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Convergence of perturbed Proximal Gradient algorithms

Motivation : Pharmacokinetic (1/2)

N patients.

At time 0: dose D of a drug.

For patient i, observations {Yij , 1 ≤ j ≤ Ji}: evolution of the
concentration at times tij , 1 ≤ j ≤ Ji.

Model:

Yij = F (tij , Xi) + εij εij
i.i.d.∼ N (0, σ2)

Xi = Ziβ + di ∈ RL di
i.i.d.∼ NL(0,Ω) and independent of ε•

Zi known matrix s.t. each row of Xi has in intercept (fixed effect) and covariates
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Example of model F : monocompartimental, oral administration

F(t, [ln Cl, ln V, ln A]) = C(Cl,V,A,D)

(
exp(−Cl

V
t)− exp(−At)

)
For each patient i,lnCl

lnV
lnA


i

=

β0,Cl

β0,V

β0,A

+

 β1,ClZ
i
1,Cl + · · ·+ βK,ClZ

i
K,Cl

idem, with covariates Zik,V and coefficients βk,V
idem, with covariates Zik,A and coefficients βk,A

+

dCl,i

dV,i

dA,i


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Motivation : Pharmacokinetic (1/2)

N patients.

At time 0: dose D of a drug.

For patient i, observations {Yij , 1 ≤ j ≤ Ji}: evolution of the
concentration at times tij , 1 ≤ j ≤ Ji.

Model:

Yij = F (tij , Xi) + εij εij
i.i.d.∼ N (0, σ2)

Xi = Ziβ + di ∈ RL di
i.i.d.∼ NL(0,Ω) and independent of ε•

Zi known matrix s.t. each row of Xi has in intercept (fixed effect) and covariates

Statistical analysis:

estimation of θ = (β, σ2,Ω), under sparsity constraints on β

selection of the covariates based on β̂.

↪→ Penalized Maximum Likelihood
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Motivation : Pharmacokinetic (2/2)

Model:

Yij = f (tij , Xi) + εij εij
i.i.d.∼ N (0, σ2)

Xi = Ziβ + di ∈ RL di
i.i.d.∼ NL(0,Ω) and independent of ε•

Zi known matrix s.t. each row of Xi has in intercept (fixed effect) and covariates

Likelihoods:

Likelihood: not explicit.

Complete likelihood: the distribution of {Yij , Xi; 1 ≤ i ≤ N, 1 ≤ j ≤ J}
has an explicit expression.

ML: here, the likelihood is not concave.
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Penalized Maximum Likelihood inference in models with intractable likelihood
Example 1: Latent variable models
Example 2: Discrete graphical model (Markov random field)
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Penalized Maximum Likelihood inference with intractable Likelihood

N observations : Y = (Y1, · · · , YN )

A parametric statistical model θ ∈ Θ ⊆ Rd the dependance upon Y is omitted

θ 7→ L(θ) likelihood of the observations

A penalty term on the parameter θ: θ 7→ g(θ) ≥ 0 for sparsity
constraints on θ. Usually, g non-smooth and convex.

Goal: Computation of

θ 7→ argmaxθ∈Θ

(
1

N
logL(θ)− g(θ)

)
when the likelihood L has no closed form expression, and can not be evaluated.
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Example 1: Latent variable models

Example 1: Latent variable model

The log-likelihood of the observations Y is of the form

θ 7→ logL(θ) L(θ) =

∫
X

pθ(x)µ(dx),

where µ is a positive σ-finite measure on a set X.

x collects the missing/latent data.

In these models,

the complete likelihood pθ(x) can be evaluated explicitly,

the likelihood has no closed form expression.

The exact integral could be replaced by a Monte Carlo approximation ;
known to be inefficient.
Numerical methods based on the a posteriori distribution of the missing
data are preferred (see e.g. Expectation-Maximization approaches).

