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1 an Adaptive MCMC algorithm
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The Adaptive Metropolis

Example 1: The Adaptive Metropolis [Haario et al. (1999)]

Consider the Metropolis-Hastings algorithm

with target density π on X X ⊆ Rd , density w.r.t. the Lebesgue measure

with Gaussian proposal qθ(x, y) = Nd(x, θ)[y]

↪→ How to choose the design parameter θ ?

Ans: covariance matrix of π up to a scalar, [Roberts et al. (1997)] iteratively estimated

by the empirical covariance matrix or a robust estimator

θn+1 =
n

n + 1
θn +

1

n + 1

n
(Xn+1 − µn+1)(Xn+1 − µn+1)

T +κ Idd

o
µn+1 = µn +

1

n + 1
(Xn+1 − µn)
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Examples of adaptive MCMC

The Adaptive Metropolis

This yields the adaptive Metropolis algorithm: iteratively

draw Xn+1 ∼ Pθn
(Xn, ·) transition kernel of a HM algo with Gaussian proposal with covariance

matrix ∝ θn

update the parameter θn+1, based on θn and X1:n+1

In this example

πPθ = π i.e. same invariant distribution

θn ∈ Θ where Θ is a finite dimensional parameter space.
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The Equi-Energy sampler (simplified)

Example 2: The Equi-Energy sampler (simplified) [Kou et al. (2006)]

↪→ For the simulation of multi-modal density π.
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The Equi-Energy sampler (simplified)

Let

a transition kernel P such that πP = π.

a probability of swap: ε ∈ (0, 1)

an auxiliary process {Yn, n ≥ 0} that “targets” the tempered density

π1−β
(β ∈ (0, 1))

Define iteratively the process of interest {Xn, n ≥ 0}

with probability (1− ε): draw Xn+1 ∼ P (Xn, ·)
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The Equi-Energy sampler (simplified)

Let

a transition kernel P such that πP = π.

a probability of swap: ε ∈ (0, 1)

an auxiliary process {Yn, n ≥ 0} that “targets” the tempered density

π1−β
(β ∈ (0, 1))

Define iteratively the process of interest {Xn, n ≥ 0}

with probability (1− ε): draw Xn+1 ∼ P (Xn, ·)

with probability ε: draw at random Y through the past values Y0:n

and accept or not Y as the new value, with an acceptation-rejection

algorithm.
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The Equi-Energy sampler (simplified)

Let

a transition kernel P such that πP = π.

a probability of swap: ε ∈ (0, 1)

an auxiliary process {Yn, n ≥ 0} that “targets” the tempered density

π1−β
(β ∈ (0, 1))

Define iteratively the process of interest {Xn, n ≥ 0}

with probability (1− ε): draw Xn+1 ∼ P (Xn, ·)

with probability ε: draw at random Y through the past values Y0:n

and accept or not Y as the new value, with an acceptation-rejection

algorithm. (simplified EE)
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The Equi-Energy sampler (simplified)

This yields the (simplified) Equi-Energy sampler: Xn+1 ∼ Pθn
(Xn, ·)

where θn+1 =
1

n + 1

nX
k=0

δYk

Pθ(x, A) = (1− ε)P (x, A) + ε

Z
A

α(x, y)θ(dy) + 1A(x)

Z
(1− α(x, y))θ(dy)

ff
and α(x, y) defined such that πPθ?

= π where θ? = limn θn ∝ π1−β

In this example

πθPθ = πθ i.e. invariant distributions depending upon θ

θn ∈ Θ where Θ is an infinite dimensional parameter space.
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Conclusion

Conclusion

Let a family of transition kernels on X, {Pθ, θ ∈ Θ}.
Consider a X×Θ-valued process {(Xn, θn), n ≥ 0} such that

it is adapted to a filtration Fn.

P(Xn+1 ∈ A|Fn) = Pθn
(Xn, A)

↪→ What kind of conditions on the adaption mecanism {θn, n ≥ 0} and

on the transition kernels {Pθ, θ ∈ Θ} imply that there exists a

distribution π such that

convergence of the marginals: E [f(Xn)] → π(f) f bounded

law of large numbers: n−1
∑n

k=1 f(Xk) a.s.−→ π(f) f unbounded
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Convergence of the marginals for adaptive MCMC samplers

II. Convergence of the marginals for adaptive MCMC samplers

For a bounded function f ,

E [f(Xn)]− π(f) → 0

Even in the case the kernels Pθ have the same invariant distribution, it is NOT

true that ergodicity holds since the kernels are chosen at random. Conditions

on the adaptation mecanism are required
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Sketch of the proof

Sketch of the proof

We write

E [f(Xn)]− π(f) = E
h
f(Xn)− P N

θn−N
f(Xn−N )

i
+ E

h
P N

θn−N
f(Xn−N )− πθn−N (f)

i
+ E

ˆ
πθn−N (f)

˜
− π(f)

. This allows to consider situations when the transition kernels are not

simultaneously ergodic

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and even cases where Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Sketch of the proof

We write

E [f(Xn)]− π(f) = E
h
f(Xn)− P N

θn−N
f(Xn−N )

i
+ E

h
P N

θn−N
f(Xn−N )− πθn−N (f)

i
+ E

ˆ
πθn−N (f)

˜
− π(f)

↪→ [A] condition on the ergodicity of the transition kernels

“Usually”, the transition kernels {Pθ, θ ∈ Θ} are geometrically ergodic :

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

. This allows to consider situations when the transition kernels are not

simultaneously ergodic

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and even cases where Cθn
∨ (1− ρθn

)−1 is not bounded (a.s. ).



Convergence of Adaptive and Interacting MCMC algorithms

Convergence of the marginals for adaptive MCMC samplers

Sketch of the proof

Sketch of the proof

We write

E [f(Xn)]− π(f) = E
h
f(Xn)− P N

θn−N
f(Xn−N )

i
+ E

h
P N

θn−N
f(Xn−N )− πθn−N (f)

i
+ E

ˆ
πθn−N (f)

˜
− π(f)

↪→ [B] condition on the adaptation mecanism since˛̨̨
E

h
f(Xn)− P N

θn−N
f(Xn−N )

i˛̨̨
≤

N−1X
j=1

(N − j)E
»
sup

x

‚‚Pθn−N+j (x, ·)− Pθn−N+j−1(x, ·)
‚‚

TV

–

. This allows to consider situations when the transition kernels are not

simultaneously ergodic

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and even cases where Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Sketch of the proof

We write

E [f(Xn)]− π(f) = E
h
f(Xn)− P N

θn−N
f(Xn−N )

i
+ E

h
P N

θn−N
f(Xn−N )− πθn−N (f)

i
+ E

ˆ
πθn−N (f)

˜
− π(f)

↪→ [C] when πθ 6= π, condition on the convergence of {πθn
, n ≥ 0} to π

.

This allows to consider situations when the transition kernels are not

simultaneously ergodic

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and even cases where Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Sketch of the proof

Sketch of the proof

We write

E [f(Xn)]− π(f) = E
h
f(Xn)− P

r(n)
θn−r(n)

f(Xn−r(n))
i

+ E
h
P

r(n)
θn−r(n)

f(Xn−r(n))− πθn−r(n)(f)
i

+ E
h
πθn−r(n)(f)

i
− π(f)

The conditions can be weakened by replacing N by r(n). This allows to

consider situations when the transition kernels are not simultaneously

ergodic

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and even cases where Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Convergence of the marginals for adaptive MCMC samplers

Main result

Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels)

∃πθ s.t. πθPθ = πθ

for any ε > 0, there exists a non-decreasing positive sequence

{rε(n), n ≥ 0} such that lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
h‚‚‚P

rε(n)
θn−rε(n)

(Xn−rε(n), ·)− πθn−rε(n)

‚‚‚
TV

i
≤ ε .

B. (Diminishing adaptation) For any ε > 0,

lim
n→∞

rε(n)−1X
j=0

E
»
sup

x

‚‚‚Pθn−rε(n)+j
(x, ·)− Pθn−rε(n)(x, ·)

‚‚‚
TV

–
= 0

C. (Convergence of the invariant distributions) ∃ π and a bounded

non-negative function f s.t. limn πθn(f) = π(f) a.s.

Then limn E [f(Xn)] = π(f) .
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Convergence of the marginals for adaptive MCMC samplers

Comparison with the literature

Comparison with the literature pioneering work by [Roberts & Rosenthal, 2007]

1. Our conditions both weaken the containment condition and the

diminishing adaptation condition of [Roberts & Rosenthal, 2007]. We are able to

consider cases when the transition kernels are ergodic but not

necessarily uniformly-in-θ.

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x)

Nevertheless, it is required to have an explicit control of ergodicity s.t.

Cθn
∨ (1− ρθn

)−1 does not “explode too rapidly”.

