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Motivation : Pharmacokinetic (1/2)

o N patients.
@ At time 0: dose D of a drug.
@ For patient i, observations {Yj;,1 < j < J;}: evolution of the

concentration at times ¢;;,1 < j < J;.
Model:
ii.d.
Yij = F (tig, Xi) + €5 €; ~ N(0, 02)

X; = Z:f+d; € R* d; k- NL(0,9) and independent of e,

Z; known matrix s.t. each row of X; has in intercept (fixed effect) and covariates
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Motivation : Pharmacokinetic (1/2)
e N patients.
@ At time 0: dose D of a drug.
@ For patient i, observations {Yj;,1 < j < J;}: evolution of the
concentration at times ¢;5,1 < j < J;.

Model:
Yij = F (tij, Xi) + €5 fij”dN(OU)

X, = Zif +d; € R" ;"5 NL(0,9) and independent of e,

Z; known matrix s.t. each row of X; has in intercept (fixed effect) and covariates

Example of model F: monocompartimental, oral administration

F(t, InCl,InV,InA]) = C(CLLV,A,D) (exp(—%t) — exp(—At))

For each patient 1,

InCl Bo,ct BroiZi o + - -+ Br.c1Zi.cn dei
InV | = | fo,v |+ |idem, with covariates Zj - and coefficients Bx,v | + | dv,i
InAj, Bo, A idem, with covariates Z;, 4 and coefficients Bx 4 dp,i
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Motivation : Pharmacokinetic (1/2)
o N patients.

@ At time 0: dose D of a drug.

@ For patient i, observations {Yj;,1 < j < J;}: evolution of the
concentration at times ¢;;,1 < j < J;.

Model:
Yij = F (tij, Xi) + €5 €ij S N(0,0%)
X;=Z:f +d; €R” d; "R NL(0,9) and independent of ¢,

Z; known matrix s.t. each row of X; has in intercept (fixed effect) and covariates

Statistical analysis:
e estimation of § = (3,02, Q), under sparsity constraints on /3
@ selection of the covariates based on /3’

< Penalized Maximum Likelihood
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Motivation : Pharmacokinetic (2/2)

Model:
Yij = f (tij, Xi) + €ij €ij Se N(O,O’Q)
X;=Z:f+d; €R” d; "R NL(0,9) and independent of ¢,

Z; known matrix s.t. each row of X; has in intercept (fixed effect) and covariates

Likelihoods:
o Likelihood: not explicit.

e Complete likelihood: the distribution of {V;;, X;;1 <: < N,1<j < J}
has an explicit expression.

@ ML: here, the likelihood is not concave.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Outline

Penalized Maximum Likelihood inference in models with intractable likelihood
Example 1: Latent variable models
Example 2: Discrete graphical model (Markov random field)
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Penalized Maximum Likelihood inference in models with intractable likelihood

Penalized Maximum Likelihood inference with intractable Likelihood

@ N observations : Y = (Y1, ,Yn)

o A parametric statistical model 6 e 9 g Rd the dependance upon Y is omitted
0 — L(0) likelihood of the observations

@ A penalty term on the parameter §: 6+ g(0) >0 for sparsity
constraints on 6. Usually, g non-smooth and convex.

Goal: Computation of

0 argmaxyco (57108 L(0) ~ 9(6))

when the likelihood L has no closed form expression, and can not be evaluated.
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Penalized Maximum Likelihood inference in models with intractable likelihood
L Example 1: Latent variable models

Example 1: Latent variable model

@ The log-likelihood of the observations Y is of the form

0 logL(0)  L(0) = / po() p(d),

where 1 is a positive o-finite measure on a set X.

@ z collects the missing/latent data.

In these models,
o the complete likelihood pg(z) can be evaluated explicitly,
o the likelihood has no closed form expression.

@ The exact integral could be replaced by a Monte Carlo approximation ;
known to be inefficient.

Numerical methods based on the a posteriori distribution of the missing
data are preferred (see e.g. Expectation-Maximization approaches).

