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Convergence and Efficiency of the Wang Landau algorithm

Convergence analysis of a Monte Carlo sampler to sample from

π(x) dλ(x) on X ⊆ Rp

when π is multimodal
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The Wang Landau algorithm

Wang Landau : a biasing potential approach

Instead of sampling from π, sample from π?

π?(x) ∝ π(x) exp(A?(x))

where A? is a biasing potential chosen such that π? satisfies some
efficiency criterion.

Such a “perfect” A? is unknown: it has to be estimated on the fly, when
running the sampler.

To obtain samples approximating π, use an importance sampling strategy.
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The Wang Landau algorithm

Wang Landau : definition of π??

π?(x) ∝ π(x) exp(−A?(x))

Choose a partition X1, · · · ,Xd of X

and choose A? constant on Xi

π?(x) ∝
d∑
i=1

1IXi(x) π(x) exp(−A?(i))

and such that under π?, each subset Xi has the same weight:
π?(Xi) = 1/d

1

d
= π(Xi) exp(−A?(i))

Then,

π?(x)=
1

d

d∑
i=1

π(x)

π(Xi)
1IXi(x)
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The Wang Landau algorithm

Wang Landau: an adaptive biasing potential algorithm

π(Xi) is unknown and we can not sample under π?.

Define the family of biased densities, indexed by a weight vector
θ = (θ(1), · · · ,θ(d)),

πθ(x) ∝
d∑
i=1

π(x)

θ(i)
1IXi(x)

The algorithm produces iteratively a sequence ((θt,Xt))t s.t.

(i) Xt ∼ πθt
or, if not possible, Xt ∼ Pθt(Xt−1,·) where πθPθ = πθ.

(ii) limt θt = (π(X1), · · · ,π(Xd))
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The Wang Landau algorithm

Wang Landau: Update rules for the bias θt

By definition, π?(Xi) = 1/d. The update rules consist in penalizing the subsets
Xi which are visited in order to force the sampler to spend the same time in
each subset Xi.

Since πθ(Xi) ∝ π(Xi)/θ(i)

Rules:

{
if Xt+1 ∈ Xi θt+1(i) > θt(i) θt+1(k) < θt(k), k 6= i
limt θt = (π(X1), · · · ,π(Xd))

Ex. Strategy 1: Non-linear update with deterministic step size (γt)t

θt+1(i) = θt(i)
1 + γt+1

1 + γt+1θt(i)
θt+1(k) = θt(k)

1

1 + γt+1θt(i)

Ex. Strategy 2: Linear update with deterministic step size (γt)t

θt+1(i) = θt(i) + γt+1θt(i) (1− θt(i))
θt+1(k) = θt(k)− γt+1θt(i) θt(k)
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The Wang Landau algorithm
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The Wang Landau algorithm

Conclusion

Herefater, in the talk

WL is an iterative algorithm: each iteration consists in

(i) sampling a point Xt+1 ∼ Pθt(Xt,·) where πθPθ = πθ

(ii) updating the biasing potential: θt+1 = Ξ(θt,Xt+1,t)

We now prove that

1 limt θt = (π(X1), · · · ,π(Xd)) a.s.

2 as t→∞, Xt “approximates” π?: for a large class of functions f

lim
t

E[f(Xt)] = π?(f)

lim
T
T−1

T∑
t=1

f(Xt) = π?(f) a.s.

and we propose an adaptive importance sampling estimator of π.
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Asymptotic behavior of the weights (θt)t

In this section, the update of θt is one of the tow previous strategies

θt+1 = Ξ(θt,Xt+1,γt+1)

where (γt)t is a non increasing positive sequence chosen by the user controlling the
adaption rate of the weight sequence (θt)t.

