Perturbed Proximal-Gradient Algorithms

Problem How to minimize / find the minimum • on a convex subset Θ of some finite dimensional Euclidean space with norm $\|\cdot\|$

• of a convex function $f: \theta \mapsto f(\theta)$ from Θ to \mathbb{R} , which is smooth enough:

$$\exists L > 0 \text{ s.t. } \forall \theta, \theta' \in \Theta, \qquad \| \nabla$$

• under non-smooth convex constraints $g: \theta \mapsto g(\theta)$ from Θ to $(-\infty, +\infty)$

when ∇f is not explicit ? Problem 1: $\min_{\theta \in \Theta} ($

Example: Penalized Maximum Likelihood Inference in Latent Variable Models

The function f is "- the log-likelihood of the observations Y": The feasible set: $\theta \in \Theta \subseteq \mathbb{R}^d$ The penalty term is a sparsity constraint: $g(\theta) = \lambda \sum_{i=1}^{d} |\theta_i|$

Non explicit gradient of f, but can be approximated:

$$-\nabla f(\theta) = \int \nabla_{\theta} \Big(\log p(\mathbf{Y}|\mathbf{x};\theta) \Big) \ \pi_{\theta}(\mathbf{x}|\mathbf{Y}) \mu$$

where $(X_k)_k$ is from a MCMC with target $\pi_{\theta}(\cdot|Y) d\mu$, the cond. dist. of the latent variables X given Y.

The Proximal-Gradient Algorithm

Iterative algorithm: see [1] for convergence results

$$\theta_{n+1} = \operatorname{argmin}_{\theta \in \Theta} \left(\gamma_{n+1} g(\theta) + \frac{1}{2} \right)$$
$$= \operatorname{Prox}_{\gamma_{n+1} g} \left(\theta_n - \gamma_{n+1} \nabla f(\theta) \right)$$

Examples:

Projection on a closed convex set $\mathcal{K} \subseteq \Theta$ $\begin{array}{ccc} +\infty & \theta \notin \mathcal{K} \\ 0 & \theta \in \mathcal{K} \end{array}$ $g(\theta) =$

$$\theta_{n+1} = \operatorname{Proj}_{\mathcal{K}} \left(\theta_n - \gamma_{n+1} \nabla f(\theta_n) \right) \qquad \qquad \theta_{n+1, \gamma}$$

 \hookrightarrow Unapplicable since $\nabla f(\theta_n)$ is not explicit in our framework **Questions:** Can we replace $\nabla f(\theta_n)$ with an approximation while keeping the same asymptotic behavior How to choose the step-size γ_n ? In the Monte Carlo case, how to choose the (possibly) time-dependent batch-size m_n ?

REFERENCES

A. Beck, and M. Teboulle. Gradient-based algorithms with applications to signal-recovery problems. Convex Optimization in Signal Processing and Communications, 2009. Y. Atchadé, G. Fort and E. Moulines. On Stochastic Proximal Gradient Algorithms arXiv:1402:2365, revised in Dec 2015,

Gersende Fort

LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, 75013 Paris France Joint work with Y. Atchadé (Univ. Michigan, USA) and Eric Moulines (Ecole Polytechnique, France)

The Perturbed Proximal Gradient Algorithm

Iterative algorithm:

 $\theta_{n+1} = \operatorname{Proj}_{\mathcal{K}} \left(\operatorname{Prox}_{\gamma_{n+1}g} \left(\theta_n - \gamma_{n+1} H_{n+1} \right) \right)$ where \mathcal{K} is a convex closed subset of Θ and H_{n+1} is a (possibly deterministic) approximation of $\nabla f(\theta_n)$.

Monte Carlo case: when $\nabla f(\theta) = \mathbb{E}_{\theta} [H_{\theta}(X)]$ with $X \sim \pi_{\theta}$

$$H_{n+1} = \frac{1}{m_{n+1}} \sum_{k=1}^{m_{n+1}} H_{\theta_n}(X_{n+1,k})$$
 with Markov (or i.i.

