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I. Theme and Motivation

.



General theme: Stochastic Optimization

• Composite objective function

ArgminRd (f (θ) + g(θ)) f (θ) := EZ∼π [`(Z, θ)]

• the function f : Rd → R
- Eπ[·] can not be explicitly evaluated
- mean value of a loss over the examples (observations, data)

- possibly non convex, continuously differentiable

• the function g : Rd → (0,+∞]
- explicit evaluation of g(θ)
- a regularization / penalization term, constraints on θ
- Θ := {θ ∈ Rd : g(θ) <∞}
- convex, proper, lower semi-continuous



Computational Statistical Learning

ArgminRd (f (θ) + g(θ)) f (θ) := EZ∼π [`(Z, θ)] noté aussi Eπ [`(Z, θ)]

• Large batch learning: empirical loss, finite sum setting

π := 1
N

N∑
j=1

δZj f (θ) = 1
N

N∑
j=1

`(Zj, θ)

• Online learning: expected loss

data stream{Zj, j ≥ 0} ∼ π f (θ) =
∫
`(z, θ)π(dz)

• Examples of loss functions
- quadratic ‖Z − Ξ(θ)‖2

- linear regression, quadratic loss ‖Y −Xθ‖2, Z = (Y,X)
- negative log-likelihood −loglike(Z; θ)



.

What we intend to do

.



Table of contents

• Among the family of Majorize-Minimization (MM) optimization algorithm
- what is MM ?
- why MM ?

• Stochastic Variance reduction techniques for large scale learning
- why "stochastic" is required ?
- A mirror definition of MM and its stochastic version
- Why "variance reduction"
- Case "large batch": A novel Variance-Reduced MM

• Federated Learning (FL)
- what is FL ?
- Stochastic MM in the FL setting



.

Optimization tool:
Majorize-Minimization

.

See e.g. K. Lange "Optimization", Springer-Verlag, 2013.



The Majorize-Minimization algorithm

Iterative algorithm {θk, k ≥ 0}

• Given the current value θk
- define a majorizing function (red)
- tangent at θk
- minimizer of the majorizing function → θk+1

• Key property:

f (θk+1) ≤ f (θk)

Proof:

f(θk+1) ≤M(θk+1; θk) M(·; θk) majorizes f
≤M(θk, ; θk) θk+1 minimizer of M(·; θk)
= f(θk) tangent property: f(θk) = M(θk; θk)

• MM will be used to majorize f ; we then deduce a majorizing function for f + g.



Example 1: gradient-based algorithms

Assume that the loss function f is smooth with Lf -Lipschitz gradient on Θ.

• Ex. In large scale learning: ∇f (θ) = Eπ [G(Z, θ)]

• Majorizing function of f , tangent at θk ∈ Θ:

f (θ) ≤ f (θk) + 〈∇f (θk), θ − θk〉 +
Lf
2
‖θ − θk‖2

≤ Ck + 1
γ


1
2
‖θ‖2 − 〈sk, θ〉

 sk := θk − γ∇f (θk) = θk − γEπ [G(Z, θk)] γ ≤ 1/Lf

• Minimization step.

T(sk) = proxγ g(sk)
= proxγ g (θk − γ∇f (θk))

Gradient-based algorithms are among MM
algorithms
With quadratic majorizing fcts.



Example 2: Expectation Maximization algorithms Dempster et al. (1977); Wu (1983)

Assume that the loss function:

`(Z, θ) := − log
∫
H p(Z, h, θ) ν(dh), log p(Z, h, θ) = 〈S(Z, h), φ(θ)〉 − ψ(θ)

• Ex.: Negative log-like, Latent variable model, complete data model in the curved exponential family.

• Majorizing function of f , tangent at θk ∈ Θ. (E-step)
Jensen’s inequality:

`(Z, θ) ≤ Ck −
∫
H log p(Z, h, θ) ν(dh|Z, θk)

≤ Ck + ψ(θ)−
〈∫
H S(Z, h) ν(dh|Z, θk), φ(θ)

〉
.

• Optimization step. (M-step)

T(sτ ) = argminθ g(θ) + ψ(θ)− 〈sk, φ(θ)〉

sk := Eπ [
∫
H S(Z, h) ν(dh|Z, θk)]

EM algorithms are among
MM algorithms
Majorizing fct not
quadratic in gal



Example 3: Variational Surrogates

Assume that the loss function

`(Z, θ) = min
h∈H

˜̀(Z, h, θ), ˜̀(Z, h, θ) := ψ(θ)− 〈S(Z, h), φ(θ)〉

Set M(Z, θ) := argminh∈H ˜̀(Z, h, θ).