↪→ What about the gradient of the (log)-likelihood ?
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 1: Latent variable models

Gradient of the likelihood in a latent variable model

logL(θ) = log

∫
X

pθ(x)µ(dx)

Under regularity conditions, θ 7→ logL(θ) is C1 and

∇ logL(θ) =

∫
X
∂θpθ(x)µ(dx)∫
X
pθ(z)µ(dz)

=

∫
X

∂θ log pθ(x)
pθ(x)µ(dx)∫
X
pθ(z)µ(dz)︸ ︷︷ ︸

the a posteriori distribution

The gradient of the log-likelihood

∇θ {logL(θ)} =

∫
X

∂θ log pθ(x) πθ(dx)

is an intractable expectation w.r.t. the conditional distribution of the latent
variable given the observations Y.
For all (x, θ), ∂θ log pθ(x) can be evaluated.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 1: Latent variable models

Approximation of the gradient

∇θ {logL(θ)} =

∫
X

∂θ log pθ(x) πθ(dx)

1 Quadrature techniques: poor behavior w.r.t. the dimension of X

2 use i.i.d. samples from πθ to define a Monte Carlo approximation: not
possible, in general.

3 use m samples from a non stationary Markov chain {Xj,θ, j ≥ 0} with
unique stationary distribution πθ, and define a Monte Carlo approximation.
MCMC samplers provide such a chain.

Stochastic approximation of the gradient

A biased approximation, since for MCMC samples Xj,θ

E [h(Xj,θ)] 6=
∫
h(x)πθ(dx).

If the Markov chain is ergodic, the bias vanishes when j →∞.
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Example 2: Discrete graphical model (Markov random field)

Example 2: Discrete graphical model (Markov random field)

N independent observations of an undirected graph with p nodes.
Each node takes values in a finite alphabet X.

N i.i.d. observations Yi in Xp with distribution

y = (y1, · · · , yp) 7→ πθ(y)
def
=

1

Zθ
exp

 p∑
k=1

θkkB(yk, yk) +
∑

1≤j<k≤p

θkjB(yk, yj)


=

1

Zθ
exp

(〈
θ, B̄(y)

〉)
where B is a symmetric function.

θ is a symmetric p× p matrix.

the normalizing constant (partition function) Zθ can not be computed -
sum over |X|p terms.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 2: Discrete graphical model (Markov random field)

Likelihood and its gradient in Markov random field

I Likelihood of the form (scalar product between matrices = Frobenius inner product)

1

N
logL(θ) =

〈
θ,

1

N

N∑
i=1

B̄(Yi)

〉
− logZθ

The likelihood is intractable.

I Gradient of the form

∇θ
(

1

N
logL(θ)

)
=

1

N

N∑
i=1

B̄(Yi)−
∫

Xp
B̄(y)πθ(y)µ(dy)

with

πθ(y)
def
=

1

Zθ
exp

(〈
θ, B̄(y)

〉)
.

The gradient of the (log)-likelihood is intractable.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 2: Discrete graphical model (Markov random field)

Approximation of the gradient

∇θ
(

1

N
logL(θ)

)
=

1

N

N∑
i=1

B̄(Yi)−
∫

Xp
B̄(y)πθ(y)µ(dy).

The Gibbs measure

πθ(y)
def
=

1

Zθ
exp

(〈
θ, B̄(y)

〉)
is known up to the constant Zθ.

Exact sampling from πθ can be approximated by MCMC samplers (Gibbs-type
samplers such as Swendsen-Wang, ...)

A biased approximation of the gradient is available.
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Penalized Maximum Likelihood inference in models with intractable likelihood

Example 2: Discrete graphical model (Markov random field)

To summarize,

Problem:
argminθ∈ΘF (θ) with F (θ) = f(θ) + g(θ)

when

θ ∈ Θ ⊆ Rd

the function g convex non-smooth nonnegative function (explicit)

the function f is

· not necessarily convex,
· C1 and ∇f is L-Lipschitz

∃L > 0, ∀θ, θ′ ‖∇f(θ)−∇f(θ
′
)‖ ≤ L‖θ − θ′‖.

· with an intractable gradient of the form

∇f(θ) =

∫
Hθ(x)πθ(dx);

which can be approximated by biased Monte Carlo techniques.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

The Proximal-Gradient algorithm (1/2)

argminθ∈ΘF (θ) with F (θ) = f(θ)︸ ︷︷ ︸
smooth

+ g(θ)︸ ︷︷ ︸
non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {γn, n ≥ 0}, iterative algorithm:

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

where

Proxγ,g(τ)
def
= argminθ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

A generalization of the gradient algorithm to a composite objective
function.

A MM/Majorize-Minimize algorithm from a quadratic majorization of f (since Lipschitz gradient)

which produces a sequence {θn, n ≥ 0} such that

F (θn+1) ≤ F (θn).
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Algorithms

The proximal-gradient algorithm (2/2)

argminθ∈ΘF (θ) with F (θ) = f(θ)︸ ︷︷ ︸
smooth

+ g(θ)︸ ︷︷ ︸
non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {γn, n ≥ 0}, iterative algorithm:

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

where

Proxγ,g(τ)
def
= argminθ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
About the Prox-step:

when g = 0: Prox(τ) = τ

when g is the {0,+∞}-valued indicator fct of a closed convex set: the
algorithm is the projected gradient.

in some cases, Prox is explicit (e.g. elastic net penalty). Otherwise,
numerical approximation:

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn)) +εn+1 in this talk, εn+1 = 0
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Algorithms

The perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence {γn, n ≥ 0}, iterative algorithm:

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)

where Hn+1 is an approximation of ∇f(θn).
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

Monte Carlo-Proximal Gradient algorithm

In the case:

∇f(θ) =

∫
Hθ(x)πθ(x)µ(dx),

The MC-Proximal Gradient algorithm

Choose a stepsize sequence {γn, n ≥ 0} and a batch size sequence {mn, n ≥ 0}.

Given the current value θn,

1 Sample a Markov chain {Xj,n, j ≥ 0} from a MCMC sampler with kernel
Pθn(x, dx′), and unique invariant distribution πθn dµ.

2 Set

Hn+1 =
1

mn+1

mn+1∑
j=1

Hθn(Xj,n).

3 Update the value of the parameter

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)
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Algorithms

Stochastic Approximation-Proximal Gradient algorithm
In the case (ex. latent variable models with exponential complete likelihood;log-linear Markov random field)

∇f(θ) =

∫
Hθ(x)πθ(x)µ(dx), Hθ(x) = Φ(θ) + Ψ(θ)S(x)

which implies

∇f(θ) = Φ(θ) + Ψ(θ)

(∫
S(x)πθ(x)µ(dx)

)
,

The SA-Proximal Gradient algorithm

Choose two stepsize sequences {γn, δn, n ≥ 0} and a batch size sequence {mn, n ≥ 0}

Given the current value θn,

1 Sample a Markov chain {Xj,n, j ≥ 0} from a MCMC sampler with kernel
Pθn(x, dx′), and unique invariant distribution πθn dµ.

2 Set Hn+1 = Φ(θn) + Ψ(θn)Sn+1 with

Sn+1 = (1− δn+1)Sn + δn+1
1

mn+1

mn+1∑
j=1

S(Xj,n).

3 Update the value of the parameter

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

EM Dempster et al. (1977) is a Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

Penalized (Stochastic) EM algorithms

τn+1 = argmaxθ

∫
log pθ(x) πθ(x) dµ(x)−g(θ)

= argmaxθ {A(θ) + 〈B(θ), Sn+1〉−g(θ)}

with

Sn+1 =

∫
S(x) πτn(x) dµ(x) EM

Sn+1 =
1

mn+1

mn+1∑
j=1

S(Xj,n) Monte Carlo EM Wei and Tanner (1990)

Sn+1 = (1− δn+1)Sn +
δn+1

mn+1

mn+1∑
j=1

S(Xj,n) Stoch. Approx. EM Delyon et al. (1999)
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Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

EM Dempster et al. (1977) is a Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

Penalized (Stochastic) Generalized EM algorithms

τn+1 = argmaxθ

∫
log pθ(x) πθ(x) dµ(x)−g(θ)

= argmaxθ {A(θ) + 〈B(θ), Sn+1〉−g(θ)}

or choose τn+1 s.t.

A(τn+1) + 〈B(τn+1), Sn+1〉−g(τn+1) ≥ A(τn) + 〈B(τn), Sn+1〉−g(τn)
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1

mn+1
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j=1

S(Xj,n) Monte Carlo EM Wei and Tanner (1990)

Sn+1 = (1− δn+1)Sn +
δn+1

mn+1

mn+1∑
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S(Xj,n) Stoch. Approx. EM Delyon et al. (1999)
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Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

EM Dempster et al. (1977) is a Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

Penalized (Stochastic) Generalized EM algorithms

τn+1 = argmaxθ

∫
log pθ(x) πθ(x) dµ(x)−g(θ)

= argmaxθ {A(θ) + 〈B(θ), Sn+1〉−g(θ)}

or choose τn+1 s.t.

