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la Décision.

Joint work with:

Darren WRAITH and Martin KILBINGER (CEREMADE/IAP)
Karim BENABED, François BOUCHET, Simon PRUNET (IAP)
Olivier CAPPE, Jean-François CARDOSO (LTCI)
Christian ROBERT (CEREMADE)

A work published in Phys.Rev. D. 80(2), 2009.



Estimation of cosmological parameters using adaptive importance sampling

Introduction

Introduction

Objectives of the ANR project:
Combine three deep surveys of the universe to set new constraints on
the evolution scenario of galaxies and large scale structures, and the
fundamental cosmological parameters.

1. What is the ”evolution scenario”?

2. Examples of ”cosmological parameters”

3. Example of data: Cosmic Microwave Background (CMB)
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Evolution scenario of the Universe

Evolution scenario of the Universe

The cosmology is the astrophysical study of the history and
structure of the universe.
During the XXth century, a new theory for the expansion of the
universe: Cosmological Standard Model. Therefore, today,
cosmology also includes the study of the constituent dynamics of the
universe.

Expansion of the universe
from an extremely dense and hot state, a plasma of protons, electons,

photons, closely interacting with each other and in thermal equilibrium

to the vast and much cooler cosmos we currently have.

Cooling down: thermal agitation can not prevent atoms to be
formed.
End of opaque universe: after recombination, matter and radiation
are decoupled and universe becomes transparent.
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Introduction

Evolution scenario of the Universe

Open questions:

will the universe
expand for ever, or
will it collapse?

what is the shape of
the universe?

Is the expansion of
the universe
accelerating rather
than decelerating?

Is the universe
dominated by dark
matter and what is
its concentration?
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Cosmological parameters

Cosmological parameters (I)

Description of the expansion by a scaling factor a(t) of the space
coordinates.
Example: Friedmann equations for the expansion model a(t):(

a′(t)

a(t)

)2

= − K

a2(t)
+

8πG

3
ρ(t) +

Λ

3

Solutions as a function of the spatial curvature K and the cosmological constant Λ

Fig.: Big Bang / Big crunch
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Cosmological parameters

Cosmological parameters (II)

Density of barionic matter Ωb This is ordinary matter composed of
protons, neutrons, and electrons. It comprises gas, dust, stars,
planets, · · ·
Density of cold dark matter Ωc It comprises the dark matter halos
that surround galaxies and galaxy clusters, and aids in the formation
of structure in the universe.

Density of dark energy ΩΛ (cosmological constant Λ) Through
observations of distant supernovae, it was discovered that the
expansion of the universe appears to be getting faster with time.
Whatever the source of this phenomenon turns out to be,
cosmologists refer to it generically as dark energy.

Hubble constant H0

Shape of the Universe K (spatial curvature).
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Data set(s)

Data set 1: Cosmic Microwave Background

CMB is the radiation left over from an early stage in the development of
the universe: after the recombination epoch when neutral atoms formed
from protons and electrons, followed by the photon decoupling when
photons started to travel freely through space.

Example of survey: WMAP for

the Cosmic Microwave Back-

ground (CMB) radiations =

temperature variations are re-

lated to fluctuations in the

density of matter in the early

universe and thus carry out

information about the initial

conditions for the formation of

cosmic structures such as ga-

laxies, clusters and voids for

example.
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Data set(s)

From a CMB map to the cosmological parameters

Step 1: map making process, from scanning the sky to producing
spherical CMB maps

must exploit multi-scan, deal with asymmetric instrumental beams,
· · ·
source separation, to remove ”foreground emissions” (from galactic
and extra-galactic origins)

Step 2: a likelihood function to express the probability of a given
CMB map given an angular power spectrum C.

