landau algorithm Conclusion

Asymptotic behavior of the weights (θ_t) :

WL as a Stochastic Approximation algorithm Convergence of the weight sequence Rate of convergence

Asymptotic distribution of X_t

WL as a sampler Ergodicity and Law of large numbers Approximation of π

Efficiency of the WL algorithm

A toy example A second example

References

In this section :

runs are with the non-linearized Wang-Landau algorithm with deterministic step sizes

Algorithm: Given (θ_t, X_t)

- Draw a new sample: $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$
- **2** Update the weights: if $X_{t+1} \in \mathbb{X}_i$,

$$\theta_{t+1}(i) = \theta_t(i) \ \frac{1 + \gamma_{t+1}}{1 + \gamma_{t+1}\theta_t(i)}$$
$$\theta_{t+1}(k) = \theta_t(k) \ \frac{1}{1 + \gamma_{t+1}\theta_t(i)} \qquad k \neq i$$

A toy example (1/2)

- State space: $\mathbb{X} = \{1,2,3\}$
- Target distribution: $\pi(1) \propto 1$ $\pi(2) \propto \epsilon$ $\pi(3) \propto 1$

Let us compare

() Hastings-Metropolis P with proposal kernel Q and target π

$$Q = \begin{bmatrix} 2/3 & 1/3 & 0\\ 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 2/3 \end{bmatrix} \qquad P = \begin{bmatrix} 1 - \epsilon/3 & \epsilon/3 & 0\\ 1/3 & 1/3 & 1/3\\ 0 & \epsilon/3 & 1 - \epsilon/3 \end{bmatrix}$$

2 Wang-Landau P_{θ} with proposal kernel Q and target π_{θ}

$$\pi_{\theta}(i) \propto \frac{\pi(i)}{\theta(i)} \qquad P_{\theta} = \begin{bmatrix} 1 - \frac{1}{3} \left(\epsilon \frac{\theta(1)}{\theta(2)} \wedge 1 \right) & \cdots & 0 \\ \frac{1}{3} \left(\frac{1}{\epsilon} \frac{\theta(2)}{\theta(1)} \wedge 1 \right) & \cdots & \frac{1}{3} \left(\frac{1}{\epsilon} \frac{\theta(2)}{\theta(3)} \wedge 1 \right) \\ 0 & \cdots & 1 - \frac{1}{3} \left(\epsilon \frac{\theta(3)}{\theta(2)} \wedge 1 \right) \end{bmatrix}$$

A toy example (2/2)

Comparison based on the hitting time

 $T_{1\rightarrow3}: \text{hitting-time of state } 3, \text{ given the chain started from state } 1$ when $\epsilon \rightarrow 0$. Proposition (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-b)) When $\epsilon \rightarrow 0$ • For Hastings-Metropolis: $T_{1\rightarrow3}$ scales like $6/\epsilon$

$$\lim_{\epsilon \to 0} \frac{\epsilon}{6} \mathbb{E} \left[T_{1 \to 3} \right] = 1$$
$$\frac{\epsilon}{6} T_{1 \to 3} \to \mathcal{E}(1) \text{ in distribution}$$

• For Wang-Landau applied with $\gamma_t = \gamma_\star/t^a$: $T_{1 \to 3}$ scales like

$$\begin{array}{ll} C(a,\gamma_{\star}) \mid \ln \epsilon \mid^{1/(1-a)} & \textit{ when } 1/2 < a < 1 \\ \epsilon^{-1/(1+\gamma_{\star})} & \textit{ when } a = 1 \end{array}$$

Convergence and Efficiency of the Wang Landau algorithm

A second example

Second example on \mathbb{R}^2 (1/5)

- $\mathbb{X} = [-R,R] \times \mathbb{R}$
- The target density: $\pi \propto \exp(-\beta ~V(x_1,\!x_2))$ with

$$V(x_1, x_2) = 3 \exp\left(-x_1^2 - \left(x_2 - \frac{1}{3}\right)^2\right) - 3 \exp\left(-x_1^2 - \left(x_2 - \frac{5}{3}\right)^2\right)$$
$$-5 \exp\left(-(x_1 - 1)^2 - x_2^2\right) - 5 \exp\left(-(x_1 + 1)^2 - x_2^2\right) + 0.2x_1^4 + 0.2\left(x_2 - \frac{1}{3}\right)^4.$$

