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Introduction

Goal:
Explore the support of a distribution

and/or compute integrals w.r.t. 7

/ dm(z).
{zeR™:£(x)€O}

when
o 7 highly metastable

@ and 7 is a distribution on R", n large.
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Monte Carlo: a stochastic approximation

@ propose sample from a (proposal) distribution 7

@ correct the samples in order to approximate 7

@ Markov chain Monte Carlo: {X1,X2, -} Markov chain with stationary

distribution 7 v
/ $(z)dm(x) ~ % 3 6(X0)
k=1

its construction depends on a proposal distribution 7,

@ Importance Sampling: {X1,X2,---} from a proposal distribution .

/d) yd(z /¢ ™ NZ¢ d7r* Xk))
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Monte Carlo: a stochastic approximation

@ propose sample from a (proposal) distribution 7

@ correct the samples in order to approximate 7

@ Markov chain Monte Carlo: {X1,X2, -} Markov chain with stationary

distribution 7 v
/ $(z)dm(x) ~ % 3 6(X0)
k=1

its construction depends on a proposal distribution 7,

@ Importance Sampling: {X1,X2,---} from a proposal distribution .

/d) yd(z /¢ ™ NZ¢ d7r* Xk))

— the efficiency of these samplers depends on the choice of 7,
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— Introduction

Naive Monte Carlo samplers
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Introduction

Adaptive Monte Carlo

@ choose a family of proposal distributions {mg,0 € ©}
@ at iteration ¢t + 1,
based on the past behavior of the sampler: X1, -, X4,

(a) Sample X;y1 by using the proposal distribution 7o,

(b) Update the parameter 0: 0y — 041
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Introduction

Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered
Metadynamics, - --) are Adaptive Importance Samplers

@ Reaction Coordinate: £ : R" — {1,--- ,d}

@ The distributions mg:

mo(z) o Z Tipern:g(x)=iym(7) exp(—1n(0(7)))

i=1

0 0= (0(1),---,0(d) € (R+)? such that 3¢, 0(s) =1
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Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered
Metadynamics, - --) are Adaptive Importance Samplers

@ Reaction Coordinate: £ : R" — {1,--- ,d}
@ The distributions mg:

mo(x) < > Mizern (@)= m(z) exp(—In(0(i)))

i=1

0 0= (0(1),---,0(d) € (R+)? such that 3¢, 0(i) =1

Algorithm: repeat
Sample Draw X1 “from” 7,
Update Update the parameter:

Or41 = 0, + C(04,X111,t)

and set _
9t+l
Sy 01 (0)

Oi11 =
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Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered
Metadynamics, - --) are Adaptive Importance Samplers

@ Reaction Coordinate: £ : R" — {1,--- ,d}
@ The distributions mg:

mo(x) < > Mizern (@)= m(z) exp(—In(0(i)))

i=1

0 0= (0(1),---,0(d) € (R+)? such that 3¢, 0(i) =1

Algorithm: repeat
Sample Draw X1 “from” 7,
Update Update the parameter:

041(i) = 0:(1) (1+ Y41 D g (a)—iy (Xet1))

and set _
9t+l
Sy 01 (0)

Or11 =
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Adaptation for - - -

@ Optimal proposal mecanism g, where
0. solves h(6,) =0

@ No explicit solution: define an iterative mecanism 61,05, -- - , such that
(hopefully) lim; 8; = 6.
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Introduction

Example: Wang Landau based algorithms

d
mo(x) & Y Miaernig(ay=i3m(x) exp(—In(0(i))
=1

Optimality criterion: @y is such that

Ve, / o, (x)dx = 1
{zeR™:£(x)=(} d

@ we look for the (—1In) free energy: 6, = (6.(1),- - ,0.(d))

0.(0) = / (2)dz
{zeR™:£(x)=L}
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Example: Wang Landau based algorithms

d
mo(x) & Y Miaernig(ay=i3m(x) exp(—In(0(i))

i=1

Optimality criterion: @ is such that

Ve, / o, (x)dx = =
{wERm:¢(2) =0} d

@ we look for the (—1In) free energy: 6, = (0+(1), -+ ,0,(d))

0.(0) = / (2)dz
{zeR™:£(x)=L}

@ which is also defined as the root of

d i) -1
h(9) = (Z ) 0. — ) = / Ho ()0 (2)dz
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In this talk
- o -6,
v v
— X ~P, (X ) X P (X ) e

Simultaneously

@ How to obtain draws {X,,n > 0} approximating mg, ?

