Nested risk computations through non parametric Regression, with Markovian design

Gersende Fort

Institut de Mathématiques de Toulouse CNRS and Univ. de Toulouse France

Joint work with

- Emmanuel Gobet (Ecole Polytechnique, France)
- Eric Moulines (Ecole Polytechnique, France)

Talk based on the paper

G. Fort, E. Gobet and E. Moulines. *MCMC design-based non-parametric regression for rare event. Application to nested risk computation.*, Monte Carlo Methods and Applications, 23(1):21-42, 2017.

The problem

Numerical method for the approximation of quantities of the form

 $\mathbb{E}\Big[\left.f\Big(\mathbf{Y},\phi_{\star}\big(\mathbf{Y}\big)\Big)\middle|\mathbf{Y}\in\mathcal{A}\Big]$

when (outer expectation)

- \bullet the integration w.r.t. to $\mathcal{L}(\mathbf{Y}|\mathbf{Y}\in\mathcal{A})$ is intractable
- the event $\{Y \in \mathcal{A}\}$ is rare

and (inner expectation)

• The function ϕ_{\star} is unknown, and is assumed of the form

$$\phi_{\star}(\mathbf{Y}) = \mathbb{E}\left[\mathbf{R}|\mathbf{Y}
ight]$$
 a.s.

with exact sampling from the conditional distribution $\mathcal{L}(\mathbf{R}|\mathbf{Y}).$ but

• For all (y, r), the quantity f(y, r) can be explicitly computed.

Motivations

$\mathbb{E}\Big[\left.f\Big(\mathbf{Y},\mathbb{E}\left[\mathbf{R}|\mathbf{Y}\right]\Big)\right|\mathbf{Y}\in\mathcal{A}\Big]$

 Solving dynamical programming equations for stochastic control and optimal stopping problems - see the plenary talk by E. Gobet (Tsitsiklis and Van Roy, 2001; Egloff, 2005;

Lemor et al. 2006; Belomestny et al. 2010)

• Financial and Actuarial Management (Mc Neil et al., 2005)

ex. : risk management of portfolios written with derivative options $_{(Gordy\ and\ Juneja,\ 2010)}$ where

 $\begin{array}{l} \mathbf{Y} \text{ is the underlying asset or financial variables at time } T \\ \mathbf{R} \text{ aggregated cashflows of derivatives at time } T' > T \\ \mathbb{E}[\mathbf{R}|\mathbf{Y}] \text{ is the portfolio value at time } T \text{ given a scenario } \mathbf{Y} \\ \text{and the aim is to compute the extreme exposure of the portfolio (VaR, CVaR).} \end{array}$

▶ Step 1: An outer Monte Carlo step

$$\mathbb{E}\Big[\left|f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\right|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}}f\Big(\mathbf{X}^{(m)},\phi_{\star}\big(\mathbf{X}^{(m)}\big)\Big)$$

How to draw the points $\mathbf{X}^{(m)}$?

▶ Step 1: An outer Monte Carlo step

$$\mathbb{E}\Big[\left|f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\right|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}}f\Big(\mathbf{X}^{(m)},\phi_{\star}\big(\mathbf{X}^{(m)}\big)\Big)$$

How to draw the points $\mathbf{X}^{(m)}$?

 \bullet Rejection algorithm i.e. exact sampling under $\mathcal{L}(\mathbf{Y}|\mathbf{Y}\in\mathcal{A})$

Repeat

Draw independently, samples $Y^{(m)}$ with distribution ${\bf Y}$ until

 $Y^{(m)} \in \mathcal{A}$

 \hookrightarrow inefficient in the rare event setting: the mean number of loops to accept one sample is $1/\mathbb{P}(\mathbf{Y} \in \mathcal{A})$.

▶ Step 1: An outer Monte Carlo step

$$\mathbb{E}\Big[\left|f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\right|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}}f\Big(\mathbf{X}^{(m)},\phi_{\star}\big(\mathbf{X}^{(m)}\big)\Big)$$

How to draw the points $\mathbf{X}^{(m)}$?

- \bullet Rejection algorithm i.e. exact sampling under $\mathcal{L}(\mathbf{Y}|\mathbf{Y}\in\mathcal{A})$
- Importance sampling (Rubinstein and Kroese, 2008; Blanchet and Lam, 2012)
 - efficient in small dimension, fails to deal with larger dimensions

- relies heavily on particular types of models for $\mathbf{Y},$ and on suitable information about the problem.

▶ Step 1: An outer Monte Carlo step

$$\mathbb{E}\left[\left|f\left(\mathbf{Y},\phi_{\star}(\mathbf{Y})\right)\right|\mathbf{Y}\in\mathcal{A}\right]\approx\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}}f\left(\mathbf{X}^{(m)},\phi_{\star}\left(\mathbf{X}^{(m)}\right)\right)$$

How to draw the points $\mathbf{X}^{(m)}$?

- Rejection algorithm i.e. exact sampling under $\mathcal{L}(\mathbf{Y}|\mathbf{Y}\in\mathcal{A})$
- Importance sampling (Rubinstein and Kroese, 2008; Blanchet and Lam, 2012)
- MCMC approach: $\{\mathbf{X}^{(1)}, \cdots, \mathbf{X}^{(m)}, \cdots\}$ is a Markov chain having the conditional distribution $\mathcal{L}(\mathbf{Y}|\mathbf{Y} \in \mathcal{A})$ as the unique invariant distribution.

▶ Step 2: An inner Monte Carlo step

$$\begin{split} & \mathbb{E}\Big[\left.f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\Big|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\mathrm{out}}}\sum_{m=1}^{N_{\mathrm{out}}}f\Big(\mathbf{X}^{(m)},\widehat{\phi}_{\star}^{(m)}\Big)\qquad\widehat{\phi}_{\star}^{(m)}\approx\phi_{\star}(\mathbf{X}^{(m)})\\ & \phi_{\star}(\mathbf{Y})=\mathbb{E}[\mathbf{R}|\mathbf{Y}],\qquad\text{exact sampling from }\mathcal{L}(\mathbf{R}|\mathbf{Y})\text{: available} \end{split}$$

• Crude Monte Carlo.

▶ Step 2: An inner Monte Carlo step

$$\begin{split} & \mathbb{E}\Big[\left.f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\Big|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\mathrm{out}}}\sum_{m=1}^{N_{\mathrm{out}}}f\Big(\mathbf{X}^{(m)},\widehat{\phi}_{\star}^{(m)}\Big)\qquad\widehat{\phi}_{\star}^{(m)}\approx\phi_{\star}(\mathbf{X}^{(m)})\\ & \phi_{\star}(\mathbf{Y})=\mathbb{E}[\mathbf{R}|\mathbf{Y}],\qquad\text{exact sampling from }\mathcal{L}(\mathbf{R}|\mathbf{Y})\text{: available} \end{split}$$

• Crude Monte Carlo. cost:
$$N_{\text{in}} \times N_{\text{out}}$$
 draws
for each sample $X^{(m)}$,
draw { $\mathbf{R}^{(m,1)}, \mathbf{R}^{(m,2)}, \cdots, \mathbf{R}^{(m,N_{\text{in}})}$ } $\stackrel{i.i.d.}{\sim} \mathcal{L}(\mathbf{R}|\mathbf{Y} = \mathbf{X}^{(m)})$
set
 $\widehat{\phi}_{\star}^{(m)} \stackrel{\text{def}}{=} \frac{1}{N_{\text{in}}} \sum_{n=1}^{N_{\text{in}}} \mathbf{R}^{(m,n)}$

• Regression.

▶ Step 2: An inner Monte Carlo step

$$\mathbb{E}\left[\left.f\left(\mathbf{Y},\phi_{\star}(\mathbf{Y})\right)\middle|\mathbf{Y}\in\mathcal{A}\right]\approx\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}}f\left(\mathbf{X}^{(m)},\widehat{\phi}_{\star}^{(m)}\right)\qquad\widehat{\phi}_{\star}^{(m)}\approx\phi_{\star}(\mathbf{X}^{(m)})$$

 $\phi_{\star}(\mathbf{Y}) = \mathbb{E}[\mathbf{R}|\mathbf{Y}],$ exact sampling from $\mathcal{L}(\mathbf{R}|\mathbf{Y})$: available

- Crude Monte Carlo. cost: $N_{\mathrm{in}} imes N_{\mathrm{out}}$ draws
- Regression. cost: $N_{\rm out}$ draws; Take into account cross-information between points ${\bf X}^{(m)}$

for each sample $\mathbf{X}^{(m)}$,

draw a single $R^{(m)} \sim \mathcal{L}(\mathbf{R} | \mathbf{Y} = \mathbf{X}^{(m)})$ set $\widehat{\phi}_{\star}^{(m)} \stackrel{\text{def}}{=} \widehat{\phi}_{\star}(\mathbf{X}^{(m)})$ where

$$\widehat{\phi}_{\star}(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{\phi \in \mathcal{F}} \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} \|\mathbf{R}^{(m)} - \phi(\mathbf{X}^{(m)})\|^2.$$

MCMC combined with Regression

$$\mathbb{E}\Big[\left|f\Big(\mathbf{Y},\phi_{\star}(\mathbf{Y})\Big)\right|\mathbf{Y}\in\mathcal{A}\Big]\approx\frac{1}{N_{\mathrm{out}}}\sum_{m=1}^{N_{\mathrm{out}}}f\Big(\mathbf{X}^{(m)},\widehat{\phi}_{\star}(\mathbf{X}^{(m)})\Big)$$

(I) samples points $\mathbf{X}^{(1)}, \cdots, \mathbf{X}^{(N_{\text{out}})}$ from a MCMC targeting $\mathcal{L}(\mathbf{Y}|\mathbf{Y} \in \mathcal{A})$ (II) choose L basis functions ϕ_1, \cdots, ϕ_L and set

$$\widehat{\phi}_{\star} = \widehat{\alpha}_1 \phi_1 + \dots + \widehat{\alpha}_L \phi_L$$

where

$$(\widehat{\alpha}_1, \cdots, \widehat{\alpha}_L) = \operatorname{argmin}_{(\alpha_1, \cdots, \alpha_L) \in \mathbb{R}^L} \sum_{m=1}^{N_{out}} \|\mathbf{R}^{(m)} - \sum_{\ell=1}^L \alpha_\ell \, \phi_\ell(\mathbf{X}^{(m)})\|^2.$$

For alternatives to this regression approach, see e.g.: kernel estimators (Hong and Juneja, 2009); kriging techniques (Liu and Staum, 2010) For alternatives to this MCMC design, see e.g. (Broadie et al., 2015) with a weighted regression

Our contribution

- Convergence analysis when the outer Monte Carlo step relies on (non stationary) MCMC samples
 - existing results on the regression error address the case of a i.i.d. or a stationary design $\mathbf{X}^{(1)}, \cdots, \mathbf{X}^{(m)}, \cdots$ (Gyoff et al. 2002, Ren and Mojirsheibani 2010, Delattre and Gaïffas, 2011)
 - consistent numerical method under weaker conditions on the basis functions ϕ_1,\cdots,ϕ_L and on the distribution of the design $_{(\text{Broadie et al. 2015})}$
- e Ergodic properties of a MCMC sampler, designed to sample distributions restricted to a rare event.

On the MCMC step

An efficient algorithm to sample from the distribution

 $\pi \, \operatorname{d}\!\lambda \equiv \mathcal{L}(\mathbf{Y} | \mathbf{Y} \in \mathcal{A})$

A MCMC sampler

Choose a proposal kernel $q(x,z) \mathrm{d}\lambda(z)$ such that for all $x,z \in \mathcal{A}$

 $q(x,z)\pi(z) = \pi(x)q(x,z)$ (reversible w.r.t. π)

MCMC sampler (Gobet and Liu, 2015)

Init: $X^{(0)} \sim \xi$ - a distribution on \mathcal{A} For $m = 1 : N_{out}$, repeat: Draw a candidate $\widetilde{X}^{(m)} \sim q(X^{(m)}, z) d\lambda(z)$ Update the chain: set

$$X^{(m+1)} = \begin{cases} \widetilde{X}^{(m)} & \text{if } \widetilde{X}^{(m)} \in \mathcal{A} \\ X^{(m)} & \text{otherwise} \end{cases}$$

Return $X^{(m)}, m = 0 : N_{out}$.

Application: sampling a $\mathcal{N}(0,1)$ in the left tail (1/3)

▶ Goal: $\mathbb{P}(\mathbf{Y} \in \cdot | \mathbf{Y} \leq y_{\star}), \quad \mathbf{Y} \sim \mathcal{N}(0, 1).$

▶ Displayed: The histogram of the draws obtained by rejection (bottom left), by the MCMC sampler GL (top left) and the MCMC sampler NR (top right). The associated empirical cdf's (bottom right).

$$\begin{split} & \text{GL: } q(x,\cdot) = \rho x + \sqrt{1-\rho^2} \mathcal{N}(0,1) \qquad \text{(reversible)} \\ & \text{NR: } q(x,\cdot) = \rho x + (1-\rho) y_\star + \sqrt{1-\rho^2} \mathcal{N}(0,1) \qquad \text{(non reversible)} \end{split}$$

▶ Num. Appl.: 1*e*6 draws for each algorithm (\Rightarrow 50 - 60 accepted draws for the rejection algorithm). $\rho = 0.85$. $\mathbb{P}(\mathbf{Y} \leq y_{\star}) = 5.6e - 5$

Application: sampling a $\mathcal{N}(0,1)$ in the (left) tail (2/3)

b Goal: Role of the design parameter ρ in the efficiency of the samplers.

▶ Displayed: The autocorrelation function, averaged over 100 estimations with lag 0 to 50. For different values of $\rho \in (0, 1)$. For the MCMC sampler GL (left) and NR (right).

GL:
$$q(x, \cdot) = \rho x + \sqrt{1 - \rho^2} \mathcal{N}(0, 1)$$
 (reversible)
NR: $q(x, \cdot) = \rho x + (1 - \rho)y_{\star} + \sqrt{1 - \rho^2} \mathcal{N}(0, 1)$ (non reversible)

Application: sampling a $\mathcal{N}(0,1)$ in the (left) tail (3/3)

\triangleright Goal: Role of the design parameter ρ on the efficiency of the samplers.

▶ Displayed: [left] Boxplot of the mean acceptance rate computed along a path of length $N_{out} = 1e4$; 50 independent runs of the algorithms. [right] estimation of $\mathbb{P}(\mathbf{Y} \in \mathcal{A})$

for different values of $\rho \in (0,1)$; for the MCMC sampler GL (top) and NR (bottom).

GL:
$$q(x, \cdot) = \rho x + \sqrt{1 - \rho^2} \mathcal{N}(0, 1)$$
 (reversible)
NR: $q(x, \cdot) = \rho x + (1 - \rho)y_{\star} + \sqrt{1 - \rho^2} \mathcal{N}(0, 1)$ (non reversible)

Ergodicity of the sampler

Proposition (F., Gobet, Moulines (2017))

Assume that

- (i) for all $x \in \mathcal{A}$, $\pi(z) > 0 \Longrightarrow q(x, z) > 0$.
- (ii) there exists $\delta_1 \in (0,1)$ such that $\sup_{x \in \mathcal{A}} \int_{\mathcal{A}^c} q(x,z) d\lambda(z) \leq \delta_1$.
- (iii) there exist a measurable set C in A, $\delta_2 \in (\delta_1, 1)$ and an unbounded off compact set measurable function $V : A \rightarrow [1, +\infty)$ such that

$$b \stackrel{\mathrm{def}}{=} \sup_{x \in \mathcal{C}} \int_{\mathcal{A}} V(z) \, q(x,z) \mathrm{d}\lambda(z) < \infty, \quad \sup_{x \in \mathcal{C}^c} V^{-1}(x) \int_{\mathcal{A}} V(z) \, q(x,z) \mathrm{d}\lambda(z) \leq \delta_2 - \delta_1.$$

(iv) For some $v_{\star} > b/(1 - \delta_2)$, the level set $C_{\star} \stackrel{\text{def}}{=} \{V \leq v_{\star}\}$ is such that

$$\inf_{(x,z)\in \mathcal{C}^2_\star} \left(\frac{q(x,z)\mathbb{I}_{\pi(z)\neq 0}}{\pi(z)} \right) > 0, \qquad \int_{\mathcal{C}_\star} \pi \mathrm{d}\lambda > 0$$

Then there exist $\kappa \in (0,1)$ and $C < \infty$ such that for any function $f: \mathcal{A} \to \mathbf{R}$,

$$\mathsf{P}^m f(x) - \int f(z) \, \pi(z) \, \mathsf{d}\lambda(z) \bigg| \leq C \left(\sup_{\mathcal{A}} \frac{|f|}{V} \right) \, \kappa^m V(x), \qquad \forall x \in \mathcal{A}.$$

Comments on the theorem

• When π is a truncated Gaussian distribution:

$$V(x) = \exp(\beta \|x\|), \qquad q(x, \cdot) = \mathcal{N}_d(\rho x, (1 - \rho^2)I_d).$$

• Sketch of the proof:

Irreducibility, Aperiodicity The level sets of V are small sets Drift inequality: $\mathsf{P}V(x) \leq \delta V(x) + C$ for some $\delta \in (0,1]$. Then, standard results on Markov chains $_{(\mathsf{Meyn} \text{ and Tweedie, 1993})}$

• Ergodicity at a polyomial rate

weaker assumptions for a weaker rate of convergence $_{(Fort \mbox{ and } Moulines, \mbox{ 2003; Douc et al. 2004})}$

Control of the regression approximation

Notations

▶ The unknown quantities ϕ_{\star} given by

$$\phi_{\star}(\mathbf{Y}) = \mathbb{E}\left[\mathbf{R}|\mathbf{Y}\right] \ a.s.$$

Available

$$\begin{split} \mathbf{X}^{(1)}, \cdots, \mathbf{X}^{(N_{\mathrm{out}})} \text{ from a Markov chain with stationary dist } \mathcal{L}(\mathbf{Y}|\mathbf{Y} \in \mathcal{A}) \\ \mathbf{R}^{(1)}, \cdots, \mathbf{R}^{(N_{\mathrm{out}})} \text{ s.t. } \mathbf{R}^{(i)} \sim \mathcal{L}(\mathbf{R}|\mathbf{Y} = \mathbf{X}^{(i)}). \end{split}$$

Estimation

$$\widehat{\phi}_{\star}(x) \stackrel{\text{def}}{=} \sum_{\ell=1}^{L} \widehat{\alpha}_{\ell} \ \phi_{\ell}(x)$$

where

 ϕ_1,\cdots,ϕ_L are basis functions chosen by the user, the $\widehat{\alpha}_i's$ are explicit solutions of

$$\operatorname{argmin}_{(\alpha_1, \cdots, \alpha_L) \in \mathbb{R}^L} \sum_{m=1}^{N_{\text{out}}} \left(\mathbf{R}^{(m)} - \sum_{\ell=1}^L \alpha_\ell \, \phi_\ell(\mathbf{X}^{(m)}) \right)^2$$

Explicit control

Denote

$$Q(x, dr)$$
 the cond. distribution of $\mathbf{R} | \mathbf{Y} = x$
 $\psi_{\star} \stackrel{\text{def}}{=} \operatorname{argmin}_{\phi \in \mathcal{F}} \int (\phi - \phi_{\star})^2 \pi \, d\lambda$, where $\pi \, d\lambda \equiv \mathcal{L}(\mathbf{Y} | \mathbf{Y} \in \mathcal{A})$.

Mean squared error along the design (F., Gobet, Moulines (2017))

Assume that

(i) the MCMC kernel P and the initial distribution ξ satisfy: there exists a constant C_P and a rate sequence $\{\rho(m), m \ge 1\}$ such that for any $m \ge 1$,

$$\left| \xi \mathsf{P}^{m} \left[\left(\psi_{\star} - \phi_{\star} \right)^{2} \right] - \int \left(\psi_{\star} - \phi_{\star} \right)^{2} \pi \, \mathsf{d}\lambda \right| \le C_{\mathsf{P}} \, \rho(m). \tag{1}$$

(ii) the transition kernel Q of the cond. distribution $\mathcal{L}(\mathbf{R}|\mathbf{Y})$ satisfies

$$\sigma^{2} \stackrel{\text{def}}{=} \sup_{x \in \mathcal{A}} \left\{ \int r^{2} \mathsf{Q}(x, \mathsf{d}r) - \left(\int r \mathsf{Q}(x, \mathsf{d}r) \right)^{2} \right\} < \infty.$$
(2)

Then,

$$\mathbb{E}\left[\frac{1}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}} \left(\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) - \phi_{\star}(\mathbf{X}^{(m)})\right)^{2}\right] \leq \frac{\sigma^{2}L}{N_{\text{out}}} + |\psi_{\star} - \phi_{\star}|_{L_{2}(\pi)}^{2} + \frac{C_{\mathsf{P}}}{N_{\text{out}}}\sum_{m=1}^{N_{\text{out}}} \rho(m).$$

Sketch of proof

The proof is a bias/variance decomposition:

$$\begin{split} &\frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} \left(\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) - \phi_{\star}(\mathbf{X}^{(m)}) \right)^2 \\ &= \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} \left(\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) - \mathbb{E}\left[\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) | \mathbf{X}^{(1:N_{\text{out}})} \right] \right)^2 \qquad \text{controled by } \sigma^2 L/N_{\text{out}} \\ &+ \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} \left(\mathbb{E}\left[\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) | \mathbf{X}^{(1:N_{\text{out}})} \right] - \phi_{\star}(\mathbf{X}^{(m)}) \right)^2 \qquad \underset{+ \text{ the norm } |\psi_{\star} - \phi_{\star}|^2_{L_2(\pi)} \end{split}$$

Toy example - description (1/2)

- A stock price $\{S_t, t \ge 0\}$, modeled as a 1-D geometric Brownian motion
- A put option $(K S_{T'})_+$ with strike K and maturity T'
- The owner of the contract aims at valuing the excess of the put price at time T < T' above the threshold p_\star , conditionally to a stock value S_T lower that s_\star

$$\mathbb{E}\left[\left.\left(\underbrace{\mathbb{E}\left[\left(K-S_{T'}\right)_{+} | S_{T}\right]}_{\text{put price at time } T; \; \phi_{\star}(S_{T})} - p_{\star}\right)_{+} \left|\underbrace{S_{T} \leq s_{\star}}_{\text{rare event}}\right]\right.$$

Of the form

$$\mathbb{E}\left[f\left(\mathbf{Y}, \mathbb{E}\left[\mathbf{R}|\mathbf{Y}\right]\right)|\mathbf{Y} \le y_{\star}\right]$$

where

- $\mathbf{Y} \sim \mathcal{N}(O, 1)$,
- $\mathbf{R} = \Xi(\mathbf{Y}, Z)$ with $Z \sim \mathcal{N}(0, 1)$ and indep. of \mathbf{Y} .

Toy example - Estimation of ϕ_{\star} (2/2)

▶ Goal: In this example, ϕ_{\star} is explicit → the error $\hat{\phi}_{\star} - \phi_{\star}$ can be displayed.

▶ Displayed: [left] The N_{out} points $(\mathbf{X}^{(m)}, \mathbf{R}^{(m)})$ when the $\mathbf{X}^{(m)}$'s are sampled from the MCMC sampler GL; and the function $x \mapsto \phi_{\star}(x)$ in red.

[right] Six realizations of $\hat{\phi}$ resp. obtained with L = 2, 3, 4 and a design $\mathbf{X}^{(m)}$'s sampled from the kernel GL (red) and NR (blue). The basis functions are

$$\phi_{\ell}(x) = S_0^{\ell-1} \exp\left((\ell-1)(-0.5\sigma^2 T + \sigma\sqrt{T}x)\right);$$

Error of the numerical method

$$\mathcal{I} - \widehat{\mathcal{I}}_{N_{\text{out}}} \stackrel{\text{def}}{=} \mathbb{E} \Big[\left. f \Big(\mathbf{Y}, \phi_{\star}(\mathbf{Y}) \Big) \Big| \mathbf{Y} \in \mathcal{A} \Big] - \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} f \Big(\mathbf{X}^{(m)}, \widehat{\phi}_{\star}(\mathbf{X}^{(m)}) \Big)$$

Error of the numerical method

$$\begin{split} \mathcal{I} - \widehat{\mathcal{I}}_{N_{\text{out}}} &\stackrel{\text{def}}{=} \mathbb{E} \Big[\left. f \Big(\mathbf{Y}, \phi_{\star}(\mathbf{Y}) \Big) \Big| \mathbf{Y} \in \mathcal{A} \Big] - \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} f \Big(\mathbf{X}^{(m)}, \widehat{\phi}_{\star}(\mathbf{X}^{(m)}) \Big) \\ &= \mathbb{E} \Big[\left. f \Big(\mathbf{Y}, \phi_{\star}(\mathbf{Y}) \Big) \Big| \mathbf{Y} \in \mathcal{A} \Big] - \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} f \Big(\mathbf{X}^{(m)}, \phi_{\star}(\mathbf{X}^{(m)}) \Big) \\ &+ \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} f \Big(\mathbf{X}^{(m)}, \phi_{\star}(\mathbf{X}^{(m)}) \Big) - \frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} f \Big(\mathbf{X}^{(m)}, \widehat{\phi}_{\star}(\mathbf{X}^{(m)}) \Big) \end{split}$$

Consistent estimator

(F., Gobet, Moulines (2017))

Assume

(i) $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ is globally Lipschitz in the second variable: there exists a finite constant C_f such that for any $(r_1, r_2, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d$,

$$|f(y, r_1) - f(y, r_2)| \le C_f |r_1 - r_2|.$$

(ii) There exists a finite constant C such that for any $N_{\rm out}$

$$\mathbb{E}\left[\left(N_{\text{out}}^{-1}\sum_{m=1}^{N_{\text{out}}}f\left(\mathbf{X}^{(m)},\phi_{\star}(\mathbf{X}^{(m)})\right) - \int f(x,\phi_{\star}(x))\pi(x)\,\mathsf{d}\lambda(x)\right)^{2}\right] \leq \frac{C}{N_{\text{out}}}.$$

Then

$$\left(\mathbb{E}\left[\left|\mathcal{I}-\widehat{\mathcal{I}}_{N_{\text{out}}}\right|^{2}\right]\right)^{1/2} \leq C_{f} \sqrt{\Delta_{N_{\text{out}}}} + \sqrt{\frac{C}{N_{\text{out}}}}$$

where (for the rate, see the slide on the regression error)

$$\Delta_{N_{\text{out}}} \stackrel{\text{def}}{=} \mathbb{E}\left[\frac{1}{N_{\text{out}}} \sum_{m=1}^{N_{\text{out}}} \left(\widehat{\phi}_{\star}(\mathbf{X}^{(m)}) - \phi_{\star}(\mathbf{X}^{(m)})\right)^{2}\right] = O\left(\frac{1}{N_{\text{out}}}\right)$$