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Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization

In this talk

@ A novel EM algorithm: Geom-SPIDER-EM

Adapted to the finite sum setting (large number of examples n)

Stochastic: it combines
o the stochastic approximation method
@ a variance reduction technique

@ Same complexity as SPIDER-EM (ror et al, 2020) — State of the art, among the
incremental EM's.
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Figure: Nbr of processed examples required to reach convergence, as a function of the problem size n. From Fort et al. (2020,
NeurlPS)
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The optimization problem

Optimization problem: finite sum setting, for curved exponential families

@ Solve on © C R? the minimization problem

axgmingco Zlog [ pes)dna) +RO. pi(zi0) >0

@ Curved exponential family:
—Zlog [ Riten) ex (520, 0(60)) du(z0) + REO)

@ In computational Statistics: minimization of the (penalized) negative
likelihood in latent variable models:

o finite sum setting when the observations are independent.
° p; = Py, (2i;0) is the complete data likelihood of the pair #i: (Y3, Z;)

o Curved exponential family: e.g. mixture of curved exponential distributions.
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EM in this context

From EM to incremental EM

Objective function:

n
- log/zpiu;e)du(zi) FRO),  pi(z:0) = hy(zy) exp ((s;(z;). $(60)))
i=1

e EM algorithm: Repeat for ¢t =0, ...
_ 1 - _ pi(2;0)

E-step 5(0:) = — 5:(0 where5i92/5i27d z
) =~ > 56 0) = [ 5G) 1t G )

i=1

M-step 0t+1 =T (§(0t))

where
T(s) = argming.g R(0) — (s, 0(6))
E-step — sum over n expectations — Large computational cost of each EM

iteration, when n is large !

e Given a computational budget, what is the best strategy: few iterations of

EM or many iterations of incremental EM ?
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Incremental EM algorithms in the expectation space

Incremental EM algorithms in the expectation space
e EM: an algorithm in the expectation space

Oi+1 =T o5(0:) :TO§OTO§...§oTo§(00)
St+1—SOTSt ZSzOT St
e EM designed to find the roots of
h(s) der 1 ié oT(s) —s=E[51(s) —s+ V]
n

=1

where I ~U({1,...,n}) and V is a control variate i.e. r.v. correlated with 5;
and centered.
e Stochastic Approximation The algorithm

§t+1 =5 + Yer1Het1 E[Hit1|past,] = h(gt)

has the same limiting set: {s: h(s) = 0}.
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L Variance reduction within Stochastic Approximation scheme

Variance reduced incremental EM

. . 1 ~ 5
St41 = St + Vi1 b Z 5, 0T(S:) — St + Vet
1€BL 41
where B:y1 is a mini-batch of examples of size b << n.

@ Online-EM ' (Neal and Hinton, 1998; Cappé and Moutines, 2009). NO variance reduction
(Vig1 =0).

@ sEM-vr: Stochastic Expectation Maximization with Variance Reduction
Chen et al, 2018

o FIEM: Fast Increment Expectation Maximization Karimi et al, 2019; Fort et al, 2021

@ SPIDER-EM Fort et al, 2020 and Geom-SPIDER-EM: Stochastic Path Integrated
Differential EstimatoR Expectation Maximization

Vieir=Ve + % Z 5;0T(Si—1) — % Z 5; 0 T(St—1)

i€Bt 1€EBi 41

t
=Vo+ >, %ZQOT(@;_Q—% > 5ioT(Se)
£=0

ieBy i€By 41
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LGeom—SPIDER—EM

Geom-SPIDER-EM (Stochastic Path Integrated Differential EstimatoR)

—~

1: S1,0 = 51,-1 = Sinit S10=50T(S1,-1)+&

2. fort=1,---  kout do

3: fork=0,...,& —1do

4 Sample a mini batch By x4+1 of size b from {1,--- n}
5

Stht1 =Stk +b 1Y (§i 0 T(Sek) —5i o T(gt,kfl))

1E€B k41

6 gt,k+1 = gt,k + YV k+1 (St,k+1 - gtk)

7. endfor

8 Stt1,-1 = Sie,

9 Siy10=50T (811, 1)+ En Ei41: a possible error
10: §t+1,0 = §t+1,71 + Yt+1,0 (St+1,0 - §t+1,71)

11: end for

The control variate is refreshed at each outer loop #t (see Line 9)
The length of the outer loop is a Geometric random variable &,
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Application: inference in GMM (from the MNIST data set) (1/2)
Gaussian mixture models in R?°; G = 12 components; n = 6 10* examples
Displayed: quantile of order 0.5 of ‘|h(§t7§t)||2 vs the number of epochs (left)

and vs the number of §;'s evaluations (right)

Remember: £ = {s :50 T(s) — s = 0} is the limiting set of EM in the expectation space.

- online-EM e
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Length of each outer: either constant (ctt) & = kin, or a geometric r.v. (geom) with expectation
Kin
When refreshing the control variate: use the full data set (full), or the half data set (half) or a

quadratically increasing nbr of examples (quad).
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LGeom—SPIDER—EM applied to inference in GMM

Application: inference in GMM (from the MNIST data set) (2/2)

Displayed: evolution of the normalized log-likelihood vs the number of §;'s
evaluations until 2e6 (left) and after (right).
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L Geom-SPIDER-EM applied to inference in GMM

Complexity for e-approximate stationarity
We provide an explicit expression of an upper bound for

E [IIh(Sr.e, )]

@ in the non convex setting
@ at the end of an outer loop #7 where 7 is sampled unif. in {1, -+, kout }

@ as a function of kous, b, n and the learning rate v (= 74, for any ¢,k > 0)
and the expectation ki, of &;.

To reach e-stationarity, the complexity of Geom-SPIDER-EM
With: kin = b = O(y/n), kou = O(1/(ckin))

Nbr of optimization steps: O(1/¢)
Nbr of 5;'s evaluations: K=0K/net)

For Online EM: K=0(?

For sEM-vr: K=0m?et)

For FIEM: K=0mn*?e Ayne3/?)
For SPIDER-EM: K=0(/net)
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