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Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

We introduce

I a transformation of the Markov Chain −→ family of time-continuous
processes −→ a limiting time-continuous process

I such that the stability of this process, is related to the ergodicity of
the Markov chain.

⇒ characterization of the ergodicity ;
⇒ identification of the factors that play a role in the

dynamic of the Markov chain.

The Markov Chain Monte Carlo (MCMC) algorithms

I are iterative algorithms that draw path of a Markov chain with given
stationary distribution ;

I the performances of which are related (among other factors) to some
parameters of implementation (design parameters).

I ⇒ find the role of the parameters in the definition of the fluid limit
and propose an “optimal choice” of these parameters.
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↪→ Outline of the talk

I. A MCMC sampler : the Metropolis-within-Gibbs (MwG), and its
design parameters.

II. Fluid limits.

III. Applications : guidelines on the choice of the design parameters for
the MwG.
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I. MCMC samplers

I-a General presentation

MCMC samplers :

Given a probability π, sample a Markov chain {Φn, n ≥ 0} with unique
stationary distribution π.

↪→ Allow

I to explore the target density π.

I to approximate quantities of the form Eπ[g(Φ)] as soon as a LLN
exists (and other limit theorems).

↪→ Algorithms : Hastings-Metropolis, Gibbs, Metropolis-within-Gibbs, · · ·
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I. MCMC samplers

I-b Metropolis-within-Gibbs samplers

Metropolis-within-Gibbs samplers in Rd

I Choose a selection probability : ω = {ωi, i ∈ {1, · · · , d}}
I Choose a family of transition kernels on R, qi(x, y) ex.

qi(x, y) = N(x, σ2
i )[y]

I Repeat :

• select a direction I with prob. P(I = k) = ωk.

• draw a candidate Y ∼ qI(Φn,I , ·).
• accept or reject the candidate : all the components are

unchanged except the I-th

Φn+1,I =

{
Y with proba α(Φn, Y ) = 1 ∧ π(Y,Φn,−I)

π(Φn)
qI(Y,Φn,I)
qI(Φn,I ,Y )

Φn,I otherwise.
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I. MCMC samplers

I-b Metropolis-within-Gibbs samplers

Example : Metropolis-within-Gibbs (MwG)
I Explore on R2 a Gaussian distribution π with diagonal dispersion

matrix
I and in each direction, the move is Gaussian.

Initial value (and level curves of π)

, Propose , Accepted , Propose , Rejected , Propose , Accepted , After 10000 iterations.
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I. MCMC samplers

I-d Design parameters for the MwG

Design parameters for the MwG
· Selection {ωi, i ≤ d},
· Gaussian proposal distributions in each direction, with std

σi.
↪→ Efficiency of the algorithm π ∼ N2(0,∆) with diagonal dispersion
matrix ∆ such that ∆1,1 >> ∆2,2,
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(left) ω1 = ω2 , σ1 = σ2 (right) ω1 = ω2 , σ1 >> σ2 .
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I. MCMC samplers

I-d Design parameters for the MwG

↪→ Questions

I Optimal value of the design parameters.

I Adaptive methods : modify “on line” these parameters based on the
past behavior of the algorithm.

↪→ Hereafter,

I characterization of the role of these parameters on the dynamic of
the chain.

I guidelines to fix / adapt the value of these parameters.
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II. Fluid limits

II. Fluid Limits
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II. Fluid limits

II-a Definition

Normalized processes

Let {Φk, k ≥ 0} be a Markov chain on X (X = Rd).

A set of transformations : normalized process ηr, for r > 0
(i) in the initial value :

ηr(0;x) =
1
r
Φ0 = x ∈ Rd, Φ0 = rx

(ii) in time and space :

ηr(t;x) =
1
r
Φbtrc.

Hence ηr(·;x) =
1
r
Φk on the time interval

[
k

r
;
(k + 1)

r

)
.

By definition, cad-lag paths.
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II. Fluid limits

II-a Definition

Definition

↪→ Distributions

· Px : law of the canonical chain {Φk, k ≥ 0} with initial
value δx.