A(τn+1) + 〈B(τn+1), Sn+1〉−g(τn+1) ≥ A(τn) + 〈B(τn), Sn+1〉−g(τn)

with

MC-Prox Gdt and SA-Prox Gdt are Penalized Stochastic Generalized EM
algorithms.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Numerical illustration

Numerical illustration (1/3): pharmacokinetic

For the implementation of the algorithm

Penalty term: g(θ) = λ‖β‖1. How to choose λ ?

↪→ λ = argminλ1,··· ,λLE-BIC(β̂λ)

Stepsize sequences: constant or vanishing stepsize sequence {γn, n ≥ 0} ?
(and δn for the SA-Prox Gdt algorithm)

Monte Carlo approximation: fixed or increasing batch size ?
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Numerical illustration

Numerical illustration (2/3): pharmacokinetic
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Figure: Parameter estimates values (plain lines) during iterations of SAEM-prox algorithm and MCEM-prox
algorithm with penalty regularization parameter λ = 150. Both algorithm are run with decreasing step sizes or
automatically tuned step sizes using second derivatives. True values are in dotted lines. For each algorithm: Top
left: covariate estimation. Top right: fixed effects estimation. Bottom left: estimation of σ. Bottom right:
estimation of ω’s.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms
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Figure: Regularization path of the covariate parameters for the clearance (left), absorption constant (middle)
and volume of distribution (right) parameters. Black dashed line corresponds to the λ value selected by EBIC.
Each colored curve corresponds to a covariate.



Convergence of perturbed Proximal Gradient algorithms

Convergence analysis

Outline

Penalized Maximum Likelihood inference in models with intractable likelihood

Numerical methods for Penalized ML in such models: Perturbed Proximal
Gradient algorithms

Convergence analysis

Conclusion



Convergence of perturbed Proximal Gradient algorithms

Convergence analysis

The assumptions

argminθ∈ΘF (θ) with F (θ) = f(θ) + g(θ)

where

the function g: Rd → [0,∞] is convex, non smooth, not identically equal
to +∞, and lower semi-continuous

the function f : Rd → R is a smooth convex function

i.e. f is continuously differentiable and there exists L > 0 such that

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖ ∀θ, θ′ ∈ Rd

Θ ⊆ Rd is the domain of g: Θ = {θ ∈ Rd : g(θ) <∞}.
The set argminΘF is a non-empty subset of Θ.
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Convergence analysis

Existing results in the literature
There exist results under (some of) the assumptions

E [Hn+1|Fn] = ∇f(θn), inf
n
γn > 0,

∑
n

‖Hn+1 −∇f(θn)‖ <∞,

i.e. results for

unbiased sampling. Almost no conditions for the biased sampling, such as
the MCMC one.

non vanishing stepsize sequence {γn, n ≥ 0}.
increasing batch size: when Hn+1 is a Monte Carlo sum i.e.

Hn+1 =
1

mn+1

mn+1∑
j=1

Hθn(Xj,n),

the assumptions imply that limnmn = +∞ at some rate.
Combettes (2001) Elsevier Science.

Combettes-Wajs (2005) Multiscale Modeling and Simulation.

Combettes-Pesquet (2015, 2016) SIAM J. Optim, arXiv

Lin-Rosasco-Villa-Zhou (2015) arXiv

Rosasco-Villa-Vu (2014,2015) arXiv

Schmidt-Leroux-Bach (2011) NIPS
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (1/3)

θn+1 = Proxγn+1,g (θn − γn+1 Hn+1) with Hn+1 ≈ ∇f(θn)

Set: L = argminΘ(f + g) ηn+1 = Hn+1 −∇f(θn)

Theorem (Atchadé, F., Moulines (2015))

Assume

g convex, lower semi-continuous; f convex, C1 and its gradient is
Lipschitz with constant L; L is non empty.∑
n γn = +∞ and γn ∈ (0, 1/L].

Convergence of the series∑
n

γ2
n+1‖ηn+1‖2,

∑
n

γn+1ηn+1,
∑
n

γn+1 〈Tn, ηn+1〉

where Tn = Proxγn+1,g(θn − γn+1∇f(θn)).

