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Introduction
A new algorithm - the onlineEM-SLAM - is proposed
to solve the simultaneous localization and mapping
problem (SLAM). The mapping problem is seen as
an instance of inference in latent models, and the
localization part is dealt with a particle approxima-
tion method. This new technique relies on an online
version of the Expectation Maximization (EM) al-
gorithm, see [1, 2].

Model
The robot evolves in a 2-dimensional landmark-
based map. Let θ be all the landmarks in the map
and xt = (xt,1, xt,2, xt,3)T be the robot pose. Con-
trols are denoted by ut = (vt, ψt)

T where ψt stands
for the robot’s heading direction and vt its velocity.
The underlying model is given by

• xt = f(xt−1, ût), where ût ∼ N (ut, Q).

• yt,i = h(xt, θ.,i) + δt,i , for any i ∈ At (set
of observed landmarks at time t), where h is
defined by

h(x, τ) =
(√

(τ1 − x1)2 + (τ2 − x2)2
arctan τ2−x2

τ1−x1
− x3

)
.

(
δt,i
)
t,i∈At

are i.i.d Gaussian mixtures with
components N

(
0, σ2

0R
)
, N

(
0, σ2

1R
)

and
weights (ω0, ω1).

R, Q, σ2
0 and σ2

1 are assumed to be known. It =
(It,i)i∈At

denotes the latent variables specifying the
mixture component of each observation at time t and
we write Zt = (Xt, It) the extended latent variable.
The likelihood of yt given zt is denoted by gθ(yt|zt)
and the state transition density by m(xt|xt−1,ut).

Experimental results
Experimental settings can be found in [3]. This new algorithm is compared to the marginal SLAM (see [4]), the function f is given by

f(xt−1, v̂t, ψ̂t) = xt−1 +

(
v̂tdt cos(xt−1,3 + ψ̂t) , v̂tdt sin(xt−1,3 + ψ̂t) , v̂tdt

sin(ψ̂t)
B

)T
.

The mean (over 50 Monte Carlo runs) map and path estimates at the end of the loop (T = 1626) are represented in the first Figure. In this case, the association
process and the total number of landmarks are assumed to be known and the proposal distribution is the prior kernel. The second Figure illustrates the variance
of the estimation of the robot pose at different times (for each time, the first Figure represents the marginal SLAM and the second one our algorithm).
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a) Mean map and path estimates. b) Error estimate on the robot x-coordinate
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Online EM application to the SLAM problem

• Linearization step The normalized complete
data log-likelihood at time t is equal to

−
q∑
i=1

1
2t

t∑
s=1

1i∈As [ys,i − h(Xs, θ.,i)]
T

× σ−2
Is,i
R−1 [ys,i − h(Xs, θ.,i)] ,

up to an additive term that does not depend
upon θ. Therefore, it does not belong to the
exponential family. For any i ∈ As, h(xs, θ·,i)
is replaced by

h(xs, θ̂·,i) +∇θh(xs, θ̂·,i) (θ·,i − θ̂·,i).
• Online E-step The linearization step leads to

an intermediate quantity of the EM of the form

Qt(θ, θ̂)
def=

q∑
i=1

〈E
θ̂

[St,i(Z1:t,y1:t)|y1:t] ,Ξi(θ.,i)〉,

with St,i(Z1:t,y1:t) = 1
t

∑t
s=1 1i∈AsSi(Zs,ys,i) .

We have

Eθ′ [St,i(Z1:t,y1:t)|y1:t] = Eθ′
[
Sit,θ′(Zt)

∣∣y1:t

]
,

where,

Sit,θ′(Zt) =
1
t
1i∈AtSi(Zt,yt,i)

+
(

1− 1
t

)
Eθ′
[
Sit−1,θ′(Zt−1)

∣∣Zt,y1:t−1

]
.

The E-step necessitates the filtering distribu-
tion, the conditional distribution of Zt−1 given
(Zt,y1:t−1) and a recursive computation of
Sit,θ′ . These distributions are replaced by
particle-type approximations and Sit,θ′(x) is up-
dated using a stochastic approximation step.

Car park data set
We illustrate the performance of the algorithm with
real data (see http://www.cas.kth.se/SLAM for
the data set). The association process is not as-
sumed to be known. The algorithm is initialized
with an empty map and each time a new observa-
tion is available, its likelihood with respect to each
existing landmark is computed. Then, the observa-
tion is associated to the landmark giving the largest
likelihood or a new landmark is created if all likeli-
hoods are smaller than a given threshold. The last
Figure represents the estimated path and map (stars
and dotted line) and the true path and map (bold
line and dots) at the end of one run.

c) Map and path estimates at the end of the run (T = 5565)
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