· Qr;x : distribution image of Prx by ηr(·;x),
distribution on D(R+,X) of cadlag functions R+ → X

↪→ Definition Fluid Limit. Q distribution on D(R+,X) is a fluid limit is
there exists a family of scaling factors rn → +∞ such that

Qrn;x =⇒ Q.

Denoted by Qx hereafter.

↪→ Rmk : fluid limit ↔ limr Qr,x and Qr,x image of Prx ↔ behavior of
the chains when started in the tails of π.
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II. Fluid limits

II-a Definition

Example
{Φn, n ≥ 0} Hastings-Metropolis chain with target distribution on R2

given by

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x

2
2) exp(−(x2

1 + x2
2))

and Gaussian proposal distribution 4 N2(x, I).
Figures : Different draws of the normalized process ηr(·, x) on [0, T ] ; for

different initial values x ; and different scaling factors r.

One initial value

, different initial values (r = 100), different scaling factors r (r = 1000) (r = 5000) (Fluid Limit)
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II. Fluid limits

II-b Existence

Suff Cond for existence

Φk+1 = Φk + E [Φk+1|Fk]− Φk + Φk+1 − E [Φk+1|Fk]
= Φk + Ex [Φk+1 − Φk|Fk]︸ ︷︷ ︸

∆(Φk)

+(Φk+1 − Ex [Φk+1|Fk])︸ ︷︷ ︸
εk+1 martingale-increment

.

I Theorem (Fort et al, 2007)

If

· ∃p > 1, limK→+∞ supx∈X Ex

[
|ε1|p1I|ε1|>K

]
→ 0.

· 0 < supx∈X |∆(x)| <∞.

Then ∀x
· ∀rn → +∞, ∃ sub-sequence {rnj

, j ≥ 1} such that
Qrnj

;x ⇒ Qx

· Qx prob. on the space of the continuous functions from
R+ to X.
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II. Fluid limits

II-c Stability

Stability of the fluid limits

↪→ Definition Stable Fluid model : there exist T > 0 and ρ < 1 such that
for any x on the unit sphere,

Qx

(
η ∈ D(R+,X), inf

[0,T ]
|η(t)| ≤ ρ

)
= 1.
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II. Fluid limits

II-c Stability

Theorem (? ? ? ?) (Fort et al, 2007)

If

• {Φk, k ≥ 0} is phi-irreducible, aperiodic ; and compact
sets are petite.

• the fluid model exists and is stable.

Then the Markov chain is (f, r)-ergodic

(n+1)q−1 sup
{f,|f |≤1+|x|p−q}

|Ex[f(Φn)]− π(f)| −→n→+∞ 0, 1 ≤ q ≤ p.

p : control of the martingale increment in the decomposition

Φn+1 − Φn = ∆(Φn) + martingale-increment.

The hitting-time T of the ball of radius ρ by the fluid model plays a role
in the control of convergence of Pn(x, ·) to π. (control of the returns to the “center”)
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II. Fluid limits

II-d Characterization of the fluid limits

Fluid Limit = Skeleton of the chain

Φk+1 = Φk + (Ex [Φk+1|Fk]− Φk)︸ ︷︷ ︸
∆(Φk)

+(Φk+1 − Ex [Φk+1|Fk])︸ ︷︷ ︸
εk+1martingale-increment

I For the normalized process (piecewise constant, jumps at time k/r) :

ηr

[
k + 1

r
, x

]
=

1
r
Φk+1 = ηr

[
k

r
, x

]
+

1
r
∆

(
r ηr

[
k

r
, x

])
+

1
r
εk+1

= ηr

[
k

r
, x

]
+

1
r

h

(
ηr

[
k

r
, x

])
+

1
r

(ξk + εk+1)

where we set
h (x) = lim

r→+∞
∆(r x).

I Hence, noisy ’observation’ of

µ

(
k + 1

r

)
= µ

(
k

r

)
+

1
r
h

(
µ

(
k

r

))
←→ ODE : µ̇(t) = h(µ(t))
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II. Fluid limits

II-d Characterization of the fluid limits

To be more precise, fluid limit are characterized by

lim
r→+∞

sup
x∈H
|∆(rx)− h(x)| = 0,

for any compact H ⊂ ?

