Perturbed Proximal-Gradient Algorithms

Gersende Fort

LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, 75013 Paris France Joint work with Y. Atchadé (Univ. Michigan, USA) and Eric Moulines (Ecole Polytechnique, France)

Problem

How to minimize / find the minimum

- on a convex subset Θ of some finite dimensional Euclidean space with norm $\|\cdot\|$
- of a convex function $f: \theta \mapsto f(\theta)$ from Θ to \mathbb{R}, which is smooth enough:

$$
\exists L>0 \text { s.t. } \forall \theta, \theta^{\prime} \in \Theta, \quad\left\|\nabla f(\theta)-\nabla f\left(\theta^{\prime}\right)\right\| \leq L\left\|\theta-\theta^{\prime}\right\|
$$

- under non-smooth convex constraints $g: \theta \mapsto g(\theta)$ from Θ to $(-\infty,+\infty]$
when ∇f is not explicit?
Problem 1: $\quad \min _{\theta \in \Theta}(f(\theta)+g(\theta)) \quad$ Problem 1': $\quad \operatorname{argmin}_{\theta \in \Theta}(f(\theta)+g(\theta))$

Example: Penalized Maximum Likelihood Inference in Latent Variable Models

The function f is "- the log-likelihood of the observations $\mathrm{Y} " . \quad f(\theta)=-\log \int p(\mathrm{Y} \mid \mathrm{x} ; \theta) \phi(\mathrm{x}) \mu(\mathrm{dx})$

The feasible set: $\theta \in \Theta \subseteq \mathbb{R}^{d}$
The penalty term is a sparsity constraint: $\quad g(\theta)=\lambda \sum_{i=1}^{d}\left|\theta_{i}\right| \quad$ which is not a differentiable function Non explicit gradient of f, but can be approximated:

$$
-\nabla f(\theta)=\int \nabla_{\theta}(\log p(\mathrm{Y} \mid \mathrm{x} ; \theta)) \pi_{\theta}(\mathrm{x} \mid \mathrm{Y}) \mu(\mathrm{dx}) \approx \frac{1}{m} \sum_{k=1}^{m} \nabla_{\theta} \log p\left(\mathrm{Y} \mid \mathrm{X}_{k} ; \theta\right)
$$

where $\left(\mathrm{X}_{k}\right)_{k}$ is from a MCMC with target $\pi_{\theta}(\cdot \mid \mathrm{Y}) \mathrm{d} \mu$, the cond. dist. of the latent variables X given Y .

The Proximal-Gradient Algorithm

Iterative algorithm: see [1] for convergence results

$$
\begin{aligned}
\theta_{n+1} & =\operatorname{argmin}_{\theta \in \Theta}\left(\gamma_{n+1} g(\theta)+\frac{1}{2}\left\|\theta-\left\{\theta_{n}-\gamma_{n+1} \nabla f\left(\theta_{n}\right)\right\}\right\|^{2}\right) \\
& =\operatorname{Prox}_{\gamma_{n+1} g}\left(\theta_{n}-\gamma_{n+1} \nabla f\left(\theta_{n}\right)\right)=T_{\gamma_{n+1}, g}\left(\theta_{n}\right)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \text { Projection on a closed convex set } \mathcal{K} \subseteq \Theta
\end{aligned} \begin{array}{ll}
g(\theta)= \begin{cases}+\infty & \theta \notin \mathcal{K} \\
0 & \theta \in \mathcal{K}\end{cases} & g(\theta) \propto \alpha \sum_{i=1}^{d}\left|\theta_{i}\right|+\frac{1-\alpha}{2}\|\theta\|^{2} \\
\theta_{n+1}=\operatorname{Proj}_{\mathcal{K}}\left(\theta_{n}-\gamma_{n+1} \nabla f\left(\theta_{n}\right)\right) & \theta_{n+1, i}=\text { shrinkage/thresholding of }\left(\theta_{n}-\gamma_{n+1} \nabla f\left(\theta_{n}\right)\right)_{i}
\end{array}
$$

\hookrightarrow Unapplicable since $\nabla f\left(\theta_{n}\right)$ is not explicit in our framework
Questions: Can we replace $\nabla f\left(\theta_{n}\right)$ with an approximation while keeping the same asymptotic behavior ? How to choose the step-size γ_{n} ? In the Monte Carlo case, how to choose the (possibly) time-dependent batch-size m_{n} ?

