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Introduction

Introduction
Objectives of the ANR project:

Combine three deep surveys of the universe to set new constraints on
the evolution scenario of galaxies and large scale structures, and the
fundamental cosmological parameters.

1. What is the "evolution scenario” ?

2. Examples of " cosmological parameters”

3. Example of data: Cosmic Microwave Background (CMB)
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L Evolution scenario of the Universe

Evolution scenario of the Universe

@ The cosmology is the astrophysical study of the history and
structure of the universe.
During the XXth century, a new theory for the expansion of the
universe: Cosmological Standard Model. Therefore, today,
cosmology also includes the study of the constituent dynamics of the
universe.

@ Expansion of the universe
o from an extremely dense and hot state, a plasma of protons, electons,
photons, closely interacting with each other and in thermal equilibrium
o to the vast and much cooler cosmos we currently have.
@ Cooling down: thermal agitation can not prevent atoms to be
formed.
@ End of opaque universe: after recombination, matter and radiation
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Introduction

L Evolution scenario of the Universe

Open questions:

1, Big Bang

2. Quantum fluctustions.
3. lnflation .

4, Cosmic background

radiation

A SHORT
HISTORY OF
THE UNIVERSE

Expansion of the universe, lrom the Big Bang 1o today
{437 billion years}

5, First stars

&, Formation of galaxies,
planets, etc,

7. Accelération of the
expansion of the
universe

will the universe
expand for ever, or
will it collapse?

what is the shape of
the universe?

Is the expansion of
the universe

accelerating rather
than decelerating?

Is the universe
dominated by dark
matter and what is
its concentration?
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Introduction
Cosmological parameters

Cosmological parameters (1)

Description of the expansion by a scaling factor a(t) of the space

coordinates.
Example: Friedmann equations for the expansion model a(?):

a'(t) 2_ K 81G A
(%) =+ 50+ 3

Solutlons as a function of the spatial curvature K and the cosmological constant A

—— constante cosmologique —p

A<D | A=0[0faty | A-Ag] AsAg

Halelelll
I 2
SRNSES

Fic.: Big Bang / Big crunch
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L Cosmological parameters

Cosmological parameters (II)

Density of barionic matter €2, This is ordinary matter composed of
protons, neutrons, and electrons. |t comprises gas, dust, stars,
planets, ---

Density of cold dark matter ). It comprises the dark matter halos
that surround galaxies and galaxy clusters, and aids in the formation
of structure in the universe.

Density of dark energy €2, (cosmological constant A) Through
observations of distant supernovae, it was discovered that the
expansion of the universe appears to be getting faster with time.
Whatever the source of this phenomenon turns out to be,
cosmologists refer to it generically as dark energy.

Hubble constant H

Shape of the Universe K (spatial curvature).
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Data set(s)

Data set 1: Cosmic Microwave Background

CMB is the radiation left over from an early stage in the development of
the universe: after the recombination epoch when neutral atoms formed
from protons and electrons, followed by the photon decoupling when
photons started to travel freely through space.

Example of survey: WMAP for
the Cosmic Microwave Back-
ground (CMB) radiations =
temperature variations are re-
lated to fluctuations in the
density of matter in the early
universe and thus carry out
information about the initial

conditions for the formation of

cosmic structures such as ga-
laxies, clusters and voids for
example.
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Data set(s)

From a CMB map to the cosmological parameters

@ Step 1: map making process, from scanning the sky to producing
spherical CMB maps

e must exploit multi-scan, deal with asymmetric instrumental beams,

e source separation, to remove " foreground emissions” (from galactic
and extra-galactic origins)

@ Step 2: a likelihood function to express the probability of a given
CMB map given an angular power spectrum C.

@ Step 3: a cosmological model predicting the dependence of the
angular power spectrum on the cosmological parameters; 6 — C(0).
— software packages (ex. CAMB, CMBfast).
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(step 2) Likelihood function for a CMB map

The CMB map is the realization of a random process X on the unit
sphere, X assumed to be stationary:

Cov(X (£),X(€") = p(¢T¢')  p: angular correlation function

p is related to the angular power spectrum {Cy},

1
p(z) = ZCg %4—; Py(z) P, £-th Legendre polynomial
>0

How to estimate {Cy, > 0}7
@ Multipole decomposition:

X = ZX(Z)(f) £: angular frequency
>0

o Define the empirical angular spectrum  Cy = 5+ || X*||?
X* obtained by spherical convolution of X with P.
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The likelihood of the signal given the cosmological parameters i.e.

