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The setting

Problem

Convergence of a perturbed version of an iterative algorithm designed to solve

argminθ∈ΘF (θ) with F (θ) = f(θ) + g(θ)

where

Θ convex subset of a finite-dimensional Euclidean space with scalar product 〈, 〉 and

norm ‖ · ‖

the function f :Θ→ R is a smooth function

i.e. f is continuously differentiable and there exists L > 0 such that

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖

the function g: Θ→ (−∞,∞] is convex, not identically equal to +∞,
and lower semi-continuous

“perturbation” since it is a first-order technique and ∇f is intractable in many
applications.
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Examples of problems of the form: argminθ{f(θ) + g(θ)}

Example 1: Penalized ML inference in Latent variable models (1/2)

A vector of observations: Y

A vector of latent variables: U

A parametric model indexed by θ ∈ Θ

Minimize the negative log-likelihood:

f(θ) = − log p(Y; θ) = − log

∫
p(Y, u; θ)µ(du) = − log

∫
p(Y|u; θ)φ(u)µ(du)

which is (usually) intractable; same thing for the gradient

∇f(θ) = −
∫
∇ log p(Y|u; θ)

p(Y, u; θ)∫
p(Y, x; θ)µ(dx)

µ(du)

with some constraint θ 7→ g(θ) (θ in a compact, sparsity constraint on θ, · · · )
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Example 1: Penalized ML inference in Latent variable models (2/2)

For example, logistic regression with random effects, under sparsity constraints

U ∼ Nq(0, I)

Yi|U
i.i.d.∼ Ber

(
exp (x′iβ + σ z′iU)

1 + exp (x′iβ + σ z′iU)

)
θ = (β, σ) ∈ Rp × R+

g(θ) = λ

p∑
i=1

|βi|

In this model,

∇f(θ) =

∫
Hθ(u) πθ(u)du

Hθ(u) =

n∑
i=1

(
Yi −

exp (x′iβ + σ z′iu)

1 + exp (x′iβ + σ z′iu)

)[
xi
z′iu

]
πθ(u) = · · · sampled through MCMC / data augmentation Polson et al. (2013); Choi and Hobert (2013)
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Example 2: Network structure estimation

Observations: N i.i.d. samples Yi = (y
(i)
1 , · · · , y(i)

p ) from a Gibbs
distribution on Xp (X finite) with intractable normalizing constant

πθ(y) =
1

Zθ
exp

 p∑
k=1

θkkB0(yk) +
∑

1≤j<k≤p

θjkB(yj , yk)


A parametric model indexed by θ ∈ Rp×p, symmetric.

Minimize the (normalized) negative log-likelihood:

f(θ) = − 1

N

N∑
i=1

 p∑
k=1

θkkB0(y
(i)
k ) +

∑
1≤j<k≤p

θjkB(y
(i)
j , y

(i)
k )

+ logZθ

with the intractable constant Zθ; same thing for the gradient

∇f(θ) = − 1

N

N∑
i=1

B̄(y(i)) +

∫
B̄(u)πθ(du)

with some constraint θ 7→ g(θ) (θ in a compact, sparsity constraint on θ, · · · )
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Example 3: Learning on huge data set

f is the average of many components

f(θ) =
1

N

N∑
i=1

fi(θ)

Large sum =⇒ prohibitive computational cost =⇒ incremental methods:
stochastic approximation of the gradient

∇f(θ) ≈ 1

m

m∑
k=1

∇fIk (θ)
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Example 4: Online learning and Stochastic Approximation

The function f is of the form

f(θ) =

∫
f̄(θ; u)π(du)

with an unknown π

The user is only provided with random samples from π, so

∇f(θ) ≈ 1

m

m∑
k=1

Hθ(Xk)
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The proximal gradient algorithm

When ∇f is available: a gradient-based approach

Optimization problem:

argminθ∈Θ

 f(θ)︸︷︷︸
C1 with Lipschitz gradient

+ g(θ)︸︷︷︸
not differentiable



Algorithm: Proximal Gradient Nesterov (2004): iterative procedure

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

where

Proxγ,g(τ) = argminθ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
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Proximal Gradient: the intuition

Since ∇f is Lipschitz (with constant L), for any γ ∈ (0, 1/L] and any u ∈ Θ,

f(θ) + g(θ) ≤ f(u) + g(θ) + 〈∇f(u), θ − u〉+
1

2γ
‖θ − u‖2

≤ Cu + g(θ) +
1

2γ
‖θ − (u− γ∇f(u)) ‖2
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The RHS is a majorizing function s.t.

for θ = u, it is equal to
(f + g)(u).

for fixed u, it is convex (in θ)
and possesses an unique
minimum.

The Proximal Gradient algorithm is
a Majorization-Minimization proce-
dure, satisfying

(f + g)(θn+1) ≤ (f + g)(θn)
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Proximal Gradient Algorithm {τn}n converges to argmin(f + g)

τn+1 = Proxγn+1,g (τn − γn+1∇f(τn))

In many applications, ∇f(θ) unavailable. Hence:

Perturbed Proximal Gradient Algorithm

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)

where Hn+1 is an approximation of ∇f(θn).

1 Which conditions on the step-size sequence γn and on the approximation
Hn+1 for the convergence of this algorithm towards the minimizers of
f + g ?

2 When ∇f(θ) is an integral and Hn+1 is a Monte Carlo approximation:
how many samples when computing Hn+1 ?

3 The rate of convergence of the exact algorithm is known. Does the
Stochastic Proximal Gradient reach the same rate ?
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Not on the poster, the sketch of the proof

Step 1: for any minimizer θ? of F

‖θn+1 − θ?‖2 ≤ ‖θn − θ?‖2 − γn+1 (F (θn+1)−minF ) + γn+1noisen+1 (1)

Step 2: Use a (deterministic) Siegmund-Robbins lemma:
If ∑

n

γn =∞,
∑
n

γn+1 noisen+1 <∞

then the limiting points are minimizers of F .

Step 3: Use again (1) to show the convergence of {θn}n to a minimizer of
F .


	The setting
	Examples of problems of the form: argmin{f() + g()}
	The proximal gradient algorithm
	The poster session