• Majorizing function of f , at θk ∈ Θ.

`(Z, θ) ≤ Ck + ψ(θ)− 〈S(Z,M(Z, θk)), φ(θ)〉

• Optimization step.

T(sk) = argminθ g(θ) + ψ(θ)− 〈sk, φ(θ)〉

sk := Eπ [S(Z,M(Z, θk))]

• Example:
Dictionary Learning

f (θ) = Eπ
[
minh∈H ‖Z − θh‖2

]

Z: observations d× 1
θ: dictionary d×K
h: code K × 1



All these problems share

• A parametric majorizing function of f + g at τ ∈ Θ, of the form

θ 7→ Cτ + g(θ) + ψ(θ)−
〈
Eπ

[
S̄(Z, τ )

]
, φ(θ)

〉

• The iterative process

· → θk → Eπ
[
S̄(Z, θk)

] T−→ θk+1 → Eπ
[
S̄(Z, θk+1)

] T−→ θk+2 → · · ·

or equivalently

· → θk → Eπ
[
S̄(Z, θk)

]
︸ ︷︷ ︸

sk

T−→ θk+1︸ ︷︷ ︸
T(sk)

→ Eπ
[
S̄(Z,T(sk))

]
︸ ︷︷ ︸

sk+1

T−→ θk+2︸ ︷︷ ︸
T(sk+1)

→ · · ·︸ ︷︷ ︸
sk+2



A unifying point of view Dieuleveut, F., Wai (2022); Nguyen, Forbes, F., Cappé (2022)

• ... "the surrogate-space, in the foreground ! the θ-space in the background"

• the θ-space is the mirror

• Novel and unified approaches for (i) large scale learning, (ii) federated learning.



A specific structure for the majorizing functions

ArgminRd (f (θ) + g(θ)) f (θ) := EZ∼π [`(Z, θ)]

We assume hereafter
• Hyp. MM-1 There exist ψ : Rd → R, φ : Rd → Rq, S̄ : Rp × Rd → S ⊆ Rq s.t.

∀τ, ∀θ ∈ Θ : f (θ) ≤ f (τ ) + ψ(θ)− ψ(τ )−
〈
Eπ

[
S̄(Z, τ )

]
, φ(θ)− φ(τ )

〉

i.e. for any τ ∈ Θ, there exists a majorizing function for f , tangent at τ

The majorizing function of (f + g) is in a parametric family of functions

θ 7→ Cτ + g(θ) + ψ(θ)− 〈sτ , φ(θ)〉 where sτ := Eπ
[
S̄(Z, τ )

]

• Hyp. MM-2 For any s ∈ S,

T(s) := argminθ (g(θ) + ψ(θ)− 〈s, φ(θ)〉)

exists and is unique.



Stationary points in the θ-space / stationary points in the surrogate space

• Under regularity assumptions, for any s ∈ S, there exists ps ∈ ∂g(T(s)),

ps +∇f (T(s)) = −Jφ(T(s)) h(s) h(s) := Eπ
[
S̄(Z,T(s))

]
− s.

Dieuleveut, F., Wai (2022)

If s? ∈ S satisfies h(s?) = 0 then θ? := T(s?) is a stationary point of f + g.
And conversely.

• We will design algorithms
- in the s-space,
- targeting a zero of h(s)

- h(s) is an untractable expectation (w.r.t. π) !



.

Stochastic surrogate MM
and

Variance reduction

.



The Stochastic surrogate MM algorithm Dieuleveut, F., Wai (2022)

• Based on Stochastic Approximation Robbins and Monro (1951); Benveniste et al. (1990):
given learning rates {γk, k ≥ 0}

Ŝk+1 = Ŝk + γk+1Hk+1 Hk+1 ≈ h(Ŝk) = Eπ
[
S̄(Z,T(Ŝk))

]
− Ŝk.

Algorithm 1: Stochastic Surrogate MM (StoSur-MM)
Input: kmax > 0, Ŝ0 ∈ S
Result: StoSur-MM sequence {Ŝk, k ≤ kmax} and its

mirror {T(Ŝk), k < kmax}
1 for k = 0, . . . , kmax − 1 do
2 Compute T(Ŝk)
3 Sample Sk+1, a random oracle for Eπ[S̄(Z,T(Ŝk))]
4 Set Ŝk+1 = Ŝk + γk+1(Sk+1 − Ŝk)

• Examples of oracles:
- Large batch learning:

Sk+1 = 1
b

∑
j∈Bk+1

S̄(Zj,T(Ŝk))

- Online learning:

Sk+1 = S̄(Zk+1,T(Ŝk))

• In the Gdt Case, known as "Stochastic Gdt". In the EM case: "Online EM" Cappé and Moulines (2009)



On a toy example

• Mixture of 10 Gaussian distributions in R21. N = 6e4 examples.