2. πθ can depend upon θ provided we are able to prove that πθn
(f)

converges to π(f).
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III. Law of large numbers for adaptive MCMC samplers

For an (unbounded) function f s.t. · · ·

1
n

n∑
k=1

f(Xk) a.s.−→ π(f).
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Sketch of the proof

Sketch of the proof

We write

n−1
nX

k=1

f(Xk)−π(f) = n−1
nX

k=1

˘
f(Xk)− πθk−1(f)

¯
+

1

n

nX
k=1

πθk−1(f)− π(f)

For the second term, ↪→ [A] condition on πθn
(f) a.s.−→ π(f)
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Sketch of the proof

Sketch of the proof

n−1
nX

k=1

f(Xk)−π(f) = n−1
nX

k=1

˘
f(Xk)− πθk−1(f)

¯
+

1

n

nX
k=1

πθk−1(f)−π(f)

For the first term, Tool : Poisson equation so that

n−1
nX

k=1

˘
f(Xk)− πθk−1(f)

¯
= n−1

nX
k=1

∆Mk| {z }
sum of martingale increments

+ R(1)
n|{z}

Rest due to the adaptation

+ R(2)
n|{z}

Rest
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Sketch of the proof

Sketch of the proof

n−1
nX

k=1

f(Xk)−π(f) = n−1
nX

k=1

˘
f(Xk)− πθk−1(f)

¯
+

1

n

nX
k=1

πθk−1(f)−π(f)

For the first term, Tool : Poisson equation so that

n−1
nX

k=1

˘
f(Xk)− πθk−1(f)

¯
= n−1

nX
k=1

∆Mk| {z }
sum of martingale increments

+ R(1)
n|{z}

Rest due to the adaptation

+ R(2)
n|{z}

Rest

Martingale increments : ↪→ [B] moment conditions of the form

∃α > 1,
∑

k

1
kα

E [|∆Mk|α|Fk−1] < +∞ a.s.
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Sketch of the proof

Sketch of the proof

n−1
nX
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nX
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˘
f(Xk)− πθk−1(f)

¯
+

1

n
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n−1
nX
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˘
f(Xk)− πθk−1(f)

¯
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∆Mk| {z }
sum of martingale increments
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Rest due to the adaptation

+ R(2)
n|{z}

Rest

R
(1)
n :↪→ [C] condition on the adaptation: “diminishing adaptation”

R
(2)
n : ↪→ very weak conditions ! (more or less, a consequence of the

other conditions).
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Law of large numbers for adaptive MCMC samplers

Main result

Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels) There exist Cθ, ρθ ∈ (0, 1) s.t.

‖P n
θ (x, ·)− πθ‖V ≤ Cθ ρn

θ V (x)

B. (Martingale term) ∃α > 1X
k

1

kα

`
Cθk ∨ (1− ρθk )−1´2α

PθkV α(Xk) < +∞ a.s.

C. (Strenghtened diminishing adaptation)X
k

1

k

`
Cθk ∨ (1− ρθk )−1´6

V (Xk) sup
x

sup
f,|f |≤V

|Pθkf(x)− Pθk−1f(x)|
V (x)

< ∞ a.s.

D. (Convergence of the inv. distributions) for f s.t. |f | ≤ V a, a ∈ (0, 1)

πθn(f)
a.s.−→ π(f)

Then, n−1
∑n

k=1 f(Xk) a.s.−→ π(f)
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Comparison with the literature

Comparison with the literature [Atchadé & Rosenthal (2005), Andrieu & Moulines (2006), Roberts

& Rosenthal (2007), Saksman & Vihola (2008), Vihola (2009), Atchadé & Fort (2010), Atchad et al. (2010) · · · ]

We are able to prove a strong law of large numbers, for unbounded

functions

without assuming a uniform-in-θ ergodic behavior on the transition

kernels (neither the state space X nor the parameter space Θ have to be compact/countable/finite)

under the condition that the adaptation is diminishing which does

not require that the sequence {θn, n ≥ 0} converges (for example,

adaptation based on a stochastic approximation dynamic: “θn = θn−1 + γnHn(θn, Wn+1)” is OK)

without assuming the stability of the sequence {θn, n ≥ 0} for

example in the finite dimensional case, control of the form “lim supn n−τ |θn| < +∞ a.s. for τ > 0” is OK (at

least when πθ = π · · · - see next section)
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Convergence of the stationary distributions πθn

IV. Convergence of the stationary distributions

Under the (main) assumption There exists θ? s.t. for any x ∈ X, A ∈ X

∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n

Pθn(ω)(x, A) = Pθ?(x, A)

we prove that for any bounded and continuous function f ,

∃Ω?, P(Ω?) = 1 ∀ω ∈ Ω? lim
n

πθn(ω)(f) = πθ?
(f) .

well, we have even a stronger result, Ω? does not depend upon f
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We write

πθn(f)− πθ?(f) =
(
πθn(f)− P k

θn
f(x)

)
+

(
P k

θn
f(x)− P k

θ?
f(x)

)
+

(
P k

θ?
f(x)− πθ?(f)

)
and control the blue terms by a condition on the ergodicity of the

transition kernels.