• d strata: obtained by binning the x-axis

Two metastable points $x_{-} = (-1,0)$, $x_{+} = (1,0)$

Convergence and Efficiency of the Wang Landau algorithm Efficiency of the WL algorithm A second example

Second example on \mathbb{R}^2 (2/5)

d=48 strata, binning along the x-axis.

 P_{θ} are Hastings-Metropolis kernels with proposal distribution $\mathcal{N}(0,(2R/d)^2 I)$ and target π_{θ} . R = 2.4.

 $X_0 = (-1,0).$

The stepsize sequence is $\gamma_t \sim c/t^{0.8}$.

 $\mathrm{FIG.:}$ [left] The sequences $(heta_t(i))_t$. [right] The limiting value $\lim_t heta_t(i)$

Convergence and Efficiency of the Wang Landau algorithm Efficiency of the WL algorithm A second example

Second example on \mathbb{R}^2 (3/5)

Path of the x_1 -component of $(X_t)_t$, when X_t is the WL chain (left) and the Hastings-Metropolis chain (right).

FIG.: [left] Wang Landau, $T = 110\,000$. [right] Hastings Metropolis, $T = 2\,10^6$; the red line is at $x = 110\,000$

Second example on \mathbb{R}^2 (4/5)

For the Wang-Landau algorithm with kernel HM kernels with proposal \mathcal{Q}_d

$$Q_d(x,dy) \equiv \mathcal{N}_2(x,\upsilon_d I)(y)$$

and target π_{θ} .

Compute T_{β} : the hitting-time of the statum containing $\{(x_1, x_2), x_1 > 1\}$, when the chain starts from $x_- = (-1, 0)$.

- different (large) values of β are considered.

- the plots show the mean value of this hitting-time over M_β independent runs. $_{M_\beta}$ chosen such that the variability of $_{T_\beta}$ is less than few percents

Convergence and Efficiency of the Wang Landau algorithm Efficiency of the WL algorithm A second example

Second example on \mathbb{R}^2 (5/5)

- It is expected based on Laplace methods for comparing the weights of strata that $\exp(-\beta \mu)$ plays the same role as ϵ in the previous example.
- Therefore, it is expected and we observe that T_{β} scales as

$$\begin{array}{ll} C(a,\gamma_{\star})' \ \beta^{1/(1-a)} & \mbox{when } 1/2 < a < 1 \\ C \ \exp(\beta \ \mu/(1+\gamma_{\star})) & \mbox{when } a = 1 \end{array}$$

FIG.: $\log T_{\beta}$ when $\gamma_t = 8/t$. dx is the width of each stratum.

References

Wang-Landau

F.G. Wang and D.P. Landau, *Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram*, Phys. Rev. E 64 (2001), 056101.

G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. *Convergence of the Wang-Landau algorithm* Accepted for publication in Mathematics of Computation, 2014. arXiv math.PR 1207.6880.

G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. *Efficiency of the Wang-Landau algorithm* Accepted for publication in Applied Mathematics Research Express, 2014. arXiv math.NA 1310.6550

Convergence of Stochastic Approximation algorithms

C. Andrieu, E. Moulines and P. Priouret. *Stability of Stochastic Approximation under verifiable conditions.* SIAM J. Control Optim. 44(1):283–312, 2005.

CLT for Stochastic Approximation algorithms

G. Fort. *Central Limit Theorems for Stochastic Approximation algorithms*. Accepted for publication in ESAIM PS, 2014. arXiv math.PR 1309.3116

Ergodicity and Law of Large Numbers for Controlled Markov chains

G. Fort, E. Moulines and P. Priouret. Convergence of adaptive and interacting Markov chains Monte Carlo algorithms. Ann. Stat., 39(6):3262–3289, 2012.