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We introduce
» a transformation of the Markov Chain — family of time-continuous
processes — a limiting time-continuous process
» such that the stability of this process, is related to the ergodicity of
the Markov chain.
= characterization of the ergodicity ;
= identification of the factors that play a role in the
dynamic of the Markov chain.



Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

We introduce

» a transformation of the Markov Chain — family of time-continuous
processes — a limiting time-continuous process

> such that the stability of this process, is related to the ergodicity of
the Markov chain.

=- characterization of the ergodicity;
= identification of the factors that play a role in the
dynamic of the Markov chain.

The Markov Chain Monte Carlo (MCMC) algorithms

> are iterative algorithms that draw path of a Markov chain with given
stationary distribution;

> the performances of which are related (mong other factors) t0 SOMeE
parameters of implementation (design parameters).

» = find the role of the parameters in the definition of the fluid limit
and propose an “optimal choice” of these parameters.



< Qutline of the talk

I. A MCMC sampler : the Metropolis-within-Gibbs (MwG), and its
design parameters.

I1. Fluid limits.

[1l. Applications : guidelines on the choice of the design parameters for
the MwG.



MCMC samplers :

Given a probability 7, sample a Markov chain {®,,,n > 0} with unique
stationary distribution 7.

— Allow
> to explore the target density .

> to approximate quantities of the form E,[g(®)] as soon as a LLN
exists (and other limit theorems).

< Algorithms : Hastings-Metropolis, Gibbs, Metropolis-within-Gibbs, - - -



Metropolis-within-Gibbs samplers in R?

» Choose a selection probability : w = {w;,i € {1,---,d}}
» Choose a family of transition kernels on R, ¢;(z,y) e
ai(z,y) = N(z, 02)[y]
> Repeat :
e select a direction I with prob. P(I = k) = wy.
e draw a candidate Y ~ ¢;(®,, 1, ).

e accept or reject the candidate : all the components are
unchanged except the I-th

W((I)n) ql(én,lay)

o _ ) Y with proba a(®,,Y) =1 A H2ucr) arVbug)
nrLt ®,, 1 otherwise.



Example : Metropolis-within-Gibbs (MwG)
» Explore on R? a Gaussian distribution 7 with diagonal dispersion
matrix
» and in each direction, the move is Gaussian.

Initial value (and level curves of )
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Example : Metropolis-within-Gibbs (MwG)
» Explore on R? a Gaussian distribution 7 with diagonal dispersion
matrix
» and in each direction, the move is Gaussian.

Initial value (and level curves of ), Propose , Accepted , Propose , Rejected , Propose , Accepted , After 10000 iterations.




Design parameters for the MwG
- Selection {w;,i < d},
- Gaussian proposal distributions in each direction, with std
;.
— Efficiency of the algorithm 7 ~ N3(0, A) with diagonal dispersion
matrix A such that A11 >> Ag o,

(left) wy = wg, 01 = o9 (right) wy = wg, 01 >> o2.



— Questions
» Optimal value of the design parameters.

» Adaptive methods : modify “on line” these parameters based on the
past behavior of the algorithm.

— Hereafter,

» characterization of the role of these parameters on the dynamic of
the chain.

> guidelines to fix / adapt the value of these parameters.



[I. Fluid Limits



Normalized processes

Let {®y,k > 0} be a Markov chain on X (X = R9).

A set of transformations : normalized process 7,., for r > 0

(i) in the initial value :
1 d
77r(0§$)=;‘1>0=$€R, Qo =ra

(i) in time and space :

1
ne(t; ) = ;(I)LWJ'



Normalized processes

Let {®y,k > 0} be a Markov chain on X (X = R9).

A set of transformations : normalized process 7,., for r > 0

(i) in the initial value :
1 d
77r(0§30)=;‘1>0=$€R, Qo =ra

(i) in time and space :

1
nT(t;x) = ;q)[trj'

k (k+1)>_

1 L
Hence n.(;2) = ;‘I)k on the time interval [;, .

By definition, cad-lag paths.



Definition

— Distributions

- P, : law of the canonical chain {®j,k > 0} with initial
value J,.

- Q. : distribution image of P, by n,.(-;x),
diStI’ibutiOn on D(R+,X) of cadlag functions RT — X
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Definition

— Distributions

- P, : law of the canonical chain {®j,k > 0} with initial
value J,.