— What about the gradient of the (log)-likelihood ?
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Example 1: Latent variable models

Gradient of the likelihood in a latent variable model

log L(8) = log / po() p(d)

Under regularity conditions, 6 — log L(6) is C* and

_ JxOopo() p(dw)

Vlog L(0) = Xfxpg(z)u(dz)
) o @) p(de)
_/Xag log po () Sy po(2) pu(dz)
—

the a posteriori distribution



Convergence of perturbed Proximal Gradient algorithms
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Example 1: Latent variable models

Gradient of the likelihood in a latent variable model

log L(8) = log / po() p(d)

Under regularity conditions, 6 — log L(6) is C* and

_ JxOopo() p(dw)

Vlog L(0) = Xfxpg(z)ﬂ(dz)
) o @) p(de)
_/Xae log po () Sy po(2) pu(dz)
—

the a posteriori distribution

The gradient of the log-likelihood
Vo {log L(6)} = / B0 log po(z) mo(dz)
X

is an intractable expectation w.r.t. the conditional distribution of the latent
variable given the observations Y.
For all (x,0), Oglog pe(x) can be evaluated.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 1: Latent variable models

Approximation of the gradient
Vo {log L(6)} = /89 log po(z) mo(dx)
X

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7, and define a Monte Carlo approximation.
MCMC samplers provide such a chain.



Convergence of perturbed Proximal Gradient algorithms
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Example 1: Latent variable models

Approximation of the gradient
Vo {log L(6)} = /89 log po(z) mo(dx)
X

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7, and define a Monte Carlo approximation.
MCMC samplers provide such a chain.

Stochastic approximation of the gradient

A biased approximation, since for MCMC samples X; o

E[h(X,,0) 75/ ) mo(dz).

If the Markov chain is ergodic, the bias vanishes when j — oo.
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Example 2: Discrete graphical model (Markov random field)

Example 2: Discrete graphical model (Markov random field)

N independent observations of an undirected graph with p nodes.
Each node takes values in a finite alphabet X.

@ N i.i.d. observations Y; in X? with distribution

det 1
y= (g wp) o mo(y) = - exp Zé’kkB yeuk) + Y Ok Bk, )

1<j<k<p
1
Zg exp ((6‘ B >)

where B is a symmetric function.
@ 0 is a symmetric p X p matrix.

o the normalizing constant (partition function) Zy can not be computed -
sum over |X|? terms.
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Example 2: Discrete graphical model (Markov random field)

Likelihood and its gradient in Markov random field

» Likelihood of the form (scalar product between matrices = Frobenius inner product)

N
1 1 _
N lOg L(@) 0, N izg - B(K) - log ZQ

The likelihood is intractable.
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Example 2: Discrete graphical model (Markov random field)

Likelihood and its gradient in Markov random field

» Likelihood of the form (scalar product between matrices = Frobenius inner product)

N
—logL < Z > —log Zs

The likelihood is intractable.

» Gradient of the form

Vg(%logL ): ZB(K)—/B mo(y) pu(dy)

with
mo(y) = Zie exp ({6, B(y))) -

The gradient of the (log)-likelihood is intractable.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 2: Discrete graphical model (Markov random field)

Approximation of the gradient

- <% log L(e)) = ¥ B~ | Bly)mly) uldy).

The Gibbs measure

moy) < - exp (6. B))

is known up to the constant Zj.

Exact sampling from 7y can be approximated by MCMC samplers (Gibbs-type
samplers such as Swendsen-Wang, ...)

A biased approximation of the gradient is available.
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Example 2: Discrete graphical model (Markov random field)

To summarize,

Problem:
argming o F'(6) with F(0) = f(0) + g(8)

when
00O CR?

@ the function g convex non-smooth nonnegative function (explicit)
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Example 2: Discrete graphical model (Markov random field)

To summarize,

Problem:
argming o F'(6) with F(0) = f(0) + g(8)

when
00O CR?
@ the function g convex non-smooth nonnegative function (explicit)
o the function f is

- not necessarily convex,
- C* and Vf is L-Lipschitz

3L >0, v0,0"  |[VF(O) —VFO)| < Lllo—6.
- with an intractable gradient of the form

V) = / Ho () mo(da);

which can be approximated by biased Monte Carlo techniques.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Outline

Numerical methods for Penalized ML in such models: Perturbed Proximal
Gradient algorithms

Algorithms

Numerical illustration
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

The Proximal-Gradient algorithm (1/2)

argming c g F(0) with F(0) = f(0) + g(0)
N N
smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:

On+1 = Proxs,, g (0n — Y41V f(0n))
where

def . 1
Pty ) 2 i o <g<9> 4o lo- r||2)

Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)
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Algorithms

The Proximal-Gradient algorithm (1/2)

argming c g F(0) with F(0) = f(0) + g(0)
— —~—

smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {yn»,n > 0}, iterative algorithm:

Ont1 = Proxy, . g (On — 41V f(0n))

where
def g 1 2
Prox, ¢(7) = argming.g ( g(6) + ZHG —

Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

@ A generalization of the gradient algorithm to a composite objective
function.

o A MM/Majorize-Minimize algorithm from a quadratic majorization of f (since Lipschitz gradient)
which produces a sequence {6,,,n > 0} such that

F(Oni1) < F(0n).
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L Algorithms

The proximal-gradient algorithm (2/2)

argming c g F(0) with F(0) = f(0) + g(0)
— —~—

smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {v,»,n > 0}, iterative algorithm:

Ont1 = Prox%wrlyg (On — 7n+1vf(0n))
where

def . 1
Bt o) 2 gt (g(9> 4o lo- r||2)

About the Prox-step:
e when g =0: Prox(r) =71
@ when g is the {0, +o0}-valued indicator fct of a closed convex set: the
algorithm is the projected gradient.

@ in some cases, Prox is explicit (e.g. elastic net penalty). Otherwise,
numerical approximation:

Ont1 = Proxy, 1,9 (On — Y1V f(0n)) +enia in this talk, €,41 =0
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Algorithms

The perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:

On+1 = Proxy, ;.9 (On — yn1Hni1)

where Hy+1 is an approximation of V f(0,).
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Algorithms

Monte Carlo-Proximal Gradient algorithm

In the case:

VF(0) = / Ho () mo () u(d),

The MC-Proximal Gradient algorithm

Choose a stepsize sequence {~yy,n > 0} and a batch size sequence {m,,n > 0}.

Given the current value 6,,,

@ Sample a Markov chain {X; ,,j > 0} from a MCMC sampler with kernel
Py, (z,dz’), and unique invariant distribution g, dp.

Q Set
1 Mp+41
Hyy1 = — JZ:; He,, (Xjn)-

© Update the value of the parameter

On+1 = Proxy, 1,9 (On — Yn1Hnt1)
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Algorithms

Stochastic Approximation-Proximal Gradient algorithm
In the CQaSE (ex. latent variable models with I

ial complete likelit

log-linear Markov random field)

/ Ho(z) mo(@)p(dz),  Holz) = &(6) + (0)S(x)

which implies

Vi(0) = (0) + 0 (0) ( [ s@m (m)u(dw)) ,

Choose two stepsize sequences {~yy,, 6n,n > 0} and a batch size sequence {my,n > 0}
Given the current value 6,,,

@ Sample a Markov chain {X; n,j > 0} from a MCMC sampler with kernel
Py, (z,dx’), and unique invariant distribution T, dp.

Q Set Hn+1 = <I>(6n) =+ \II(Gn)Sn+1 with

My 1

Z S(Xjn)-

Sn+1 = ( +1) Sn + +1m

© Update the value of the parameter
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Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM Dpempster et al. (1977) is @ Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

@ Penalized (Stochastic) EM algorithms

i1 = argmax, [ 1ogpo(a) mo(z) du(a) ()
— argmax, {A(6) + (B(0), Sns1) —9(0)}

with

St = / S(z) 70 () dp(z)  EM

My 41
1
Sni1 = S(Xjn Monte Carlo EM  wei and Tanner (1990)
+1 r—— J; (Xjn) 1990
5 Mnp+41
Spi1 = (1= 6p41)8, + —FL Z S(Xj.n) Stoch. Approx. EM  peiyon et al. (1099)
Mn+1

j=1
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Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM pempster et al. (1977) is a Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.
@ Penalized (Stochastic) Generalized EM algorithms

i1 = argmax, [ 1ogpo(a) mo(z) du(a) g 0)
= argmax, {A(0) + (B(0), Sn+1) —9(0)}
or choose 7,11 s.t.

A(Tnt1) + (B(Tnt1); Snt1)=g(Tat1) = A(Tn) + (B(Tn), Sn+1)—9(Tn)

with
Sp41 = /S(m) 7z, (2) du(z) EM
Mp 41
Sn+1 = S(X Monte Carlo EM  wei and Tanner
+1 — ]Z; g Wei and Tanner (1990)

Mp 41

Sn+1 = (1 — 6n+1) n+1 Z S XJ n Stoch. Approx. EM Delyon et al. (1999)
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Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM Dpempster et al. (1977) is @ Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

@ Penalized (Stochastic) Generalized EM algorithms
i1 = argmax, [ 1ogpo(a) mo(z) du(a) ()
= argmax, {A(0) + (B(0), Sn+1) —9(0)}

or choose 7,11 s.t.

