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From Parallel Tempering to Interacting Tempering
I The Equi Energy sampler Kou et al (2006) is an example of Interacting

Tempering algorithm.
I The idea is to replace an instantaneous swap by an interaction

with the whole past of a neighboring process on the temperature
ladder.

Equi-Energy sampler Kou et al (2006)

I Will define X(t) = {X(t)
n , n ≥ 0} with X(1) (hot temperature), · · · ,

X(K) target process.

I Algorithm: given the previous level X
(k−1)
1:n−1 and the current point

X
(k)
n−1, define X

(k)
n as follows:

I (MCMC step / local moves) with probability ε,

X(k)
n ∼ P (k)(X

(k)
n−1, ·) with P (k) s.t. π(k)P (k) = π(k)

I (Interaction step / global moves) otherwise,

(i) selection of a point X
(k−1)
• among the set {X(k−1)

1:n−1} with the same

energy level as X
(k)
n−1

(ii) acceptance-rejection ratio.
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Numerical application: on the interest of EE
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I target density : π =
∑20
i=1N2(µi,Σi)

I K processes with target distribution π1/Tk

(TK = 1)
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“Design parameters” of the EE sampler

1. How to choose the probability of interaction ε ?

2. How many temperatures, and which ones ?

3. How many energy levels, and which ones ?

Despite many convergence analysis (on EE with no selection)

I ergodicity: limn E[h(X
(K)
n )] = π(h)

I law of large numbers: 1
n

∑n
j=1 h(X

(K)
j )→ π(h) in P or a.s.

I CLT:
√
n
−1∑n

j=1{h(X
(K)
j )− π(h)} →D N (0, σ2)

see e.g. Kou, Zhou, Wong (2006); Atchadé (2010); Andrieu, Jasra, Doucet, Del Moral (2011); Fort, Moulines, Priouret (2012); Fort,

Moulines, Priouret, Vandekerkhove (2012) these problems are still open.
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“Design parameters” of the EE sampler

1. How to choose the probability of interaction ε ?

2. How many temperatures, and which ones ?

3. How many energy levels, and which ones ?

I In the original EE: energy rings = strata in the range of the energy
H of the target π

π(x) = exp(−H(x))

Choose Hi s.t. minH < H1 < · · · < HL.

Energy Ring #i = {x,H(x) ∈ [Hi−1, Hi]}

I Our contribution: tune adaptively the boundaries of the strata
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Num. Appl.: fixed boundaries vs adapted boundaries

I Target distribution on R6

π =
1

2
N6 (µ, 0.3 Id) +

1

2
N6 (−µ, 0.2 Id) µ = [2, · · · , 2]

I We compare Hastings-Metropolis (HM); and the EE sampler and the
Adaptive EE sampler when applied with 3 temperatures and 11
strata.

I The last plot is for the 2-d projection
(
uTX; vTX

)
with

uT ∝ [1, 1, · · · , 1] vT ∝ [1, 1, 1,−1,−1,−1]
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Behavior along one path: HM EE A-EE
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Behavior on 50 ind. run HM EE A-EE
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Adaptive tuning of the boundaries of the energy rings

↪→ How to define the boundaries H1, · · · , HL of the energy rings ?

Algorithm
I Level 1 (Hot level)

I Sample X(1) with target π1/T1 (MCMC).
I at each time n, update the boundaries H

(1)
n,1, · · · , H

(1)
n,L computed

from X
(1)
1:n

I Level 2
I Sample X(2) (MCMC step and interaction step) with target π1/T2 .

For the interaction step, use the boundaries H
(1)
• .

I at each time n, update the boundaries H
(2)
n,1, · · · , H

(2)
n,L computed

from X
(2)
1:n

I Repeat until Level K.
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On the convergence of such adaptive schemes
Convergence result: we prove ergodicity and a strong law of large
numbers for A-EE.
Our approach for the proof is by induction:

I we assume the process X(k−1) ”converges”.
I we prove that the process X(k) has the same convergence properties.
I Repeat from level 1 to K.

