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Wang-Landau: a biasing technique (1/3)

In Molecular dynamics, the models consist in the description of the state
of the system: the location of the N particles x` (e.g. the set of N points
in R3) and sometimes the speed of the particles.

There are interactions between the particles x1, · · · ,xN , described through
a potential/Hamiltonian H(x1, · · · ,xN ).

A state of the system is characterized by a probability π(x): e.g. in the canonical

ensemble NVT

π(x) ∝ exp(−βH(x)) β
def
=

1

kB T
(inverse temperature)

where x = (x1, · · · ,xN ) ∈ X.

The goal is to compute derivatives of the partition function i.e.
expectations under the distribution π when

the dimension of the support X is very large,
π is multimodal (or metastable).
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Exact computations of
∫
φdπ are not possible (π is known up to a

normalizing constant, the domain of integration is very large, · · · )
(Markov chain) Monte Carlo methods allow to sample points (Xt)t s.t.

lim
T→∞

1

T

T∑
t=1

φ(Xt)
a.s.−→
∫
φdπ.

Unfortunately, in mestastable systems, the points remain trapped in local
modes for a very long time

Fig.: [left] level curves of a potential in R2 which is metastable in the first direction. [right] path of the first component of (Xt)t

In such situations, the convergence is very long to obtain!
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It is not possible to answer the metastability problem in full generality
(number of modes, size of the barriers between metastable states which
increase with the dimension N , · · · ).

Nevertheless, in Molecular Dynamics, it is often possible to identify a
reaction coordinate that is, in some sense a ”direction of metastability”.

A new approach to define samplers robust to metastability:

I sample from a biased distribution π? such that

the image of π? by the reaction coordinate O is uniform:

O(X) when X ∼ π? has a uniform distribution

the conditional distribution of π? given O(x) is equal to the
conditional distribution of π given O(x).

I approximate integrals w.r.t. π by an importance sampling algorithm
with proposal π?
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Assume
π(x) ∝ exp(−β H(x))

on a discrete (but large) space X, and the goal is to compute∑
x∈X

Φ(H(x)) π(x)

Then, ∑
x

Φ(H(x)) π(x) =
∑

e∈H(X)

Φ(e)
g(e)∑

e′∈H(X) g(e′)

where g is the density of state:

g(e)
def
=
∑
x∈X

1IH(x)=e
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Density of state:

g(e)
def
=
∑
x∈X

1IH(x)=e

g(e) can not be calculated exactly for large systems.

Although the total number of configurations increases exponentially with
the size of the system, the total number of possible energy levels increases
linearly with the size of system. example: qL

2
compared to 2L2 for a q-state Potts on a L × L

lattice withe nearest-neighfor interactions

Wang and Landau (2001) proposed to perform a random walk in the
energy space in order to estimate g(e) for any e.

With the density of states,

we can calculate most of thermodynamic quantities in all inverse
temperature β

we can access many thermodynamic properties (free energy, internal
energy, specific heat i.e. normalizing constant, expectation and variance
under π)
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Algorithm:

Initialisation:

density of state: g(e) = 1 for any e
modification factor: f0

LOOP 1:
Repeat

Run a Markov chain with transition matrix

Q(e,e′) = 1 ∧
g(e)

g(e′)

Update the histogram in the energy space: if E is the new point,

ln g(E)← ln g(E) + ln ft

Until the flat histogram is reached.

LOOP 2: Repeat LOOP1 with a new modification factor ft+1 ←
√
ft

until the modification factor is smaller than a predefined value.

Why does it work? the intuition:

The chain Q is reversible w.r.t. ∝ 1/g(e)

The distribution of g(E) when E ∼ 1/g(e) is the uniform distribution.
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General Wang-Landau (1/3)

How to sample a metastable target distribution π on a general state space X?

Choose a partition X1, · · · ,Xd of X. Then

π(x) =
d∑
i=1

1IXi(x)π(x)

Consider a family of biased distributions (πθ,θ ∈ Rd) on X

πθ(x) ∝
d∑
i=1

1

θ(i)
1IXi(x)π(x)

where θ = (θ(1), · · · ,θ(d)) satisfies
∑
i θ(i) = 1 and θ(i) ≥ 0.