A(Tnt1) + (B(Tnt1)s Snt1)—9(Tnt1) = A(tn) + (B(1n), Snt1)—9(mn)

with

@ MC-Prox Gdt and SA-Prox Gdt are Penalized Stochastic Generalized EM
algorithms.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Numerical illustration

Numerical illustration (1/3): pharmacokinetic

For the implementation of the algorithm
@ Penalty term: g(8) = A||B|l1. How to choose A ?

— A= argminkl,___ y)\LE—BIC(B)\)

@ Stepsize sequences: constant or vanishing stepsize sequence {v,,n > 0} ?
(and 4y, for the SA-Prox Gdt algorithm)

@ Monte Carlo approximation: fixed or increasing batch size ?
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Numerical illustration

Numerical illustration (2/3): pharmacokinetic

Proximal MCEM Decreasing Step Size
1

Proximal MCEM Adaptive Step Size

1

01- 2
H : ;
5 Too 20 360 w0 50 Too 2o o w0 w0 6 100 20 a0 w0 5%
: e
&
o
075 0.25-
=
Tl dlo 0 o 005 o o o B0 ok 6 10 ob e s G o s o o o
S o
Proximal SAEM Decreasing Step Size Proximal SAEM Adaptive Step Size
or J|in e
L L L |
.
o
o
01- 2 -2
& 6 100 200 300 400 s00 O 160 200 300 460 s00 5 O 160 200 300 4ab0 sbo O 160 200 300 400 sbo
g £ 10 1.00
b || £
\ L 0.75
o\ .
\\ 050
or
0 o
. . . . . . . . . . . . . . . . | 0007, . . i . .
PR I e L SRR W S T g

teration

s60
teration



e
Convergence of perturbed Proximal Gradient algorithms

Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Numerical illustration

Numerical illustration (3/3): pharmacokinetic

o
1y

Parameter value
o
N

°
2

)
o

-

600 0 200 400 600 O 200 400 600
lteration

Figure: Regularization path of the covariate parameters for the clearance (left), absorption constant (middle)
and volume of distribution (right) parameters. Black dashed line corresponds to the A value selected by EBIC'.
Each colored curve corresponds to a covariate.
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Convergence analysis

Outline

Convergence analysis
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Convergence analysis

The assumptions

argming o F'(6) with F(0) = f(0) + g(8)
where

o the function g: R* — [0, 00] is convex, non smooth, not identically equal
to +00, and lower semi-continuous

e the function f: R? — R is a smooth convex function
i.e. f is continuously differentiable and there exists L > 0 such that

IVFO) V@) <L|o-0| V0,0 R

o © C R? is the domain of g: © = {# € R?: () < o0}

@ The set argmingF' is a non-empty subset of ©.
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Convergence analysis

Existing results in the literature
There exist results under (some of) the assumptions

E[Hns1|Fa] = VI(0n),  Wfyn >0, Y [ Hupr = V(0] < 0,

i.e. results for

@ unbiased sampling. Almost no conditions for the biased sampling, such as
the MCMC one.

@ non vanishing stepsize sequence {yn,n > 0}.
@ increasing batch size: when H, 41 is a Monte Carlo sum i.e.

My 41
1
H = E Ho (X;n),
n+1 1 = 9n( Jyn)

the assumptions imply that lim,, m,, = +o0 at some rate.

Combettes (2001) Elsevier Science.

Combettes-Wajs (2005) Multiscale Modeling and Simulation.
Combettes-Pesquet (2015, 2016) SIAM J. Optim, arXiv
Lin-Rosasco-Villa-Zhou (2015) arXiv

Rosasco-Villa-Vu (2014,2015) arXiv

Schmidt-Leroux-Bach (2011) NIPS
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (1/3)
Ont1 =Proxy, g (0n — Ynt1 Hni1) with Hpq1 = Vf(6,)

Set: L = argming (f + g) Mnt1 = Hpy1 — Vf(0r)

Theorem (Atchadé, F., Moulines (2015))

Assume

e g convex, lower semi-continuous; f convex, C* and its gradient is
Lipschitz with constant L; L is non empty.

® > ¥n =400 and v, € (0,1/L].
o Convergence of the series

> varallmsal?, D Ynttlnt1, D Ynt1 (Tas Tt
n

n n

where Ty, = Proxy,, ,,,¢(0n — Ynt1V f(0n)).

Then there exists 0, € L such that lim,, 6,, = 0.
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result

o for the convex case: f and g are convex.
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result
o for the convex case: f and g are convex.

@ is a deterministic result.
Covered: deterministic and random approximations Hy+1 of Vf(6,).
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result
o for the convex case: f and g are convex.

@ is a deterministic result.
Covered: deterministic and random approximations Hy+1 of Vf(6,).

Among random approximations:
@ Applications in Computational Statistics

H’n+1 == (Xl,ny e ,an+1,n;en)
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result
o for the convex case: f and g are convex.

@ is a deterministic result.
Covered: deterministic and random approximations Hy+1 of Vf(6,).
Among random approximations:

@ Applications in Computational Statistics

@ Applications in learning - "finite sum context”

(objective) argmin, ( Z fi(0) +g(0) >
(Approx. Gdt) Hpp1 = Z Vfi(6n)
zEI n+1

(Xi's) the indices ¢ € In41
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Convergence analysis

Proof / Convergence of the perturbed proximal gradient algorithm (3/3)

Its proof relies on
© a deterministic Lyapunov inequality

2 2 . 2 2
10n+1—0x11" < 102 —6xlI” = 2vnt1 (F(nt1) —min F) =241 (Tn = 0x, Mnt1) + 275 41 10041 |l

non-negative signed noise

@ (an extension of) the Robbins-Siegmund lemma

Let {vn,n > 0} and {xn,n > 0} be non-negative sequences and
{&n,n > 0} be such that &, exists. If for any n >0,

Unt1 < Un — Xnt1 + Ent1

then 3~ xn < 00 and lim, v, exists.
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Convergence analysis

Proof / Convergence of the perturbed proximal gradient algorithm (3/3)

Its proof relies on
© a deterministic Lyapunov inequality

2 2 . 2 2
10n+1—0x11" < 102 —6xlI” = 2vnt1 (F(nt1) —min F) =241 (Tn = 0x, Mnt1) + 275 41 10041 |l

non-negative signed noise

@ (an extension of) the Robbins-Siegmund lemma

Let {vn,n > 0} and {xn,n > 0} be non-negative sequences and
{&n,n > 0} be such that &, exists. If for any n >0,

Unt1 < Un — Xnt1 + Ent1

then 3~ xn < 00 and lim, v, exists.

Note: deterministic lemma, signed noise.
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (1/3)

In the case
1 Moy 41
V0, ~ Hpi1 = Hy, (Xjn),
f(0n) +1 mn+1; 0, (Xjmn)

Xjyimlpast ~ Py, (Xjn,")  moPy = mo;
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (1/3)
In the case

Mnp+1

Z Hp,, (Xjn

Jj=1

V£0, H,i1=
f(0n) = Hypy1 = po—

Xjyimlpast ~ Py, (Xjn,")  moPy = mo;

let us check the condition “Y"  nin < 00 W.p.1" under the condition 3=, vn = +oo!

Z’yn+177n+1=2%+1 nt1 — Vf(0n))

= Ynt1 {Hnt1 — E[Husr| Fal} + D Yot {E [Hor 1| Fa] = VF(00)}

if unbiased MC: null
if biased MC: O(1/my)
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (1/3)

In the case
1 Moy 41
FO) ~ Huor = i 3 Hou (i)

Xjy1mlpast ~ Py, (Xjn,") mo Py = To;

let us check the condition “Y"  nin < 00 W.p.1" under the condition 3=, vn = +oo!