• θ collects the weights, the expectations and the covariance matrices.

• Toy example: EM could be applied; let us do as if it were not and run SS-EM

Stochastic Surrogate MM for different mini batch size.

Evolution of the negative log-likelihood, first epochs (left) and after 8 epochs (center).

Evolution of the 10 estimated weights vs the iteration index (right).



Toy example (to follow): let us introduce variance reduction

Stochastic Surrogate MM and Variance reduced Stochastic Surrogate MM for different mini batch size.

Evolution of the negative log-likelihood, first epochs (left) and after 10 epochs (right).



Large batch learning: Variance reduction within Stochastic Approximation (SA)

• Control variates

- If h(s) = E[Hs] and E[V ] = 0, then h(s) = E[Hs + V ]→ many possibilities for the definition of SA
- "If U and V are negatively correlated, there exists c such that Var(U + cV ) < Var(U)".

• Examples:

. . . incremental EM
Neal and Hinton (1998)

Ng and McLachlan (2003)

SVRG SEM-VR
Johnson and Zhang (2013) Chen et al. (2018)

SAGA FIEM
Defazio et al. (2014) Karimi et al. (2019)

F., Gach, Moulines (2021)

SPIDER SPIDER-EM
Fang et al. (2018) F., Moulines, Wai (2020)
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Focus on SPIDER EM F., Moulines, Wai (2020)

Algorithm 2: Stochastic Path-Integrated Differential EstimatoR - EM
Data: kin ∈ N?, kout ∈ N?, Ŝinit ∈ S, {γt,k+1, t ≥ 1, k ≥ 0} positive sequence.
Result: The SPIDER-EM sequence: Ŝt,k, t = 1, . . . , kout and k = 0, . . . , kin − 1

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit, S1,0 = N−1 ∑
j S̄(Zj,T(Ŝ1,−1))

2 for t = 1, . . . , kout do
3 for k = 0, . . . , kin − 2 do
4 Sample a mini-batch Bt,k+1 in {1, . . . , N} of size b, with or without replacement
5 St,k+1 = St,k + b−1 ∑

j∈Bt,k+1

{
S̄(Zj,T(Ŝt,k))− S̄(Zj,T(Ŝt,k−1))

}
67 Ŝt,k+1 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)

8 Ŝt+1,−1 = Ŝt,kin−1
9 St+1,0 = N−1 ∑

j S̄(Zj,T(Ŝt+1,−1))
10 Ŝt+1,0 = Ŝt,kin−1 + γt,kin

(
St+1,0 − Ŝt,kin−1

)

St,k+1 = 1
b

∑
j∈Bt,k+1

S̄(Zj,T(Ŝt,k)) + St,k︸ ︷︷ ︸
≈Eπ

[
S̄(Z,T(Ŝt,k−1))

]−
1
b

∑
j∈Bt,k+1

S̄(Zj,T(Ŝt,k−1))

- natural random field (red) and the control variate (blue): correlated through Bt,k+1
- unfortunately, biased approximation St,k+1 → restart every kin iterations in order to cancel the bias.



SPIDER EM for inference of Gaussian mixture (MNIST data set) F, Moulines, Wai (2020)
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What kind of control of convergence ?

• From a Lyapunov inequality,

E
[

(f + g)(T(Ŝk+1)) |Fk
]
≤ (f + g)(T(Ŝk))− (Dk+1)2 + E [Rk+1|Fk]

- Almost-sure convergence when k →∞ (Robbins-Siegmund lemma)
- Explicit (upper) bounds

kmax−1∑
k=0

E
[
D2
k+1

]
≤ (f + g)(T(Ŝ0))−min(f + g) +

kmax−1∑
k=0

E [Rk+1]

- Difficulties: it is not a gradient-SA algorithm

• Bounds for
- ε-stationarity (algo designed to find the roots of h)
- non convex optimization

E
[
‖h(Ŝτ )‖2

]
≤ • τ uniform on {1, · · · , kmax}

- scaling of the design parameters (kin, kout, b) and the learning rate as a fct of N (data set size) and
the accuracy level ε.