Then there exists θ? ∈ L such that limn θn = θ?.
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result

for the convex case: f and g are convex.

is a deterministic result.
Covered: deterministic and random approximations Hn+1 of ∇f(θn).
Among random approximations:

1 Applications in Computational Statistics

2 Applications in learning - ”finite sum context” :
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This convergence result

for the convex case: f and g are convex.

is a deterministic result.
Covered: deterministic and random approximations Hn+1 of ∇f(θn).
Among random approximations:

1 Applications in Computational Statistics

Hn+1 = Ξ
(
X1,n, · · · , Xmn+1,n; θn

)
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result

for the convex case: f and g are convex.

is a deterministic result.
Covered: deterministic and random approximations Hn+1 of ∇f(θn).
Among random approximations:

1 Applications in Computational Statistics

2 Applications in learning - ”finite sum context” :

(objective) argminθ

(
1

N

N∑
i=1

fi(θ) + g(θ)

)

(Approx. Gdt) Hn+1 =
1

|In+1|
∑

i∈In+1

∇fi(θn)

(Xi’s) the indices i ∈ In+1
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Convergence analysis

Proof / Convergence of the perturbed proximal gradient algorithm (3/3)

Its proof relies on
1 a deterministic Lyapunov inequality

‖θn+1−θ?‖
2 ≤ ‖θn−θ?‖2− 2γn+1

(
F (θn+1)−minF

)︸ ︷︷ ︸
non-negative

−2γn+1
〈

Tn − θ?, ηn+1
〉

+ 2γ
2
n+1‖ηn+1‖

2︸ ︷︷ ︸
signed noise

2 (an extension of) the Robbins-Siegmund lemma

Let {vn, n ≥ 0} and {χn, n ≥ 0} be non-negative sequences and
{ξn, n ≥ 0} be such that

∑
n ξn exists. If for any n ≥ 0,

vn+1 ≤ vn − χn+1 + ξn+1

then
∑
n χn <∞ and limn vn exists.

Note: deterministic lemma, signed noise.
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Convergence analysis

Convergence: when Hn+1 is a Monte-Carlo approximation (1/3)
In the case

∇f(θn) ≈ Hn+1 =
1

mn+1

mn+1∑
j=1

Hθn(Xj,n),

Xj+1,n|past ∼ Pθn(Xj,n, ·) πθPθ = πθ;

let us check the condition “
∑
n γnηn <∞ w.p.1” under the condition

∑
n γn = +∞:∑

n

γn+1ηn+1 =
∑
n

γn+1 (Hn+1 −∇f(θn))

=
∑
n

γn+1 {Hn+1 − E [Hn+1|Fn]}+
∑
n

γn+1 {E [Hn+1|Fn]−∇f(θn)}︸ ︷︷ ︸
if unbiased MC: null

if biased MC: O(1/mn)

The most technical case: the biased case with constant batch size mn = m
Solution Ĥθ to the Poisson equation: Hθ − πθHθ = Ĥθ − PθĤθ
Hn+1 −∇f(θn) = martingale increment + remainder

Regularity in θ of θ 7→ Ĥθ and θ 7→ PθĤθ .
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Convergence analysis

Convergence: when Hn+1 is a Monte-Carlo approximation (2/3)

Increasing batch size: limn mn = +∞
Conditions on the step sizes and batch sizes∑

n

γn = +∞,
∑
n

γ2
n

mn
<∞;

∑
n

γn
mn

<∞ (biased case)

Conditions on the Markov kernels: There exist λ ∈ (0, 1), b <∞, p ≥ 2 and a measurable
function W : X→ [1,+∞) such that

sup
θ∈Θ

|Hθ|W <∞, sup
θ∈Θ

PθW
p ≤ λWp

+ b.

