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The Perturbed Prox-Preconditioned SPIDER algorithm for EM-based large scale learning

In the paper

A novel EM algorithm: Perturbed-Prox-Preconditioned-SPIDER-EM

Adapted to the large scale learning setting – large number of examples n

Stochastic EM: it combines
the Stochastic Approximation method
a variance reduction technique

Built on SPIDER-EM (Fort et al, 2020) – state of the art among the incremental
EM’s.
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Figure: Nbr of processed examples required to reach convergence, as a function of the problem size n. From Fort et al. (2020,
NeurIPS)
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The optimization problem SSP 2021

Optimization problem at hand

Solve on Θ ⊆ Rd the minimization problem

argminθ∈ΘF (θ)

F (θ)
def
= −

n∑
i=1

log

∫
Z

hi(zi) exp (〈si(zi), φ(θ)〉) dµ(zi) + R(θ), hi(z) > 0

In Statistical Learning:
minimization of the (penalized) negative log-likelihood in latent variable
models.

observations Y1, · · · , Yn; latent variables Z1, · · · , Zn. hi ← hYi
; si ← sYi

.

finite sum setting when the observations are independent.

the complete data likelihood of the pair #i: (Yi, Zi) is from the Curved
exponential family

An example ? inference in Gaussian Mixtures Models, inference in mixtures
of densities from the curved exponential family, inference in logistic
regression models, · · · .
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What EM would do SSP 2021

What EM would do

Objective function:

−
n∑
i=1

log

∫
Z
hi(zi) exp

(〈
si(zi), φ(θ)

〉)
dµ(zi) + R(θ),

Repeat for t = 0, . . .

Expectation Step:
- for i = 1, · · · , n, compute the expectation of the sufficient statistics si
under the conditional distribution of the latent variables given the
observations

si(θ) =

∫
Z

si(z)
pi(z; θ)∫

pi(u; θ)dµ(u)
dµ(z) pi(z; θ) ∝ hi(zi) exp

(〈
si(zi), φ(θ)

〉)

- compute the sum

s(θt) =
1

n

n∑
i=1

si(θt)

Optimization Step: update the parameter

θt+1 = T(s(θt)) T(s)
def
= argminθ∈Θ R(θ)− 〈s, φ(θ)〉

Intractable !! → a novel incremental EM
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What Incremental EM’s do SSP 2021

What incremental EM’s do

based on the observation that EM is equivalent to find the root of

h(s)
def
= n−1

n∑
i=1

si ◦ T(s)− s = E [sI ◦ T(s)− s]

designed to address the finite sum setting

use a Stochastic Approximation update mechanism

Ŝt+1 = Ŝt + γt+1Ht+1 Ht+1 ≈ h(Ŝt)

Key observation for the definition of the field Ht+1

h(s) = E [sI ◦ T(s)− s+V ] E[V ] = 0.
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What our algorithm 3P-SPIDER-EM does SSP 2021

What 3P-SPIDER-EM does

As for Incremental EM’s: a stochastic approximation of the full sum

1

b

∑
i∈Bt+1

si ◦ T(Ŝt)− Ŝt

(new) An approximation of the conditional expectations, possibly random

ŝti ≈ si ◦ T(Ŝt)

The same definition of the control variate V as in SPIDER-EM Fort et al., 2020

(new) Constraint on the updated statistics : θ ∈ Θ→ s ◦ T(s) ∈ S

Ŝt+1 = ProxBt+1,γt+1g

(
Ŝt + γt+1Ht+1

)
ProxB,g(s)

def
= argminug(u) +

1

2
‖u − s‖2B

For the convergence analysis: 3P-SPIDER-EM does not satisfy the descent
property of EM:

F ◦ T(Ŝt+1) ≤ F ◦ T(Ŝt)

but 3P-SPIDER-EM is related to a preconditioned gradient algorithm

∇(F ◦ T) = −B(s) h(s) Bt+1
def
= B(Ŝt)
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3P-SPIDER-EM SSP 2021