Step 3: a cosmological model predicting the dependence of the
angular power spectrum on the cosmological parameters; θ 7→ C(θ).
↪→ software packages (ex. CAMB, CMBfast).
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Data set(s)

(step 2) Likelihood function for a CMB map

The CMB map is the realization of a random process X on the unit
sphere, X assumed to be stationary:

Cov(X(ξ),X(ξ′)) = ρ(ξ†ξ′) ρ: angular correlation function

ρ is related to the angular power spectrum {C`}`

ρ(z) =
∑
`≥0

C`
2`+ 1

4π
P`(z) P`, `-th Legendre polynomial

How to estimate {C`,` ≥ 0}?

Multipole decomposition:

X(ξ) =
∑
`≥0

X(`)(ξ) `: angular frequency

Define the empirical angular spectrum Ĉ` = 1
2`+1 ‖X

`‖2

X` obtained by spherical convolution of X with P`.
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Data set(s)

The likelihood of the signal given the cosmological parameters i.e.

signal −→ summarized by the empirical angular spectrum
{Ĉ`,` ≥ 0} - a kind of “sufficient statistics”

cosmological parameters θ yielding to the theoretical angular
spectrum {C`(θ),` ≥ 0} - by software packages

is given by

−2 log p(CMBmap|θ) =
∑
`≥0

(2`+ 1)

(
Ĉ`
C`(θ)

+ logC`(θ)

)
+ Cst

Reference: J.F. Cardoso, Precision Cosmology with the Cosmic Microwave

Background, IEEE Signal Processing Magazine, 2010
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Data set(s)

Combining data sets

Observational data from
the CMB Cosmic Microwave Background −→ five-year WMAP data.
the observation of weak gravitational shear −→ CFHTLS-Wide third
release.

explained by some cosmologic parameters
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A posteriori distribution

A challenging (a posteriori) density exploration

This yields:

a likelihood of the data given the parameters: some of them
computed from publicly available codes ex. WMAP5 code for CMB data

combined with a priori knowledge: uniform prior on hypercubes.

Therefore, statistical inference consists in the exploration of the a
posteriori density of the parameters, a challenging task due to

potentially high dimensional parameter space (not really considered
here: sampling in Rd, d ∼ 10 to 15)

immensely slow computation of likelihoods,

non-linear dependence and degeneracies between parameters
introduced by physical constraints or theoretical assumptions.
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A posteriori distribution

II. Monte Carlo algorithms for the exploration of a
(a posteriori) density π
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Monte Carlo algorithms

Some MC algorithms

Monte Carlo algorithms

(naive) Monte Carlo methods: i.i.d. samples under π. Here, NO: π
is only known through a ”numerical box”

Importance Sampling methods: i.i.d. samples {Xk,k ≥ 0} under a
proposal distribution q and

n∑
k=1

ωk∑n
j=1 ωj

1I∆(Xk) ≈ Pπ(X ∈ ∆) with ωk =
π(Xk)

q(Xk)

Markov chain Monte Carlo methods: a Markov chain with
stationary distribution π

1

n

n∑
k=1

1I∆(Xk) ≈ Pπ(X ∈ ∆)

· · ·
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Monte Carlo algorithms

Importance sampling or MCMC?

Importance sampling or MCMC?

All of these sampling techniques, require time consuming evaluations of
the a posteriori distribution π for each new draw

Importance sampling: allow for parallel computation.

MCMC: can not be parallelized. well, say, most of them

The efficiency of these sampling techniques depend on design parameters

Importance sampling: the proposal distribution.

Hastings-Metropolis type MCMC: the proposal distribution.

↪→ towards adaptive algorithms that learn on the fly how to modify the
value of the design parameters.

Monitoring convergence

Importance sampling: criteria such as Effective Sample Size (ESS) or
the Normalized Perplexity.

MCMC: acceptance probability (Hastings-Metropolis algorithms)
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Monte Carlo algorithms

Importance sampling or MCMC?