We address

1 the convergence

2 the rate of convergence

of the weight sequence (θt)t
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Asymptotic behavior of the weights (θt)t

WL as a Stochastic Approximation algorithm

WL as a Stochastic Approximation algorithm

WL is a stochastic approximation algorithm with Markov controlled dynamics

it produces a sequence of weights (θt)t defined by

θt+1 = θt + γt+1 H(θt,Xt+1) +O
(
γ2
t+1

)
where

Hi(θ,x) = θ(i) (1IXi(x)− θ(I(x))) i ∈ {1, · · · ,d}

with dynamics (Xt)t: controlled Markov chain

P(Xt+1 ∈ A|pastt) = Pθt(Xt,A)

Note that the field H(θ,Xt+1) is a (random) approximation of the mean field

h(θ) =

∫
H(θ,x)πθ(x)λ(dx).
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Asymptotic behavior of the weights (θt)t

Convergence of the weight sequence

Almost-sure convergence of the WL weight sequence

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

1 The target distribution π dλ satisfies 0 < infX π ≤ supX π <∞ and
infi π(Xi) > 0.

2 For any θ, Pθ is a Hastings-Metropolis kernel with invariant distribution

πθ(x) ∝
d∑
i=1

π(x)

θ(i)
1IXi(x)

and proposal distribution q(x,y)dλ(y) such that infX2 q > 0.

3 The step-size sequence is non-increasing, positive,∑
t

γt =∞
∑
t

γ2
t <∞

Then
lim
t
θt = (π(X1), · · · ,π(Xd)) almost-surely
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Asymptotic behavior of the weights (θt)t

Convergence of the weight sequence

Sketch of the proof (1/2)

θt+1 = θt + γt+1 H(θt,Xt+1) + γ2
t+1O(1)

(1.) Rewrite the update rule as a perturbation of a discretized O.D.E. u̇ = h(u)

ut+1 = ut + γt+1h(ut) + γt+1ξt+1

In our case

h(θ) =

(
d∑
j=1

θ(j)

π(Xj)

)−1
π(X1)

· · ·
π(Xd)

− θ


(2.) Show that the ODE u̇ = h(u) converges to the set

L = {θ : h(θ) = 0} = {(π(X1), · · · ,π(Xd))}

(3.) Show that the noisy discretization (ut)t inherits the same limiting behavior
and converges to L.
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Asymptotic behavior of the weights (θt)t

Convergence of the weight sequence

Sketch of the proof (2/2)

The last step is the most technical
(3a.) The noisy discretization has to visit infinitely often an attractive
neighborhood of the limiting set L

(3b.) The noise ξt has to be small (at least when t is large)

ξt+1 = H(θt,Xt+1)− h(θt) + γt+1O(1)

and this holds true since we have

− Uniform geometric ergodicity: There exists ρ ∈ (0,1) s.t.

sup
x∈X,θ∈Θ

‖Pnθ (x,·)− πθ‖TV ≤ 2(1− ρ)n.

− Regularity-in-θ of πθ and Pθ: There exists C such that for any θ,θ′ ∈ Θ
and any x ∈ X

‖Pθ(x,·)− Pθ′(x,·)‖TV + ‖πθ dλ− πθ′ dλ‖TV ≤ C
d∑
i=1

∣∣∣∣1− θ′(i)

θ(i)

∣∣∣∣
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Asymptotic behavior of the weights (θt)t

Rate of convergence

Rate of convergence (1/2)

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

1 (the same assumptions as for the convergence result)
2 one of the following conditions

(i) γt ∼ γ0/ta for some a ∈ (1/2,1)

(ii) γt ∼ γ?/t with γ? > d/2.

Then when t→∞

1
√
γt

θt −
π(X1)
· · ·

π(Xd)

 w−→ Nd
(
0,σ2 U?

)

where

U? =

∫
X

{
Ĥ?(x)Ĥ

T
? (x) − P?Ĥ?(x)P?Ĥ

T
? (x)

}
π?(x) dλ(x)

and

σ
2

=

{
d/2 in case (i)
γ?d/(2γ? − d) in case (ii)
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Asymptotic behavior of the weights (θt)t

Rate of convergence

Rate of convergence (2/2)

The limiting variance is the same as in a Stochastic Approximation
algorithm with dynamics (Xt)t sampled from a Markov chain with
invariant distribution π?

What is the optimal rate of convergence?

↪→ answer: γt =
γ?
t

which yields a rate O(
√
t)

When γt = γ?/t, the limiting variance is dγ2
?(2γ? − d)U? so: is there an

optimal γ? ?

