Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization

Gersende Fort ${ }^{1}$, Eric Moulines ${ }^{2}$ and Hoi-To Wai ${ }^{3}$

CNRS, France ${ }^{1}$, École Polytechnique, France ${ }^{2}$, Chinese University of Hong Kong, Hong-Kong ${ }^{3}$

Contribution
- A novel EM algorithm
- Adapted to the finite sum setting
- Stochastic: it combines Stochastic Approximation and variance re-
duction techniques
- Same complexity as SPIDER-EM ${ }_{\text {(Fortetal, 20200) }}$ - state of the art, among
the incremental EM's.
Optimization problem

- Solve on $\Theta \subseteq \mathbb{R}^{d}$

$$
\operatorname{argmin}_{\theta \in \Theta}-\sum_{i=1}^{n} \log \int_{Z} p_{i}(z ; \theta) \mathrm{d} \mu(z)+\mathrm{R}(\theta), \quad p_{i}(z ; \theta)>0
$$

- Curved exponential family:

$$
-\sum_{i=1}^{n} \log \int_{Z} h_{i}\left(z_{i}\right) \exp \left(\left\langle s_{i}\left(z_{i}\right) \mid \phi(\theta)\right\rangle\right) \mathrm{d} \mu\left(z_{i}\right)+\mathrm{R}(\theta)
$$

- In computational Statistics: minimization of the (penalized) negative likelihood in latent variable models.

From EM to incremental EM

- EM algorithm: Repeat for $t=0$,

$$
\begin{array}{ll}
\text { E-step } & \overline{\mathrm{s}}\left(\theta_{t}\right)=\frac{1}{n} \sum_{i=1}^{n} \overline{\mathrm{~s}}_{i}\left(\theta_{t}\right) \\
\text { M-step } & \theta_{t+1}=\mathrm{T}\left(\overline{\mathrm{~s}}\left(\theta_{t}\right)\right)
\end{array}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{s}}_{i}(\theta)=\int_{\mathrm{Z}} \mathrm{~s}_{i}(z) \frac{p_{i}(z ; \theta)}{\int p_{i}(u ; \theta) \mathrm{d} \mu(u)} \mathrm{d} \mu(z) \\
& \mathrm{T}(s)=\operatorname{argmin}_{\theta \in \Theta} \mathrm{R}(\theta)-\langle s \mid \phi(\theta)\rangle
\end{aligned}
$$

- EM: an algorithm in the expectation space (Deyon et al, 1999)

$$
S_{t+1}=\overline{\mathrm{s}} \circ \mathrm{~T}\left(S_{t}\right)=\frac{1}{n} \sum_{i=1}^{n} \overline{\mathrm{~s}}_{i} \circ \mathrm{~T}\left(S_{t}\right)
$$

- EM designed to find the roots of

$$
\mathrm{h}(s):=\frac{1}{n} \sum_{i=1}^{n} \overline{\mathrm{~s}}_{i} \circ \mathrm{~T}(s)-s=\mathbb{E}\left[\overline{\mathrm{s}}_{/}(s)-s+V\right]
$$

where $I \sim \mathcal{U}(\{1, \ldots, n\})$ and V is a control variate i.e. r.v. correlated with $\bar{s}_{/}$and centered.

- Stochastic Approximation The algorithm
$\widehat{S}_{t+1}=\widehat{S}_{t}+\gamma_{t+1} H_{t+1} \quad \mathbb{E}\left[H_{t+1} \mid\right.$ past $\left._{t}\right]=\mathrm{h}\left(\widehat{S}_{t}\right)$
has the same limiting set: $\{s: h(s)=0\}$.

Variance reduced incremental EM

$$
\widehat{S}_{t+1}=\widehat{S}_{t}+\gamma_{t+1}\left(\frac{1}{\mathrm{~b}} \sum_{i \in \mathcal{B}_{t+1}} \overline{\mathrm{~s}}_{i} \circ \mathrm{~T}\left(\widehat{S}_{t}\right)-\widehat{S}_{t}+V_{t+1}\right)
$$

where \mathcal{B}_{t+1} is a mini-batch of examples of size $b \ll n$.

- Online-EM (Neal and Hinton, 1998; Cappé and Mouines, 2009). NO variance reduction $\left(V_{t+1}=0\right)$
- sEM-vr: Stochastic Expectation Maximization with Variance Reduction chen et al, 2018
- FIEM: Fast Increment Expectation Maximization Karimi e tal, 2019; Fort et al, 2020a
- SPIDER-EM Fortetal, 2020b and Geom-SPIDER-EM: Stochastic Path Integrated Differential EstimatoR Expectation Maximization

$$
V_{t+1}=V_{t}+\frac{1}{\mathrm{~b}} \sum_{i \in \mathcal{B}_{t}} \overline{\mathrm{~s}}_{i} \circ \mathrm{~T}\left(\widehat{S}_{t-1}\right)-\frac{1}{\mathrm{~b}} \sum_{i \in \mathcal{B}_{t+1}} \overline{\mathrm{~s}}_{i} \circ \mathrm{~T}\left(\widehat{S}_{t-1}\right)
$$

