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Motivation (1/4)

Goal:

Explore the support of a distribution π dλ on X ⊆ Rp

and/or compute integrals w.r.t. π∫
X

f(x) π(x)dλ(x)

when π is highly metastable, p is large.

Solution: based on Importance Sampling (IS)

Sample X1, · · · , Xn, · · ·
i.i.d.∼ π̃ dλ

Define the IS approximation∫
X

f πdλ ≈ 1

n

n∑
k=1

π(Xk)

π̃(Xk)︸ ︷︷ ︸
importance ratio

f(Xk).
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Motivation (2/4) - How to choose π̃ ?

Define a partition of the support X (Molecular dynamics: Chipot, Pohorille (2007) and Lelievre, Rousset, Stoltz

(2010); Statistics: Chopin, Lelievre, Stoltz (2012))

X =

d⋃
i=1

Xi d strata

A family of auxiliary distribution based on a local biasing
For all positive vector τ = (τ(1), · · · , τ(d)) τ(i) > 0, ∀i

πτ (x)
def
=

1∑d
i=1

θ?(i)
τ(i)

d∑
i=1

π(x)

τ(i)
1IXi(x),

where

θ?(i)
def
=

∫
Xi

πdλ, up to a constant, log θ?(i) is the free-energy

Key property: πθ?(Xi) = 1/d – all the strata have the same weight: efficient to
tackle multimodality ! but θ? is unknown.
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Motivation - Adaptive Importance Sampling (3/4)

An iterative algorithm which

Will learn on the fly the weight vector θ? though a Stochastic Approximation
algorithm

θn+1 = θn + γn+1H(θn, Xn+1)

where H is chosen so that θ? is the unique solution of∫
H(θ, x) πθ(x) dλ(x) = 0.

from draws Xn+1

Xn+1 ∼ Pθn(Xn, ·) kernel with inv. dist. πθn

If convergence is established

An estimator of the free energy: limn θn = θ?.

An approximatiton of the target distribution π - computed on the fly/online∫
f πdλ = lim

n

d

n

n∑
k=1

f(Xk)

(
d∑
i=1

θk(i)1IXi(Xk)

)

4 / 20



Motivation - Adaptive Importance Sampling (3/4)

An iterative algorithm which

Will learn on the fly the weight vector θ? though a Stochastic Approximation
algorithm

θn+1 = θn + γn+1H(θn, Xn+1)

where H is chosen so that θ? is the unique solution of∫
H(θ, x) πθ(x) dλ(x) = 0.

from draws Xn+1

Xn+1 ∼ Pθn(Xn, ·) kernel with inv. dist. πθn

If convergence is established

An estimator of the free energy: limn θn = θ?.

An approximatiton of the target distribution π - computed on the fly/online∫
f πdλ = lim

n

d

n

n∑
k=1

f(Xk)

(
d∑
i=1

θk(i)1IXi(Xk)

)
4 / 20



Motivation - Choice of the field H(θ, x) (4/4)

A family of algorithms: Wang Landau, Self Healing Umbrella Sampling (SHUS),
Well-Tempered Metadynamics, SHUSgρ

on the form

1 Given a new draw Xn+1 ∼ Pθn(Xn, ·) with inv. dist. πθn
2 Update a counter of the visits to a stratum

Cn+1(i) = Cn(i) + (· · ·)2 1IXi(Xn+1) i = 1, · · · , d

3 Normalize the counter to obtain a weight vector

θn+1(i) =
Cn+1(i)∑d
j=1 Cn+1(j)

= θn(i) + γn+1 · · ·+O(γ2n+1) i = 1, · · · , d

Fundamental: if Xn+1 ∈ Xi

Cn+1(i) > Cn(i), Cn+1(j) = Cn(j), j 6= i

=⇒ πθn+1
(Xi) < πθn(Xi), πθn+1

(Xj) = πθn(Xj).
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A Wang-Landau (WL) based algorithm
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a WL based algorithm - algorithm (1/3)

(adapted from) the Wang-Landau algorithm (Wang and Landau, 2001)

Input:

- initial values: a point X0 ∈ X and a counter C0 ∈ (R?+)d

- a positive (deterministic) stepsize sequence {γn, n ≥ 0}

For n = 0, 1, · · ·
- Normalize the counter

θn(i) =
Cn(i)∑d
j=1 Cn(j)

, ∀i = 1, · · · , d

- Draw a new point: Xn+1 ∼ Pθn(Xn, ·) kernel with inv. dist. πθn
- Update the counter of the visited stratum

Cn+1(i) = Cn(i) + γn+1 Cn(i) 1IXi(Xn+1), ∀i = 1, · · · , d
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a WL based algorithm - convergence results (2/3)

On the form

θn+1(i) = θn(i) + γn+1

θn(i)1IXi (Xn+1)−
d∑

j=1

θn(j)1IXj (Xn+1)

+ γ2n+1Ow.p.1.(1).

Under conditions on

- the strata and the target: 0 < infX π ≤ supX π <∞, θ?(i) > 0.

- the ergodicity of the kernels Pθ

- the stepsize sequence γn:
∑
n γn = +∞,

∑
n γ

2
n <∞

it is proved asymptotic results (F., Jourdain, Kuhn, Lelièvre, Stoltz, 2015a)

1 The a.s. convergence of the sequence θn to θ?.

2 The ”convergence” of the samples {X1, · · · , Xn, · · · }∫
f πdλ = lim

n

d

n

n∑
k=1

f(Xk)

(
d∑
i=1

θk(i)1IXi(Xk)

)
a.s.

↪→ very bad Effective Sample Size
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a WL based algorithm - convergence results (3/3)

and role of the stepsize sequence (F., Jourdain, Kuhn, Lelièvre, Stoltz, 2015b) in the transient phase
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Figure: Left: level curves of the target density. Right: typical trajectory for β = 15
when γn = γ?/n

0.6 with α = 0.6 and γ? = 1.

The density depends on a parameter β: large values of β increases the
metastability phenomenon.
We choose γn = γ?/n

α α ∈ (1/2, 1]

lnT(α<1) = C(α, γ?) +
1

1− α
lnβ lnT(α=1) = C(γ?) +

µ0

1 + γ?
β

↪→ ”self tuned” step size γn
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An Adaptive Importance Sampling with

- self-tuned stepsize sequence

- partial biasing to improve the IS step

SHUSgρ
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A new algorithm

Self-tuned and Partially biasing algorithm (F., Jourdain, Leliévre, Stoltz (2016))

Input:

- initial values: a point X0 ∈ X and a counter C0 ∈ (R?+)d

- a biasing function ρ and a stepsize control function g

For n = 0, 1, · · ·
- Normalize the counter

θn(i) =
Cn(i)∑d
j=1 Cn(j)

, ∀i = 1, · · · , d

- Draw a new point: Xn+1 ∼ Pρ(θn)(Xn, ·) kernel with inv. dist. πρ(θn)

- Update the counter of the visited stratum ∀i = 1, · · · , d

Cn+1(i) = Cn(i) +
γ

g
(∑d

j=1 Cn(j)
)
 d∑
j=1

Cn(j)

 ρ (θn(i))1IXi(Xn+1),
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The intuition for this new update rule of Cn

The samples Xn
i.i.d.∼ π;

I A counter of the visits to each stratum

Cn(i) = Cn−1(i) + γ1IXi(Xn) = C0(i) + γ

n∑
k=1

1IXi(Xk) ⇒ Cn(i) ∼ γn θ?(i)

= Cn−1(i) +
γ∑d

j=1 Cn−1(j)︸ ︷︷ ︸
γn=O(1/n)

 d∑
j=1

Cn−1(j)

 1IXi(Xn)

I The estimate of θ?