Run an algorithm which combines

sampling under πθt (exact or MCMC)

update of the biasing factor θt+1 ← θt + · · ·
in such a way that (θt)t and (πθt)t converge to

θ? = (π(X1), · · · ,π(Xd)) πθ?(Xi) =
1

d
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General Wang-Landau (2/3)

When it converges

θt(i) ≈ π(Xi)

Integrals w.r.t. π by Importance Sampling∫
φdπ ≈ 1

T

T∑
t=1

(
d

d∑
i=1

θt(i)1IXt∈Xi

)
φ(Xt)
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General Wang-Landau (3/3)

Set θ? = (π(X1), · · · ,π(Xd)).

Algorithm

Initialisation: X0 and θ0 = (1/d, · · · ,1/d)

Repeat: given (Xt,θt)

• sample Xt+1 ∼ Pθt(Xt,·) where Pθ is a Markov kernel with
invariant distribution πθt
• Update the weights

θt+1 = θt + γt+1 H(θt,Xt+1)

where the field H is chosen so that θ? is a zero of

θ 7→
∫
πθ(dx)H(θ,x)

and (γt)t is a positive stepsize sequence.
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Multicanonical sampling (Atchadé & Liu, 2010)

Simulated Tempering (Atchadé & Liu, 2010)

Target: ρ on X̃.
Temperatures: T1 > T2 > · · · > Td = 1.

X = X̃× {1, · · · ,d} θ?(i) =

∫
ρ1/Ti(dx) πθ(x,i) ∝

1

θ(i)
ρ1/Ti(x)

Trans-dimensional MCMC (Atchadé & Liu, 2010)

X̃ =
⋃K
k=1 Xk

Target ∝
∑K
k=1 ρk(x) 1IXk (x) on X̃.

X = X̃×{1, · · · ,d} θ?(i) =

∫
Xi
ρi(dx) πθ(x,i) ∝

1

θ(i)
ρi(x)1IXi(x)

Variable selection (Bornn et al, 2013)

Target: a posteriori distribution π of a binary vector.
reaction coordinate: partition of the energy state − log π(X)

Bayesian inference in mixture models (Bornn et al, 2013)
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WL: an example of adaptive MCMC (1/2)

A family of target distributions (πθ)θ∈Θ.

A family of transition kernels (Pθ)θ∈Θ such that πθPθ = πθ.

WL defines a random sequence ((Xt,θt))t such that

E [φ(Xt+1)|θ0,X0, · · · ,θt,Xt] =

∫
Pθt(Xt,dy)φ(y).

and the parameter θt is updated by a Stochastic Approximation algorithm



Convergence and Efficiency of the Wang-Landau algorithm

Convergence of the Wang-Landau algorithm

WL: an example of adaptive MCMC

WL: an example of adaptive MCMC (2/2)

In the literature, different strategies for the update of (θt,γt) in such a way that∑d
i=1 θt(i) = 1 and θt(i) ≥ 0.

(exponential update) for any i ∈ {1, · · · ,d}

θt+1(i) =
θt(i) exp

(
γt+1 (1IXi (Xt+1)− 1/d)

)∑d
`=1 θt(`) exp

(
γt+1 (1IX` (Xt+1)− 1/d)

)
(linearized version) if Xt+1 ∈ Xi,{

θt+1(i) = θt(i) + γt+1 θt(i)(1− θt(i))
θt+1(k) = θt(k)− γt+1 θt(k)θt(i) k 6= i

↪→ For the next move, the probability of sampling a point in the current
stratum Xi is reduced. The chain is pushed towards strata which weaker
frequency of visit thus improving the exploration of the space.

The stepsize sequence (γt)t decreases deterministically OR randomly
(based on a flat histogram criterion for example).