- Q. : distribution image of P, by n,.(-;x),
diStI’ibutiOn on D(R+,X) of cadlag functions Rt — X

< Definition Fluid Limit. Q distribution on D(R*,X) is a fluid limit is
there exists a family of scaling factors r,, — +00 such that

an;z Ed Q

Denoted by Q, hereafter.

— Rmk : fluid limit < lim, Q, , and Q, , image of P, < behavior of
the chains when started in the tails of .



Example
{®,,,n > 0} Hastings-Metropolis chain with target distribution on R?
given by

m(x1, w2) o (1+ af + a3 + afa3) exp(— (2] + 23))

and Gaussian proposal distribution 4 Ny (z,T).
Figures : Different draws of the normalized process (-, z) on [0,T7]; for
different initial values = ; and different scaling factors 7.
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Example
{®,,,n > 0} Hastings-Metropolis chain with target distribution on R?
given by

(w1, w2) oc (142 + 2] + 2fad) exp(— (2] + 23))

and Gaussian proposal distribution 4 Ny (z,T).
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different initial values = ; and different scaling factors 7.
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Example
{®,,,n > 0} Hastings-Metropolis chain with target distribution on R?
given by

m(x1, w2) o (1+ af + a3 + afa3) exp(— (2] + 23))

and Gaussian proposal distribution 4 Ny (z,T).

Figures : Different draws of the normalized process (-, z) on [0,T7]; for
different initial values = ; and different scaling factors 7.

One initial value, different initial values ( = 100), different scaling factors = ( = 1000)
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Example
{®,,,n > 0} Hastings-Metropolis chain with target distribution on R?
given by

m(x1, w2) o (1+ af + a3 + afa3) exp(— (2] + 23))

and Gaussian proposal distribution 4 Ny (z,T).

Figures : Different draws of the normalized process (-, z) on [0,T7]; for
different initial values = ; and different scaling factors 7.

One initial value, different initial values (- = 100), different scaling factors = (~ = 1000) (- — 5000)
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Example
{®,,,n > 0} Hastings-Metropolis chain with target distribution on R?
given by

m(x1, w2) o (1+ af + a3 + afa3) exp(— (2] + 23))

and Gaussian proposal distribution 4 Ny (z,T).

Figures : Different draws of the normalized process (-, z) on [0,T7]; for

different initial values = ; and different scaling factors 7.

One initial value, different initial values ( = 100), different scaling factors = ( = 1000) (+ = 5000) (Fluid Limit)
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Suff Cond for existence

(I)k"‘l = P& +E [(I)k+1|fk] — Py + q)k—i-l -E [(I)k+1|Fk]
O + By [Ppp1 — gl Fie] + (Preg1 — Eg [(I)k+1|.7:k])/.

Vv
A((I)k) €k41 martingale-increment




Suff Cond for existence

Ppy1 = Py +E[Ppp1|Fi] — Pr + Pry1 — E[Ppp1|Fi]
Dp + Eo [Prg1 — PolFi] + (Prss — B [Pria|[Fi]) -
Agk) €k41 martingale-increment

» Theorem ozt et a1, 2007
If

- dp>1, limg 400 SUPLex Ex [|61|p]I|€1|>K] — 0.
- 0 < supgex |A(z)] < oo.
Then Vz
- Vr, — 400, 3 sub-sequence {r,,,j > 1} such that
anj;m = Qm
-, prob. on the space of the continuous functions from
Rt to X.



Stability of the fluid limits

< Definition Stable Fluid model : there exist T'> 0 and p < 1 such that
for any x on the unit sphere,

Q. (n € D" X), inf In(9)] < p) -1



Theorem (% * % %) et ee a1, 2000

If
e {®y,k > 0} is phi-irreducible, aperiodic; and compact
sets are petite.
e the fluid model exists and is stable.
Then the Markov chain is (f,r)-ergodic

(n+1)q_1 sup |Ex[f(q)n)] —7(f)] —n—to0 0, 1<q¢<p
{£1fI1<1+|z|P—a}



Theorem (% * % %) et ee a1, 2000

If
e {®y,k > 0} is phi-irreducible, aperiodic; and compact
sets are petite.
e the fluid model exists and is stable.

Then the Markov chain is (f,r)-ergodic

(n+1)q_1 sup |Ex[f(q)n)] —7(f)] —n—to0 0, 1<q¢<p
{£1fI1<1+|z|P—a}

p : control of the martingale increment in the decomposition
D11 — P, = A(P,) + martingale-increment.

The hitting-time T of the ball of radius p by the fluid model plays a role
in the control of convergence of P™ (i, ") tO . (control of the returns to the “center”)



Fluid Limit = Skeleton of the chain

Qpp1 = O + (By [Ppp1|Fi] — Pr) + (Pra1 — By [Prra|Fi])

~ _

A(®y) €);+1martingale-increment
» For the normalized process (piecewise constant, jumps at time k/r) :
E+1 1 k 1 k 1
Nr |: 71':| =—Ppi1 =1 |:_715:| +-A (7' Nr |:_7x:|> + €41
T T r T r r

k 1 k 1
=1, [;,x] + - h (nr [;,x}) + ;(ﬁk + €rt1)

where we set

h(z)= lim A(rz).

r—+00



Fluid Limit = Skeleton of the chain

Qi1 = P + (Ey [Prt1[Fr] — Po) + (Prt1 — By [Prg1 [ Fi])

~

A(®y) €);+1martingale-increment
» For the normalized process (piecewise constant, jumps at time k/r) :
E+1 1 k 1 k 1
Nr |: 71':| =—Ppi1 =1 |:—,1,‘:| +-A <7' Nr |:_7x:|> + €41
r r r r r r

k 1 k 1
=1, [;,x] + - h (nr [;,x}) + ;(ﬁk + €rt1)

where we set
h(z)= lm A(rx).

r—+00

» Hence, noisy 'observation’ of

p (B =u (B) 20 (n(2)) — opE it = it




To be more precise, fluid limit are characterized by

lim sup|A(rz) — h(z)| =0,
r—-+00 2EH

for any compact HC 7



To be more precise, fluid limit are characterized by

lim sup|A(rz) — h(z)| =0,
r—-+00 2EH

for any compact HC 7

> In the easiest cases (? = X), fluid limits are Dirac mass at a
function 4 that solves the ODE [t = h(u).
Stability of the fluid model «— Stability of the ODE.

» Otherwise, more technical results, no general conditions.



Characterization : case 1
» If
-3 h continuous such that H C X'\ {0},

lim sup |A(rz) — h(z)| = 0.

r—+00 4

- the ODE  fi= h(u) is stable for any initial value z.
Then the fluid model is stable.



Characterization : case 1
» If
-3 h continuous such that H C X'\ {0},

lim sup |A(rz) — h(z)| = 0.

r—+00 4

- the ODE  fi= h(u) is stable for any initial value z.
Then the fluid model is stable.
» Example : Hastings-Metropolis

w21, wp) < (14 a7 + 23 + 25 23) exp(— (27 + 23))

iy
=

Level curves of and fields A\, h and draws of the fluid limit

N\




Characterization : case 2
» If
- 3 h continuous such that for any compact H in a cone of
X\ {0},
lim sup |A(rz) — h(z)| = 0.
=400 ycH
- the ODE  pi=h(p) started from a point in the cone
are stable
- the cone is “ attractive”.
Then the fluid model is stable.



Characterization : case 2
» If
- 3 h continuous such that for any compact H in a cone of
X\ {0},
lim sup |A(rz) — h(z)| = 0.
=400 ycH
- the ODE  pi=h(p) started from a point in the cone
are stable
- the cone is “ attractive”.
Then the fluid model is stable.
» Example : Hastings-Metropolis. m mixture of Gaussian distributions

-~ =TT
|
i

— < \}» -

— |

)

Level curves of 7 and fields A, h and realizations of the fluid limits




Characterization : case 3 (X = R?)
> If

- X =i, 00 UUg {=, fho =0}
- 3 ¥, such that for any compact H of O,

lim sup|A(rz) — X,| = 0.

r—-400 zeH

- hyperplanes are “attractive” and “stable”.
Then the fluid model is stable.



Characterization : case 3 (X = R?)
» If
- X =i, 00 UUg {=, fho =0}
- 3 X, such that for any compact H of O,
lim sup|A(rz) — X,| = 0.
T—+00 1oy
- hyperplanes are “attractive” and “stable”.

