
PerturbedProximal-GradientAlgorithms
Gersende Fort

LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, 75013 Paris France
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Problem
How to minimize / find the minimum

• on a convex subset Θ of some finite dimensional Euclidean space with norm ‖ · ‖

• of a convex function f : θ 7→ f(θ) from Θ to R, which is smooth enough:

∃L > 0 s.t. ∀θ, θ′ ∈ Θ, ‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖

• under non-smooth convex constraints g : θ 7→ g(θ) from Θ to (−∞,+∞]

when ∇f is not explicit ?

Problem 1: minθ∈Θ

(
f(θ) + g(θ)

)
Problem 1’: argminθ∈Θ

(
f(θ) + g(θ)

)
Example: Penalized Maximum Likelihood Inference in Latent Variable Models
The function f is ”− the log-likelihood of the observations Y”: f(θ) = − log

∫
p(Y|x; θ)φ(x)µ(dx)

The feasible set: θ ∈ Θ ⊆ Rd
The penalty term is a sparsity constraint: g(θ) = λ

∑d
i=1 |θi| which is not a differentiable function

Non explicit gradient of f , but can be approximated:

−∇f(θ) =

∫
∇θ
(

log p(Y|x; θ)
)
πθ(x|Y)µ(dx) ≈ 1

m

m∑
k=1

∇θ log p(Y|Xk; θ)

where (Xk)k is from a MCMC with target πθ(·|Y) dµ, the cond. dist. of the latent variables X given Y.

The Perturbed Proximal Gradient Algorithm
Iterative algorithm:

θn+1 = ProjK
(
Proxγn+1 g (θn − γn+1Hn+1)

)
where K is a convex closed subset of Θ and Hn+1 is a (possibly deterministic) approximation of ∇f(θn).
Monte Carlo case: when ∇f(θ) = Eθ [Hθ(X)] with X ∼ πθ

Hn+1 =
1

mn+1

mn+1∑
k=1

Hθn(Xn+1,k) with Markov (or i.i.d) samples with inv. dist. πθn
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The Proximal-Gradient Algorithm
Iterative algorithm: see [1] for convergence results

θn+1 = argminθ∈Θ

(
γn+1 g(θ) +

1

2
‖θ − {θn − γn+1∇f(θn)} ‖2

)
= Proxγn+1 g (θn − γn+1∇f(θn)) = Tγn+1,g(θn)

Examples:

Projection on a closed convex set K ⊆ Θ Elastic net penalty

g(θ) =

{
+∞ θ /∈ K
0 θ ∈ K g(θ) ∝ α

∑d
i=1 |θi|+

1−α
2 ‖θ‖

2

θn+1 = ProjK (θn − γn+1∇f(θn)) θn+1,i = shrinkage/thresholding of (θn − γn+1∇f(θn))i

↪→ Unapplicable since ∇f(θn) is not explicit in our framework
Questions: Can we replace ∇f(θn) with an approximation while keeping the same asymptotic behavior ?
How to choose the step-size γn ? In the Monte Carlo case, how to choose the (possibly) time-dependent
batch-size mn?

A General Convergence Result from [2, Section 3]

Set ηn+1 = Hn+1 −∇f(θn) L = {minimizers of f + g}

Theorem. If γn ∈ (0, 1/L],
∑
n γn = +∞ and the following series converge∑

n

γn+1ηn+1,
∑
n

γn+1

〈
Tγn+1,g(θn); ηn+1

〉
,

∑
n

γ2
n+1‖ηn+1‖2

then there exists θ∞ ∈ L such that limn θ̃n = θ∞.

Other results. Explicit expression for Un s.t.

(f + g)
(
θ̄n
)
−min(f + g) ≤

n∑
k=1

ak∑n
t=1 at

(f + g)(θ̃k)−min(f + g) ≤ Un with θ̄n =

n∑
k=1

ak∑n
t=1 at

θ̃k

where a1, · · · , an are non-negative real numbers

When applied to the Monte Carlo Proximal-Gradient Algorithm from [2, Section 4]

Under conditions on the Monte Carlo samples (geometric ergodicity, containment condition, · · · ):

E
[
‖ηn+1‖2|Fn

]
= OL1

(
1

mn+1

)
‖E [ηn+1|Fn] ‖ = OL1

(
1

mn+1

)
with fixed batch-size (mn = m) but decreasing step-size γn s.t.

∑
n γn = +∞ and

∑
n γ

2
n <∞,

the above convergence result

Un is O(1/
√
n) for different choices of (ak, γk).

with increasing batch-size (mn ≤ mn+1) at a linear rate mn ∼ n, and with constant step-size γn = γ

the above convergence result

Un is O(ln /n) with a uniform weight ak = 1; rate after O(n2) MC samples.

Conclusions: We provided sufficient conditions for

(a) the same asymptotic behavior and the same rate of convergence as the exact algorithm,

(b) which hold for both the cases of a biased and unbiased approximation Hn+1
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