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Motivation (1/4)

Goal:
Explore the support of a distribution wd\ on X C RP
and/or compute integrals w.r.t. =

| 1@ w@)irw)
when 7 is highly metastable, p is large.

Solution: based on Importance Sampling (IS)
Sample X1, -, X,,,--- "&" 7 da

Define the IS approximation

RIS

importance ratio
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Motivation (2/4) - How to choose 7 ?

@ Define a partition of the support X (motecutar dynamics: Chipot, Pohorille (2007) and Lelievre, Rousset, Stoltz

(2010); Statistics: Chopin, Lelievre, Stoltz (2012))
X = U X d strata

@ A family of auxiliary distribution based on a local biasing
For all positive vector 7 = (7(1),--- ,7(d)) () > 0,Vi

d

def 7T :L’
mr(2) = E O] Z 7(7)
=1 T(z =1

0. (1) def / wdA, up to a constant, log 0, (i) is the free-energy
Xi
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X = U X d strata

@ A family of auxiliary distribution based on a local biasing
For all positive vector 7 = (7(1),--- ,7(d)) () > 0,Vi

d

def 7T :L’
mr(2) = E O] Z 7(7)
=1 T(z =1

0. (1) def / wdA, up to a constant, log 0, (i) is the free-energy
X

0

Key property: mg, (X;) = 1/d — all the strata have the same weight: efficient to
tackle multimodality ! but 6, is unknown.

?
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Motivation - Adaptive Importance Sampling (3/4)

An iterative algorithm which
o Will learn on the fly the weight vector 6, though a Stochastic Approximation
algorithm
On+1 = 0On + Vi1 H (On, Xni1)

where H is chosen so that 6, is the unique solution of

/H(G,x) mo(x) dA(z) = 0.
o from draws X, 1

Xny1 ~ Py, (X, ") kernel with inv. dist. g,
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Motivation - Adaptive Importance Sampling (3/4)

An iterative algorithm which
o Will learn on the fly the weight vector 6, though a Stochastic Approximation
algorithm
On+1 = 0On + Vi1 H (On, Xni1)

where H is chosen so that 6, is the unique solution of

/H(G,x) mo(x) dA(z) = 0.
o from draws X, 1

Xny1 ~ Py, (X, ") kernel with inv. dist. g,

If convergence is established
@ An estimator of the free energy: lim,, 6, = 0,.
@ An approximatiton of the target distribution 7 - computed on the fly/online

n d
/fwd/\ = lim % > F(Xk) (Z 0 (i) T, (Xk:)>
k=1 =1
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Motivation - Choice of the field H (0, z) (4/4)

A family of algorithms: Wang Landau, Self Healing Umbrella Sampling (SHUS),
Well-Tempered Metadynamics, SHUS?

on the form

@ Given a new draw X1 ~ Py, (X,,-) with inv. dist. 7,
@ Update a counter of the visits to a stratum

Cn+l(7:> = Cu(i) + ( : ')2 IIx, (Xn+l) i=1,---.,d
© Normalize the counter to obtain a weight vector

Cn-ﬁ—l (7)

= —0,(i) +Yns1- - +O(0E)  i=1,---.d
d . n n+1 ’ ’
Zj:l Crnt1(4)

071,+1 (7)

Fundamental: if X, 11 € X;

CnJrl(i) > Cn(i)7 CnJrl(j) = Cn(])7] #i
= 0,41 (X7) <79, (X7)7 T, 41 (XJ) =T, (X])
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A Wang-Landau (WL) based algorithm



a WL based algorithm - algorithm (1/3)

(adapted from) the Wang-Landau algorithm  was snd tandsu, 2001
Input:
- initial values: a point Xo € X and a counter Cy € (R* )¢

- a positive (deterministic) stepsize sequence {~y,,n > 0}

Forn=0,1,---
- Normalize the counter
C (i
Gn(i):%, Vi=1,---,d
Z_j:l Cn(4)
- Draw a new point: X, 11 ~ Py, (Xp,") kernel with inv. dist. g,

- Update the counter of the visited stratum

Cn-i-l(i) = Cn(l) + Yn+1 Cn(z) ]IXz' (Xn+1)> Vi = 1; T ad
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On the form

Ont1(i) =

a WL based algorithm - convergence results (2/3)

d
Qn(i) + Yn+1 (9n(i)]lxi (Xn+1) - Z en(j)]IXj (Xn+1)> + 7721+1Ow.p.1.(1)~

Jj=1



a WL based algorithm - convergence results (2/3)