Then the fluid model is stable.
» Example : Metropolis within Gibbs

Level curves of 7 and fluid limits when wy = 0.25 and fluid limits when wy = 0.5




Conclusion (II)

» By renormalization of the chain,
> the fluid model characterizes the behavior of the chain started “far in
the tails” by =rx and r — +o0.
> the deterministic 'hidden" behavior is obtained by removing the
stochastic perturbations.
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Stability of Markov Chains based on fluid limit techniques. Applications to MCMC
Il. Fluid limits

Il-e Conclusion

Conclusion (II)

» By renormalization of the chain,
> the fluid model characterizes the behavior of the chain started “far in
the tails” $y =rz and r — 4o0.
> the deterministic 'hidden" behavior is obtained by removing the
stochastic perturbations.
» Ergodicity of the initial chain is related to the stability of the fluid
model.

> Fluid model characterized (almost everywhere) by an ODE.

> The fluid limit gives informations on the dynamic of the chain in the
transient phase (i.e. before the stationary phase).

» But- in some cases - with quite cumbersome and fastidious
computations in order to obtain an explicit characterization by an
ODE.
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> trivial fluid limit : Q, = §, with u(t) = .

modify the definition of the normalized process
1
ne(t,x) = ;‘I’Wuﬁ] Dy = ra.

weaker ergodicity.



Other results not discussed here

» When sup,cx |7|°?|A(z)| < 400 for some 0 < 3 < 1.
> the chain has a slower dynamic.

> trivial fluid limit : Q, = §, with u(t) = .
» modify the definition of the normalized process

1
ne(t,x) = ;‘I>|’m«1+ﬁ'| Dy = ra.

> weaker ergodicity.

» State space : not necessarily X = R



[11. Metropolis-within-Gibbs

— Design parameters
(a) the selection probability w = {w;,i < d}.

(b) the size of the moves in each direction (e.g. the variances o7 when
the proposal is Gaussian in each direction ).

— Which approach?
(a) try to optimize the choice of w and fix the variances o7 = c.

(b) try to optimize the choice of the variances o2 and fix the probability
w; = 1/d

(c) try to optimize both o2 and w;, i < d.



Expression of A(z) = E,[®1 — Py
Forany i € {1,---,d}, ¢ =N(0,02)

%

m(r + ye;
Ai(z) = wi / Yy (g - 1) qi(y) dy.
(yeR,m (s +yes)<m(x)} ()

where {e;,i < d} is the canonical basis.



Expression of A(z) = E,[®1 — Py

Foranyie {1,---,d}, ¢ =N(0,07)

%

m(r + ye;
Ai(z) = wi / Yy <¥ - 1) qi(y) dy.
(yeR,m (s +yes)<m(x)} ()

where {e;,i < d} is the canonical basis.

In order to characterize fluid limit, the radial limit

h(z) = lim A(rz)

r—-+o00

is required. To that goal, assumptions on

» the limit of the rejection area {y € R, w(r x + ye;) < w(r x)} when
r — 400,

» the behavior of the gradient VIn7(r x)
are needed.



— For any target density 7 such that
im0 [VInm(rz)| = +o0.
- £ given by lim, 4 o0 ;}E—:E:i;l ={(x) is
continuous(—).



— For any target density 7 such that

im0 [VInm(rz)| = +o0.

- £ given by lim, 4o ;}E—m ={(z) is
continuous(—).
— the field h is given by
i T . 1
hi(z) = sign(£;(z)) =2 (2) = lim 2in7(r)

r—+too [VInm(rz)|

V2r



m Vinw(rz)
r=+oo |Vinm(rz)|

Wi 04

V2r

hi(z) = sign(¥;(x)) l(z) =

— This implies that

» h (and thus, the fluid limit) depends upon 7 through the
“normalized limiting gradient”.

» The fluid limit depends upon the design parameters through the
products {w;c;,4 < d}.
» The field h is constant (and thus, the ODE is linear) on the sets

Ou = {z,sign({(z)) = 7a}

where 7, € {-1,1}%.



Piecewise linear fluid limits
— Example : MwG, m ~ N3(0,T) = ((z) = — T

A=l
o
Vo=rin

qenn

wiw=0) B S




Piecewise linear fluid limits
— Example : MwG, m ~ N3(0,T) = ((z) = — T

v=n-yo T
Y =l11]

V=

@=0)

< The fluid limit is

» linear till the first time it enters one of the sets {xz,¢;(x) =0}, i < d
- which in the above example - are the hyperplanes in green.