Eneral Convergence Result more [2, Silverword]

$$\eta_{n+1} = H_{n+1} - \nabla f(\theta_n) \qquad \mathcal{L} = \{\min \text{ initial cerves of } f + g\}$$
rem. If $\gamma_n \in (0, 1/L], \sum_n \gamma_n = +\infty$ and the following series converge

$$\sum_n \gamma_{n+1} \eta_{n-1}, \qquad \sum_n \gamma_{n+1} \langle T_{\gamma_{n+1},g}(\theta_n); \eta_{n+1} \rangle, \qquad \sum_n \gamma_{n+1}^2 \|\eta_{n-1}\|^2$$
here exists $\theta_{\infty} \in \mathcal{L}$ such that $\lim_n \tilde{\theta}_n = \theta_{\infty}$.
 e results. Explicit expression for U_n s.t.
 $g) (\bar{\theta}_n) - \min(f + g) \leq \sum_{k=1}^n \frac{a_k}{\sum_{l=1}^n a_l} (f + g)(\tilde{\theta}_k) - \min(f + g) \leq U_n \qquad \text{with } \bar{\theta}_n = \sum_{k=1}^n \frac{a_k}{\sum_{l=1}^n a_l} \tilde{\theta}_k$
 a_1, \cdots, a_n are non-negative real numbers
in applied to the Monte Carlo Proximal-Gradient Algorithm work [2, Sector 4]
conditions on the Monte Carlo samples (geometric orgadisty, containment condition, \cdots):
 $\mathbb{E} \left[\|\eta_{n+1}\|^2 |\mathcal{F}_n] = O_{L^1} \left(\frac{1}{m_{n+1}} \right) \qquad \|\mathbb{E} \left[\eta_{n+1} |\mathcal{F}_n \right] \| = O_{L^1} \left(\frac{1}{m_{n+1}} \right)$
fixed batch-size $(m_n = m)$ but decreasing step-size γ_n s.t. $\sum_n \gamma_n = +\infty$ and $\sum_n \gamma_n^2 < \infty$,

wergence Result Frace [2, Sector 3]

$$= H_{n+1} - \nabla f(\theta_n) \qquad \mathcal{L} = \{ \text{minimizers of } f + g \} \\
(0, 1/L], \sum_n \gamma_n = +\infty \text{ and the following series converge} \\
\sum_n \gamma_{n+1} \eta_{n+1}, \qquad \sum_n \gamma_{n+1} \langle T_{\gamma_{n+1},g}(\theta_n); \eta_{n+1} \rangle, \qquad \sum_n \gamma_{n+1}^2 \| \eta_{n+1} \|^2 \\
\gamma_n \in \mathcal{L} \text{ such that } \lim_n \tilde{\theta}_n = \theta_\infty. \\
\text{plicit expression for } U_n \text{ s.t.} \\
(f + g) \leq \sum_{k=1}^n \frac{a_k}{\sum_{t=1}^n a_t} (f + g)(\tilde{\theta}_k) - \min(f + g) \leq U_n \qquad \text{with } \bar{\theta}_n = \sum_{k=1}^n \frac{a_k}{\sum_{t=1}^n a_t} \tilde{\theta}_k \\
\text{e non-negative real numbers} \\
\text{co the Monte Carlo Proximal-Gradient Algorithm From [2, SECTION 4]} \\
\text{in the Monte Carlo samples (geometric ergodicity, containment condition, ...):} \\
[\|\eta_{n+1}\|^2 |\mathcal{F}_n] = O_{L^1} \left(\frac{1}{m_{n+1}}\right) \qquad \|\mathbb{E}[\eta_{n+1}|\mathcal{F}_n]\| = O_{L^1} \left(\frac{1}{m_{n+1}}\right) \\
\text{size } (m_n = m) \text{ but decreasing step-size } \gamma_n \text{ s.t. } \sum_n \gamma_n = +\infty \text{ and } \sum_n \gamma_n^2 < \infty, \end{cases}$$