For the control of the red term, we write

P k
θn

f(x)− P k
θ?

f(x) =
∫

(Pθn
(x,dy)− Pθ?

(x,dy))P k−1
θ?

f(y)

+
∫

Pθn
(x,dy)

(
P k−1

θn
f(y)− P k−1

θ?
f(y)

)
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Convergence of the stationary distributions πθn

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n

Pθn(ω)(x, A) = Pθ?(x, A) .

the steps are:
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Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n

Pθn(ω)(x, A) = Pθ?(x, A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n

Pθn(ω)(x, ·) w−→ Pθ?(x, ·)

↪→ Tool: separable metric space X (ex. Polish)
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Convergence of the stationary distributions πθn

Starting from :

∀x ∈ X, A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
n

Pθn(ω)(x, A) = Pθ?(x, A) .

the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n

Pθn(ω)(x, ·) w−→ Pθ?(x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω′) = 1 ∀ω ∈ Ω′, x ∈ X lim
n

Pθn(ω)(x, ·) w−→ Pθ?(x, ·) ,

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ?
f, θ ∈ Θ}
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the steps are:

∀x ∈ X, ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
n

Pθn(ω)(x, ·) w−→ Pθ?(x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω′) = 1 ∀ω ∈ Ω′, x ∈ X lim
n

Pθn(ω)(x, ·) w−→ Pθ?(x, ·) ,

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ?
f, θ ∈ Θ}

∃Ω?, P(Ω?) = 1 ∀ω ∈ Ω? lim
n

P k
θn(ω)(x, ·) w−→ P k

θ?
(x, ·) ,

↪→ Tool: Feller properties of the kernels {Pθ, θ ∈ Θ}
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Convergence of the stationary distributions πθn

Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels)

B. X is Polish

C. Pθ?
is Feller and for any bounded continuous function f ,

{Pθf, θ ∈ Θ} is equicontinuous.

D. (Convergence of the transition kernels) for any x ∈ X,

Pθn(x, ·) w−→ Pθ?(x, ·) a.s..

Then for any bounded continuous function f , πθn
(f) a.s.−→ πθ?

(f).

Rmk: Extensions to unbounded continuous functions by (standard) moment

conditions.
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Applications

V. Application to the convergence of adaptive and interacting MCMC

algorithms

Ergodicity criteria: checked in practice by

drift inequality PθV ≤ λθV + bθ

minorization condition Pθ(x, ·) ≥ δθ νθ(·)1Cθ
(x)

conditions on the decay of the rate ξ s.t.

lim supn ξ(n)
(
bθn

∨ δ−1
θn
∨ (1− λθn

)−1
)

< +∞

Diminishing adaptation: checked in practice by

distance(Pθ, Pθ′) ≤ C distance(θ, θ′) for some “distance”

Convergence of {πθn
(f), n ≥ 0} when πθ 6= π: based on the convergence

of {θn, n ≥ 0}
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Applications

Adaptive MCMC

Adaptive MCMC

We prove

when the target density π is lighter than exponential

with Nd (adapted) proposal distribution s.t. the eigenvalues of the

cov matrix are larger than κ.

1 Ergodicity: limn supf,|f |∞≤1 E [f(Xn)] = π(f) . contemporaneous

work by (Bai et al., 2010)

2 Strong law of large numbers for any function f such that

|f(x)| ≤ π−s(x), s ∈ (0, 1). pioneering work by (Saksman & Vihola, 2009); we use many ideas

of their paper!
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Applications

Convergence of the (simplified) Equi-Energy sampler

Convergence of the (simplified) Equi-Energy sampler

We prove

when the target density π is lighter than exponential, on a Polish

space X

whatever the nbr of stages, the probability of swap ε ∈ (0, 1), the

successive tempered distributions and the “hottest” one π1/T? ,

T? > 1

when the “first” auxiliary process is an ergodic Markov chain

when P is a RWHM algorithm with Gaussian proposal distribution

1 Ergodicity: limn E [f(Xn)] = π(f) for any bounded functions f .

2 Strong law of large numbers for any continuous function f such that

|f(x)| ≤ π−s(x), s ∈ (0, 1/T?). extensions of the works by (Atchadé, 2007), (Andrieu et al.

2009)
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Applications

Convergence of the (simplified) Equi-Energy sampler

All the details in

G. Fort, E. Moulines, P. Priouret (2010). Convergence of adaptive

MCMC algorithms: ergodicity and law of large numbers