On the form

d
On+1(1) = 0n (i) + Ynt1 (en(l)ﬂx Xn+1) Z 0n () ]IX n+1)> + 'Yr%-&-low-p-l'(l)'

Under conditions on
- the strata and the target: 0 < infx 7 < supy 7 < oo, 6,(7) > 0.
- the ergodicity of the kernels Py
- the stepsize sequence v,: > Y = 400, D 72 < 00

it is proved asymptotic results (r. jourdain, kuhn, Lelitvre, Stoltz, 2015a)
@ The a.s. convergence of the sequence 6,, to 6,.

@ The "convergence” of the samples { Xy, -+, X, -}

n d
/fwdA = lim % > F(XR) (Z 05, (i) Ix, (Xk)> a.s.
k=1 i=1

— very bad Effective Sample Size
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a WL based algorithm - convergence results (3/3)

and role of the stepsize sequence (r. sourdain, Kuhn, Lelievre, Stoltz, 20150) 1N the transient phase

0 50000 100000 150000 200000 250000 300000
iteration index

Figure: Left: level curves of the target density. Right: typical trajectory for 5 = 15
when v, = v, /n% with o = 0.6 and , = 1.

@ The density depends on a parameter 3: large values of 3 increases the
metastability phenomenon.
o We choose 7y, = 7,/n* «a € (1/2,1]

1
lIlT(a<1) = C(O(,’y*) + 1— a h’lﬁ lnT(ozzl) = C('Y*) + 1 :L_OP)/ B

— "self tuned” step size v,



An Adaptive Importance Sampling with
- self-tuned stepsize sequence
- partial biasing to improve the IS step

SHUS?



A new algorithm

Self-tuned and Partially biasing algorithm (. seusin, Leiewe, stotz (2016))
Input:
- initial values: a point Xo € X and a counter Cyy € (R} )?

- a biasing function p and a stepsize control function g

Forn=0,1,---
- Normalize the counter
en(l): an(Z) N V’L:]., 7d
Ej:l Crn(7)
- Draw a new point: X, 11 ~ Py,)(Xn,*) kernel with inv. dist. 7,
- Update the counter of the visited stratum Yi=1,---,d
~ d
Crt1(5) = Cn(3) + ’ > Culh) Ix, (Xnt1),
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The intuition for this new update rule of C),

d
The samples X,, “~" 7
» A counter of the visits to each stratum

Cu(i) = Cro1 (i) + 71, (Xn) = Co(i) +7 Y Ux, (Xx) = Cu(d) ~ 10 0. ()

k=1
d
= Cn_l(l) Cn 1 X (Xn)
Z' 071 l( (]Zl )
%/_/
'\Vﬂ:O(l/n)

» The estimate of 6,

9()*9n 1()+/”(

HM&
v
+
o
o

» For approximation of integrals

1 n
[marm > 1)
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The intuition for this new update rule of C,

- .d.
The samples X N L ‘XH ~ Tp6,) X Z/fl o () HX/;

» A counter of the visits to each stratum

Cn(t) = Ch_1(t S
( ) 1( )+ 2?21 Cnfl(j)
—_————

Yn=0(1/n)

i Mn.

o)
>
>*

=
x
o
3

N—

» The estimate of 6,

O (1) = 01 () + 70 [ 00000k, (Xp) = Y (0. ()T, (Xn) | 4 Owpr(722)

-

1

J

» For approximation of integrals

d [

o 0.(J)

N ) - 4)
/fwd)\ Zf ) Zﬂ :) ;mm(m

The discrepancy between the weights is modified through p. e t¢,0 < <1
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The intuition for this new update rule of C,
.d.

