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The setting

Problem

Convergence of a perturbed version of an iterative algorithm designed to solve

argming g F'(6) with () = f(0) + g(0)

where

@ O convex subset of a finite-dimensional Euclidean space with scalar product ¢, ) and

norm ||« |
@ the function f:© — R is a smooth function
i.e. f is continuously differentiable and there exists L > 0 such that

[Vf(O) = VO <L6-0
e the function g: © — (—o0, 0] is convex, not identically equal to +oo,

and lower semi-continuous

“perturbation” since it is a first-order technique and V f is intractable in many
applications.
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Example 1: Penalized ML inference in Latent variable models (1/2)

@ A vector of observations: Y
@ A vector of latent variables: U

@ A parametric model indexed by 6 € ©

Minimize the negative log-likelihood:
£(6) =~ logp(¥:6) = ~log | (Y, O)(du) = ~1og [ p(¥]u;) $(wud)

which is (usually) intractable; same thing for the gradient

Vﬂm=—/vmwamwpﬁ£%§%%5mm>

with some constraint § — g(6) (6 in a compact, sparsity constraint on 6, ---)
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Example 1: Penalized ML inference in Latent variable models (2/2)

For example, logistic regression with random effects, under sparsity constraints
U~ Nq (07 I)

ii.d. exp (78 + o 2]U)
Y;|U ~" B
| o <l—|—exp (ziB + o 2z/U)

9:(5,0)€RPXR+

9(0) = 2> 15

In this model,

V£ = /Hg(u) mo(u)du

_ n - exp (xif + o zu) Zi
H@(u) - Z (YL 1 + exp (1;;/3 + O'Z;u)) |:Z.:U.:|

=1

71'9(11) = Sampled through MCMC / data augmentation Polson et al. (2013); Choi and Hobert (2013)
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Example 2: Network structure estimation

@ Observations: N i.i.d. samples Y; = (yp, e ,yz(f)) from a Gibbs
distribution on X? (X finite) with intractable normalizing constant

1 P
mo(y) = - exp D OuBo(ye) + > 0 Blys,ye)
o k=1 1<j<k<p

@ A parametric model indexed by 6 € RP*P, symmetric.

Minimize the (normalized) negative log-likelihood:

N P
1 i i i
FO) =~ > 0Bow )+ Y. 0By, yL) | +log Zo

i=1 \ k=1 1<j<k<p

with the intractable constant Zy; same thing for the gradient

V£(6) = —%Zé(y(i))—f—/é(u) g (du)

with some constraint 6 — g(6) (0 in a compact, sparsity constraint on 6, ---)
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Example 3: Learning on huge data set
o f is the average of many components

f(0) = Z

Large sum = prohibitive computational cost = incremental methods:
stochastic approximation of the gradient

DA A0)
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Example 4: Online learning and Stochastic Approximation

@ The function f is of the form

1(6) = / F(6: w)m(du)

with an unknown 7
@ The user is only provided with random samples from 7, so
l m
0) ~ — Ho(X
Vi)~ > Ho(Xe)

k=1
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The proximal gradient algorithm

When V f is available: a gradient-based approach

Optimization problem:

argming o f(9) + g(6)
A d N~
C' with Lipschitz gradient ~ not differentiable

Algorithm: Proximal Gradient nesterov (2004): iterative procedure

Ont1 =Proxy, ;g (0n — Y1V f(0n))

where
. 1
Pros, o() = argming.e (g(9> 4o lo- r||2)



Perturbed Proximal Gradient Algorithm

The proximal gradient algorithm

Proximal Gradient: the intuition
Since V f is Lipschitz (with constant L), for any v € (0,1/L] and any u € O,
1
f(0) +9(0) < f(u) +9(0) +(Vf(u),0 —u) + %lw —ul®

< Cu+tgl0)+ %na — (u =V (W) |

The RHS is a majorizing function s.t.

o for § = u, it is equal to

(f +9)(w).

I o for fixed w, it is convex (in 6)
and possesses an unique
minimum.

The Proximal Gradient algorithm is

a Majorization-Minimization proce-

B dure, satisfying

(f +9)(Ons1) < (f 4+ 9)(0n)
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Proximal Gradient Algorithm {7}, converges to argmin(f + g)

Tnt+1 = PrOX'Yn+17g (Tn — ’Yn-‘rlvf(Tn))
In many applications, V f(#) unavailable. Hence:

Perturbed Proximal Gradient Algorithm

Ont1 = Proxy, ;.6 (0n — Ynt1Hnt1)

where H,, 41 is an approximation of V f(6,,).

© Which conditions on the step-size sequence -, and on the approximation
H,,+1 for the convergence of this algorithm towards the minimizers of
f+g7?

@ When Vf(0) is an integral and H, 11 is a Monte Carlo approximation:
how many samples when computing Hyp41 7

© The rate of convergence of the exact algorithm is known. Does the
Stochastic Proximal Gradient reach the same rate ?
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Not on the poster, the sketch of the proof

o Step 1: for any minimizer 0, of F’

1041 = 0x]1* < 110n = 04]1* = Ynt1 (F(6n41) — min F) + yniinoisensr (1)

@ Step 2: Use a (deterministic) Siegmund-Robbins lemma:
If

27” = 00, Z’Y"‘H noisep 41 < 00
n

n

then the limiting points are minimizers of F.

@ Step 3: Use again (1) to show the convergence of {0, }» to a minimizer of
F.
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