I In the easiest cases ( ? = X), fluid limits are Dirac mass at a
function µ that solves the ODE µ̇ = h(µ).
Stability of the fluid model ←→ Stability of the ODE.

I Otherwise, more technical results, no general conditions.
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II. Fluid limits

II-d Characterization of the fluid limits

Characterization : case 1
I If

· ∃ h continuous such that H ( X \ {0},
lim

r→+∞
sup
x∈H
|∆(rx)− h(x)| = 0.

· the ODE
·
µ= h(µ) is stable for any initial value x.

Then the fluid model is stable.

I Example : Hastings-Metropolis

π(x1, x2) ∝ (1 + x
2
1 + x

2
2 + x

8
1x

2
2) exp(−(x

2
1 + x

2
2))
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II. Fluid limits

II-d Characterization of the fluid limits

Characterization : case 2
I If

· ∃ h continuous such that for any compact H in a cone of
X \ {0},

lim
r→+∞

sup
x∈H
|∆(rx)− h(x)| = 0.

· the ODE
·
µ= h(µ) started from a point in the cone

are stable
· the cone is “ attractive”.

Then the fluid model is stable.

I Example : Hastings-Metropolis. π mixture of Gaussian distributions
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II. Fluid limits

II-d Characterization of the fluid limits

Characterization : case 3 (X = R2)
I If

· X =
⋃a

α=1 Oα ∪
⋃b

β=1{x, f ′βx = 0}.
· ∃ Σα such that for any compact H of Oα,

lim
r→+∞

sup
x∈H
|∆(rx)− Σα| = 0.

· hyperplanes are “attractive” and “stable”.

Then the fluid model is stable.

I Example : Metropolis within Gibbs
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II. Fluid limits

II-e Conclusion

Conclusion (II)

I By renormalization of the chain,
I the fluid model characterizes the behavior of the chain started “far in

the tails” Φ0 = rx and r → +∞.
I the deterministic ’hidden’ behavior is obtained by removing the

stochastic perturbations.

I Ergodicity of the initial chain is related to the stability of the fluid
model.

I Fluid model characterized (almost everywhere) by an ODE.

I The fluid limit gives informations on the dynamic of the chain in the
transient phase (i.e. before the stationary phase).

I But- in some cases - with quite cumbersome and fastidious
computations in order to obtain an explicit characterization by an
ODE.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

II. Fluid limits

II-e Conclusion

Conclusion (II)

I By renormalization of the chain,
I the fluid model characterizes the behavior of the chain started “far in

the tails” Φ0 = rx and r → +∞.
I the deterministic ’hidden’ behavior is obtained by removing the

stochastic perturbations.

I Ergodicity of the initial chain is related to the stability of the fluid
model.

I Fluid model characterized (almost everywhere) by an ODE.

I The fluid limit gives informations on the dynamic of the chain in the
transient phase (i.e. before the stationary phase).

I But- in some cases - with quite cumbersome and fastidious
computations in order to obtain an explicit characterization by an
ODE.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

II. Fluid limits

II-e Conclusion

Conclusion (II)

I By renormalization of the chain,
I the fluid model characterizes the behavior of the chain started “far in

the tails” Φ0 = rx and r → +∞.
I the deterministic ’hidden’ behavior is obtained by removing the

stochastic perturbations.

I Ergodicity of the initial chain is related to the stability of the fluid
model.

I Fluid model characterized (almost everywhere) by an ODE.

I The fluid limit gives informations on the dynamic of the chain in the
transient phase (i.e. before the stationary phase).

I But- in some cases - with quite cumbersome and fastidious
computations in order to obtain an explicit characterization by an
ODE.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

II. Fluid limits

II-f Other results

Other results not discussed here

I When supx∈X |x|β |∆(x)| < +∞ for some 0 ≤ β < 1.

I the chain has a slower dynamic.
I trivial fluid limit : Qx = δµ with µ(t) = x.
I modify the definition of the normalized process

ηr(t, x) =
1

r
Φdtr1+βe Φ0 = rx.