ε-stationarity for SPIDER-EM

•Theorem F., Moulines, Wai (2020): Explicit control of the mean error ‖h(Ŝ·)‖2

Set W (s) := (f + g)(T(s)). /* Lyapunov fct in the s-space; smooth (LẆ ); ∇W (s) = −B(s)h(s) */
Set L2 := N−1 ∑N

i=1L
2
i . /* Lipschitz constants related to s 7→ S̄(Zi,T(s)) */

Fix kout, kin, b ∈ N?. Choose α ∈ (0, vmin/µ?(kin, b)) with

µ?(kin, b) := vmax

√
kin√
b

+
LẆ
2L

. /*spectrum of B(s) in [vmin, vmax] uniformly in s */

Run the algorithm with ξt = kin and γt,k := α/L. Then

E
[
‖h

(
Ŝτ,ξ−1

)
‖2

]
≤

 1
kin

+ α2

b

 1
kout

2L
α{vmin − αµ?(kin, b)}

(
E

[
W (Ŝ0)

]
−minW

)

where (τ, ξ) is a uniform r.v. on {1, · · · , kout} × {0, · · · , kin − 1} indep of {Ŝt,k}.



Complexity analysis

• How to choose kin, kout, b in order to reach ε-stationarity, with an optimal computational cost ?
- ε-stationarity for non-convex optimization

E
[
‖h(Ŝτ )‖2

]
≤ ε random stopping time τ

- Computational cost: (i) Nbr of processed example, (ii) Nbr of optimization steps.

• Result:

kin = b = O(
√
n), kout = O

 1
(εkin)


- Nbr of optimization steps: O(1/ε)
- Nbr of processed examples: O(

√
n ε−1)

Algorithm Complexity (proc. ex.)
Online-EM ε−2

i-EM n ε−1

sEM-vr n2/3 ε−1

FIEM n2/3 ε−1 ∧
√
n ε−3/2

SPIDER-EM
√
n ε−1

SPIDER-EM – state of the art !



.

Federated learning through MM

.



Federated Learning

- The central server coordinates the participa-
tion of the local devices/clients/workers
- Local training data sets, never uploaded to
the server
- FL reduces privacy and security risks

- Global model maintained by the central server: sent
to the devices
- Each worker updates an information on the global
model
- Only this update is communicated to the central
server; aggregation by the central server

•Methodological developments under the ’constraints’
- Local data sets, heterogeneous, unbalanced
- Partial participation of the clients (charged devices, plugged-in, free wi-fi connection, · · · )
- Massively distributed: large nbr devices w.r.t. the size of the local data sets
- Communication cost >> Computational cost: compression



Federated MM: the data

• n local workers with their own data set (→ distribution πi)

• Local worker #i: has a local objective function

θ 7→ fi(θ) := Eπi [`(Z, θ)]

and the central server targets

θ 7→ f (θ) :=
n∑
i=1

µi Eπi [`(Z, θ)] , µi weights, unbalanced local data sets (= 1/n for online learning)

• The central server runs a stochastic surrogate MM, by aggregation of local oracles provided by the
local agents

Sk+1,i ≈ Eπi
[
S̄(Z,T(Ŝk))

]
−→ Sk+1 ≈ Eπ

[
S̄(Z,T(Ŝk))

]

and then, perform the optimization step: T(Ŝk+1) and broadcast it to the local agents.



Federated MM: partial participation and quantization

• At each iteration, a local worker #i is active with probability p ∈ (0, 1).

• If active at iteration #(k + 1), the local worker #i
- learns an oracle Sk+1,i of the parameter Eπi

[
S̄(Z,T(Ŝk))

]
characterizing the local majorizing function

- quantize the information before sending it to the central server: Quant(·) see e.g. Alistarh et al. (2018), Horvath

et al. (2019)

- the quantized information is not the oracle, but the difference with the previously sent information
Vk,i

∆k+1,i := Sk+1,i − Ŝk − Vk,i
- it updates this control variate V·,i’s adapted from Mishchenko et al., 2019

Vk+1,i = Vk,i + α Quant(∆k+1,i)



Federated MM Dieuleveut, F., Moulines, Robin (2021) and Dieuleveut, F., Wai (2022)

Algorithm 3: Federated MM with partial participation (PP)
Data: kmax ∈ N?; for i ∈ [n]?, V0,i ∈ Rq; Ŝ0 ∈ Rq; a positive sequence {γk+1, k ∈ [kmax − 1]}; α > 0 and p ∈ (0, 1).
Result: The sequence: {Ŝk, k ∈ [kmax]} and its mirror T(Ŝk)

1 Set V0 = n−1 ∑n
i=1 V0,i

2 for k = 0, . . . , kmax − 1 do
3 Sample Ak+1, the set of active workers /* each worker active with probability p, independently */
4 for i ∈ Ak+1 do
5 Sample Sk+1,i, an approximation of Eπi