» then, the behavior depends on the field / in a neighborhood of these
sets.



In any cases,
- there exists at least one “absorbing” set.

- this set is "stable” i.e. the fluid limits - when trapped in
these sets - move towards the origin.

Two situations, obtained with different values of the design parameters




Strategy :
» Since the fluid limit depends on the design parameters through the
product  w;oy,
Strategy 1. Fix w; =1/d and choose the std of the form o;(x).
Strategy 2. Fix o; = ¢ and choose the selection of the form w;(z).
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product  w;oy,
Strategy 1. Fix w; =1/d and choose the std of the form o;(x).
Strategy 2. Fix o; = ¢ and choose the selection of the form w;(z).

then, the fluid limit «— solves the ODE /= h(y) with

h(z) = —— sign(i(z)) [w; 03] (2)

9



Strategy :
» Since the fluid limit depends on the design parameters through the
product  w;oy,
Strategy 1. Fix w; =1/d and choose the std of the form o;(x).
Strategy 2. Fixo; =c¢ and choose the selection of the form w;(z).

then, the fluid limit «— solves the ODE /= h(y) with

h(x) = jz_w sign(6:(z)) [w; o) ()

» We propose
lim Vilnw(rz)
r |Vinz(ra)

[wioi](z) = ¢
so that o (re)
h(z) = \/_2_7-(- <li£n |Vlnﬂ'(rx)|>

A gradient algorithm so that the chain - started far in the tails - is
attracted towards the mode of 7 (i.e. the “center” of the space)



Ex. : Fluid limits of the MwG [left] non-adaptive [right] adaptive

» When 7 ~ N5(0,T) I’y diagonal

» When 7 NN2(0,F]_) +N2(0, F2)




Comparison of the strategies

< Criterion 1 : Based on the Fluid Limit and on its hitting-time of a
sphere of radius p €]0, 1] when initialized on the unit sphere.



Comparison of the strategies

< Criterion 1 : Based on the Fluid Limit and on its hitting-time of a
sphere of radius p €]0, 1] when initialized on the unit sphere.

x-axes : polar coordinate of the initial value.
y-axes : hitting-time.
for the three algorithms adaptive strategy  Non-Adaptive, wq = 0.25  Non Adaptive, w; — 0.5

N
' Vi

V

2 3 0
Polar coordinate (radius 1)

o 1 6 3 1

2 3 0
Polar coordinate (radius 1)

7 ~ No(0,T'3) I'y non-diagonal 7w~ N2(0,T1) + N2(0,I'2)



< Criterion 2 : Based on the Markov chain and its hitting-time of the
“center of the space ” when chain started “far” from the center.



< Criterion 2 : Based on the Markov chain and its hitting-time of the
“center of the space ” when chain started “far” from the center.

» Example : comparison of the two adaptive procedures
m~ Ng(0,T) d=38

T : diagonal, with I'; ; ~ £(1).

5000 adaptive chains, started from z € {z'T"'z = d}.

x-axes : hitting-time of the ball of radius V/d for Strat 1 (adapt o)
y-axes : hitting-time of the ball of radius V/d for Strat 2 (adapt )




» Example : adaptive vs non-adaptive

T~ Ns(0,T)  d=8

T : diagonal, with I'; ; ~ £(1).

5000 adaptive chains, started from z € {2'T""'z = d}

z-axes : hitting-time of the ball of radius v/d for the classical algorithm
y-axes : hitting-time of the ball of radius v/d for the Strat 2 (adapt w)




Stability of Markov Chains based on fluid limit techniques. Applications to MCMC

L1v. Conclusion

To conclude,

» Hist. : fluid limits are common tools in queuing theory
(continuous-time Markov process)
We provided an extension of this theory to the study of some
(discrete-time) Markov chains.

» Fluid limits or drift conditions to prove the ergodicity of the chain?

» provide an analysis of the chain in its transient phase (before
“stationnarity”)

Available results

- G. Fort, S. Meyn, E. Moulines and P. Priouret. The ODE
method for the stability of skip-free Markov Chains with
applications to MCMC. To be published, Ann. Appl.
Probab. (2008)

- G. Fort. Fluid limit-based tuning of some hybrid MCMC
samplers. Submitted (2007).
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