↪→ answer: optimal with γ? = d and this yields the variance d2 U?

In practice: choose γt = γ?/t
α with α close to 1/2 (but larger) and

consider an averaging technique:

π(Xi) ≈
1

T

T∑
t=1

θt(i)

We will have the optimal rate of convergence.
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Asymptotic distribution of Xt

In this section, the update of θt is one of the tow previous strategies

θt+1 = Ξ(θt,Xt+1,γt+1)

where (γt)t is a decreasing positive sequence chosen by the user.

We address

1 the convergence of (Xt)t to π? in some sense.

2 how to approximate π with the points (Xt)t.
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Asymptotic distribution of Xt

WL as a sampler

WL as a sampler

WL is an adaptive MCMC sampler

it produces points (Xt)t:

P (Xt+1 ∈ A|pastt) = Pθt(Xt,A)

and at the same time, updates the adaption parameter

θt+1 = θt + γt+1 H(θt,Xt+1) +O(γ2
t+1)

Here, each kernel Pθ has its own invariant distribution πθ
BUT we know that (θt)t converges and πlimt θt = π?.
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Asymptotic distribution of Xt

Ergodicity and Law of large numbers

Ergodicity and Law of large numbers

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

1 (the same assumptions as those for the convergence of (θt)t)

Then for any bounded measurable function f

lim
t

E [f(Xt)] =

∫
f(x) π?(x) dλ(x)

lim
T

1

T

T∑
t=1

f(Xt) =

∫
f(x) π?(x) dλ(x) almost-surely
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Asymptotic distribution of Xt

Ergodicity and Law of large numbers

Sketch of proof

(1.) The containment condition:
There exist ρ ∈ (0,1) and C such that

sup
x

sup
θ
‖P tθ (x,·)− πθ‖TV ≤ C ρt

(2.) The diminishing adaption condition:
There exists C such that for any θ,θ′

sup
x
‖Pθ(x,·)− Pθ′(x,·)‖TV ≤ C

d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
The update of the parameter satisfies: there exists C′ such that ∀t

‖θt+1 − θt‖ ≤ C′ γt+1
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Asymptotic distribution of Xt

Approximation of π

Approximation of π (1/2)

By definition of π?, on the set Xi : π?(x) = 1
d
π(x)
π(Xi)

Then ∫
f πdλ =

d∑
i=1

∫
Xi
f πdλ

= d
d∑
i=1

π(Xi)
∫
Xi
f π?dλ︸ ︷︷ ︸

approximated by a Monte Carlo sum
1
T

∑T
t=1 f(Xt)1IXi (Xt)

≈ d

T

T∑
t=1

f(Xt)
d∑
i=1

π(Xi)︸ ︷︷ ︸
approximated by θt(i)

1IXi(Xt)

so that ∫
f π dλ ≈ d

T

T∑
t=1

f(Xt)

d∑
i=1

θt(i)1IXi(Xt)
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Asymptotic distribution of Xt

Approximation of π

Approximation of π (2/2)

Theorem ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

1 (the same assumptions as those for the convergence of (θt)t)

Then, for any bounded measurable function f

lim
t
d E

[
f(Xt)

d∑
i=1

θt(i)1IXi(Xt)

]
=

∫
f(x) π(x) dλ(x)

lim
T

d

T

T∑
t=1

f(Xt)

(
d∑
i=1

θt(i)1IXi(Xt)

)
=

∫
f π dλ almost-surely
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Efficiency of the WL algorithm

In this section :

runs are with the non-linearized Wang-Landau algorithm with
deterministic step sizes

Algorithm: Given (θt,Xt)

1 Draw a new sample : Xt+1 ∼ Pθt(Xt,·)
2 Update the weights : if Xt+1 ∈ Xi,

θt+1(i) = θt(i)
1 + γt+1

1 + γt+1θt(i)

θt+1(k) = θt(k)
1

1 + γt+1θt(i)
k 6= i
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Efficiency of the WL algorithm

A toy example

A toy example (1/2)