[
S̄(Z,T(Ŝk))

]
6 Set ∆k+1,i = Sk+1,i − Ŝk − Vk,i
7 Set Vk+1,i = Vk,i + αQuant(∆k+1,i). /* 0 < α ≤ 1/(1 + ω). Vk: control variate */
8 Send Quant(∆k+1,i) to the central server /* random, unbiased, E[‖Quant(x)− x‖2] ≤ ω‖x‖2 */
9 for i /∈ Ak+1 do
10 Set Vk+1,i = Vk,i (no update)
11 Set Hk+1 = Vk + p−1 ∑

i∈Ak+1 µiQuant(∆k+1,i) /* compensate for (i) the Vk’s and (ii) the PP */
12 Set Ŝk+1 = Ŝk + γk+1Hk+1
13 Set Vk+1 = Vk + α

∑
i∈Ak+1 µiQuant(∆k+1,i) /* learn the aggregated control variates */

14 Send Ŝk+1 and T(Ŝk+1) to the n workers



Toy example: inference of a R2-valued Gaussian mixture model with 2 components (1/2)

• Robustness to partial participation

k 7→ E
[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo

• Robustness to heterogeneity

k 7→ E
[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo



Toy example: inference of a R2-valued Gaussian mixture model with 2 components (2/2)

• Federated MM vs naive-Federated MM ?

In naive-Federated MM:
remove the variables V·c’s
– i.e. the control variates
introduced to control the
variance of the quantiza-
tion step.

Estimation of the weight vs the nbr epoch; Case "homogeneous" and case "strongly heterogeneous"



Variance Reduction in Federated MM

• Mix the SPIDER variance reduction idea and the federated learning algorithm

• Case of EM (toy example, to follow)

Estimation of the weight vs the nbr epoch k 7→ E
[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo



Bounds for convergence

•Theorem (adapted from) Dieuleveut, F., Moulines, Robin (2021): Explicit control of the mean error ‖h(Ŝ·)‖2

Run the algorithm with α := (1 + ω)−1 /* E[‖Quant(x)− x‖2] ≤ ω‖x‖2 */
and γk = γ ∈ (0, γmax], where

γmax := vmin
2LẆ

∧ p
√
n

2
√

2L(1 + ω)
√
ω + (1− p)(1 + ω)/p

.

Set σ2 := n
∑n
i=1 µ

2
i σ

2
i . /* σ2

i : variance of the oracles at agent #i */
Denote by τ the uniform random variable on {0, · · · , kmax − 1}. Then,

vmin

1− γ
LẆ
vmin

E
[
‖h(Ŝτ )‖2

]
≤

(
W (Ŝ0)−minW

)

γkmax
+ γ

kmax
2LẆ

ω

α

n∑
i=1

µ2
i‖V0,i − hi(Ŝ0)‖2

+ γLẆ
1 + 5 (ω + (1− p)(1 + ω)/p)

n
σ2.



Complexity analysis in the case p = 1

Given an accuracy level ε, how to choose the design parameters in order to minimize the number of
optimization ?

• The number of optimization is kmax chosen in order to reach the accuracy level ε:

Kopt(ε) = O

 1
ε2

(1 + ω)σ2

n

 ∨O
 1
ε γmax



1st term is leader iff ε << γmax(1 + ω)σ2/n (high noise regime)

• Compression effect:

γ impacted by com-
pression iff n <<

ω3.

On Kopt: see table

Complexity regime: (1+ω)σ2

nε2
1

γmaxε

γmax regime: E.g. case when High noise σ2,
small ε

Low σ2

larger ε
vmin
2LẆ

large ratio n/ω3 ×ω ×1
√
n

2
√

2L(1+ω)
√
ω

low ratio n/ω3 ×ω ×ω3/2/
√
n



.

Conclusion

.



Contributions

• A unifying point of view: surrogate MM covering popular algorithms.

• "surrogate in the foreground": efficient approach to (i) summarize the data through "sufficient statis-
tics", (ii) in FL: interpretation of the quantity aggregated at the central server.

• Novel algorithms for large scale learning (large batch, online); and federated learning.

• Explicit bound of convergence, complexity analysis for the Stochastic Surrogate MM, possibly with
variance reduction, and Federated Surrogate MM.

• Non convex optimization. Algorithms and some theoretical results, for the non smooth optimization
case.



Open theoretical analyses

• The map T: when no closed form.

• The constraints s ∈ S → Stochastic Approximation restricted to a structured subset of Rd.

• Other strategies for variance reduction in Federated Learning



.
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