Eneral Convergence Result FROM (2, SECOND 8)

$$\eta_{n+1} = H_{n+1} - \nabla f(\theta_n) \qquad \mathcal{L} = \{\text{minimizers of } f + g\}$$
rem. If $\gamma_n \in (0, 1/L], \sum_n \gamma_n = +\infty$ and the following series converge

$$\sum_n \gamma_{n+1} \eta_{n+1}, \qquad \sum_n \gamma_{n+1} \langle T_{\gamma_{n+1},g}(\theta_n); \eta_{n+1} \rangle, \qquad \sum_n \gamma_{n+1}^2 \|\eta_{n+1}\|^2$$
here exists $\theta_\infty \in \mathcal{L}$ such that $\lim_n \tilde{\theta}_n = \theta_\infty$.
 \mathbf{r} results. Explicit expression for U_n s.t.
 $g) (\bar{\theta}_n) - \min(f + g) \leq \sum_{k=1}^n \frac{a_k}{\sum_{l=1}^n a_l} (f + g)(\tilde{\theta}_k) - \min(f + g) \leq U_n \qquad \text{with } \bar{\theta}_n = \sum_{k=1}^n \frac{a_k}{\sum_{l=1}^n a_l} \tilde{\theta}_k$
 a_1, \cdots, a_n are non-negative real numbers
n applied to the Monte Carlo Proximal-Gradient Algorithm From $(2, \text{Nerrow 4})$
 \mathbf{r} conditions on the Monte Carlo samples (geometric ergodicity, containment condition, \cdots):
 $\mathbf{E} \left[\|\eta_{n+1}\|^2 |\mathcal{F}_n] = O_{L^1} \left(\frac{1}{m_{n+1}} \right) \qquad \|\mathbf{E} \left[\eta_{n+1} |\mathcal{F}_n \right] \| = O_{L^1} \left(\frac{1}{m_{n+1}} \right)$
fixed batch-size $(m_n = m)$ but decreasing step-size γ_n s.t. $\sum_n \gamma_n = +\infty$ and $\sum_n \gamma_n^2 < \infty$,

$$\begin{aligned} & \sum_{n=1}^{n} H_{n+1} - \nabla f(\theta_n) \qquad \mathcal{L} = \{\min \text{ minimizers of } f + g\} \\ & \in (0, 1/L], \sum_n \gamma_n = +\infty \text{ and the following series converge} \\ & \sum_n \gamma_{n+1} \eta_{n+1}, \qquad \sum_n \gamma_{n+1} \langle T_{\gamma_{n+1},g}(\theta_n); \eta_{n+1} \rangle, \qquad \sum_n \gamma_{n+1}^2 \|\eta_{n+1}\|^2 \\ & \theta_\infty \in \mathcal{L} \text{ such that } \lim_n \tilde{\theta}_n = \theta_\infty. \\ & \text{Explicit expression for } U_n \text{ s.t.} \\ & \text{in}(f+g) \leq \sum_{k=1}^n \frac{a_k}{\sum_{t=1}^{n-1} a_t} (f+g)(\tilde{\theta}_k) - \min(f+g) \leq U_n \qquad \text{ with } \bar{\theta}_n = \sum_{k=1}^n \frac{a_k}{\sum_{t=1}^{n-1} a_t} \tilde{\theta}_k \\ & \text{ are non-negative real numbers} \end{aligned}$$

the above convergence result

 U_n is $O(1/\sqrt{n})$ for different choices of (a_k, γ_k) .

with increasing batch-size $(m_n \leq m_{n+1})$ at a linear rate $m_n \sim n$, and with constant step-size $\gamma_n = \gamma$ the above convergence result

 U_n is $O(\ln/n)$ with a uniform weight $a_k = 1$;

Conclusions: We provided sufficient conditions for

(a) the same asymptotic behavior and the same rate of convergence as the exact algorithm, which hold for both the cases of a **biased and unbiased approximation** H_{n+1}

i.d) samples with inv. dist. π_{θ_n}

rate after $O(n^2)$ MC samples.