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Introduction

Goal:

Explore the support of a distribution π

and/or compute integrals w.r.t. π∫
{x∈Rn:ξ(x)∈O}

dπ(x).

when

π highly metastable

and π is a distribution on Rn, n large.
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Monte Carlo: a stochastic approximation

propose sample from a (proposal) distribution π?

correct the samples in order to approximate π

1 Markov chain Monte Carlo: {X1,X2, · · · } Markov chain with stationary
distribution π ∫

φ(x)dπ(x) ≈ 1

N

N∑
k=1

φ(Xk)

its construction depends on a proposal distribution π?

2 Importance Sampling: {X1,X2, · · · } from a proposal distribution π?∫
φ(x)dπ(x) =

∫
φ(x)

dπ(x)

dπ?(x)
dπ?(x) ≈ 1

N

N∑
k=1

φ(Xk)
dπ(Xk)

dπ?(Xk)

↪→ the efficiency of these samplers depends on the choice of π?
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Näıve Monte Carlo samplers
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Fig.: [left] Wang Landau, T = 110 000 and d = 48. [right] Hastings Metropolis, T = 2 106 ; the red line is at x = 110 000
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Adaptive Monte Carlo

choose a family of proposal distributions {πθ,θ ∈ Θ}
at iteration t+ 1,

based on the past behavior of the sampler: X1, · · · ,Xt,

(a) Sample Xt+1 by using the proposal distribution πθt

(b) Update the parameter θ: θt → θt+1
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Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered

Metadynamics, · · · ) are Adaptive Importance Samplers

Reaction Coordinate: ξ : Rn → {1, · · · ,d}
The distributions πθ:

πθ(x) ∝
d∑
i=1

1I{x∈Rn:ξ(x)=i}π(x) exp(− ln(θ(i)))

θ = (θ(1), · · · ,θ(d)) ∈ (R+)d such that
∑d
i=1 θ(i) = 1

Algorithm: repeat

Sample Draw Xt+1 “from” πθt

Update Update the parameter: and set

θt+1 =
θ̃t+1∑d

`=1 θ̃t+1(`)
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Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered

Metadynamics, · · · ) are Adaptive Importance Samplers

Reaction Coordinate: ξ : Rn → {1, · · · ,d}
The distributions πθ:

πθ(x) ∝
d∑
i=1

1I{x∈Rn:ξ(x)=i}π(x) exp(− ln(θ(i)))

θ = (θ(1), · · · ,θ(d)) ∈ (R+)d such that
∑d
i=1 θ(i) = 1

Algorithm: repeat

Sample Draw Xt+1 “from” πθt
Update Update the parameter:

θ̃t+1 = θ̃t + C(θt,Xt+1,t)

and set

θt+1 =
θ̃t+1∑d

`=1 θ̃t+1(`)
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Example: Wang-Landau based-algorithms (Self Healing Umbrella Sampling, Well Tempered

Metadynamics, · · · ) are Adaptive Importance Samplers

Reaction Coordinate: ξ : Rn → {1, · · · ,d}
The distributions πθ:

πθ(x) ∝
d∑
i=1

1I{x∈Rn:ξ(x)=i}π(x) exp(− ln(θ(i)))

θ = (θ(1), · · · ,θ(d)) ∈ (R+)d such that
∑d
i=1 θ(i) = 1

Algorithm: repeat

Sample Draw Xt+1 “from” πθt
Update Update the parameter:

θ̃t+1(i) = θ̃t(i)
(
1 + γt+11I{x:ξ(x)=i}(Xt+1)

)
and set

θt+1 =
θ̃t+1∑d

`=1 θ̃t+1(`)
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Adaptation for · · ·

Optimal proposal mecanism πθ? where

θ? solves h(θ?) = 0

No explicit solution: define an iterative mecanism θ1,θ2, · · · , such that
(hopefully) limt θt = θ?.
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Example: Wang Landau based algorithms