Perturbed-Prox-Preconditioned-SPIDER-EM (Stochastic Path Integrated Differential

EstimatoR)

1: Ŝ1,0 = Ŝ1,−1 = Ŝinit S1,0 = s ◦ T(Ŝ1,−1) + E1
2: for t = 1, · · · , kout do
3: for k = 0, . . . , kin − 1 do
4: Sample a mini batch Bt,k+1 of size b from {1, · · · , n}
5: St,k+1 = St,k + b−1∑

i∈Bt,k+1

(
ŝt,ki − ŝt,k−1

i

)
6: Ŝt,k+1/2 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)
7: Ŝt,k+1 = ProxBt,k,γt,k+1g

(
Ŝt,k+1/2

)
8: end for
9: Ŝt+1,−1 = Ŝt,kin

10: St+1,0 = s ◦ T(Ŝt+1,−1) + Et+1 Et+1: a possible error

11: Ŝt+1,−1/2 = Ŝt+1,−1 + γt+1,0

(
St+1,0 − Ŝt+1,−1

)
12: Ŝt+1,0 = ProxBt+1,−1,γt+1,0g

(
Ŝt+1,−1/2

)
13: end for
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Convergence Analysis SSP 2021

Convergence Analysis

I Non-convex optimization problem: find the root of s 7→ h(s)

Explicit control in expectation of the algorithm stopped at a random
termination time

E
[
‖h(Ŝτ,K)‖2

]
(τ,K) ∼ U ([1, · · · , kout]× [0, · · · , kin − 1])

With conditions on the perturbations si ◦T(Ŝt,k)− ŝt,ki , which are satisfied when Monte

Carlo approximation of si .

I Technical difficulties for the proof:

A biased control variate

E
[
St,k+1|pastt,k

]
6= n−1

n∑
i=1

si ◦ T(Ŝt,k)

A possibly biased approximation si ◦ T(Ŝt,k)− ŝt,ki
The proximal operator

See the companion paper ”The Perturbed Prox-Preconditioned SPIDER
algorithm: non-asymptotic convergence bounds”, SSP 2021
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Application SSP 2021

The logistic regression model

Application: The logistic regression model

n observations Yi ∈ {−1, 1}

P(Yi = 1|Zi) =
1

exp (−〈Xi, Zi〉)
Zi ∼ Nd(θ, σ2I)

Unknown: the expectation θ of the individual predictors Zi (latent
variables).

Ridge penalized ML estimator.

si(θ) is an intractable expectation → MCMC sampler.

Numerical illustrations: from the MNIST data set. Class 1 contains 12873
images (labels 1 and 3); class −1 contains 12116 images (labels 7 and 8)
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The logistic regression model

Application: 3P-SPIDER-EM compared to Online EM

Displayed: the variation, estimated by MC over 25 independent runs

E

[
‖Ŝt,k − Ŝt,k−1‖2

γ2
t,k

]
a kind of distance to the roots of h

vs the number of epochs. Compared to full OnlineEM and sqr Online EM.
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Conclusion: Despite the proximal step and the MCMC approximations of s′is,
3P-SPIDER-EM improve on classical Incremental EM.
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Application SSP 2021

The logistic regression model

Application: approximation ŝt,ki and strategy for γt,0
Displayed: the variation, estimated by MC over 25 independent runs

E

[
‖Ŝt,k − Ŝt,k−1‖2

γ2
t,k

]
vs the number of epochs. When the number of MC points is increased (see
Case 1 and Cases 2,3); when γt,0 = 0 or not (see Case 2 and Case 3).
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Conclusion: The efficiency of 3P-SPIDER-EM depends on the quality of the
approximations of the si’s; the strategy for γt,0 is not clear (→ an error at the
same level as the MCMC approximations here)
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