Parallel tempering and Interacting MCMC algorithms

Adaptive Equi-Energy sampler

Parallel tempering and Interacting MCMC algorithms

Gersende FORT / Eric MOULINES

Telecom Paris Tech CNRS - LTCI

Part II: Adaptive Equi-Energy samplers

Joint work with

Amandine Schreck

Aurélien Garivier and Eric Moulines

from LTCI, Telecom ParisTech & CNRS, France.

From Parallel Tempering to Interacting Tempering

- The Equi Energy sampler Kou et al (2006) is an example of Interacting Tempering algorithm.
- ► The idea is to replace an **instantaneous swap** by an **interaction** with the whole past of a **neighboring** process on the **temperature ladder**.

From Parallel Tempering to Interacting Tempering

- The Equi Energy sampler Kou et al (2006) is an example of Interacting Tempering algorithm.
- ► The idea is to replace an **instantaneous swap** by an **interaction** with the whole past of a **neighboring** process on the **temperature ladder**.

Equi-Energy sampler Kou et al (2006)

- ▶ Will define $X^{(t)} = \{X_n^{(t)}, n \ge 0\}$ with $X^{(1)}$ (hot temperature), ..., $X^{(K)}$ target process.
- Algorithm: given the previous level $X_{1:n-1}^{(k-1)}$ and the current point $X_{n-1}^{(k)}$, define $X_n^{(k)}$ as follows:
 - (MCMC step / local moves) with probability ϵ ,

 $X_n^{(k)} \sim P^{(k)}(X_{n-1}^{(k)}, \cdot) \qquad \text{with } P^{(k)} \text{ s.t. } \pi^{(k)}P^{(k)} = \pi^{(k)}$

- (Interaction step / global moves) otherwise,
 - (i) selection of a point X_•^(k-1) among the set {X_{1:n-1}^(k-1)} with the same energy level as X_{n-1}^(k)
 (ii) acceptance-rejection ratio.

Numerical application: on the interest of EE

- target density : $\pi = \sum_{i=1}^{20} \mathcal{N}_2(\mu_i, \Sigma_i)$
- ► K processes with target distribution π^{1/T_k} (T_K = 1)

"Design parameters" of the EE sampler

- 1. How to choose the **probability of interaction** ϵ ?
- 2. How many temperatures, and which ones ?
- 3. How many energy levels, and which ones ?

Despite many convergence analysis (on EE with no selection)

- ergodicity: $\lim_{n} \mathbb{E}[h(X_n^{(K)})] = \pi(h)$
- ▶ law of large numbers: $\frac{1}{n} \sum_{j=1}^{n} h(X_j^{(K)}) \to \pi(h)$ in \mathbb{P} or a.s.
- ► CLT: $\sqrt{n}^{-1} \sum_{j=1}^{n} \{h(X_j^{(K)}) \pi(h)\} \rightarrow_{\mathcal{D}} \mathcal{N}(0, \sigma^2)$

see e.g. Kou, Zhou, Wong (2006); Atchadé (2010); Andrieu, Jasra, Doucet, Del Moral (2011); Fort, Moulines, Priouret (2012); Fort, Moulines, Priouret, Vandekerkhove (2012) these problems are still open.

"Design parameters" of the EE sampler

- 1. How to choose the **probability of interaction** ϵ ?
- 2. How many temperatures, and which ones ?
- 3. How many energy levels, and which ones ?
 - In the original EE: energy rings = strata in the range of the energy *H* of the target π

$$\pi(x) = \exp(-\mathcal{H}(x))$$

Choose H_i s.t. $\min \mathcal{H} < H_1 < \cdots < H_L$.

Energy Ring
$$\#i = \{x, \mathcal{H}(x) \in [H_{i-1}, H_i]\}$$

Our contribution: tune adaptively the boundaries of the strata

Num. Appl.: fixed boundaries vs adapted boundaries

▶ Target distribution on ℝ⁶

$$\pi = \frac{1}{2} \mathcal{N}_6 \left(\mu, 0.3 \text{ Id} \right) + \frac{1}{2} \mathcal{N}_6 \left(-\mu, 0.2 \text{ Id} \right) \qquad \mu = [2, \cdots, 2]$$

