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Markov chain Monte Carlo algorithms (MCMC) : algorithms to sample
from a target density 7

» in some applications: known up to a (normalizing) constant.

» complex, so that exact sampling from 7 is not possible.
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Define a Markov chain {X,,,n > 0} with transition kernel: P

E [f(Xos1)|Fa] = / £(5) P(Xody)

so that
» for any bounded function f: lim, E.[f(X,)] = 7(f).
» for any function f increasing like - : n ™' S°7_ | f(Xk) —a.s. 7(f).

> ...



|. Adaptive MCMC:
» why?
» does the process {X,,,n > 0} approximate 77



1.1. Symmetric Random Walk Hastings-Metropolis
algorithm

An example of transition kernel P is described by the algorithm:
» Choose: a proposal density ¢
> lterate: starting from X,
> draw (an increment) Yn41 ~ q(+)
» compute the acceptation ratio

ﬂ'(Xn + Yn+1)

a(Xn,Xn 4+ Yog1) = 1A (X
> set

x | Yap1+ X, with probability a(Xn,Xn + Yat1)
T X, with probability 1 — a/(Xp, X, + Yni1)



1.1. Symmetric Random Walk Hastings-Metropolis
algorithm

An example of transition kernel P is described by the algorithm:
» Choose: a proposal density ¢
> lterate: starting from X,

» draw (an increment) Yn+1 ~ q(.)
> compute the acceptation ratio

W(Xn + Yn+1)

X'n,,Xn Yn = 1 AN
o + Yoy1) X0

> set

x | Yap1+ X, with probability a(Xn,Xn + Yat1)
T X, with probability 1 — a/(Xp, X, + Yni1)

The efficiency of the algorithm depends upon the proposal ¢



Limit theorems for adaptive MCMC algorithms
Motivation

On the choice of the variance of the proposal distribution

1.2. On the choice of the variance of the proposal
distribution
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For ex., when ¢ is Gaussian, how to choose its variance matrix >, ?



» When 7 ~ Ny(pr,2,), the optimal choice for the variance of ¢ is

(2.38)2
d

Results obtained by the 'scaling’ technique (see also 'fluid limit" ). Generalizations exist (other MCMC; relaxing conditions on )

%, = o

ROBERTS-ROSENTHAL (2001); BEDARD (2007); FORT-MOULINES-PRIOURET (2008).

» This suggests an adaptive procedure: learn ¥, “on the fly" and
modify the variance ¥, continuously during the run of the algorithm.
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Results obtained by the 'scaling’ technique (see also 'fluid limit" ). Generalizations exist (other MCMC; relaxing conditions on )
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ROBERTS-ROSENTHAL (2001); BEDARD (2007); FORT-MOULINES-PRIOURET (2008).

» This suggests an adaptive procedure: learn ¥, “on the fly" and
modify the variance ¥, continuously during the run of the algorithm.

Example: at each iteration, choose ¢ equal to
0.95 A (0,(2.38)2471 5, ) +0.05 N (0,(0.1)2 a7 1)
where
A 1 e
Y=Y 1+ E ({Xn - ,ufn}{Xn - 'Ufn} - En—l)

1
Fn = pn—1+ — (X — pin—1)

HAARIO ET AL. (2001); ROBERTS-ROSENTHAL (2006)
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1.3. Be careful with adaptation!
The previous example illustrates the general framework :

> Let {Py,0 € ©} be a family of Markov kernels s.t. 7Py = 7 for any
0€o.
» Define a process {(0,,,X,),n > 0}:
> Xyt~ Py, (Xn,)
> update 0,11 based on (0,,Xn,Xn+1) “internal” adaptation
Is it true that the marginal {X,,n > 0} approximates 77
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Not always, unfortunately for 8 €]0,1]

Py = (1;0) (129)] ”=“g]

Let t1,t2 €]0,1[, and set 6y = t; iff X = 4. Then {X,,,n > 0} is Markov
with invariant probability

T [tz tl]T 7é7T



[1. Sufficient conditions for convergence of adaptive schemes
{(05,X5),n > 0}

» convergence of the marginals {X,,,n > 0}
» law of large numbers w.r.t. {X,,,n > 0}



2.1. Convergence of the marginals: Suff Cond

Let

» a family of Markov kernels {Py,0 € ©} s.t. Py has an unique
invariant probability measure 11,

» a filtration F,, and a process {(X,.,0,,),n > 0} s.t. for any f >0,

B [f(Xoi1)|Fo] = / £(5) Po, (Xnsdy) P-as.

Given a target density m,, which set of conditions will imply

lim  sup [E[f(X,)] — m(f) =0 ?
o flfle <



Idea:

E [f(Xn)] - W*(f) =E [E [f(Xn)|-7:n—N]] - W*(f)
=F []E [f(Xn)|]:n—N] - PGIX_Nf(Xn—N)} +E I:POJX_Nf(Xn—N) - 7"'t‘)n_z\f(f)]
+E [m0, () = m(f)]



Idea:

E[£(Xn)] = m(f) = E[E[f(Xo)|Famn]] = 7 ()
-E[E [f(Xn>|fn_N1—Pg,Nf<Xn_N>]+E[ 2 F(Xnn) = 70, (F)]
+E 10, o (f) = Tl f)]

i.e. conditions on
» (Diminishing Adaptation) the difference || Py, (x,-) — Py, _, (z,")|ITv

» (ergodicity of Py / Containment) the convergence of
”‘PGN(:E)) - 7T9||TV as N — +o0.

» (convergence of the stationary measures) convergence of
wo,, () — 7 (f) as n — +oc.