In our work, we consider the linearized update and a deterministic stepsize
sequence γt.
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A numerical illustration (1/2)

Target density: π(x1,x2) ∝ exp(−βH(x1,x2))1I[−R,R](x1)
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Sufficient conditions for the convergence of adaptive MCMC (1/2)

Roberts and Rosenthal (2007); F., Moulines and Priouret (2012)

For the proof of the ergodicity, observe

E [f(Xt)]− πθ?(f) = E [f(Xt)− E [f(Xt)|Ft−`]]

+ E
[
E [f(Xt)|Ft−`]− P `θt−`f(Xt−`)

]
+ E

[
P `θt−`f(Xt−`)− πθt−`(f)

]
+ E

[
πθt−`(f)− πθ?(f)

]
Convergence when

the first term is null
the second term is small when adaptation is diminishing
the third term is small when the transition kernels (Pθ,θ ∈ Θ) are ergodic
(enough), at a rate which is uniform (enough) in θ (containment
condition)
the last term is small provided (θt,t ≥ 0) converges to θ? since in our case

‖πθ − πθ?‖TV ≤ 2(d− 1)

d∑
i=1

∣∣∣∣1− θ(i)

θ?(i)

∣∣∣∣
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Sufficient conditions for the convergence of adaptive MCMC (2/2)

For the convergence of the weight sequence (θt)t, observe

θt+1 = θt + γt+1 H(θt,Xt+1)

= θt + γt+1h(θt) + γt+1 (H(θt,Xt+1)− h(θt))

where the mean field h is defined by

h(θ)
def
=

∫
H(θ,x)πθ(dx) =

(
d∑
i=1

θ?(i)

θ(i)

)−1

(θ? − θ)

Convergence to θ? when

the O.D.E θ̇ = h(θ) converges to θ? (Lyapunov function, · · · )
(stability condition) the sequence (θt)t visits infinitely often a compact
subset of {θ : θ(i) > 0 and

∑d
i=1 θ(i) = 1}

the noise sequence is small enough

·
∑
t γt =∞,

∑
t γ

2
t <∞

· the transition kernels (Pθ,θ ∈ Θ) are ergodic (enough) and are
smooth enough in θ.
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Main results: assumptions (1/5)

1 The target distribution has a density π w.r.t. the measure λ on X ⊂ Rp,
supX π <∞.

2 The partition (Xi)i such that θ?(i)
def
=
∫
Xi
π dλ > 0.

3 For any θ ∈ Θ, Pθ is a Hastings-Metropolis kernel with proposal q and
invariant distribution πθ. It is assumed: infX2 q > 0.

4 The stepsize sequence (γt)t satisfies
∑
t γt = +∞ and

∑
t γ

2
t <∞.

Under these assumptions, there exists ρ ∈ (0,1) such that for any θ

sup
x∈X
‖P tθ (x,·)− πθ‖TV ≤ 2(1− ρ)t
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Main result: stability of (θt)t (2/5)

Theorem
F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the stated assumptions and infX π > 0

P
(

lim sup
t

min
1≤i≤d

θt(i) > 0

)
= 1.

Sketch of the proof:

Tk <∞ w.p.1. where Tk are the successive times when a sample Xn is drawn in the
stratum i? such that θn(i?) = mink θn(k).

We prove that P(lim supk
(
mini θTk−1(i)

)
> 0) = 1, and a key property for this proof is

Pθ(x,Xj)1IXi (x) ≤ C 1 ∧
θ(i)

θ(j)
.

↪→ Low probability of moving from a stratum with small weight to a stratum with large
weight.
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Main results

Main result: convergence of (θt)t (3/5)

Theorem
F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the stated assumptions and the stability of the sequence (θt)t,

P
(

lim
t
θt = θ?

)
= 1.

Sketch of the proof: Check the conditions of Andrieu, Moulines and Priouret (2005). Main ingredients:

The Lyapunov function V associated to the mean field h

V (θ) = −
d∑
i=1

θ?(i) log

(
θ(i)

θ?(i)

)
The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

‖πθ − πθ′‖TV ≤ 2(d− 1)
d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ 4 sup

i

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣+ 4 sup
i

∣∣∣∣1− θ′(i)

θ(i)

∣∣∣∣
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= 1.

Sketch of the proof: Check the conditions of Andrieu, Moulines and Priouret (2005). Main ingredients:

The Lyapunov function V associated to the mean field h

V (θ) = −
d∑
i=1

θ?(i) log

(
θ(i)

θ?(i)

)
The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

‖πθ − πθ′‖TV ≤ 2(d− 1)
d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ 4 sup

i

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣+ 4 sup
i

∣∣∣∣1− θ′(i)

θ(i)

∣∣∣∣
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Main results

Main result: ergodicity and LLN for the samples (Xt)t (4/5)

Theorem
F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the stated assumptions and the stability of the sequence (θt)t,

lim
t

E [f(Xt)] =

∫
f(x) πθ?(x)λ(dx)

1

T

T∑
t=1

f(Xt)
a.s.−→

∫
f(x) πθ?(x)λ(dx)

for any bounded measurable function f .