o signal — summarized by the empirical angular spectrum
{Cy,0 > 0} - a kind of “sufficient statistics”

@ cosmological parameters 6 yielding to the theoretical angular
spectrum {Cy(0),¢ > 0} - by software packages

is given by

—2log p(CMBmap|f) = Z (2041) CL(%) +1log Cy(0) | + Cst
¢
>0

Reference: J.F. Cardoso, Precision Cosmology with the Cosmic Microwave
Background, |IEEE Signal Processing Magazine, 2010
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Data set(s)

Combining data sets

@ Observational data from
o the CMB cosmic Microwave Background — five-year WMAP data.
o the observation of weak gravitational shear —» CFHTLS-Wide third

release.

@ explained by some cosmologic parameters

TABLE 1I: Parameters for the cosmology likelihood, C=CMB, S=SNIa, L=lensing,.

Symbol Description

Mmimum Maximum Experiment

Q, Baryon density 0.01 0.1 C L
Qm Total matter density 0.01 1.2 CSL
w Dark-energy eq. of state -3.0 0.5 CSL
T Primordial spectral index 0.7 1.4 ¢ L
A% Normalization (large scales) C

o8 Normalization (small scales)” C L
h Hubble constant C L
T Optical depth C

M Absolute SNla magnitude S

o Colour response S
Jil Stretch response S

a L
b galaxy z-distribution fit L
c L
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L= A posteriori distribution

A challenging (a posteriori) density exploration
This yields:

@ a likelihood of the data given the parameters: some of them
computed from publicly available codes e wmaps code for cMB data

@ combined with a priori knowledge: uniform prior on hypercubes.

Therefore, statistical inference consists in the exploration of the a
posteriori density of the parameters, a challenging task due to

@ potentially high dimensional parameter space (not really considered
here: sampling in R¢, d ~ 10 to 15)

@ immensely slow computation of likelihoods,

@ non-linear dependence and degeneracies between parameters
introduced by physical constraints or theoretical assumptions.
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Introduction

A posteriori distribution

II. Monte Carlo algorithms for the exploration of a
(a posteriori) density 7
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Some MC algorithms

Monte Carlo algorithms

o (naive) Monte Carlo methods: i.i.d. samples under 7. Here, NO:

is only known through a "numerical box”

e Importance Sampling methods: i.i.d. samples { X,k > 0} under a
proposal distribution ¢ and

n
Z :uikl[A(Xk) ~P. (X €A) with Wi =
Pt Zj:l Wy

@ Markov chain Monte Carlo methods: a Markov chain with
stationary distribution 7

n

D MaA(X) R PR(X €A)
k=1

S|
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L Importance sampling or MCMC?

Importance sampling or MCMC?
All of these sampling techniques, require time consuming evaluations of
the a posteriori distribution 7 for each new draw
@ Importance sampling: allow for parallel computation.

@ MCMC: can not be parallelized. weii say, most of them

The efficiency of these sampling techniques depend on design parameters
@ Importance sampling: the proposal distribution.
@ Hastings-Metropolis type MCMC: the proposal distribution.

< towards adaptive algorithms that learn on the fly how to modify the
value of the design parameters.

Monitoring convergence

@ Importance sampling: criteria such as Effective Sample Size (ESS) or
the Normalized Perplexity.

e MCMC: acceptance probability (Hastings-Metropolis algorithms)
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Importance sampling or MCMC?

Therefore, we decided to

run an adaptive Importance Sampling algorithm: Population
Monte Carlo [Robert et al. 2005]

compare it to an adaptive MCMC algorithm: Adaptive Metropolis
algorithm [Haario et al. 1999]
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Population Monte Carlo

Population Monte Carlo (PMC) algorithm

@ Idea: choose the best proposal distribution among a set of
(parametric) distributions.
Criterion based on the Kullback-Leibler divergence

@ = argmax,c o /log q(z) m(x) dz

@ In order to have a / to approximate the solution of this optimization
problem
o choose Q as the set of mixtures of Gaussian distributions (or
t-distributions).
o solve the optimization problem

LOOK! EM algorithm for fitting mixture models on i.i.d. samples { Yy, ,k > 0}

1 n
argmaxgeQ — > loga(Yy)
n =1
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Population Monte Carlo

PMC (1)