In addition, for any ` ∈ (0, p], there exist C <∞ and ρ ∈ (0, 1) such that for any x ∈ X,

sup
θ∈Θ

‖Pnθ (x, ·)− πθ‖W` ≤ Cρ
n
W
`
(x). (1)

Condition on Θ: Θ is bounded.
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Convergence analysis

Convergence: when Hn+1 is a Monte-Carlo approximation (3/3)

Fixed batch size: mn = m

Condition on the step size:∑
n

γn = +∞
∑
n

γ2
n <∞

∑
n

|γn+1 − γn| <∞

Condition on the Markov chain: same as in the case ”increasing batch size” and there exists a
constant C such that for any θ, θ′ ∈ Θ

|Hθ −Hθ′ |W + sup
x

‖Pθ(x, ·)− Pθ′ (x, ·)‖W
W (x)

+ ‖πθ − πθ′‖W ≤ C ‖θ − θ
′‖.

Condition on the Prox:

sup
γ∈(0,1/L]

sup
θ∈Θ

γ−1 ‖Proxγ,g(θ)− θ‖ <∞.

Condition on Θ: Θ is bounded.
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Convergence analysis

Rates of convergence (1/3) : the problem

For non negative weights ak, find an upper bound of

n∑
k=1

ak∑n
`=1 a`

F (θk)−minF

It provides

an upper bound for the cumulative regret (ak = 1)

an upper bound for an averaging strategy when F is convex since

F

(
n∑
k=1

ak∑n
`=1 a`

θk

)
−minF ≤

n∑
k=1

ak∑n
`=1 a`

F (θk)−minF.
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Convergence analysis

Rates of convergence (2/3): a deterministic control

Theorem (Atchadé, F., Moulines (2016))

For any θ? ∈ argminΘF ,

n∑
k=1

ak
An

F (θk)−minF ≤ a0

2γ0An
‖θ0 − θ?‖2

+
1

2An

n∑
k=1

(
ak
γk
− ak−1

γk−1

)
‖θk−1 − θ?‖2

+
1

An

n∑
k=1

akγk‖ηk‖2 −
1

An

n∑
k=1

ak 〈Tk−1 − θ?, ηk〉

where

An =

n∑
`=1

a`, ηk = Hk−∇f(θk−1), Tk = Proxγk,g(θk−1−γk∇f(θk−1)).
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Convergence analysis

Rates (3/3): when Hn+1 is a Monte Carlo approximation, bound in Lq

∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq
≤
∥∥∥ 1

n

n∑
k=1

F (θk)−minF
∥∥∥
Lq
≤ un

un = O(1/
√
n)

with fixed size of the batch and (slowly) decaying stepsize

γn =
γ?
na
, a ∈ [1/2, 1] mn = m?.

With averaging: optimal rate, even with slowly decaying stepsize γn ∼ 1/
√
n.

un = O(lnn/n)

with increasing batch size and constant stepsize

γn = γ? mn ∝ n.

Rate with O(n2) Monte Carlo samples !
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Convergence analysis

Acceleration (1)

Let {tn, n ≥ 0} be a positive sequence s.t.

γn+1tn(tn − 1) ≤ γnt2n−1

Nesterov acceleration of the Proximal Gradient algorithm

θn+1 = Proxγn+1,g (τn − γn+1∇f(τn))

τn+1 = θn+1 +
tn − 1

tn+1
(θn+1 − θn)

Nesterov(2004), Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

(deterministic) Proximal-gradient F (θn)−minF = O

(
1

n

)
(deterministic) Accelerated Proximal-gradient F (θn)−minF = O

(
1

n2

)
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Convergence analysis

Acceleration (2) Aujol-Dossal-F.-Moulines, work in progress

Perturbed Nesterov acceleration: some convergence results

Choose γn,mn, tn s.t.

γn ∈ (0, 1/L] , lim
n
γnt

2
n = +∞,

∑
n

γntn(1 + γntn)
1

mn
<∞

Then there exists θ? ∈ argminΘF s.t limn θn = θ?.
In addition

F (θn+1)−minF = O

(
1

γn+1t2n

)
Schmidt-Le Roux-Bach (2011); Dossal-Chambolle(2014); Aujol-Dossal(2015)

γn mn tn rate NbrMC

γ n3 n n−2 n4

γ/
√
n n2 n n−3/2 n3

Table: Control of F (θn)−minF
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Conclusion

Conclusion (1/2): acceleration ?

with or without the acceleration: complexity O(1/
√
n).

acceleration: longer Markov chains, few iterations.
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Conclusion (2/2): weaken the assumptions

θ ∈ Rd → θ in a Hilbert space

Θ bounded → no boundedness condition on Θ

f convex → f non convex
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