¥ 20000 = [ s()m, (2)da
k=1

@ How to obtain a converging sequence {6,,n > 0} with a limit 6, solving
h(0) =0

when only a Monte Carlo approximation of h is available?
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Not in this talk

e We produced {X1,X5,- -} such that

N
N o0t = [ s, (x)de

@ The samples can be corrected to approximate

2l

S 6(X0) 00 (€(X0) > / o(x)m(x)da
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Adaptive Monte Carlo samplers

Outline

Adaptive Monte Carlo samplers
m Controlled Markov chains
m Sufficient conditions for the cvg in distribution
m In the literature
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Controlled Markov chains

Controlled Markov chains (1/2)

Py,0 € ©: family of Markov kernels.
T invariant distribution of Py.

@ The draws (X;); are from a controlled Markov chain

Xit1|past, ~ P, (X¢,)

@ Question: Even in the case my = 7 for all 6: does (X;); converge (say in
distribution) to 7?
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Controlled Markov chains

Controlled Markov chains (2/2)

@ Answer: No.

@ For example:
Xon Py(Xe,) ifXe=0
i Pi(X:,) X, =1

(11—t te
PZ_( te 1—t5)'

We have 7P, = 7 with 7 < (1,1).

where

The transition matrix of (X¢): is

~ 1-— . . o
P= ( ; to 1 tot ) with invariant distribution 7 o< (¢1,t0)
1 —t
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

Kernel Pg, (XI-N’ ) Kernel Pem (XH, )

Adaptive

chain

Time t-N Time t-N+1 Time t
Kemel P, iterated N times

X » X Frozen

a L chain
Under In the

—_—

limit
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

Compare the two mecanisms

Py 4>P9t —>~»-4>P9t_1

—N+1
— Pgt_N ~>---~>P9t_N

t—N

Po,_n

which is small as soon as Py . and Py . are close
0541 0j

@ Diminishing adaption condition Roughly speaking:

dist(Pp,Pyr) < dist(0,0))  and lim (fe1 — 6:) = 0
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Sufficient conditions for the cvg in distribution

Kernel Pg, (XI-N’ ) Kernel Pem (XH, )

Adaptive

chain
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X » X Frozen

a L chain
Under In the
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Sufficient conditions for the cvg in distribution

@ Containment condition Roughly speaking:

lim dist(P; ,me) = 0

—> 00

at some rate depending smoothly on 6.
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Sufficient conditions for the cvg in distribution
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Adaptive Monte Carlo samplers

Sufficient conditions for the cvg in distribution

@ Regularity in 6 of 7y so that

lign 0y = 0, = dist (mg, —mg,) — 0
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

Theorem (F., Moulines, Priouret (2012))

Assume
A. (Containment condition)
e Jmg s.t. mgPy = g
e for any € > 0, there exists a non-decreasing positive sequence {r(n),n > 0}
such that limsup,,_, .o 7e(n)/n = 0 and

PT'e (n)

hnnlsolip]E [” On—rc(n) (Xn—re(n)") T e (n) ”tv] Se

B. (Diminishing adaptation) For any ¢ > 0,
re(n)—1

B, ZO ]E[S‘;p‘lp"n—re<n>+a‘(“")_P"n—rem)(x")”w}=0
=

C. (Convergence of the invariant distributions) (mg,): converges weakly to me,
almost-surely.

Then for any bounded and continuous function f

lmE(g(X,)] = [ g(o)m, (0)dz
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L= In the literature

In the literature

Sufficient conditions for
e Convergence in distribution of (X¢),
@ Strong law of large numbers for (X;);
e Central Limit Theorem for (X;);

» Roberts, Rosenthal. Coupling and Ergodicity of Adaptive Markov chain
Monte Carlo algorithms. J. Appl. Prob. (2007)

» F., Moulines, Priouret. Convergence of adaptive MCMC algorithms:
ergodicity and law of large numbers. Ann. Statist. (2012)

» F., Moulines, Priouret and Vandekerkhove. A Central Limit Theorem for
Adaptive and Interacting Markov Chain. Bernoulli (2013).

Conditions successfully applied to establish the convergence of Adaptive
Hastings-Metropolis, Wang-Landau, SHUS, Well-tempered, - - -
» F., Jourdain, Kuhn, Leliévre and Stoltz. Convergence of the Wang-Landau
algorithm. Mathematics of Computation (2014)

» F., Jourdain, Lelievre and Stoltz. Self-Healing Umbrella Sampling: convergence
and efficiency. arXiv math.PR 1410.2109 (2014)
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Stochastic Approximation Algorithms

m Introduction
Stability
Recurrence of any neighborhood of £
Convergence of {0;,t > 0}
Conclusion
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Introduction

Stochastic Approximation (SA) Algorithm

Find the roots of: h(6) = /H9 (z) mo(dx)

e Natural idea: NOT possible here since h is not explicit
Or11 = 0 + vey1 h(6:)

e SA algorithm
Or41 = 0t + 41 Ho, (Xeg1)

where
@ {7t > 0} sequence of positive stepsizes

® Xiy1 ~ Ty, OR Xi41 ~ Py, (X¢,") where Py is a Markov
transition kernel with inv. dist. my.
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Introduction

Example: Wang Landau is a Stochastic Approximation Algorithm

Oe1(1) = 00()) {1+ Yer1 Tie(m=iy (Xer1)}
= 00(6) + Y4100 (D) g (0y=) (Xe1)
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Introduction

Example: Wang Landau is a Stochastic Approximation Algorithm

Orr1(i) = 0:(3) {1+ 71 Tie(r=iy (Xet1) }

00 (i) + 410 (1) e (0 =iy (Xe11)
d

0:() + Y41 ZGt ) Tye(ay=iy (Xeg1)

i=1

I
3

Z 0t+1 (1, =

é (4) + Ye41 0, (£(Xt41))

ﬁ'Mg i M“‘

.

d
Z ) {1+ ye41 0: (§(Xe41)) }
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Introduction

Example: Wang Landau is a Stochastic Approximation Algorithm

Be1.(6) = 0: (1) {1+ ver1 Weay=iy (Xe41) }
0:(3) + 74106 (D) e ay=i} (K1)

d d d
D 01 (i) = 0u(0) +yerr Y 0u(0) Tie(ay=iy (Xit1)
i=1

i=1 i=1
d
= Zét(z) + Yit1 0, (6(Xt41))
i=1

d
<Z ét(i)) {1+ viq1 0: (E(Xe41))}

14+ Ye1 Mg (zy=iy (Xet1)
1+ ye41 0t (E(Xi41))

= 0,(i) + yi1 Ho, (X141) + O(7741)

0t+1(7:) _ §t+£(2)

S i L7
ST g
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Convergence of SA algorithms to the limit set £

Ot+1 = 0r + 41 Ho, (Xe41)

Prove successively
e Stability: the sequence {0:,t > 0} is in a compact set of ©
@ Attractive limiting set L:

limtinf dist (6¢,£) = 0.

e Convergence:
li%n dist (6¢,£) = 0.
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Stability
:

Stablllty of the SA algorithm: 0t+1 = Ht -+ ")/t+1H9t (Xt-l—l)

Assume h : © — R? is continuous and
(i) Lyapunov function: V : © — R™ is C' and
o the level sets {6 € © : V(0) < M} are compact subsets of ©

e VV(0)-h(0) <0
o L = {0c O :VVI(0) h0) =0} isin a compact level set

{V < Mo}
(ii) Noise: Het (Xt.i,-l) = h(@t) + £t+1 and

7
hin ; Y& exists.

(iii) Step-size sequence: lim; vy; = 0.
(iv) Recurrence: {:,t > 0} is i.o. in a compact subset of © C R?

Then: {04,t > 0} remains in a compact subset of ©.
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Stochastic Approximation Algorithms
L Stability

{8: V@) <M}

Recurrence : ¢, infinitely often in {V < M}.
The Lyapunov property:
for any K compact s.t. KN L =0,
there exist 6,7, ,8+« > 0 s.t.
[y <, 16l € Bus w € K] =V (u+ vh(u) +v8) < V(u) — 0
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Recurrence of any neighborhood of £

Any neighboorhood of L is recurrent

Assume h : © — R? is continuous and

(i) Lyapunov function: (idem)

(i) Noise: (idem)

(iii) Step-size sequence: ), v; = 400

(iv) Stability: {0:,t > 0} is in a compact subset of ©

Then: lim inf, d (6;,£) = 0.
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Stochastic Approximation Algorithms

Recurrence of any neighborhood of £

0: V@) sM}

Stability: 9, € {V < M} forany ¢
The Lyapunov property:
for any K compact s.t. KN L = 0,
there exist 6,7.,8+« > 0 s.t.
[V < [€] < Bus u € K] =V (u+ vh(u) + 7€) < V(u) — 76

Stepsize: 3, ¢ = +oo and lim; v = 0
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Convergence of {0¢,t > 0}

Convergence of {6;,t > 0}: 0,41 = 0 + 11 Hp, (Xi41)