Proof: Check the conditions of F., Moulines and Priouret (2012). Main ingredients:

The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

‖πθ − πθ′‖TV ≤ 2(d− 1)
d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ 4 sup

i

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣+ 4 sup
i

∣∣∣∣1− θ′(i)

θ(i)

∣∣∣∣
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F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)
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T

T∑
t=1

f(Xt)
a.s.−→

∫
f(x) πθ?(x)λ(dx)
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Proof: Check the conditions of F., Moulines and Priouret (2012). Main ingredients:

The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

‖πθ − πθ′‖TV ≤ 2(d− 1)
d∑
i=1

∣∣∣∣1− θ(i)

θ′(i)

∣∣∣∣
sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ 4 sup

i
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∣∣∣∣
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Convergence of the Wang-Landau algorithm

Main results

Main result: ergodicity and LLN for the weighted samples (Xt)t (5/5)

Theorem
F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the stated assumptions and the stability of the sequence (θt)t,

lim
t

E

[
d

d∑
i=1

θt(i) f(Xt)1IXi(Xt)

]
=

∫
f(x) π(x)λ(dx)

1

T

T∑
t=1

(
d

d∑
i=1

θt(i)1IXi(Xt)

)
f(Xt)

a.s.−→
∫
f(x) π(x)λ(dx)

for any bounded measurable function f .
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Introduction

Wang-Landau algorithms are designed to be able to switch as fast as
possible from a metastable state to another metastable state in order to
efficiently explore the whole configuration space.

We obtained convergence results on WL but

how to study the efficiency of the WL and how to compare WL to a
non-adaptive MCMC sampler?

We now discuss:

Comparison in terms of how rapidly does the sampler escape from a
metastable state

Explicit computation of exit times for a simple model, numerical study for
a more complex one.
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Central Limit Theorem on the weight sequence

Central Limit Theorem on the weight sequence

Theorem
F., Jourdain, Kuhn, Lelièvre, Stoltz (2012) Under the stated assumptions, when γt ∼ γ?/nα
(1/2 < α < 1)

γ
−1/2
t (θt − θ?)

d−→ Nd(0,U?)

where

U? =
d

2

∫
X

{
Ĥ?(x)ĤT

? (x)− Pθ?Ĥ?(x)Pθ?Ĥ
T
? (x)

}
πθ?(x)λ(dx)

and
Ĥ?(x) =

∑
`≥0

P `θ? (H(θ?,·)− h(θ?)) (x)

Similar result when γt ∼ γ?/t.
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Toy example

Toy example (1/3)

Consider the target distribution on X = {1,2,3}

π(1) = π(3) =
1

2 + ε
π(2) =

ε

2 + ε

The proposal distribution in WL (for the kernels Pθ) and in HM is

Q =



2

3

1

3
0

1

3

1

3

1

3

0
1

3

2

3


Proposal kernel only allowing jumps to the clo-
sest strata.

We compute the time T1→3 to reach the state 3 starting from the state 1, for
WL and a Hastings-Metropolis (HM) algorithm.
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Toy example

Toy example (2/3)

Here are the transition kernels for HM (top) and WL (bottom)

P =



1−
ε

3

ε

3
0

1

3

1

3

1

3

0
ε

3
1−

ε

3



Pθ =



1−
1

3

(
ε
θ(1)

θ(2)
∧ 1

)
1

3

(
ε
θ(1)

θ(2)
∧ 1

)
0

1

3

(
1

ε

θ(2)

θ(1)
∧ 1

)
1−

1

3

(
1

ε

θ(2)

θ(1)
∧ 1 +

1

ε

θ(2)

θ(3)
∧ 1

)
1

3

(
1

ε

θ(2)

θ(3)
∧ 1

)

0
1

3

(
ε

1

θ(3)

θ(2)
∧ 1

)
1−

1

3

(
ε
θ(3)

θ(2)
∧ 1

)



In WL, when the chain gets stuck (say) in state 1, θn(1) increases which
penalizes the state 1 and favors moves to state 2.
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Toy example

Toy example (3/3)

Yes, the Wang-Landau is less metastable !