How to solve
D

argmax /log (Z Qaq N(ud,Ed)(:E)> m(z) dz 0 = (q,pbd,2a)a<D

d=1

Tool: EM algorithm for mixture models. Given the current estimate (%),
update the parameter by

o = [ patast®) n(a) da

1

+1

pyt = W/“’ pa(w;0')) m(x) da
d

1
£+ _ 5 /(m W) @ — )T (2300 (2) de
d
where
ag N(pa,2a)()
D
Ejzl 671 N(/J’Jvzj)(x)

pa(x;6) = = prob. of the component d given z
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Population Monte Carlo

PMC (1)

How to solve
D

argmax /log (Z Qaq N(ud,Ed)(:E)> m(z) dz 0 = (q,pbd,2a)a<D

d=1

Tool: EM algorithm for mixture models. Given the current estimate (%),
update the parameter by

o = [ pulwi6) (o) ds

1
py ™ = a(t+1)/a: pa(w;0) w(x) dz
d

1
2 = oy / (@ = uG ™)@ = pg ™) pa(a;6) w(z) da
Qg
where
N(pa,x .
pa(x;6) = oa N1, ¥a) () = prob. of the component d given x

Sy Ny 5) (@)
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Population Monte Carlo

PMC (1)

How to solve

D

argmax /log (Z Qq N(pd,Ed)(x)) m(x) dz 0 = (d,ptd,2d)a<D

d=1

Tool: EM algorithm for mixture models. Given the current estimate (%),
update the parameter by

N
Otflt-H) = Z(Dk pd(Xk;e(t))
k=1
N

1

1 _

pytt = WZ Wk Xp pa(X;0)
Qg =1

N
1 1 - 1 1
i = e (X = g = )T pala; 0)
d k=1

where {(@wg,Xx)}x is a (normalized) particle approximation of 7
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Population Monte Carlo

PMC (11

Iterative algorithm:

e initialization: choose an initial proposal distribution ¢(*) and draw
weighted points {(wg,Xx)}, that approximate 7

@ [teration 1: Based on these samples,
o update the proposal distribution

D

q(l)(x Z (1)N (1)72(;))@)

d=1

by applying the EM update formula.
o Draw weighted points {(wk,Xk)}x that approximate , by
importance sampling with proposal ¢V.

@ Repeat until --- further adaptations do not result in significant
improvements of the KL divergence.
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Population Monte Carlo

PMC - stopping rules (V)

From the particle approximation {(wg,Xx),k < N},

@ compute the Normalized Effective Sample Size at each iteration

—1
ESS = <Z wk> where @, = ]t,u—k

j=1%j

that can be interpreted as the proportion of sample points with
non-zero weights.

@ compute the normalized perplexity

—exp< Zwk log (g, )

In both cases, values close to 1 indicate good agreement.
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Adaptive Metropolis

Adaptive Metropolis

@ Symmetric Random Walk Metropolis algorithm

@ with Gaussian proposal distribution, with "mysterious” (but famous)

scaling matrix
2.382
N (0,d2ﬂ>

where Y. is the unknown covariance matrix of 7. [Roberts et al.
1997]

@ "unknown” ?! estimate it on the fly, from the samples of the
algorithm — adaptive Metropolis algorithm
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Monte Carlo algorithms

Adaptive Metropolis

[1l. Simulations
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Simulations

Simulations

on

@ simulated data, from a "banana” density

@ real data.
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Simulated data

The target distribution in R'?. Below marginal distribution of (z,2)

-20

-30

-40
I

-40 -20 0 20 40

and (z3,--- ,z10) are independent A/(0,1).
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10
0

0
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-40 -30 -20 -10
40 30 20 -10

10
0

0

-40 -30 -20 -10
40 30 20 -10

10
0

g

-40 -30 -20 -10
40 30 20 -10

FIG.: Iterations 1,3,5,7,9,11. 10k points per plot, except 100k in the lase one. Mixture of 9 t-distributions, with 9 degrees of freedom
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Simulations
L Simulated data

Monitoring convergence: the Normalized perplexity (top panel) and the

Normalized Effective Sample size (bottom panel)
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F'IG.: for the first 10 iterations, over 500 simulation runs.
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Comparison of adaptive MCMC and PMC:
fa(x) =1

PMC

q
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FIG.: for the first 10 iterations, over 500 simulation runs.
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Application to cosmology