References

[1] A. Beck, and M. Teboulle. Gradient-based algorithms with applications to signal-recovery problems. Convex Optimization
in Signal Processing and Communications, 2009. Y. Atchadé, G. Fort and E. Moulines. On Stochastic Proximal Gradient Algorithms arXiv:1402:2365, revised in Dec 2015

The Perturbed Proximal Gradient Algorithm

Iterative algorithm:

$$
\theta_{n+1}=\operatorname{Proj}_{\mathcal{K}}\left(\operatorname{Prox}_{\gamma_{n+1} g}\left(\theta_{n}-\gamma_{n+1} H_{n+1}\right)\right)
$$

where \mathcal{K} is a convex closed subset of Θ and H_{n+1} is a (possibly deterministic) approximation of $\nabla f\left(\theta_{n}\right)$. Monte Carlo case: when $\nabla f(\theta)=\mathbb{E}_{\theta}\left[H_{\theta}(X)\right]$ with $X \sim \pi_{\theta}$

$$
H_{n+1}=\frac{1}{m_{n+1}} \sum_{k=1}^{m_{n+1}} H_{\theta_{n}}\left(X_{n+1, k}\right) \quad \text { with Markov (or i.i.d) samples with inv. dist. } \pi_{\theta_{n}}
$$

A General Convergence Result
Set $\quad \eta_{n+1}=H_{n+1}-\nabla f\left(\theta_{n}\right) \quad \mathcal{L}=\{$ minimizers of $f+g\}$
Theorem. If $\gamma_{n} \in(0,1 / L], \sum_{n} \gamma_{n}=+\infty$ and the following series converge

$$
\sum_{n} \gamma_{n+1} \eta_{n+1}, \quad \sum_{n} \gamma_{n+1}\left\langle T_{\gamma_{n+1}, g}\left(\theta_{n}\right) ; \eta_{n+1}\right\rangle, \quad \sum_{n} \gamma_{n+1}^{2}\left\|\eta_{n+1}\right\|^{2}
$$

then there exists $\theta_{\infty} \in \mathcal{L}$ such that $\lim _{n} \tilde{\theta}_{n}=\theta_{\infty}$.
Other results. Explicit expression for U_{n} s.t.
$(f+g)\left(\bar{\theta}_{n}\right)-\min (f+g) \leq \sum_{k=1}^{n} \frac{a_{k}}{\sum_{t=1}^{n} a_{t}}(f+g)\left(\tilde{\theta}_{k}\right)-\min (f+g) \leq U_{n} \quad$ with $\bar{\theta}_{n}=\sum_{k=1}^{n} \frac{a_{k}}{\sum_{t=1}^{n} a_{t}} \tilde{\theta}_{k}$
where a_{1}, \cdots, a_{n} are non-negative real numbers

When applied to the Monte Carlo Proximal-Gradient Algorithm

Under conditions on the Monte Carlo samples

$$
\mathbb{E}\left[\left\|\eta_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right]=O_{L^{1}}\left(\frac{1}{m_{n+1}}\right) \quad\left\|\mathbb{E}\left[\eta_{n+1} \mid \mathcal{F}_{n}\right]\right\|=O_{L^{1}}\left(\frac{1}{m_{n+1}}\right)
$$

with fixed batch-size $\left(m_{n}=m\right)$ but decreasing step-size γ_{n} s.t. $\sum_{n} \gamma_{n}=+\infty$ and $\sum_{n} \gamma_{n}^{2}<\infty$,
the above convergence result
U_{n} is $O(1 / \sqrt{n})$ for different choices of $\left(a_{k}, \gamma_{k}\right)$.
with increasing batch-size $\left(m_{n} \leq m_{n+1}\right)$ at a linear rate $m_{n} \sim n$, and with constant step-size $\gamma_{n}=\gamma$ the above convergence result
U_{n} is $O(\ln / n)$ with a uniform weight $a_{k}=1 ; \quad$ rate after $O\left(n^{2}\right)$ MC samples.
Conclusions: We provided sufficient conditions for
(a) the same asymptotic behavior and the same rate of convergence as the exact algorithm,) which hold for both the cases of a biased and unbiased approximation H_{n+1}