Assume h : © — R? is continuous and

(i) Lyapunov function: (idem)

(i) Noise: (idem)

(iii) Step-size sequence: (idem)

(iv) Stability: (idem)

(v) Excursions outside L: lim; V (6;) exists

Then: lim, dist (0¢,£) = 0 and also: convergence to a d component of £
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Stochastic Approximation Algorithms
Convergence of {0¢,t > 0}

@ V@) M}

Stability:

The Lyapunov property:

Stepsize:
Shorter length of the excursions outside L,: “lim; V(6;) exists” implies that the
time

Ta (k)

2

j=k

arbitrary small when k large enough.
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Conclusion

Conclusion: stability and convergence

Assume h : © — R? is continuous and
(i) Lyapunov function: V : © — Rt is C* and

o the level sets {0 € © : V(0) < M} are compact subsets of ©
e VV(0)-h(h) <0
o [ — [0c O VVI(0) h(0) =0} isina compact level set {V < Moy}

(ii) Noise:
D)
i .
Jim Z Y€t exists
t=1
(iii) Step-size sequence: >, v; = co lims vy =0

(iv) Recurrence: {6;,t > 0} is i.o. in a compact subset of © C R?

(v) Excursions outside £: lim, V' (0,) exists

Then: {0;,t > 0} remains in a compact subset of © and lim, dist(6¢,£) = 0.
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Conclusion

Conclusion: on the noise

We write
Ho, (Xi41) = h(0:) + &1

In practice,

Xit1 ~ Py, (Xz,) Markov transition with inv. dist. 7,

@ Biased approximation: E [{;41] # 0
o Cumulated noise .
Z%“ {Ho,(Xt+1) — h(6:)}
t=1
converges under assumptions

2
b Zt Yt <00

e ergodicity of the transition kernels Py

e “smoothness-in-6" of the transition kernels Py



Mathematical aspects of adaptive samplers: application to free energy calculation
Stochastic Approximation Algorithms

L Conclusion

In the literature

@ On Stochastic Approximation

» Andrieu, Moulines, Priouret. Stability of Stochastic Approximation under
Verifiable conditions. SIAM J. Control and Optimization (2005)

» Benaim. Dynamics of stochastic approximation algorithms. Séminaire de
Probabilités de Strasbourg (1999)

» Borkar. Stochastic Approximation: a dynamical systems viewpoint.
Cambridge Univ. Press (2008).

» F., Moulines, Schreck, Vihola. Convergence of Markovian Stochastic
Approximation with discontinuous dynamics arXiv 1403.6803 (2015).

» Kushner, Yin. Stochastic Approximation and Recursive Algorithms and
Applications Springer Book (2003).

@ Applied to the convergence of ABP samplers

» Dama, Parrinello, Voth. Well tempered Metadynamics converges
asymptotically. Physical Review Letters (2014)

» F., Jourdain, Kuhn, Leliévre and Stoltz. Convergence of the
Wang-Landau algorithm. Mathematics of Computation (2014)

» F., Jourdain, Lelievre and Stoltz. Self-Healing Umbrella Sampling:
convergence and efficiency. arXiv math.PR 1410.2109 (2014)
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Outline
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As a global conclusion - a theorem solving the two questions

Theorem (F., Jourdain, Lelievre, Stoltz (2014) )

In the case 0141 = 01 + yi+1Ho, (X¢+1) and supg , |Ho(r)| < 00

(i) Lyapunov function with limit set L = {0, }; {0+,t > 0} visits i.o. a compact set of ©;
S =400, 3,77 < oo,
(i) There exists p € (0,1) such that for any 6 € ©

sup || Py’ (z,-) — mo|lrv < 20"
x

(iii) There exists C s.t. for all 6,6" € ©
sup [| Py (") — Pyr (x,)llrv < C|6 — 6]

(iv) There exists C s.t. for all 6,0" € ©
sup |Hg(z) — Hys (z)| < C|6 — 6]

Then: lim; 60, = 0, a.s. and for any bounded function g

1 Zg(Xt /g(m) mo, (dz) a.s.
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Collaborations

Talk based on joint works with

Eric Moulines (Telecom ParisTech, France)
Benjamin Jourdain (ENPC, France)

Tony Leligvre (ENPC, France)

Gabriel Stéltz (ENPC, France)

Pierre Priouret (Univ. Paris VI, France)
Matti Vihola (Univ. Jyvaskyla, Finland)

Pierre Vandekerkhove (Univ. Marne-la-Vallée, France)
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