I weaker ergodicity.

I State space : not necessarily X = Rd.
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III. Adaptive Metropolis-within-Gibbs sampler

III. Metropolis-within-Gibbs

↪→ Design parameters

(a) the selection probability ω = {ωi, i ≤ d}.
(b) the size of the moves in each direction (e.g. the variances σ2

i when
the proposal is Gaussian in each direction i).

↪→ Which approach ?

(a) try to optimize the choice of ω and fix the variances σ2
i = c.

(b) try to optimize the choice of the variances σ2
i and fix the probability

ωi = 1/d.

(c) try to optimize both σ2
i and ωi, i ≤ d.
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III. Adaptive Metropolis-within-Gibbs sampler

III-a Expression of ∆

Expression of ∆(x) = Ex[Φ1 − Φ0]

For any i ∈ {1, · · · , d}, qi = N (0, σ2
i )

∆i(x) = ωi

∫
{y∈R,π(x+yei)<π(x)}

y

(
π(x + yei)

π(x)
− 1

)
qi(y) dy.

where {ei, i ≤ d} is the canonical basis.

In order to characterize fluid limit, the radial limit

h(x) = lim
r→+∞

∆(r x)

is required. To that goal, assumptions on

I the limit of the rejection area {y ∈ R, π(r x + yei) < π(r x)} when
r → +∞,

I the behavior of the gradient ∇ lnπ(r x)
are needed.
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III. Adaptive Metropolis-within-Gibbs sampler

III-b Expression of the field h

↪→ For any target density π such that

· limr→+∞ |∇ lnπ(rx)| = +∞.

· ` given by limr→+∞
∇ ln π(rx)
|∇ ln π(rx)| = `(x) is

continuous(−).

↪→ the field h is given by

hi(x) = sign(`i(x))
ωi σi√

2π
`(x) := lim

r→+∞

∇ lnπ(rx)
|∇ lnπ(rx)|

.
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III. Adaptive Metropolis-within-Gibbs sampler

III-b Expression of the field h

hi(x) = sign(`i(x))
ωi σi√

2π
`(x) := lim

r→+∞

∇ lnπ(rx)
|∇ lnπ(rx)|

.

↪→ This implies that

I h (and thus, the fluid limit) depends upon π through the
“normalized limiting gradient”.

I The fluid limit depends upon the design parameters through the
products {ωiσi, i ≤ d}.

I The field h is constant (and thus, the ODE is linear) on the sets

Oα = {x, sign(`(x)) = γα}

where γα ∈ {−1, 1}d.
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III. Adaptive Metropolis-within-Gibbs sampler

III-c Characterization of the fluid limit

Piecewise linear fluid limits

↪→ Example : MwG, π ∼ N2(0,Γ) =⇒ `(x) = − Γ−1x
|Γ−1x| .
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↪→ The fluid limit is

I linear till the first time it enters one of the sets {x, `i(x) = 0}, i ≤ d
- which in the above example - are the hyperplanes in green.

I then, the behavior depends on the field h in a neighborhood of these
sets.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

III. Adaptive Metropolis-within-Gibbs sampler

III-c Characterization of the fluid limit

Piecewise linear fluid limits

↪→ Example : MwG, π ∼ N2(0,Γ) =⇒ `(x) = − Γ−1x
|Γ−1x| .

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

{x, l
1
(x) = 0 }

{x,l
2
(x) = 0 }

γα = [−1 1] 

γα = [1 −1] 

γα = [1 1] 

γα = [−1 −1] 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

↪→ The fluid limit is

I linear till the first time it enters one of the sets {x, `i(x) = 0}, i ≤ d
- which in the above example - are the hyperplanes in green.

I then, the behavior depends on the field h in a neighborhood of these
sets.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

III. Adaptive Metropolis-within-Gibbs sampler

III-c Characterization of the fluid limit

In any cases,

· there exists at least one “absorbing” set.

· this set is “stable” i.e. the fluid limits - when trapped in
these sets - move towards the origin.

