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Iterative algorithm:

How to minimize / find the minimum

e on a convex subset © of some finite dimensional Euclidean space with norm | - | On+1 = Projy (PI'OX%,H g (On — 7n+1Hn+1))
e of a convex function f : 6 — f(6) from © to R, which is smooth enough: where K is a convex closed subset of © and H,, .1 is a (possibly deterministic) approximation of V f(6,,).
Monte Carlo case: when Vf(0) = Eg [Hg(X)] with X ~ 7y
dL > 0 s.t. V0,0" € O, IVf(O) =V )| <LJo—¢
Mn+1
e under non-smooth convex constraints g : 0 — g(¢) from © to (—oo, +o0] H,11 = Z Hy (Xpn+1.1) with Markov (or i.i.d) samples with inv. dist. gy _
M +1 —
when V f is not explicit 7
Problem 1: mingece (f(é’) + g(@)) Problem 1°: argming. g (f(@) + g(@))
Set a1 = Hpi1 — Vf(0,) L = {minimizers of f + g}
Theorem. If v, € (0,1/L], >~ = +00 and the following series converge
The function f is - the log-likelihood of the observations Y™ f(0) = —log | p(Y|x;0)d(x)wm(dx)
The feasible set: 6§ € © C R T 0 Y- 2 2
The penalty term is a sparsity constraint: ¢g(0) = A Z?Zl 10;]  which is not a differentiable function Zn:/ynﬂn'”“’ ; Yrt1 (T s1,9(0n)3 Mnt1) Z';Vnﬂ 71|

Non explicit gradient of f, but can be approximated: i
then there exists 0., € L such that lim,, 8,, = 0

—V f(6 /Vg log p(Y|x; 6’)) 7o (X|Y) p(dx) &~ Zve log p(Y|X; 6) Other results. Explicit expression for U, s.t.

~ . a - . _— ar
where (Xi )i is from a MCMC with target my(-|Y) du, the cond. dist. of the latent variables X given Y. (f+9)(0,) —min(f +g) < S ’ - (f +9)(0x) —min(f +g) < U, with 0, = Z S © b,
1

where a1, -+ ,a, are non-negative real numbers

Iterative algorithm: see [1] for convergence results

. 1
Ot = argmingeo (Yn+19(0) + 510 = {00 = 301V F(0n)} )
— PTOX7n+1 g (9 7n+1vf( )) T7n+1 9(9 )

Undel’ COIlditiOIlS on the MOIlte CaﬂO SampleS (geometric ergodicity, containment condition, - - - ).

1 1
. ) ] = 0r 2 D1 | Fal || = O
Examples: [ ] L (mn+1> |E 91| Fnl | L <mn+1>
Projection on a closed convex set L C © Elastic net penalty
( +oo 0K p . with fixed batch-size (m, = m) but decreasing step-size v, s.t. > v, = +oo and > 73 < o0,
glo)={ 0 OER 9(6) o a T, 16,] + 152 6]
Oni1 = f)roj e (0 — a1V F(6,)) 0,+1.; = shrinkage /thresholding of (6,, — Vn+1V f(6,)). the above convergence result

U, is O(1/4/n) for different choices of (ag, vi).

— Unapplicable since V f(0,,) is not explicit in our framework
Questions: Can we replace V f(0,,) with an approximation while keeping the same asymptotic behavior ? || with increasing batch-size (m,, < m,,1) at a linear rate m,, ~ n, and with constant step-size v, =

How to choose the step-size 7, 7 In the Monte Carlo case, how to choose the (possibly) time-dependent B

batch-size m.,,? the above convergence result

U, is O(In /n) with a uniform weight a; = 1; rate after O(n?) MC samples.

Conclusions: We provided sufficient conditions for
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(a) the same asymptotic behavior and the same rate of convergence as the exact algorithm,