Set
M(x,0) :=inf{n > 1| Py (z,") — mollTv < €}.

Theorem

Assume

(’L)DA cond sup,. ||P9n( ) Pg (I, )”TV —P 0
(#3)C. cond Ve >0, limM sup,, (ME( ny0n) > M) =0
(vit) Tg = Ty

Then Sllpf,|f|oo§1 |E [f(Xn)] - 7I'~A—(f)| =0.

i.e. conditions on
» (Diminishing Adaptation) the difference || Py, (x,") — Pa, _, (z,")||Tv
» (ergodicity of Py / Containment) the convergence of
| PN (x,") — mo|lTv as N — +oo.
» (convergence of the stationary measures) convergence of
mo,, (f) — me(f) as n — +o0.



Set
M(2,0) := inf{n > 1,|| Pj'(z,") — mollTv < €}.

Theorem
Assume

(i)D.A. cond sup, || P, (x,)) = Po,_, (z,))[rv —p 0
(#9)C. cond Ve >0, limps sup, P (M.(X,,0,) > M) =0
(4i) Ve > 0, sup s P (|mg, (f) — me(f)] >€) — 0

Then  supjer [E[f(Xa)] = m(f)] = 0.

i.e. conditions on
» (Diminishing Adaptation) the difference || Py, (x,") — Py, _, (z,")|ITv

» (ergodicity of Py / Containment) the convergence of
”PON(ma) - 7r9||TV as N — +oo.

» (convergence of the stationary measures) convergence of
7o, (f) — me(f) as n — +o0.



2.2. Convergence of the marginals: in 'practice’

It is sufficient to establish
» (D.A. cond) problem specific

» (C. cond) a uniform-in-@ drift condition (geometric or sub-geometric
drift) and a uniform-in-6 minorization of the transition kernel

(ROBERTS-ROSENTHAL (2007); BAI (2009); ATCHADE-FORT (2009))

» (Cvg mp,) 304 and a set A s.t. P(A) =1 and

Yw € A, Vi ,VB Py, (w)(x,B) = Py, (x,B).



3.1. Strong law of large numbers: Suff cond

Let

> a family of Markov kernels {Py,0 € O} s.t. Py has an unique
invariant probability measure 7y

» a filtration 7, and a process {(X,,.0,,),n > 0} s.t. for any f >0,

E [f(Xns+1)[Fnl = /f(y) Py, (Xp,dy) P-a.s.

Given a target density m,, which set of conditions will imply

n

n_lzf(Xk) — me(f) P—a.s.

k=1

for a large class of functions f7



Idea:

n

n=t Y f(Xk) = m(f)
k=1

= SR — o ()} S () — ()}
k=1 k=0

= Mu(F) 4+ BulP) S o () — ()

where M, : martingale.



Idea :
w1 F(Xe) - m(f)
k=1
= SR — o ()} S () — ()}
k=1 k=0

= M, (f) +Rn(f)+n " i{ﬂek (f) = m(f)}
k=0

where M, : martingale.

i.e. conditions for
» a.s. conv for martingales: from conditions on LP-moments for the
increments > 1).
» a.s. conv of the residual terms: from a strenghtened diminishing
ada ptation condition (—— conditions on the regularity in 0 of the Poisson equation)

> a.s. conv of the stationary measures: from the “a.s.” conv of
Py, (CC,B) to Py, (:L‘,B)



3.2. Strong law of large numbers “in practice”

It is sufficient to establish
» (strenghtened D.A. cond) problem specific

» (C. cond) a uniform-in-6 drift condition (geometric or sub-geometric
drift) and a uniform-in-6 minorization of the transition kernel

(ROBERTS-ROSENTHAL (2007); BAI (2009); ATCHADE-FORT (2009))

» (Cvg mp,) 30, and a set A s.t. P(A) =1 and

Yw € A, Vz VB Pgn(w) (.’E,B) =Py, (:L‘,B)
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3.2. Strong law of large numbers “in practice”

It is sufficient to establish
> (strenghtened D.A. cond) problem specific

» (C. cond) a uniform-in-6 drift condition (geometric or sub-geometric
drift) and a uniform-in-6 minorization of the transition kernel

(ROBERTS-ROSENTHAL (2007); BAI (2009); ATCHADE-FORT (2009))

» (Cvg mp, ) 304 and a set A s.t. P(A) =1 and

Yw € A, Yz, VB Py, () (x,B) = Py, (z,B).

When the drift condition is of the form:
> (Geom) PyV < AV + bl : strong law of large numbers for functions
increasing like 1 for any o € [0,1].
» (Sub-Geom) PV <V —c V=@ 4 bl : strong law of large
numbers for functions increasing like V' for any 3 € [0,1 — a.
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Conclusion
We provide answers to the problem: given

> a family of Markov kernels {Py,0 € O} s.t. Py has an unique
invariant probability distribution g

> a filtration F,, and a process {(X,,0,),n > 0} s.t. for any f >0,
BIf(Cn)|F = [ £0) Po,(Xudy)  Pas

e which set of conditions will imply
» convergence of the distribution of {X,,,n > 0} to some prob. ,
» convergence of the empirical distribution n=! >")'_, dx,

e Appli: convergence of “internal” and “external” adaptive MCMC.

e Details in
» Y. Atchadé, G. Fort Limit theorems for some adaptive MCMC
algorithms with subgeometric kernels, Accepted in Bernoulli, 2009

» Y. Atchadé, G. Fort, E. Moulines, P. Priouret Adaptive MCMC:
theory and practice, submitted
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