- ▶ We compare Hastings-Metropolis (HM); and the EE sampler and the Adaptive EE sampler when applied with 3 temperatures and 11 strata.
- ► The last plot is for the 2-d projection $(u^T X; v^T X)$ with $u^T \propto [1, 1, \cdots, 1]$ $v^T \propto [1, 1, 1, -1, -1, -1]$

Behavior along one path: HM EE A-EE

[Top] Error when estimating the means

$$\frac{1}{6} \sum_{i=1}^{6} \left| \frac{1}{n} \sum_{j=1}^{n} X_{j,i}^{(K)} - \mathbb{E}_{\pi}[X_i] \right|$$

 $[Bottom \ L] \ Time \ spent \ in \ one \ of \ the \ mode \ where \ the \ path \ is \ initialized.$

[Bottom R] Probability of being in some ellipsoids, for the first mode (line) and the second one (dashed line)

Behavior on 50 ind. run HM EE A-EE

[Top] Error when estimating the means

$$\frac{1}{6} \sum_{i=1}^{6} \left| \frac{1}{n} \sum_{j=1}^{n} X_{j,i}^{(K)} - \mathbb{E}_{\pi}[X_i] \right|$$

[Bottom L] Time spent in one of the mode where the path is initialized.

[Bottom R] Probability of being in some ellipsoids for the first mode

Adaptive tuning of the boundaries of the energy rings

 \hookrightarrow How to define the boundaries H_1, \cdots, H_L of the energy rings ?

Algorithm

- ► Level 1 (Hot level)
 - Sample $X^{(1)}$ with target π^{1/T_1} (MCMC).
 - ► at each time n, update the boundaries H⁽¹⁾_{n,1}, · · · , H⁽¹⁾_{n,L} computed from X⁽¹⁾_{1:n}
- Level 2
 - ► Sample $X^{(2)}$ (MCMC step and interaction step) with target π^{1/T_2} . For the interaction step, use the boundaries $H_{\bullet}^{(1)}$.
 - ► at each time n, update the boundaries H⁽²⁾_{n,1}, · · · , H⁽²⁾_{n,L} computed from X⁽²⁾_{1m}
- Repeat until Level K.

On the convergence of such adaptive schemes

Convergence result: we prove ergodicity and a strong law of large numbers for A-EE.

Our approach for the proof is by induction:

- we assume the process $X^{(k-1)}$ "converges".
- we prove that the process $X^{(k)}$ has the same convergence properties.
- Repeat from level 1 to K.

Tools for the proof:

▶ the conditional distribution $\mathcal{L}(X_n^{(k)}|\text{past}_{n-1}^{(1:k)})$ is $P_{\theta_{n-1}}^{(k)}(X_{n-1}^{(k)}, \cdot)$

$$\begin{split} P_{\theta_n}^{(k)}(x,dy) &= \epsilon P^{(k)}(x,dy) + (1-\epsilon) K_{\theta_n}^{(k)}(x,dy) \\ K_{\theta_n}^{(k)}(x,A) &= \int_A \alpha_{\theta_n}^{(k)}(x,y) \, \frac{g_{\theta_n}(x,y)\theta_n(dy)}{\int g_{\theta_n}(x,z)\theta_n(dz)} + \delta_x(A) \, \int \{1-\alpha_{\theta_n}^{(k)}(x,y)\} \, \frac{g_{\theta_n}(x,y)\theta_n(dy)}{\int g_{\theta_n}(x,z)\theta_n(dz)} \\ \theta_n &= \frac{1}{n} \sum_{j=1}^n \delta_{X_j^{(k-1)}} \quad \alpha_{\theta_n}^{(k)}(x,y) = 1 \wedge \frac{\pi^{1/T_k-1/T_k-1}(y)}{\pi^{1/T_k-1/T_k-1}(x)} \frac{\int g_{\theta_n}(x,z)\theta_n(dz)}{\int g_{\theta_n}(y,z)\theta_n(dz)} \end{split}$$

 $g_{\theta n}\left(x,y\right)="x$ and y are in the same energy ring with boundaries defined by $H_{n, \bullet}^{\left(k-1\right)_{*}}$

 $\stackrel{(ex.)}{=} \left\{ \begin{array}{cc} 0 & \quad if \text{ if } x, y \text{ are in the same energy level} \\ 1 & \quad if \text{ otherwise} \end{array} \right.$

On the convergence of such adaptive schemes

Convergence result: we prove ergodicity and a strong law of large numbers for A-EE.

Our approach for the proof is by induction:

- we assume the process $X^{(k-1)}$ "converges".
- we prove that the process $X^{(k)}$ has the same convergence properties.
- ▶ Repeat from level 1 to K.

Tools for the proof:

- ▶ the conditional distribution $\mathcal{L}(X_n^{(k)}|\text{past}_{n-1}^{(1:k)})$ is $P_{\theta_{n-1}}^{(k)}(X_{n-1}^{(k)}, \cdot)$
- containment and diminishing adaptation conditions extensions from the pioneering work by (Roberts, Rosenthal (2005)) + Poisson equation + Limit Theorems for Martingales.

condition on the adapted boundaries

- (i) There exists $\beta > 0$ s.t. $\lim_n n^{\beta} \left| H_{n,\bullet}^{(k)} H_{n-1,\bullet}^{(k)} \right| = 0$ w.p.1.
- (ii) $H_{n,\bullet}^{(k)} \to H_{\infty,\bullet}^{(k)}$ w.p.1 when $n \to \infty$.

(iii) assumption on the limiting boundaries:

$$\inf_x \int g_\infty^{(k)}(x,y) \pi^{1/T_k}(dy) > 0$$

Example of adaptive boundaries

Example of adaptive boundaries:

choose $\exp(-H_i^{(k)})$ for $1\leq i\leq L$ (computed from $X^{(k)})$ as the quantiles of order i/(L+1) of the distribution of

 $\pi(Z)$ when $Z \sim \pi^{1/T_k}$

Example of adaptive boundaries

Example of adaptive boundaries:

choose $\exp(-H_{n,i}^{(k)})$ for $1 \le i \le L$ (computed from $X_{1:n}^{(k)}$) as an estimator of the quantiles of order i/(L+1) of the distribution of

 $\pi(Z)$ when $Z \sim \pi^{1/T_k}$

Example of adaptive boundaries

Example of adaptive boundaries:

choose $\exp(-H_{n,i}^{(k)})$ for $1 \le i \le L$ (computed from $X_{1:n}^{(k)}$) as an estimator of the quantiles of order i/(L+1) of the distribution of

$$\pi(Z)$$
 when $Z \sim \pi^{1/T_k}$

Note that in EE, when using the interacting step to sample $X_n^{(k)}$

- determine the ring such that $H_{i-1} \leq -\log \pi(X_{n-1}^{(k)}) \leq H_i$
- choose (at random) one point among $X_1^{(k-1)}, \cdots, X_{n-1}^{(k-1)}$ such that

$$\exp(-H_i) \le \pi(X_{\bullet}^{(k-1)}) \le \exp(-H_{i-1})$$

and accept / reject.

• When convergence: $\mathcal{L}(X_n^{(k-1)}) \to \pi^{1/T_{k-1}}$ when $n \to \infty$

Quantile estimators

1) A first estimator, is based on the inversion of the empirical cdf

$$F_n^{(k)}(h) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\pi(X_j^{(k)}) \le h}$$

(+) easy implementation(-) time consuming

2) A second one is based on Stochastic Approximation procedures

$$H_{n+1,\bullet}^{(k)} = H_{n,\bullet}^{(k)} + \gamma_{n+1} \Xi \left(X_{n+1}^{(k)}, H_{n,\bullet}^{(k)} \right)$$

(+) running time

(-) implementation of SA algorithm (choice of the step-size, initialization)

Num. Appl.: Adaptive EE

0.22

[left] True density (mixture of Gaussian, same weights); [right] Adaptive EE Frequency of the visit to each component of the mixture. Boxplot with 50 ind. run

Num. Appl.: Motif discovery in DNA sequence

Same model as in the talk of Dawn, yesterday:

- > a background sequence, with a Markovian transition (known)
- motifs, of known length, with independent multinomial transition (unknown)

Here is the result for A-EE and EE

Conclusion

- EE depends on many design parameters that all play a role on the efficiency of the sampler. We propose an adaptive procedure to tune on the fly the energy rings.
- Convergence results are established * when the quantiles are estimated by inversion of the cdf.
- Work in progress: convergence when the quantiles are estimated by a Stochastic Approximation procedure.
 Challenging: convergence of SA algorithms when the draws are **not** Markovian (thanks to M. Vihola).
- First convergence results on EE with selection of the auxiliary point during the interaction step.

^{*}Submitted, available at http://perso.telecom-paristech.fr/ schreck