Geom-SPIDER-EM (Stochastic Path Integrated Differential EstimatoR)

```
1: }\mp@subsup{\widehat{S}}{1,0}{}=\mp@subsup{\widehat{S}}{1,-1}{}=\mp@subsup{\widehat{S}}{\mathrm{ init}}{
        S
```



```
3: for k=0,\ldots, \xi}t-1 do
4: Sample a mini batch }\mp@subsup{\mathcal{B}}{t,k+1}{}\mathrm{ of size b from {1, , ,n}
5: }\quad\mp@subsup{S}{t,k+1}{}=\mp@subsup{S}{t,k}{}+\mp@subsup{b}{}{-1}\mp@subsup{\sum}{i\in\mp@subsup{\mathcal{B}}{t,k+1}{\prime}}{}(\mp@subsup{\overline{S}}{i}{}\circ\textrm{T}(\mp@subsup{\widehat{S}}{t,k}{})-\mp@subsup{\overline{S}}{i}{}\circ\textrm{T}(\mp@subsup{\widehat{S}}{t,k-1}{})
6: }\mp@subsup{\widehat{S}}{t,k+1}{}=\mp@subsup{\widehat{S}}{t,k}{}+\mp@subsup{\gamma}{t,k+1}{}(\mp@subsup{S}{t,k+1}{}-\mp@subsup{\widehat{S}}{t,k}{}
7: end for
8: }\mp@subsup{\widehat{S}}{t+1,-1}{}=\mp@subsup{\widehat{S}}{t,\mp@subsup{\xi}{t}{}}{
9: }\mp@subsup{\textrm{S}}{t+1,0}{}=\overline{\textrm{S}}\circ\textrm{T}(\mp@subsup{\widehat{S}}{t+1,-1}{})+\mp@subsup{\mathcal{E}}{t+1}{}\quad\mp@subsup{\mathcal{E}}{t+1}{}\mathrm{ : an error (e.g. part of the data set)
10:}\mp@subsup{\widehat{S}}{t+1,0}{\prime}=\mp@subsup{\widehat{S}}{t+1,-1}{}+\mp@subsup{\gamma}{t+1,0}{}(\mp@subsup{\textrm{S}}{t+1,0}{}-\mp@subsup{\widehat{S}}{t+1,-1}{}\mp@subsup{)}{}{\prime
11: end for
```

The control variate is refreshed at each outer loop $\# t$ (see Line 9) The length of the outer loop is a Geometric random variable ξ_{t}

Complexity for ϵ-approximate stationarity

We provide an explicit expression of an upper bound for $\quad \mathbb{E}\left[\left\|\mathrm{h}\left(\widehat{S}_{\tau, \xi_{\tau}}\right)\right\|^{2}\right]$
\bullet in the non convex setting

- at the end of an outer loop $\# \tau$ where τ is sampled uniformly in $\left\{1, \cdots, k_{\text {out }}\right\}$
- as a function of $k_{\text {out }}, \mathrm{b}, n$, the learning rate $\gamma\left(=\gamma_{t, k}\right)$ and the expectation $k_{\text {in }}$ of ξ_{t}.

With: $k_{\text {in }}=\mathrm{b}=O(\sqrt{n}), \quad k_{\text {out }}=O\left(1 /\left(\epsilon k_{\text {in }}\right)\right)$
Nbr of optimization steps: $O(1 / \epsilon) \quad$ Nbr of \bar{s}_{i} 's evaluations: $\mathcal{K}=O\left(\sqrt{n} \epsilon^{-1}\right)$

For Online EM: $\mathcal{K}=O\left(\epsilon^{-2}\right)$	For sEM-vr:
For FIEM: $\mathcal{K}=O\left(n^{2 / 3} \epsilon^{-1}\right)$	
	$\mathcal{K}=O\left(n^{2 / 3} \epsilon^{-1} \wedge \sqrt{n} \epsilon^{-3 / 2}\right)$

Inference in Gaussian Mixture Models
(from the MNIST data set)

- Gaussian mixture models in $\mathbb{R}^{20} ; G=12$ components; $n=610^{4}$ examples
- Displayed: quantile of order 0.5 of $\left\|\mathrm{h}\left(\widehat{S}_{t, \xi_{t}}\right)\right\|^{2}$ vs the number of epochs (left) and vs the number of \bar{s}_{i} 's evaluations (right)

Length of each outer: either constant (ctt) $\xi_{t}=k_{\text {ind }}$, or a geometric r.v. (geom) with expectation $k_{\text {in }}$
When refreshing the control variate: use the full data set (full), or the half data set (half) or a quadratically increasing nbr of examples (quad). - Displayed: evolution of the normalized log-likelihood vs the number of \bar{s}_{i} 's evaluations until $2 e 6$ (left) and after (right)

References

[^0]
[^0]:

 monasympotic convergence.. Feetm inal report, HAL O2617725vV, 2020a. . Ion for finite sum optimization:

