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The problem

Numerical method for the approximation of quantities of the form

E
[
f
(
Y, φ?

(
Y
))∣∣∣Y ∈ A]

when (outer expectation)

the integration w.r.t. to L(Y|Y ∈ A) is intractable

the event {Y ∈ A} is rare

and (inner expectation)

The function φ? is unknown, and is assumed of the form

φ?(Y) = E [R|Y] a.s.

with exact sampling from the conditional distribution L(R|Y).

but

For all (y, r), the quantity f(y, r) can be explicitly computed.
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Motivations

E
[
f
(
Y,E [R|Y]

)∣∣∣Y ∈ A]
Solving dynamical programming equations for stochastic control and optimal
stopping problems - see the plenary talk by E. Gobet (Tsitsiklis and Van Roy, 2001; Egloff, 2005;

Lemor et al. 2006; Belomestny et al. 2010)

Financial and Actuarial Management (Mc Neil et al., 2005)

ex. : risk management of portfolios written with derivative options (Gordy

and Juneja, 2010) where

Y is the underlying asset or financial variables at time T
R aggregated cashflows of derivatives at time T ′ > T
E[R|Y] is the portfolio value at time T given a scenario Y

and the aim is to compute the extreme exposure of the portfolio (VaR,
CVaR).
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A solution based on nested Monte Carlo (1/2)

I Step 1: An outer Monte Carlo step

E
[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A] ≈ 1

Nout

Nout∑
m=1

f
(
X(m), φ?

(
X(m)

))
How to draw the points X(m) ?

Rejection algorithm i.e. exact sampling under L(Y|Y ∈ A)

Importance sampling (Rubinstein and Kroese, 2008; Blanchet and Lam, 2012)

MCMC approach: {X(1), · · · ,X(m), · · · } is a Markov chain having the
conditional distribution L(Y|Y ∈ A) as the unique invariant distribution.
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))
How to draw the points X(m) ?

Rejection algorithm i.e. exact sampling under L(Y|Y ∈ A)

Repeat
Draw independently, samples Y (m) with distribution Y

until

Y (m) ∈ A

↪→ inefficient in the rare event setting: the mean number of loops to accept
one sample is 1/P(Y ∈ A).

Importance sampling (Rubinstein and Kroese, 2008; Blanchet and Lam, 2012)

MCMC approach: {X(1), · · · ,X(m), · · · } is a Markov chain having the
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(
X(m)

))
How to draw the points X(m) ?

Rejection algorithm i.e. exact sampling under L(Y|Y ∈ A)

Importance sampling (Rubinstein and Kroese, 2008; Blanchet and Lam, 2012)

- efficient in small dimension, fails to deal with larger dimensions
- relies heavily on particular types of models for Y, and on suitable
information about the problem.

MCMC approach: {X(1), · · · ,X(m), · · · } is a Markov chain having the
conditional distribution L(Y|Y ∈ A) as the unique invariant distribution.
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A solution based on nested Monte Carlo (2/2)

I Step 2: An inner Monte Carlo step

E
[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A] ≈ 1

Nout

Nout∑
m=1

f
(
X(m), φ̂

(m)
?

)
φ̂
(m)
? ≈ φ?(X(m))

φ?(Y) = E[R|Y], exact sampling from L(R|Y): available

Crude Monte Carlo.

Regression.
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Nout
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(
X(m), φ̂

(m)
?

)
φ̂
(m)
? ≈ φ?(X(m))

φ?(Y) = E[R|Y], exact sampling from L(R|Y): available

Crude Monte Carlo. cost: Nin ×Nout draws
for each sample X(m),

draw {R(m,1),R(m,2), · · · ,R(m,Nin)} i.i.d.∼ L(R|Y = X(m))
set

φ̂
(m)
?

def
=

1

Nin

Nin∑
n=1

R(m,n)

Regression.
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A solution based on nested Monte Carlo (2/2)

I Step 2: An inner Monte Carlo step

E
[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A] ≈ 1

Nout

Nout∑
m=1

f
(
X(m), φ̂

(m)
?

)
φ̂
(m)
? ≈ φ?(X(m))

φ?(Y) = E[R|Y], exact sampling from L(R|Y): available

Crude Monte Carlo. cost: Nin ×Nout draws

Regression. cost: Nout draws; Take into account cross-information between
points X(m)

for each sample X(m),

draw a single R(m) ∼ L(R|Y = X(m))

set φ̂
(m)
?

def
= φ̂?(X

(m)) where

φ̂?(x)
def
= argminφ∈F

1

Nout

Nout∑
m=1

‖R(m) − φ(X(m))‖2.
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MCMC combined with Regression

E
[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A] ≈ 1

Nout

Nout∑
m=1

f
(
X(m), φ̂?(X

(m))
)

(I) samples points X(1), · · · ,X(Nout) from a MCMC targeting L(Y|Y ∈ A)

(II) choose L basis functions φ1, · · · , φL and set

φ̂? = α̂1φ1 + · · ·+ α̂LφL

where

(α̂1, · · · , α̂L) = argmin(α1,··· ,αL)∈RL

Nout∑
m=1

‖R(m) −
L∑
`=1

α` φ`(X
(m))‖2.

For alternatives to this regression approach, see e.g.: kernel estimators (Hong and Juneja, 2009); kriging techniques (Liu and Staum, 2010)

For alternatives to this MCMC design, see e.g. (Broadie et al., 2015) with a weighted regression
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Our contribution

1 Convergence analysis when the outer Monte Carlo step relies on (non
stationary) MCMC samples

- existing results on the regression error address the case of a i.i.d. or a
stationary design X(1), · · · ,X(m), · · · (Gyorfi et al. 2002, Ren and Mojirsheibani 2010, Delattre and

Gäıffas, 2011)

- consistent numerical method under weaker conditions on the basis
functions φ1, · · · , φL and on the distribution of the design (Broadie et al. 2015)

2 Ergodic properties of a MCMC sampler, designed to sample distributions
restricted to a rare event.
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On the MCMC step

An efficient algorithm to sample from the distribution

π dλ ≡ L(Y|Y ∈ A)
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A MCMC sampler

Choose a proposal kernel q(x, z)dλ(z) such that for all x, z ∈ A

q(x, z)π(z) = π(x)q(x, z) (reversible w.r.t. π)

MCMC sampler (Gobet and Liu, 2015)

Init: X(0) ∼ ξ - a distribution on A
For m = 1 : Nout, repeat:

Draw a candidate X̃(m) ∼ q(X(m), z)dλ(z)

Update the chain: set

X(m+1) =

{
X̃(m) if X̃(m) ∈ A
X(m) otherwise

Return X(m),m = 0 : Nout.
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Application: sampling a N (0, 1) in the left tail (1/3)
I Goal: P (Y ∈ ·|Y ≤ y?) , Y ∼ N (0, 1).
I Displayed: The histogram of the draws obtained by rejection (bottom left), by the MCMC sampler GL (top
left) and the MCMC sampler NR (top right). The associated empirical cdf’s (bottom right).

GL: q(x, ·) = ρx+
√

1− ρ2N (0, 1) (reversible)

NR: q(x, ·) = ρx+ (1− ρ)y? +
√

1− ρ2N (0, 1) (non reversible)

I Num. Appl.: 1e6 draws for each algorithm (⇒ 50− 60 accepted draws for the rejection algorithm).
ρ = 0.85. P(Y ≤ y?) = 5.6e− 5
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Application: sampling a N (0, 1) in the (left) tail (2/3)

I Goal: Role of the design parameter ρ in the efficiency of the samplers.
I Displayed: The autocorrelation function, averaged over 100 estimations with lag 0 to 50. For different
values of ρ ∈ (0, 1). For the MCMC sampler GL (left) and NR (right).

GL: q(x, ·) = ρx+
√

1− ρ2N (0, 1) (reversible)

NR: q(x, ·) = ρx+ (1− ρ)y? +
√

1− ρ2N (0, 1) (non reversible)
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Application: sampling a N (0, 1) in the (left) tail (3/3)

I Goal: Role of the design parameter ρ on the efficiency of the samplers.
I Displayed: [left] Boxplot of the mean acceptance rate computed along a path of length Nout = 1e4; 50
independent runs of the algorithms. [right] estimation of P(Y ∈ A)
for different values of ρ ∈ (0, 1); for the MCMC sampler GL (top) and NR (bottom).

GL: q(x, ·) = ρx+
√

1− ρ2N (0, 1) (reversible)

NR: q(x, ·) = ρx+ (1− ρ)y? +
√

1− ρ2N (0, 1) (non reversible)
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Ergodicity of the sampler

Proposition (F., Gobet, Moulines (2017))

Assume that
(i) for all x ∈ A, π(z) > 0 =⇒ q(x, z) > 0.

(ii) there exists δ1 ∈ (0, 1) such that supx∈A
∫
Ac q(x, z)dλ(z) ≤ δ1.

(iii) there exist a measurable set C in A, δ2 ∈ (δ1, 1) and an unbounded off compact set measurable
function V : A → [1,+∞) such that

b
def
= sup

x∈C

∫
A
V (z) q(x, z)dλ(z) <∞, sup

x∈Cc
V
−1

(x)

∫
A
V (z) q(x, z)dλ(z) ≤ δ2 − δ1.

(iv) For some υ? > b/(1− δ2), the level set C?
def
= {V ≤ υ?} is such that

inf
(x,z)∈C2?

(
q(x, z)1Iπ(z)6=0

π(z)

)
> 0,

∫
C?
πdλ > 0.

Then there exist κ ∈ (0, 1) and C <∞ such that for any function f : A → R,∣∣∣∣Pmf(x)−
∫
f(z)π(z) dλ(z)

∣∣∣∣ ≤ C (sup
A

|f |
V

)
κmV (x), ∀x ∈ A.
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Comments on the theorem

When π is a truncated Gaussian distribution:

V (x) = exp(β‖x‖), q(x, ·) = Nd(ρx, (1− ρ2)Id).

Sketch of the proof:

Irreducibility, Aperiodicity
The level sets of V are small sets
Drift inequality: PV (x) ≤ δV (x) + C for some δ ∈ (0, 1].
Then, standard results on Markov chains (Meyn and Tweedie, 1993)

Ergodicity at a polyomial rate

weaker assumptions for a weaker rate of convergence (Fort and Moulines, 2003; Douc et

al. 2004)
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Control of the regression approximation
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Notations

I The unknown quantities φ? given by

φ?(Y) = E [R|Y] a.s.

I Available

X(1), · · · ,X(Nout) from a Markov chain with stationary dist L(Y|Y ∈ A)

R(1), · · · ,R(Nout) s.t. R(i) ∼ L(R|Y = X(i)).

I Estimation

φ̂?(x)
def
=

L∑
`=1

α̂` φ`(x)

where

φ1, · · · , φL are basis functions chosen by the user,

the α̂′is are explicit solutions of

argmin(α1,··· ,αL)∈RL

Nout∑
m=1

(
R(m) −

L∑
`=1

α` φ`(X
(m))

)2
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Explicit control

Denote
Q(x, dr) the cond. distribution of R|Y = x

ψ?
def
= argminφ∈F

∫
(φ− φ?)2 π dλ, where π dλ ≡ L(Y|Y ∈ A).

Mean squared error along the design (F., Gobet, Moulines (2017))

Assume that
(i) the MCMC kernel P and the initial distribution ξ satisfy: there exists a constant CP and a rate sequence
{ρ(m),m ≥ 1} such that for any m ≥ 1,∣∣∣∣ξPm[(ψ? − φ?)2]−

∫
(ψ? − φ?)2 π dλ

∣∣∣∣ ≤ CP ρ(m). (1)

(ii) the transition kernel Q of the cond. distribution L(R|Y) satisfies

σ
2 def

= sup
x∈A

{∫
r
2 Q(x, dr)−

(∫
rQ(x, dr)

)2}
<∞. (2)

Then,

E

[
1

Nout

Nout∑
m=1

(
φ̂?(X

(m))− φ?(X(m))
)2]
≤ σ2L

Nout
+|ψ?−φ?|2L2(π)

+
CP

Nout

Nout∑
m=1

ρ(m).

17 / 22



Sketch of proof

The proof is a bias/variance decomposition:

1

Nout

Nout∑
m=1

(
φ̂?(X

(m))− φ?(X(m))
)2

=
1

Nout

Nout∑
m=1

(
φ̂?(X

(m))− E
[
φ̂?(X

(m))|X(1:Nout)
])2

controled by σ2L/Nout

+
1

Nout

Nout∑
m=1

(
E
[
φ̂?(X

(m))|X(1:Nout)
]
− φ?(X(m))

)2 ergodicity of the chain
+ the norm |ψ? − φ?|2L2(π)
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Toy example - description (1/2)

A stock price {St, t ≥ 0}, modeled as a 1-D geometric Brownian motion

A put option (K − ST ′)+ with strike K and maturity T ′

The owner of the contract aims at valuing the excess of the put price at time
T < T ′ above the threshold p?, conditionally to a stock value ST lower that
s?

E


E

[
(K − ST ′)+ |ST

]︸ ︷︷ ︸
put price at time T ; φ?(ST )

−p?


+

ST ≤ s?︸ ︷︷ ︸
rare event


Of the form

E [f (Y,E [R|Y]) |Y ≤ y?]

where

Y ∼ N (O, 1),

R = Ξ(Y, Z) with Z ∼ N (0, 1) and indep. of Y.
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Toy example - Estimation of φ? (2/2)

I Goal: In this example, φ? is explicit → the error φ̂? − φ? can be displayed.

I Displayed: [left] The Nout points (X(m),R(m)) when the X(m)’s are sampled from the MCMC sampler
GL; and the function x 7→ φ?(x) in red.

[right] Six realizations of φ̂ resp. obtained with L = 2, 3, 4 and a design X(m)’s sampled from the kernel GL
(red) and NR (blue). The basis functions are

φ`(x) = S
`−1
0 exp

(
(`− 1)(−0.5σ2

T + σ
√
Tx)

)
;
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Error of the numerical method

I − ÎNout

def
= E

[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A]− 1

Nout

Nout∑
m=1

f
(
X(m), φ̂?(X

(m))
)
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Error of the numerical method

I − ÎNout

def
= E

[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A]− 1

Nout

Nout∑
m=1

f
(
X(m), φ̂?(X

(m))
)

= E
[
f
(
Y, φ?(Y)

)∣∣∣Y ∈ A]− 1

Nout

Nout∑
m=1

f
(
X(m), φ?(X

(m))
)

+
1

Nout

Nout∑
m=1

f
(
X(m), φ?(X

(m))
)
− 1

Nout

Nout∑
m=1

f
(
X(m), φ̂?(X

(m))
)

← denoted by ∆Nout
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Consistent estimator

(F., Gobet, Moulines (2017))

Assume

(i) f : Rd × R→ R is globally Lipschitz in the second variable: there exists a finite constant Cf such that

for any (r1, r2, y) ∈ R× R× Rd,

|f(y, r1)− f(y, r2)| ≤ Cf |r1 − r2| .

(ii) There exists a finite constant C such that for any Nout

E

Nout
−1

Nout∑
m=1

f
(
X

(m)
, φ?(X

(m)
)
)
−
∫
f(x, φ?(x))π(x) dλ(x)

2 ≤ C

Nout

.

Then (
E
[∣∣∣I − ÎNout

∣∣∣2])1/2

≤ Cf
√

∆Nout
+

√
C

Nout
,

where (for the rate, see the slide on the regression error)

∆Nout

def
= E

[
1

Nout

Nout∑
m=1

(
φ̂?(X

(m))− φ?(X(m))
)2]

= O

(
1

Nout

)
.
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