Therefore, we decided to

run an adaptive Importance Sampling algorithm: Population
Monte Carlo [Robert et al. 2005]

compare it to an adaptive MCMC algorithm: Adaptive Metropolis
algorithm [Haario et al. 1999]
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Monte Carlo algorithms

Population Monte Carlo

Population Monte Carlo (PMC) algorithm

Idea: choose the best proposal distribution among a set of
(parametric) distributions.
Criterion based on the Kullback-Leibler divergence

q? = argmaxq∈Q

∫
log q(x) π(x) dx

In order to have a / to approximate the solution of this optimization
problem

choose Q as the set of mixtures of Gaussian distributions (or
t-distributions).
solve the optimization problem

LOOK! EM algorithm for fitting mixture models on i.i.d. samples {Yk,k ≥ 0}

argmaxq∈Q
1

n

n∑
k=1

log q(Yk)
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Monte Carlo algorithms

Population Monte Carlo

PMC (II)

How to solve

argmaxθ

∫
log

(
D∑
d=1

αd N (µd,Σd)(x)

)
π(x) dx θ = (αd,µd,Σd)d≤D

Tool: EM algorithm for mixture models. Given the current estimate θ(t),
update the parameter by

α
(t+1)
d =

∫
ρd(x; θ(t)) π(x) dx

µ
(t+1)
d =

1

α
(t+1)
d

∫
x ρd(x; θ(t)) π(x) dx

Σ
(t+1)
d =

1

α
(t+1)
d

∫
(x− µ(t+1)

d )(x− µ(t+1)
d )T ρd(x; θ(t)) π(x) dx

where

ρd(x; θ) =
αd N (µd,Σd)(x)∑D
j=1 αj N (µj ,Σj)(x)

= prob. of the component d given x
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Population Monte Carlo

PMC (II)

How to solve

argmaxθ

∫
log

(
D∑
d=1

αd N (µd,Σd)(x)

)
π(x) dx θ = (αd,µd,Σd)d≤D

Tool: EM algorithm for mixture models. Given the current estimate θ(t),
update the parameter by

α
(t+1)
d =

∫
ρd(x; θ(t)) π(x) dx

µ
(t+1)
d =

1

α
(t+1)
d

∫
x ρd(x; θ(t)) π(x) dx

Σ
(t+1)
d =

1

α
(t+1)
d

∫
(x− µ(t+1)

d )(x− µ(t+1)
d )T ρd(x; θ(t)) π(x) dx

where

ρd(x; θ) =
αd N (µd,Σd)(x)∑D
j=1 αj N (µj ,Σj)(x)

= prob. of the component d given x
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Population Monte Carlo

PMC (II)

How to solve

argmaxθ

∫
log

(
D∑
d=1

αd N (µd,Σd)(x)

)
π(x) dx θ = (αd,µd,Σd)d≤D

Tool: EM algorithm for mixture models. Given the current estimate θ(t),
update the parameter by

α
(t+1)
d =

N∑
k=1

ω̄k ρd(Xk; θ(t))

µ
(t+1)
d =

1

α
(t+1)
d

N∑
k=1

ω̄k Xk ρd(Xk; θ(t))

Σ
(t+1)
d =

1

α
(t+1)
d

N∑
k=1

ω̄k(Xk − µ(t+1)
d )(Xk − µ(t+1)

d )T ρd(x; θ(t))

where {(ω̄k,Xk)}k is a (normalized) particle approximation of π
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Monte Carlo algorithms

Population Monte Carlo

PMC (III)

Iterative algorithm:

initialization: choose an initial proposal distribution q(0) and draw
weighted points {(wk,Xk)}k that approximate π

Iteration 1: Based on these samples,

update the proposal distribution

q(1)(x) =

D∑
d=1

α
(1)
d N (µ

(1)
d ,Σ

(1)
d )(x)

by applying the EM update formula.
Draw weighted points {(wk,Xk)}k that approximate π, by
importance sampling with proposal q(1).

Repeat until · · · further adaptations do not result in significant
improvements of the KL divergence.
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Monte Carlo algorithms

Population Monte Carlo

PMC - stopping rules (IV)

From the particle approximation {(ωk,Xk),k ≤ N},
1 compute the Normalized Effective Sample Size at each iteration

ESS =
1

N

(
N∑
k=1

ω̄2
k

)−1

where ω̄k =
ωk∑N
j=1 ωj

that can be interpreted as the proportion of sample points with
non-zero weights.

2 compute the normalized perplexity

1

N
exp

(
−

N∑
k=1

ω̄k log(ω̄k)

)

In both cases, values close to 1 indicate good agreement.
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Monte Carlo algorithms

Adaptive Metropolis

Adaptive Metropolis

Symmetric Random Walk Metropolis algorithm

with Gaussian proposal distribution, with ”mysterious” (but famous)
scaling matrix

N
(

0,
2.382

d
Σπ

)
where Σπ is the unknown covariance matrix of π. [Roberts et al.

1997]

”unknown”?! estimate it on the fly, from the samples of the
algorithm −→ adaptive Metropolis algorithm
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Monte Carlo algorithms

Adaptive Metropolis

III. Simulations
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Simulations

Simulations

on

1 simulated data, from a ”banana” density

2 real data.



Estimation of cosmological parameters using adaptive importance sampling

Simulations

Simulated data

Simulated data

The target distribution in R10. Below marginal distribution of (x1,x2)

x1

x 2
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and (x3, · · · ,x10) are independent N (0,1).
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Simulated data
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Fig.: Iterations 1,3,5,7,9,11. 10k points per plot, except 100k in the lase one. Mixture of 9 t-distributions, with 9 degrees of freedom
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Simulations

Simulated data

Monitoring convergence: the Normalized perplexity (top panel) and the
Normalized Effective Sample size (bottom panel)

Fig.: for the first 10 iterations, over 500 simulation runs.
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Simulations

Simulated data

Comparison of adaptive MCMC and PMC:

fa(x) = x1 fb(x) = x2

� �

� �

fa fa

fbfb

PMC MCMC

Fig.: for the first 10 iterations, over 500 simulation runs.
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Application to cosmology

Application to cosmology

Evolution of the PMC algorithm: the likelihood is from the SNIa data
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Fig.: [left] evolution of the Gaussian mixtures with 5 components. [right] samples at the last PMC iteration, from the 5 components
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Simulations

Application to cosmology

Evolution of the weights: the likelihood is WMAP5 for a flat ΛCDM model

with six parameters

 0.001

 0.01

 0.1

 1

-30 -25 -20 -15 -10 -5

fr
e

q
u

e
n

c
y

log(importance weight)

iteration 0
iteration 3
iteration 6
iteration 9

Fig.: Histogram of the normalized weights for four iterations



Estimation of cosmological parameters using adaptive importance sampling

Simulations

Application to cosmology

Monitoring convergence: the likelihood is WMAP5 for a flat ΛCDM

model with six parameters

Fig.: perplexity (left) and ESS (right) as a function of the cumulative sample size

After 150k evaluations of π: ESS is about 0.7; mean acceptance rate
in MCMC about 0.25.
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Simulations

Application to cosmology

Comparison of MCMC and PMC: the likelihood is from the SNIa data
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Fig.: Marginalized likelihoods (68%,95%,99.7% contours are shown) for PMC (solid blue) and MCMC (dashed green)
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Simulations

Application to cosmology

Estimates of cosmological parameters: from the WMAP5 data (left) and

from the lensing+SNIa+CMB data sets (right)

Fig.: Means and 68% confidence intervals
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Conclusion

Cosmology provides challenging problems for Bayesian inference:

large dimension of the parameter space

time consuming likelihood

Open questions:

parallelization of Monte Carlo methods

methods robust to the dimension
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Librairie

Public release of the Bayesian sampling algorithm for cosmology,
CosmoPMC (Martin KILBINGER and Karim BENABED)
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