πθ(x) ∝
d∑
i=1

1I{x∈Rn:ξ(x)=i}π(x) exp(− ln(θ(i))

Optimality criterion: θ? is such that

∀`,
∫
{x∈Rn:ξ(x)=`}

πθ?(x)dx =
1

d

we look for the (− ln) free energy: θ? = (θ?(1), · · · ,θ?(d))

θ?(`) =

∫
{x∈Rn:ξ(x)=`}

π(x)dx

which is also defined as the root of

h(θ) =

(
d∑
i=1

θ?(i)

θ(i)

)−1

(θ? − θ) =

∫
Hθ(x)πθ(x)dx
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In this talk

Simultaneously

1 How to obtain draws {Xn,n ≥ 0} approximating πθ? ?

1

N

N∑
k=1

φ(Xk)→
∫
φ(x)πθ?(x)dx

2 How to obtain a converging sequence {θn,n ≥ 0} with a limit θ? solving

h(θ) = 0

when only a Monte Carlo approximation of h is available?
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Not in this talk

We produced {X1,X2, · · · } such that

1

N

N∑
t=1

φ(Xt)→
∫
φ(x)πθ?(x)dx

The samples can be corrected to approximate π

d

N

N∑
t=1

φ(Xt) θt (ξ(Xt))→
∫
φ(x)π(x)dx
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2 Adaptive Monte Carlo samplers
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In the literature

3 Stochastic Approximation Algorithms

4 Conclusion
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Controlled Markov chains

Controlled Markov chains (1/2)

Pθ,θ ∈ Θ: family of Markov kernels.
πθ invariant distribution of Pθ.

The draws (Xt)t are from a controlled Markov chain

Xt+1|pastt ∼ Pθt(Xt,·)

Question: Even in the case πθ = π for all θ: does (Xt)t converge (say in
distribution) to π?



Mathematical aspects of adaptive samplers: application to free energy calculation

Adaptive Monte Carlo samplers

Controlled Markov chains

Controlled Markov chains (2/2)

Answer: No.

For example:

Xt+1 ∼
{
P0(Xt,·) if Xt = 0
P1(Xt,·) if Xt = 1

where

P` =

(
1− t` t`
t` 1− t`

)
.

We have πP` = π with π ∝ (1,1).

The transition matrix of (Xt)t is

P̃ =

(
1− t0 t0
t1 1− t1

)
with invariant distribution π̃ ∝ (t1,t0)
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

X
t-N

θ
t-N

X
t-N+1

θ
t-N+1

X
t

θ
t

Time t-N Time t-N+1 Time t

Kernel P
θt-N

 (X
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, ) Kernel P
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 (X
t-1

, )

Adaptive
chain

Frozen
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X
t-N

X
t

Kernel P
θt-N
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X
t

In the 
limit

Under π
θt-N
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

Compare the two mecanisms

Pθt−N → Pθt−N+1
→ · · · → Pθt−1

Pθt−N → Pθt−N → · · · → Pθt−N

which is small as soon as Pθj+1
and Pθj are close

Diminishing adaption condition Roughly speaking:

dist(Pθ,Pθ′) ≤ dist(θ,θ′) and lim
t

(θt+1 − θt) = 0
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Adaptive Monte Carlo samplers

Sufficient conditions for the cvg in distribution

Containment condition Roughly speaking:

lim
N→∞

dist(PNθ ,πθ) = 0

at some rate depending smoothly on θ.
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Sufficient conditions for the cvg in distribution
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Sufficient conditions for the cvg in distribution

Regularity in θ of πθ so that

lim
t
θt = θ? =⇒ dist (πθt − πθ?)→ 0
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Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution

Theorem (F., Moulines, Priouret (2012))

Assume

A. (Containment condition)
∃πθ s.t. πθPθ = πθ
for any ε > 0, there exists a non-decreasing positive sequence {rε(n),n ≥ 0}
such that lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖P rε(n)θn−rε(n)

(Xn−rε(n),·)− πθn−rε(n)
‖tv

]
≤ ε

B. (Diminishing adaptation) For any ε > 0,

lim
n→∞

rε(n)−1∑
j=0

E
[
sup
x
‖Pθn−rε(n)+j

(x,·)− Pθn−rε(n)
(x,·)‖tv

]
= 0

C. (Convergence of the invariant distributions) (πθt )t converges weakly to πθ?

almost-surely.