θn(i) = θn−1(i) + γn

1IXi(Xn)−
d∑
j=1

1IXj (Xn)

+O(γ2n)

I For approximation of integrals∫
fπdλ ≈ 1

n

n∑
k=1

f(Xk)
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The discrepancy between the weights is modified through ρ. ex. ta, 0 < a < 1
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Assumptions

1 On the target density 0 < infX π ≤ supX π <∞ and θ?(i) > 0

2 On the ergodic behavior of the kernels Hastings-Metropolis kernel, with proposal

q(x, y)dλ(y) such that infX2 q > 0

3 On the function ρ −→ satisfied with ρ(t) = ta with a ∈ [0, 1)

4 On the function g, chosen of the form g(s) = (ln(1 + s))α/(1−α) with
α ∈ (1/2, 1)
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Convergence results (1/2)

By using sufficient conditions for convergence of Adaptive MCMC samplers F.,

Moulines, Priouret (2012) and convergence of Stochastic Approximation algo with controlled
Markovian dynamics Andrieu, Moulines, Priouret (2005)

I On the random sequence γn almost-surely,

lim
n
γnn

α = (1− α)α γ1−α
 d∑
j=1

θ?(j)

ρ(θ?(j))

 a.s.

I On the weight sequence θn almost-surely,

lim
n
θn = θ?

I On the Importance Sampling step almost-surely,

lim
n

1

n

n∑
k=1

f(Xk)

 d∑
j=1

ρ(θk−1(j))1IXj (Xk)

 d∑
j=1

θk−1(j)

ρ(θk−1(j))

 =

∫
f πdλ
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Convergence results (2/2)

We wrote the results in the case

ρ(t) = ta with a ∈ [0, 1)

g(s) = (ln(1 + s))α/(1−α) with α ∈ (1/2, 1)

but our convergence analysis also includes the case

ρ(t) = t and g(s) = s (F., Jourdain, Lelièvre, Stoltz, 2016)

In that case, our algorithm is the Self Healing Umbrella Sampling algorithm
(Marsili et al. 2006)

”no partial biasing” and ”self-tuned stepsize”

ρ(t) = ta, a ∈ [0, 1) g(s) = s1−a

In that case, our algorithm is a discrete setting of the Well-Tempered
metadynamics algorithm (Barducci, Bussi and Parrinello (2008))

”partial biasing” and ”self-tuned stepsize” with a correlated parameter a.
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Is there a gain
in such a self-tuned and partially biasing algorithm ?

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2

−1

0

1

2

3

−2.5−2−1.5−1−0.500.511.522.5

0

1

2

3

4

5

6

7

8

−2

−1

0

1

2

3

−4

−2

0

2

4

0

10

20

30

40

50

60

beta=1

−2

−1

0

1

2

3

−4

−2

0

2

4

0

1

2

3

4

5

x 10
8

beta=5

Make the metastability larger by increasing β.
16 / 20



Case ρ(t) = ta for a ∈ [0, 1)

g(s) = (ln(1 + s))α/(1−α) for α ∈ (1/2, 1) ⇒ γn = Owp1(1/n
α)
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Figure: Left: Exit times for α = 0.8. Right: Exit times for α = 0.6.

Start from the left mode, measure the exit time T i.e. time to reach Xn,1 > 1

T ↑ when β ↑
for fixed β and a: T ↓ when α ↓.
for fixed β and α: T ↓ when a ↑.
Linear fit with a slope indep of a: lnT = c+ (1− α)−1 lnβ
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Comparison to the Well-Tempered Metadynamics
g(s) = s1−a (⇒ γn = O(1/n)) and ρ(t) = ta for a ∈ (0, 1)
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Exit time T

Linear fit: lnT = c+ 2.43(1− a)β
For fixed β: T ↓ when a ↑
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Normalized Effective Sample Size (EF)
Case γn = O(1/nα) for α ∈ (1/2, 1), ρ(t) = ta for a ∈ [0, 1)
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EF =

(
n−1

∑n
k=1 w(Xk)

)2
(n−1

∑n
k=1 w

2(Xk))
∈ [0, 1]

By definition, when uniform weights, EF = 1.
For fixed β, EF ↑ when a ↓
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Conclusion

A new algorithm

which estimates the free energy of π by a Stochastic Approximation
algorithm, where the stepsize sequence {γn, n ≥ 0} is tuned on the fly

which provides an approximation of π by a set of weighted points with a
controlled discrepancy of the weights.

which requires two design parameters (α, a) to be fixed by the user

· a close to 1 in the transient phase, and a close to 0 at convergence.
· α close to 1/2 in the transient phase.

far more efficient in the transient phase than Well-Tempered Metadynamics
or SHUS or WL.
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