Z’yn+177n+1 = Z’Yn+1 (Hn+1 - Vf(en))

n n

= Ynt1 {Hnt1 — E[Husr| Fal} + D Yot {E [Hor 1| Fa] = VF(00)}

if unbiased MC: null
if biased MC: O(1/my)

The most technical case: the biased case with constant batch size m, = m
Solution FIG to the Poisson equation: Hg — mgHy = ﬁg — Py FIG
H, 41 — Vf(0n) = martingale increment + remainder

Regularity in 0 of 6 — ﬁe and 0 — P91:\194
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (2/3)

Increasing batch size: lim,, m,, = +0c0

Conditions on the step sizes and batch sizes

2
Z’V" = 400, i 00; I <00 (biased case)
B — M, — My,

Conditions on the Markov kernels: There exist A € (0,1), b < 0o, p > 2 and a measurable
function W : X — [1, 4-00) such that

sup |Hyg|w < oo, sup PgWP < AXWP +b.
6co 0€e©

In addition, for any £ € (0, p), there exist C < oo and p € (0, 1) such that for any z € X,

sup || Pg(z, ) — mgll e < Cp" W (). 6
ISE)

Condition on ©: © is bounded.
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (3/3)

Fixed batch size: m,, = m

Condition on the step size:

Dm=400 D ya<oo > |-l <o

n

Condition on the Markov chain: same as in the case "increasing batch size” and there exists a
constant C such that for any 0,6’ € ©

[Py () = Pyr (@, ) llw

+ ||mg — 7 <Clo—-6|.
W) llmg — morllw < Cl I

|Hg — Hy, |w + sup
x
Condition on the Prox:

sup  supy ' ||Prox, ¢(0) — 0] < oc.
~v€(0,1/L) 6€©

Condition on ©: © is bounded.
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Convergence analysis

Rates of convergence (1/3) : the problem

For non negative weights ay, find an upper bound of

ZZ o F(0r) — min F
=1

It provides
@ an upper bound for the cumulative regret (ar = 1)

@ an upper bound for an averaging strategy when F' is convex since

<Z ST )—mlnF<Zzl a F(0;) — min F.
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Convergence analysis

Rates of convergence (2/3): a deterministic control

Theorem (Atchadé, F., Moulines (2016))

For any 0, € argming F,

n

A F(0x) — min F' < ||00 —0.°
k=1
o Z( - 82 s o]
p L amllnkIIZ—i " as (Tier = 6um0)
A, A,
k=1 k=1
where

An=>as, mp=He=VfOr-1), Tk =Proxy, o(0k—1—wVf(0k-1)).
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Convergence analysis

Rates (3/3): when H,, 1 is a Monte Carlo approximation, bound in L4
[ (3 350) <], = |33 00—, =

with fixed size of the batch and (slowly) decaying stepsize

’ynz%,ae[l/ll] My = M.

With averaging: optimal rate, even with slowly decaying stepsize v, ~ 1/y/n.

u, = O(lnn/n)

with increasing batch size and constant stepsize
Yrn = Yx My X N.

Rate with O(n?) Monte Carlo samples !
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Convergence analysis

Acceleration (1)

Let {t,,n > 0} be a positive sequence s.t.

Tnti1tn(tn —1) < ’)’ntifl

Nesterov acceleration of the Proximal Gradient algorithm

Ont1 = PrOX7n+1,g (Tn = Y41V f(0))

tn — 1
(On+1—0n)
tn+1

Tn+l — 0n+1 +

Nesterov(2004), Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

1
(deterministic) Proximal-gradient F(6,) —min F =0 <ﬁ>
(deterministic) Accelerated Proximal-gradient F(6n) —minF =0 (%)
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Convergence analysis

Acceleration (2) Aujol-Dossal-F.-Moulines, work in progress

Perturbed Nesterov acceleration: some convergence results

Choose 7n, Mn, ty s.t.

1
n € (0,1/1], lim 2 = +oo, ntn (14 Yntn) —
Yn € (0,1/L) imy +00, ) ntn(l+7 ) <00

n

Then there exists 0, € argming F' s.t lim, 0, = 6,.
In addition

. 1
F(0n+1) — min F' = O (m)

Schmidt-Le Roux-Bach (2011); Dossal-Chambolle(2014); Aujol-Dossal(2015)

YTn my tn | rate NbrMC

ns n n? nt

v
y/vy/n n? on | a7 p?

Table: Control of F(,) — min F’
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Outline

Conclusion
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Conclusion

Conclusion (1/2): acceleration ?

@ with or without the acceleration: complexity O(1/y/n).
@ acceleration: longer Markov chains, few iterations.
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Conclusion (2/2): weaken the assumptions

e § € R* — 0 in a Hilbert space
@ O bounded — no boundedness condition on ©

e f convex — f non convex
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