For Hastings-Metropolis, T1→3 scales like 6/ε:

ε

6
E [T1→3] ∼ε→0 1 lim

ε→0
P(
ε

6
T1→3 > c) = exp(−c)

For Wang-Landau, with a stepsize sequence γt = γ?/t
α

I for some α ∈ (1/2,1)
there exists constants C1,C2 such that

lim
ε→0

P
(
|ln ε|−1/(1−α) T1→3 ∈ (C1,C2)

)
= 1

and T1→3 scales like |ln ε|1/(1−α).

I for α = 1, T1→3 scales like ε−1/(1+γ?)
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A less simple example

A less simple example (1/7)

π(x1,x2) ∝ exp(−β H(x1,x2))1I[−R,R](x1) on [−R,R]× R+
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Fig.: [left] level curves of the potentialH [center] Density (up to a normalizing constant) [right] Partition of the state space

In this numerical illustration: R = 2.4.
WL is run with d = 48; the proposal distribution is N (0,v2I) where
v = 2R/d.
HM is a symmetric random walk with proposal distribution N (0,v2I) and
target π.
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A less simple example

A less simple example (2/7)

Path of the x1-component of (Xt)t, when Xt is the WL chain (left) and the
HM chain (right).
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Fig.: [left] Wang Landau, T = 110 000. [right] Hastings Metropolis, T = 2 106 ; the red line is at x = 110 000
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A less simple example

A less simple example (3/7)

The larger β is, the larger the ratio is between the weight of the strata
located near the main metastable states and the weight of the transition
region (around x1 = 0).

The stepsize sequence is γt = γ?/t
α.

since

Initialisation of the samplers: X0 = (−1,0), θ0 = (1/d, · · · ,1/d).

The algorithm are run until the first time t such that X1
t > 1.

We repeat this experiment over M independent runs, and compute the
mean value of the exit time (M ∼ 102 to 105 depending upon the value of
β).

We report the mean value of the exit times

tβ : Wang Landau

t̄β : Hastings-Metropolis

as a function of β, for different values of α.
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A less simple example

A less simple example (4/7)

Plot of β 7→ t̄β , the mean exit-time for HM (left) and β 7→ tβ , the mean
exit-time for WL (right).

When γt = γ?/t (α = 1).
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Fig.: When γ? = 2. [left] Hastings-Metropolis. [right] Wang-Landau. Note the logarithmic scale on the y-axis

We also observe (plots not displayed) that the shape depends on γ?.
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A less simple example

A less simple example (5/7)

We observe that

t̄β ∼ C exp(βµ0) tβ ∼ C(γ?) exp(βµγ?)

Based on the results for the toy example, it is expected

tβ ∼ C(γ?) exp(β
µ0

1 + γ?
)

γ? µγ? µγ?/µ0 1/(1 + γ?)

0 2.32 1 1
1 1.74 0.75 0.5
2 1.51 0.65 0.33
4 1.25 0.54 0.20
8 0.92 0.40 0.11

Comparison of the observed
shape µγ? and the expected
shape µ0/(1 + γ?) for dif-
ferent values of γ?.
Quite bad prediction !
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A less simple example

A less simple example (6/7)

Plot of β 7→ tβ , the mean exit-time for WL.

When γt = 1/tα when α = 0.125 (left) and α = 0.75 (right).
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Fig.: [left] α = 0.125. [right] α = 0.75. Note the logarithmic scale on the y-axis
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A less simple example

A less simple example (7/7)

We observe that
tβ ∼ C(α)tµα

Based on the results for the toy example, it is expected

tβ ∼ C(α)t1/(1−α)

α µα 1/(1− α)

0.125 1.11 1.14
0.25 1.30 1.33

0.375 1.55 1.60
0.5 2.02 2.00

0.625 2.72 2.67
0.75 4.06 4.00

Comparison of the observed
shape µα and the expected
shape 1/(1−α) for different
values of α.
Far better prediction !
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Conclusion

Wang Landau: new methodologies Next

Adaptive MCMC - Stochastic Approximation with controlled Markov
chains. Next

Multimodality, metastability - Molecular Dynamics, Statistical Physics.
Next
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