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Limit theorems for adaptive MCMC algorithms

Markov chain Monte Carlo algorithms (MCMC) : algorithms to sample
from a target density π

I in some applications : known up to a (normalizing) constant.

I complex, so that exact sampling from π is not possible.

Define a Markov chain {Xn,n ≥ 0} with transition kernel : P

E [f(Xn+1)|Fn] =
∫

f(y) P (Xn,dy)

so that

I for any bounded function f : limn Ex[f(Xn)] = π(f).
I for any function f increasing like · · · : n−1 Pn

k=1 f(Xk) −→a.s. π(f).

I · · ·
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I. Adaptive MCMC :

I why?

I does the process {Xn,n ≥ 0} approximate π?
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Motivation

Symmetric Random Walk Hastings-Metropolis algorithm

1.1. Symmetric Random Walk Hastings-Metropolis
algorithm

An example of transition kernel P is described by the algorithm:

I Choose : a proposal density q

I Iterate: starting from Xn

I draw (an increment) Yn+1 ∼ q(·)
I compute the acceptation ratio

α(Xn,Xn + Yn+1) := 1 ∧ π(Xn + Yn+1)

π(Xn)

I set

Xn+1 =


Yn+1 + Xn with probability α(Xn,Xn + Yn+1)
Xn with probability 1− α(Xn,Xn + Yn+1)

The efficiency of the algorithm depends upon the proposal q
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Motivation

On the choice of the variance of the proposal distribution

1.2. On the choice of the variance of the proposal
distribution

For ex., when q is Gaussian, how to choose its variance matrix Σq ?
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Motivation

On the choice of the variance of the proposal distribution

I When π ∼ Nd(µπ,Σπ), the optimal choice for the variance of q is

Σq =
(2.38)2

d
Σπ.

Results obtained by the ’scaling’ technique (see also ’fluid limit’ ). Generalizations exist (other MCMC; relaxing conditions on π)

Roberts-Rosenthal (2001); Bédard (2007); Fort-Moulines-Priouret (2008).

I This suggests an adaptive procedure : learn Σπ “on the fly” and
modify the variance Σq continuously during the run of the algorithm.

Example : at each iteration, choose q equal to

0.95 N
(
0,(2.38)2d−1 Σ̂n

)
+ 0.05 N

(
0,(0.1)2 d−1 Id

)
where

Σ̂n = Σ̂n−1 +
1
n

(
{Xn − µn}{Xn − µn}T − Σ̂n−1

)
µn = µn−1 +

1
n

(Xn − µn−1)

Haario et al. (2001); Roberts-Rosenthal (2006)
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Motivation

Does adaptation preserve convergence?

1.3. Be careful with adaptation !
The previous example illustrates the general framework :

I Let {Pθ,θ ∈ Θ} be a family of Markov kernels s.t. πPθ = π for any
θ ∈ Θ.

I Define a process {(θn,Xn),n ≥ 0} :
I Xn+1 ∼ Pθn(Xn,·)
I update θn+1 based on (θn,Xn,Xn+1) “internal” adaptation

Is it true that the marginal {Xn,n ≥ 0} approximates π?

Not always, unfortunately for θ ∈]0,1[

Pθ =
[

(1− θ) θ
θ (1− θ)

]
π =

[
1/2
1/2

]
Let t1,t2 ∈]0,1[, and set θk = ti iff Xk = i. Then {Xn,n ≥ 0} is Markov
with invariant probability

π̃ ∝ [t2 t1]T 6= π
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II. Sufficient conditions for convergence of adaptive schemes
{(θn,Xn),n ≥ 0}

I convergence of the marginals {Xn,n ≥ 0}
I law of large numbers w.r.t. {Xn,n ≥ 0}
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Convergence of the marginals (ergodicity)

Sufficient conditions

2.1. Convergence of the marginals : Suff Cond

Let

I a family of Markov kernels {Pθ,θ ∈ Θ} s.t. Pθ has an unique
invariant probability measure Πθ

I a filtration Fn and a process {(Xn,θn),n ≥ 0} s.t. for any f ≥ 0,

E [f(Xn+1)|Fn] =
∫

f(y) Pθn
(Xn,dy) P− a.s.

Given a target density π?, which set of conditions will imply

lim
n

sup
f,|f |∞≤1

|E [f(Xn)]− π?(f)| = 0 ?
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Convergence of the marginals (ergodicity)

Sufficient conditions

Idea :

E [f(Xn)]− π?(f) = E [E [f(Xn)|Fn−N ]]− π?(f)

= E
[
E [f(Xn)|Fn−N ]− PN

θn−N
f(Xn−N )

]
+E

[
PN

θn−N
f(Xn−N )− πθn−N

(f)
]

+ E
[
πθn−N

(f)− π?(f)
]

i.e. conditions on

I (Diminishing Adaptation) the difference ‖Pθn
(x,·)− Pθn−1(x,·)‖TV

I (ergodicity of Pθ / Containment) the convergence of
‖PN

θ (x,·)− πθ‖TV as N → +∞.