State space: X = {1,2,3}
Target distribution: π(1) ∝ 1 π(2) ∝ ε π(3) ∝ 1

Let us compare

1 Hastings-Metropolis P with proposal kernel Q and target π

Q =

2/3 1/3 0
1/3 1/3 1/3
0 1/3 2/3

 P =

1− ε/3 ε/3 0
1/3 1/3 1/3
0 ε/3 1− ε/3


2 Wang-Landau Pθ with proposal kernel Q and target πθ

πθ(i) ∝
π(i)

θ(i)
Pθ =


1− 1

3

(
ε θ(1)
θ(2)
∧ 1
)
· · · 0

1
3

(
1
ε
θ(2)
θ(1)
∧ 1
)

· · · 1
3

(
1
ε
θ(2)
θ(3)
∧ 1
)

0 · · · 1− 1
3

(
ε θ(3)
θ(2)
∧ 1
)

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Efficiency of the WL algorithm

A toy example

A toy example (2/2)

Comparison based on the hitting time

T1→3 : hitting-time of state 3, given the chain started from state 1

when ε→ 0.

Proposition ( F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-b))

When ε→ 0

For Hastings-Metropolis: T1→3 scales like 6/ε

lim
ε→0

ε

6
E [T1→3] = 1

ε

6
T1→3 → E(1) in distribution

For Wang-Landau applied with γt = γ?/t
a: T1→3 scales like

C(a,γ?) | ln ε|1/(1−a) when 1/2 < a < 1

ε−1/(1+γ?) when a = 1
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Efficiency of the WL algorithm

A second example

Second example on R2 (1/5)

X = [−R,R]× R
The target density: π ∝ exp(−β V (x1,x2)) with

V (x1,x2) = 3 exp

(
−x

2
1 −

(
x2 −

1

3

)2)
− 3 exp

(
−x

2
1 −

(
x2 −

5

3

)2)
− 5 exp

(
−(x1 − 1)

2 − x
2
2

)
− 5 exp

(
−(x1 + 1)

2 − x
2
2

)
+ 0.2x

4
1 + 0.2

(
x2 −

1

3

)4

.

d strata: obtained by binning the x-axis
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Two metastable points x− = (−1,0), x + = (1,0)
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Efficiency of the WL algorithm

A second example

Second example on R2 (2/5)

d = 48 strata, binning along the x-axis.

Pθ are Hastings-Metropolis kernels with proposal distribution N (0,(2R/d)2I)
and target πθ. R = 2.4.

X0 = (−1,0).

The stepsize sequence is γt ∼ c/t0.8.

0 0.5 e6 1 e6 1.5 e6 2 e6 2.5 e6 3 e6
0
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0.04
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0.1
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0.14

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig.: [left] The sequences (θt(i))t . [right] The limiting value limt θt(i)
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Efficiency of the WL algorithm

A second example

Second example on R2 (3/5)

Path of the x1-component of (Xt)t, when Xt is the WL chain (left) and the
Hastings-Metropolis chain (right).

0 2 4 6 8 10 12

x 10
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6
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−0.5

0

0.5

1

1.5

2
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Fig.: [left] Wang Landau, T = 110 000. [right] Hastings Metropolis, T = 2 106 ; the red line is at x = 110 000
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Efficiency of the WL algorithm

A second example

Second example on R2 (4/5)

For the Wang-Landau algorithm with kernel HM kernels with proposal Qd

Qd(x,dy) ≡ N2(x,υdI)(y)

and target πθ.

Compute Tβ : the hitting-time of the statum containing {(x1,x2),x1 > 1},
when the chain starts from x− = (−1,0).

- different (large) values of β are considered.

- the plots show the mean value of this hitting-time over Mβ independent
runs. Mβ chosen such that the variability of Tβ is less than few percents
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Efficiency of the WL algorithm

A second example

Second example on R2 (5/5)

It is expected based on Laplace methods for comparing the weights of strata that exp(−β µ) plays
the same role as ε in the previous example.
Therefore, it is expected - and we observe - that Tβ scales as

C(a,γ?)
′ β1/(1−a) when 1/2 < a < 1

C exp(β µ/(1 + γ?)) when a = 1
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Fig.: log Tβ when γt = 8/t. dx is the width of each stratum.
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