Then for any bounded and continuous function f

lim
n

E [g(Xn)] =

∫
g(x)πθ?(x)dx
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In the literature

In the literature

Sufficient conditions for

Convergence in distribution of (Xt)t

Strong law of large numbers for (Xt)t

Central Limit Theorem for (Xt)t

I Roberts, Rosenthal. Coupling and Ergodicity of Adaptive Markov chain
Monte Carlo algorithms. J. Appl. Prob. (2007)
I F., Moulines, Priouret. Convergence of adaptive MCMC algorithms:
ergodicity and law of large numbers. Ann. Statist. (2012)
I F., Moulines, Priouret and Vandekerkhove. A Central Limit Theorem for
Adaptive and Interacting Markov Chain. Bernoulli (2013).

Conditions successfully applied to establish the convergence of Adaptive
Hastings-Metropolis, Wang-Landau, SHUS, Well-tempered, · · ·

I F., Jourdain, Kuhn, Lelièvre and Stoltz. Convergence of the Wang-Landau
algorithm. Mathematics of Computation (2014)

I F., Jourdain, Lelièvre and Stoltz. Self-Healing Umbrella Sampling: convergence
and efficiency. arXiv math.PR 1410.2109 (2014)
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Introduction

Stochastic Approximation (SA) Algorithm

Find the roots of: h(θ) =

∫
Hθ(x) πθ(dx)

• Natural idea: NOT possible here since h is not explicit

θt+1 = θt + γt+1 h(θt)

• SA algorithm
θt+1 = θt + γt+1 Hθt(Xt+1)

where

{γt,t ≥ 0} sequence of positive stepsizes

Xt+1 ∼ πθt OR Xt+1 ∼ Pθt(Xt,·) where Pθ is a Markov
transition kernel with inv. dist. πθ.
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Introduction

Example: Wang Landau is a Stochastic Approximation Algorithm

θ̃t+1(i) = θ̃t(i)
{

1 + γt+11I{ξ(x)=i}(Xt+1)
}

= θ̃t(i) + γt+1θ̃t(i)1I{ξ(x)=i}(Xt+1)
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Introduction

Example: Wang Landau is a Stochastic Approximation Algorithm

θ̃t+1(i) = θ̃t(i)
{

1 + γt+11I{ξ(x)=i}(Xt+1)
}

= θ̃t(i) + γt+1θ̃t(i)1I{ξ(x)=i}(Xt+1)

d∑
i=1

θ̃t+1(i) =

d∑
i=1

θ̃t(i) + γt+1

d∑
i=1

θ̃t(i) 1I{ξ(x)=i}(Xt+1)

=
d∑
i=1

θ̃t(i) + γt+1 θ̃t (ξ(Xt+1))

=

(
d∑
i=1

θ̃t(i)

)
{1 + γt+1 θt (ξ(Xt+1))}
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Example: Wang Landau is a Stochastic Approximation Algorithm

θ̃t+1(i) = θ̃t(i)
{

1 + γt+11I{ξ(x)=i}(Xt+1)
}

= θ̃t(i) + γt+1θ̃t(i)1I{ξ(x)=i}(Xt+1)

d∑
i=1

θ̃t+1(i) =
d∑
i=1

θ̃t(i) + γt+1

d∑
i=1

θ̃t(i) 1I{ξ(x)=i}(Xt+1)