Two situations, obtained with different values of the design parameters
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III. Adaptive Metropolis-within-Gibbs sampler

III-d Controlled Markov chain

Strategy :
I Since the fluid limit depends on the design parameters through the
product ωiσi,

Strategy 1. Fix ωi = 1/d and choose the std of the form σi(x).
Strategy 2. Fix σi = c and choose the selection of the form ωi(x).

then, the fluid limit ←→ solves the ODE
·
µ= h(µ) with

h(x) =
1√
2π

sign(`i(x)) [ωi σi] (x)

I We propose

[ωiσi](x) = c

∣∣∣∣limr ∇i lnπ(rx)
|∇ lnπ(rx)|

∣∣∣∣
so that

h(x) =
c√
2π

(
lim

r

∇ lnπ(rx)
|∇ lnπ(rx)|

)
A gradient algorithm so that the chain - started far in the tails - is
attracted towards the mode of π (i.e. the “center” of the space)
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III. Adaptive Metropolis-within-Gibbs sampler

III-d Controlled Markov chain

Ex. : Fluid limits of the MwG [left] non-adaptive [right] adaptive

I When π ∼ N2(0,Γ1) Γ1 diagonal
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I When π ∼ N2(0,Γ1) +N2(0,Γ2)
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III. Adaptive Metropolis-within-Gibbs sampler

III-d Comparison of the strategies

Comparison of the strategies

↪→ Criterion 1 : Based on the Fluid Limit and on its hitting-time of a
sphere of radius ρ ∈]0, 1[ when initialized on the unit sphere.

x-axes : polar coordinate of the initial value.
y-axes : hitting-time.

for the three algorithms Adaptive strategy Non-Adaptive, ω1 = 0.25 Non-Adaptive, ω1 = 0.5
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III. Adaptive Metropolis-within-Gibbs sampler

III-d Comparison of the strategies

↪→ Criterion 2 : Based on the Markov chain and its hitting-time of the
“center of the space ” when chain started “far” from the center.

I Example : comparison of the two adaptive procedures
π ∼ N8(0, Γ) d = 8
Γ : diagonal, with Γi,i ∼ E(1).
5000 adaptive chains, started from x ∈ {z′Γ−1z = d}.

x-axes : hitting-time of the ball of radius
√

d for Strat 1 (adapt σ )

y-axes : hitting-time of the ball of radius
√

d for Strat 2 (adapt ω)

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

Strategy 1

S
tr

at
eg

y 
2



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

III. Adaptive Metropolis-within-Gibbs sampler

III-d Comparison of the strategies

↪→ Criterion 2 : Based on the Markov chain and its hitting-time of the
“center of the space ” when chain started “far” from the center.

I Example : comparison of the two adaptive procedures
π ∼ N8(0, Γ) d = 8
Γ : diagonal, with Γi,i ∼ E(1).
5000 adaptive chains, started from x ∈ {z′Γ−1z = d}.

x-axes : hitting-time of the ball of radius
√

d for Strat 1 (adapt σ )

y-axes : hitting-time of the ball of radius
√

d for Strat 2 (adapt ω)

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

Strategy 1

S
tr

at
eg

y 
2



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

III. Adaptive Metropolis-within-Gibbs sampler

III-d Comparison of the strategies

I Example : adaptive vs non-adaptive
π ∼ N8(0, Γ) d = 8
Γ : diagonal, with Γi,i ∼ E(1).
5000 adaptive chains, started from x ∈ {z′Γ−1z = d}

x-axes : hitting-time of the ball of radius
√

d for the classical algorithm

y-axes : hitting-time of the ball of radius
√

d for the Strat 2 (adapt ω)
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IV. Conclusion

To conclude,

I Hist. : fluid limits are common tools in queuing theory
(continuous-time Markov process)
We provided an extension of this theory to the study of some
(discrete-time) Markov chains.

I Fluid limits or drift conditions to prove the ergodicity of the chain ?

I provide an analysis of the chain in its transient phase (before
“stationnarity”)

Available results
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method for the stability of skip-free Markov Chains with
applications to MCMC. To be published, Ann. Appl.
Probab. (2008)

· G. Fort. Fluid limit-based tuning of some hybrid MCMC
samplers. Submitted (2007).
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