I (convergence of the stationary measures) convergence of
πθn

(f)− π?(f) as n → +∞.
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Convergence of the marginals (ergodicity)

Sufficient conditions

Set
Mε(x,θ) := inf{n ≥ 1,‖Pn

θ (x,·)− πθ‖TV ≤ ε}.

Theorem
Assume

(i)D.A. cond supx ‖Pθn
(x,·)− Pθn−1(x,·)‖TV −→P 0

(ii)C. cond ∀ε > 0, limM supn P (Mε(Xn,θn) ≥ M) = 0
(iii) πθ = π?

Then supf,|f |∞≤1 |E [f(Xn)]− π?(f)| = 0.

i.e. conditions on

I (Diminishing Adaptation) the difference ‖Pθn
(x,·)− Pθn−1(x,·)‖TV

I (ergodicity of Pθ / Containment) the convergence of
‖PN

θ (x,·)− πθ‖TV as N → +∞.

I (convergence of the stationary measures) convergence of
πθn
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Convergence of the marginals (ergodicity)

In practice

2.2. Convergence of the marginals : in ’practice’

It is sufficient to establish

I (D.A. cond) problem specific

I (C. cond) a uniform-in-θ drift condition (geometric or sub-geometric
drift) and a uniform-in-θ minorization of the transition kernel
(Roberts-Rosenthal (2007); Bai (2009); Atchadé-Fort (2009))

I (Cvg πθn
) ∃θ? and a set A s.t. P(A) = 1 and

∀ω ∈ A, ∀x,∀B Pθn(ω)(x,B) = Pθ?
(x,B).
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Strong Law of large numbers

Sufficient conditions

3.1. Strong law of large numbers : Suff cond

Let

I a family of Markov kernels {Pθ,θ ∈ Θ} s.t. Pθ has an unique
invariant probability measure πθ

I a filtration Fn and a process {(Xn,θn),n ≥ 0} s.t. for any f ≥ 0,

E [f(Xn+1)|Fn] =
∫

f(y) Pθn
(Xn,dy) P-a.s.

Given a target density π?, which set of conditions will imply

n−1
n∑

k=1

f(Xk) → π?(f) P− a.s.

for a large class of functions f ?
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Strong Law of large numbers

Sufficient conditions

Idea :

n−1
n∑

k=1

f(Xk)− π?(f)

= n−1
n∑

k=1

{f(Xk)− πθk−1(f)}+ n−1
n−1∑
k=0

{πθk
(f)− π?(f)}

= Mn(f) + Rn(f) + n−1
n−1∑
k=0

{πθk
(f)− π?(f)}

where Mn : martingale.

i.e. conditions for

I a.s. conv for martingales : from conditions on Lp-moments for the
increments (p > 1).

I a.s. conv of the residual terms : from a strenghtened diminishing
adaptation condition (←→ conditions on the regularity in θ of the Poisson equation)

I a.s. conv of the stationary measures : from the “a.s.” conv of
Pθn

(x,B) to Pθ?
(x,B)
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Strong Law of large numbers

In practice

3.2. Strong law of large numbers “in practice”

It is sufficient to establish

I (strenghtened D.A. cond) problem specific

I (C. cond) a uniform-in-θ drift condition (geometric or sub-geometric
drift) and a uniform-in-θ minorization of the transition kernel
(Roberts-Rosenthal (2007); Bai (2009); Atchadé-Fort (2009))

I (Cvg πθn
) ∃θ? and a set A s.t. P(A) = 1 and

∀ω ∈ A, ∀x,∀B Pθn(ω)(x,B) = Pθ?(x,B).

When the drift condition is of the form :

I (Geom) PθV ≤ λV + b1C : strong law of large numbers for functions
increasing like V α for any α ∈ [0,1[.

I (Sub-Geom) PθV ≤ V − c V 1−α + b1C : strong law of large
numbers for functions increasing like V β for any β ∈ [0,1− α[.
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Conclusion

Conclusion
We provide answers to the problem : given

I a family of Markov kernels {Pθ,θ ∈ Θ} s.t. Pθ has an unique
invariant probability distribution πθ

I a filtration Fn and a process {(Xn,θn),n ≥ 0} s.t. for any f ≥ 0,

E [f(Xn+1)|Fn] =
∫

f(y) Pθn
(Xn,dy) P-a.s.

• which set of conditions will imply
I convergence of the distribution of {Xn,n ≥ 0} to some prob. π?

I convergence of the empirical distribution n−1
∑n

k=1 δXk

• Appli: convergence of “internal” and “external” adaptive MCMC.

• Details in
I Y. Atchadé, G. Fort Limit theorems for some adaptive MCMC

algorithms with subgeometric kernels, Accepted in Bernoulli, 2009
I Y. Atchadé, G. Fort, E. Moulines, P. Priouret Adaptive MCMC :

theory and practice, submitted
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