The samples X,, "% 7; x, To(6,) x Y, RS
» A counter of the visits to each stratum

d
O (i) = Crn (i) + 7 Cor(G) | p(0.0)) Ty, (X))
g (Zim Cana() ;2
Yn—0

» The estimate of 6,

d
=1

» For approximation of integrals
d

1 Lo 0..(5)
d\ ~ — X 0, Iy (X} T
[ LD PO AP G

The discrepancy between the weights is modified through p. e ¢, 0 <a <1
Control the step size through a function g
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The intuition for this new update rule of C,

- . .(/. d T p . .
The samples X, (SR To(0.) % 2 i1 5y Ux.: The weight 6, is
learnt along iterations
» A counter of the visits to each stratum

d
Co(i) = Cos (i) + i Cre1(4) | p(001(0)) Tx, (X,)
g (Z;Izl Cn,—lU)) Z ! ’ ’

Yn—0

» The estimate of 0,

d
0 (i) = On1(i) + 7 | (0, 1()) )= o0 %, (Xn) | + Owpa(72

Jj=1

» For approximation of integrals

LS E W] DR Doprsr
k=1 J=1 =

The discrepancy between the weights is modified through p. e t2,0 <«
Control the step size through a function g
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Assumptions

@ On the target density 0 < infx 7 < supy 7 < oo and 6, (i) > 0

Q On the ergodic behavior of the kernels Hastings-Metropolis kernel, with proposal
q(z,y)dA(y) such that infy2 ¢ > 0

@ On the function p — satisfied with p(t) = t* with a € [0,1)

@ On the function g, chosen of the form g(s) = (In(1 + 5))*/( =) with
ae(1/2,1)
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Convergence results (1/2)

By using sufficient conditions for convergence of Adaptive MCMC samplers .,
Moulines, Priouret (2012) and convergence of Stochastic Approximation algo with controlled
Markovian dynamics Andrieu, Moulines, Priouret (2005)

» On the random sequence ~,, almost-surely,

= _0.0)
limy,n® = (1 — a)® 41~ — a.s.
n ]2 p( *(]))
» On the weight sequence 0,, almost-surely,
limé,, =6,

» On the Importance Sampling step almost-surely,

n d d

im : OeaG) ) [
h}lnn;f(Xk) ;P(Gk—l(J))ij(Xk) ;p(9k—1(j)) /f d\

20



Convergence results (2/2)

We wrote the results in the case
p(t) = t* with a € [0,1)
g(s) = (In(1 + 5))*/ 1= with a € (1/2,1)

but our convergence analysis also includes the case

(] p(t) =t and g(s) = S (F., Jourdain, Leli¢vre, Stoltz, 2016)
In that case, our algorithm is the Self Healing Umbrella Sampling algorithm
(Marsili et al. 2006)

"no partial biasing” and "self-tuned stepsize”

e p(t)=1t*a€l01) g(s) =st7
In that case, our algorithm is a discrete setting of the Well-Tempered
metadynamics algorithm (Barducci, Bussi and Parrinello (2008))
" partial biasing” and "self-tuned stepsize” with a correlated parameter a.
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Is there a gain

i
i
ik

beta-t bata-s.

Make the metastability larger by increasing .

in such a self-tuned and partially biasing algorithm ?
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Case p(t) =t for a € [0,1)
g(s) = (In(1 +5))*/0= for @ € (1/2,1) = = 0unym)
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Figure: Left: Exit times for @« = 0.8. Right: Exit times for o = 0.6.

Start from the left mode, measure the exit time 7" i.e. time to reach X,, ; > 1

T 1 when g 1

for fixed B and a: T | when « |.

for fixed B and a: T | when a 1.

Linear fit with a slope indep of a: InT =c+ (1 —a) 'Inf o



Comparison to the Well-Tempered Metadynamics
g(S) — gl-a (= v = 0(1/n)) and p(t) = t% for a € (O, 1)
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Figure: Left: Exit times for various values of a. Right: Associated slopes, fitted by
2.43(1 — a).

Exit time T
o Linear fit: InT =c+2.43(1 — a)p
e For fixed 8: T' | when a 1
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Normalized Effective Sample Size (EF)

Case v, = O(1/n®) for a € (1/2,1), p(t) =t fora € [0,1)
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Figure: Efficiency factors EF(a) for various values of 3.
(n~' Yy w(Xk) )
(n=1 3oy w? (X))

@ By definition, when uniform weights, EF = 1.
o For fixed 8, EF 1 when a |

EF = € [0,1]
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Conclusion

A new algorithm

which estimates the free energy of 7 by a Stochastic Approximation
algorithm, where the stepsize sequence {y,,n > 0} is tuned on the fly

which provides an approximation of 7 by a set of weighted points with a
controlled discrepancy of the weights.

which requires two design parameters («, a) to be fixed by the user

- a close to 1 in the transient phase, and a close to 0 at convergence.
-« close to 1/2 in the transient phase.

far more efficient in the transient phase than Well-Tempered Metadynamics
or SHUS or WL.