=

d∑
i=1

θ̃t(i) + γt+1 θ̃t (ξ(Xt+1))

=

(
d∑
i=1

θ̃t(i)

)
{1 + γt+1 θt (ξ(Xt+1))}

θt+1(i) =
θ̃t+1(i)∑d
`=1 θ̃t+1(`)

= θt(i)
1 + γt+11I{ξ(x)=i}(Xt+1)

1 + γt+1 θt (ξ(Xt+1))

= θt(i) + γt+1Hθt(Xt+1) +O(γ2
t+1)
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Convergence of SA algorithms to the limit set L

θt+1 = θt + γt+1 Hθt(Xt+1)

Prove successively

Stability: the sequence {θt,t ≥ 0} is in a compact set of Θ

Attractive limiting set L:

lim inf
t

dist (θt,L) = 0.

Convergence :
lim
t

dist (θt,L) = 0.
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Stability

Stability of the SA algorithm: θt+1 = θt + γt+1Hθt(Xt+1)

h continuousTheorem

Assume h : Θ→ Rd is continuous and

(i) Lyapunov function: V : Θ→ R+ is C1 and

• the level sets {θ ∈ Θ : V (θ) ≤M} are compact subsets of Θ
• ∇V (θ) · h(θ) ≤ 0
• L = {θ ∈ Θ : ∇V (θ) · h(θ) = 0} is in a compact level set
{V ≤M0}

(ii) Noise: Hθt(Xt+1) = h(θt) + ξt+1 and

lim
L

L∑
t=1

γtξt exists.

(iii) Step-size sequence: limt γt = 0.

(iv) Recurrence: {θt,t ≥ 0} is i.o. in a compact subset of Θ ⊆ Rd

Then: {θt,t ≥ 0} remains in a compact subset of Θ.
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Stability

{θ:  V(θ) ≤ M
 1 

} 

{θ:  V(θ) ≤ M
 0 

} 

 L  

Recurrence : θt infinitely often in {V ≤M}.

The Lyapunov property:
for any K compact s.t. K ∩ L = ∅,
there exist δ,γ?,β? > 0 s.t.

[γ ≤ γ?, |ξ| ≤ β?, u ∈ K] =⇒ V (u+ γh(u) + γξ) ≤ V (u)− γδ
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Recurrence of any neighborhood of L

Any neighboorhood of L is recurrent

Theorem

Assume h : Θ→ Rd is continuous and

(i) Lyapunov function: (idem)

(ii) Noise: (idem)

(iii) Step-size sequence:
∑
t γt = +∞

(iv) Stability: {θt,t ≥ 0} is in a compact subset of Θ

Then: lim inft d (θt,L) = 0.
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Recurrence of any neighborhood of L

{θ:  V(θ) ≤ M
  
} 

 L  

L
α

Stability: θt ∈ {V ≤M} for any t

The Lyapunov property:
for any K compact s.t. K ∩ L = ∅,
there exist δ,γ?,β? > 0 s.t.

[γ ≤ γ?, |ξ| ≤ β?, u ∈ K] =⇒ V (u+ γh(u) + γξ) ≤ V (u)− γδ

Stepsize:
∑
t γt = +∞ and limt γt = 0
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Convergence of {θt,t ≥ 0}

Convergence of {θt,t ≥ 0}: θt+1 = θt + γt+1Hθt(Xt+1)

Theorem

Assume h : Θ→ Rd is continuous and

(i) Lyapunov function: (idem)

(ii) Noise: (idem)

(iii) Step-size sequence: (idem)

(iv) Stability: (idem)

(v) Excursions outside L: limt V (θt) exists

Then: limt dist (θt,L) = 0 and also: convergence to a connected component of L
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Convergence of {θt,t ≥ 0}

{θ:  V(θ) ≤ M
  
} 

 L  

L
α

Stability:

The Lyapunov property:

Stepsize:

Shorter length of the excursions outside Lα: “limt V (θt) exists” implies that the
time

τα(k)∑
j=k

γj

arbitrary small when k large enough.
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Conclusion

Conclusion: stability and convergence

Theorem

Assume h : Θ→ Rd is continuous and
(i) Lyapunov function: V : Θ→ R+ is C1 and

• the level sets {θ ∈ Θ : V (θ) ≤M} are compact subsets of Θ
• ∇V (θ) · h(θ) ≤ 0
• L = {θ ∈ Θ : ∇V (θ) · h(θ) = 0} is in a compact level set {V ≤M0}

(ii) Noise:

lim
L→∞

L∑
t=1

γtξt exists

(iii) Step-size sequence:
∑
t γt =∞ limt γt = 0

(iv) Recurrence: {θt,t ≥ 0} is i.o. in a compact subset of Θ ⊆ Rd

(v) Excursions outside L: limt V (θt) exists

Then: {θt,t ≥ 0} remains in a compact subset of Θ and limt dist(θt,L) = 0.
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Conclusion

Conclusion: on the noise

We write
Hθt(Xt+1) = h(θt) + ξt+1

In practice,

Xt+1 ∼ Pθt(Xt,·) Markov transition with inv. dist. πθt

Biased approximation: E [ξt+1] 6= 0

Cumulated noise
L∑
t=1

γt+1 {Hθt(Xt+1)− h(θt)}

converges under assumptions

•
∑
t γ

2
t <∞

• ergodicity of the transition kernels Pθ
• “smoothness-in-θ” of the transition kernels Pθ
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In the literature

On Stochastic Approximation
I Andrieu, Moulines, Priouret. Stability of Stochastic Approximation under
Verifiable conditions. SIAM J. Control and Optimization (2005)
I Benäım. Dynamics of stochastic approximation algorithms. Séminaire de
Probabilités de Strasbourg (1999)
I Borkar. Stochastic Approximation: a dynamical systems viewpoint.
Cambridge Univ. Press (2008).
I F., Moulines, Schreck, Vihola. Convergence of Markovian Stochastic
Approximation with discontinuous dynamics arXiv 1403.6803 (2015).
I Kushner, Yin. Stochastic Approximation and Recursive Algorithms and
Applications Springer Book (2003).

Applied to the convergence of ABP samplers
I Dama, Parrinello, Voth. Well tempered Metadynamics converges
asymptotically. Physical Review Letters (2014)
I F., Jourdain, Kuhn, Lelièvre and Stoltz. Convergence of the
Wang-Landau algorithm. Mathematics of Computation (2014)
I F., Jourdain, Lelièvre and Stoltz. Self-Healing Umbrella Sampling:
convergence and efficiency. arXiv math.PR 1410.2109 (2014)
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As a global conclusion - a theorem solving the two questions

Theorem (F., Jourdain, Lelièvre, Stoltz (2014) )

In the case θt+1 = θt + γt+1Hθt(Xt+1) and supθ,x |Hθ(x)| <∞
(i) Lyapunov function with limit set L = {θ?}; {θt,t ≥ 0} visits i.o. a compact set of Θ;∑

t γt = +∞,
∑
t γ

2
t <∞.

(ii) There exists ρ ∈ (0,1) such that for any θ ∈ Θ

sup
x
‖Pnθ (x,·)− πθ‖TV ≤ 2ρ

n

(iii) There exists C s.t. for all θ,θ′ ∈ Θ

sup
x
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ C|θ − θ

′|

(iv) There exists C s.t. for all θ,θ′ ∈ Θ

sup
x
|Hθ(x)−Hθ′ (x)| ≤ C|θ − θ′|

Then: limt θt = θ? a.s. and for any bounded function g

lim
N

1

N

N∑
t=1

g(Xt) =

∫
g(x) πθ?(dx) a.s.
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Tony Lelièvre (ENPC, France)
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