Application to cosmology

Evolution of the PMC algorithm: the likelihood is from the SNla data

0 0.5
E ] 0.0 T T T T T T T
o E ]
BB B Ja
B K rC |
beged i gy g ] -
w * L Jdas
. L ]
+ L ] —
b E -2
C d.o5 —

R I e

FIG.: [left] evolution of the Gaussian mixtures with 5 components. [right] samples at the last PMC iteration, from the 5 components
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Evolution of the weights: the likelihood is WMAP5 for a flat ACDM model

with six parameters

iteration 0 ——
iteration 3 -
iteration 6 -
iteration 9

frequency

30 25 20 -15  -10 -5
log(importance weight)

FIG .. Histogram of the normalized weights for four iterations
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Simulations
Application to cosmology

@ Monitoring convergence: the likelihood is WMAPS5 for a flat ACDM

model with six parameters

11— A fi—t—i -
08 | | {4 os} 1
208 f / i =06f el
Z 7]
o u %
go4t | 4 o4t 1
02 4 o2t 1
NS N B S
0 2 4 6 8 1012 14 002 4 6 8 10 12 14
/10000 N/10000

FIG. . perplexity (left) and ESS (right) as a function of the cumulative sample size

o After 150k evaluations of 7: ESS is about 0.7; mean acceptance rate

in MCMC about 0.25.
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Application to cosmology

Comparison of MCMC and PMC: the likelihood is from the SNla data

1 0
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o | 3

b
b o

= - =

| T T T T T T T T T T T T T T T
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Qm -M

Fiac.: Marginalized likelihoods (68%,95%,99.7% contours are shown) for PMC (solid blue) and MCMC (dashed green)
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L Application to cosmology

Estimates of cosmological parameters: from the WMAPS5 data (left) and
from the lensing+SNla+CMB data sets (right)

Parameter | PMC MCMC

Qp 0.043210:5027  10.0432+9:902¢

Qe 0.25475:01% 0.253%0:015

T 0.08815018  |0.0881y!

w ~1.011 +0.060|—1.010+5:952

s 0.96310017  [0.9631001%

WIAT  [241350005 241470405

h 0.720%5551  |0-720%5658
Parameter | PMC MCMC a 06484558 |0.64915013
2 0.04424F500355 10.04418+0-003% ! 93155 03%0s -
0. |ozmryms [ozet : 06300507 _|0.639 %47
2 0.0875T001 [0.0ss5 0018t -M 19.331 £+ 0.030 [19.33270 02
0.9622+00112 o aposFoni a L613010 1627535
10°A%  |2431%0318 24207013 -3 —1.82%00% —1.82+0.16
h 07116 50 |0-T12545 55 s 0.795% 065 |0-795 005

FIG.: Means and 68% confidence intervals
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Conclusion

Cosmology provides challenging problems for Bayesian inference:
o large dimension of the parameter space

@ time consuming likelihood

Open questions:
@ parallelization of Monte Carlo methods
@ methods robust to the dimension
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Librairie

Public release of the Bayesian sampling algorithm for cosmology,
CosmoPMC (Martin KILBINGER and Karim BENABED)
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CosmoPMC: Cosmology Population Monte Carlo

Martin Kilbinger, Karim Benabed, Olivier Cappe, Jean-Francois Cardoso, Gersende Fort, Simon Prunet, Christian P
Robert, Darren Wraith
(Submitted on & Jan 207 1)

\We present the public release of the Bayesian sampling algorithm for cosmology, CosmoPMG {Cosmology Population Monte
Carlo). CosmoPMC explores the parameter space of various cosmological probes, and also provides a robust estimate of the
Bayesian evidence. CosmoPMC is based on an adaptive impartance sampling method called Population Monte Carlo (PMC).
Various cosmology likelihoad modules are implemented, and new madules can be added easily. The importance-sampling
algorithm is written in C, and fully parallelised using the Message Passing Interface (PI). Due tovery little overhead, the
walkclock time required for sampling scales approximately with the number of CPUs. The CosmoPMC package contains
post-processing and plotting programs, and in addition a Monte-Carlo Markov chain (MCMC) algorithm. The sampling engine is
implemented in the library pmelib, and can be used independently. The software is available for download at this hitp URL

Comrents: CosmaPMC user's guide, version v1.0
Subjects  Cosmology and Extragalactic Astrophysics (astro-ph.CO)
Citeas:  ardv:1101.0950v1 [astro-ph.CO]
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