Tools for the proof:

I the conditional distribution L(X
(k)
n |past

(1:k)
n−1 ) is P

(k)
θn−1

(X
(k)
n−1, ·)

P
(k)
θn

(x, dy) = εP
(k)

(x, dy) + (1 − ε)K(k)
θn

(x, dy)

K
(k)
θn

(x,A) =

∫
A
α
(k)
θn

(x, y)
gθn

(x, y)θn(dy)∫
gθn

(x, z)θn(dz)
+ δx(A)

∫
{1 − α(k)

θn
(x, y)}

gθn
(x, y)θn(dy)∫

gθn
(x, z)θn(dz)

θn =
1

n

n∑
j=1

δ
X

(k−1)
j

α
(k)
θn

(x, y) = 1 ∧
π
1/Tk−1/Tk−1 (y)

π
1/Tk−1/Tk−1 (x)

∫
gθn

(x, z)θn(dz)∫
gθn

(y, z)θn(dz)

gθn
(x, y) = ”x and y are in the same energy ring with boundaries defined by H

(k−1)
n,• ”

(ex.)
=

{
0 if if x, y are in the same energy level
1 if otherwise



Parallel tempering and Interacting MCMC algorithms

Adaptive Equi-Energy sampler

On the convergence of such adaptive schemes
Convergence result: we prove ergodicity and a strong law of large
numbers for A-EE.
Our approach for the proof is by induction:

I we assume the process X(k−1) ”converges”.
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I the conditional distribution L(X
(k)
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(k)
θn−1

(X
(k)
n−1, ·)

I containment and diminishing adaptation conditions extensions from the pioneering

work by (Roberts, Rosenthal (2005)) + Poisson equation + Limit Theorems for
Martingales.

I condition on the adapted boundaries

(i) There exists β > 0 s.t. limn n
β
∣∣∣H(k)

n,• −H(k)
n−1,•

∣∣∣ = 0 w.p.1.

(ii) H
(k)
n,• → H

(k)
∞,• w.p.1 when n→∞.

(iii) assumption on the limiting boundaries:

inf
x

∫
g(k)∞ (x, y)π1/Tk (dy) > 0
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Example of adaptive boundaries

Example of adaptive boundaries:

choose exp(−H(k)
i ) for 1 ≤ i ≤ L (computed from X(k)) as the

quantiles of order i/(L+ 1) of the distribution of

π(Z) when Z ∼ π1/Tk

Note that in EE, when using the interacting step to sample X
(k)
n

I determine the ring such that Hi−1 ≤ − log π(X
(k)
n−1) ≤ Hi

I choose (at random) one point among X
(k−1)
1 , · · · , X(k−1)

n−1 such that

exp(−Hi) ≤ π(X
(k−1)
• ) ≤ exp(−Hi−1)

and accept / reject.

I When convergence: L(X
(k−1)
n )→ π1/Tk−1 when n→∞
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Quantile estimators

1) A first estimator, is based on the inversion of the empirical cdf

F (k)
n (h) =

1

n

n∑
j=1

1
π(X

(k)
j )≤h

(+) easy implementation
(-) time consuming

2) A second one is based on Stochastic Approximation procedures

H
(k)
n+1,• = H

(k)
n,• + γn+1 Ξ

(
X

(k)
n+1, H

(k)
n,•

)
(+) running time

(-) implementation of SA algorithm (choice of the step-size, initialization)
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Num. Appl.: Adaptive EE

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1 2 3 4 5 6 7 8 9 10

[left] True density (mixture of Gaussian,
same weights);
[right] Adaptive EE

Frequency of the visit to each com-
ponent of the mixture. Boxplot
with 50 ind. run



Parallel tempering and Interacting MCMC algorithms

Adaptive Equi-Energy sampler

Num. Appl.: Motif discovery in DNA sequence

Same model as in the talk of Dawn, yesterday:

I a background sequence, with a Markovian transition (known)

I motifs, of known length, with independent multinomial transition
(unknown)

Here is the result for A-EE and EE
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Conclusion

I EE depends on many design parameters that all play a role on the
efficiency of the sampler. We propose an adaptive procedure to
tune on the fly the energy rings.

I Convergence results are established ∗ when the quantiles are
estimated by inversion of the cdf.

I Work in progress: convergence when the quantiles are estimated by
a Stochastic Approximation procedure.
Challenging: convergence of SA algorithms when the draws are not
Markovian (thanks to M. Vihola).

I First convergence results on EE with selection of the auxiliary point
during the interaction step.

∗Submitted, available at http://perso.telecom-paristech.fr/ schreck
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