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Nested risk computations through non parametric Regression with Markovian design

Goal

Monte Carlo for the approximation of intractable quantities of the form

E [f (Y,E [R|Y]) |Y ∈ A]

when

1 the conditional expectation is unknown

2 the event {Y ∈ A} is rare.

3 the function f is known, with explicit evaluation.

4 the distribution of Y is known (explicit) and we can sample under the
conditional distribution of R given Y.

Hereafter, set
φ?(X) = E [R|X] .
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The algorithm

The nested Monte Carlo approximation (1/3)

Step 1:
E [f (Y, φ?(Y)) |Y ∈ A] = E [f (X, φ?(X))]

where X ∼ the conditional distribution of Y given {Y ∈ A}.

Step 2: an outer stage for Monte Carlo sampling

E [f (X, φ?(X))] ≈

Difficulties: efficient sampling from the distribution of Y given the
rare event {Y ∈ A}.

Solution: a MCMC approach i.e. samples from a Markov chain with
kernel P.
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The algorithm

The nested Monte Carlo approximation (2/3)

E [f (Y, φ?(Y)) |Y ∈ A] ≈ 1

M

M∑
m=1

f
(
X(m), φ?(X

(m))
)

Step 3: an inner stage : for each m = 1, · · · ,M , approximation of
φ?(X

(m)) through regression

fix L basis functions φ1, · · · , φL.

for each X(m), a single draw R(m) under the conditional distribution
of R given X.

least square regression of the samples {R(m),m = 1 :M} on the
regressors {φ`(X(m)), ` = 1 : L,m = 1 :M}
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The algorithm

The nested Monte Carlo approximation (3/3)

Goal: E [f (Y,E [R|Y]) |Y ∈ A] = E [f (X, φ?(X))]

Algorithm:

Init.: X(0) ∼ ξ where ξ is a distribution on A.

For m = 1 :M , do

X(m) ∼ P(X(m−1), ·)
R(m) ∼ Q(X(m), ·) - the conditional dist. of R given X

Choose α̂M solving

argminα∈RL

M∑
m=1

(
R(m) −

L∑
`=1

α` φ`(X
(m))

)2

and set φ̂M (x) =
∑L
`=1 α̂M,` φ`(x).

Return

1

M

M∑
m=1

f
(
X(m), φ̂M (X(m))

)
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The algorithm

Comparison to the literature

See e.g. Broadie et al. (2011) and refs therein

i.i.d. samples X(m) / Markovian samples.

N draws R(1,m), · · · , R(N,m) draws per X(m) / A single draw R(m) per
X(m).

Weighted linear regression / (trivial extension).

Full rank and orthogonal regressors / (no conditions).
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How to sample from a distribution restricted to a rare event ?

The method

Goal

An efficient algorithm to sample from the distribution

µ dλ ≡ the conditional dist. of Y given {Y ∈ A}

The reject algorithm

Draw independently, samples Y (m) with distribution Y

until Y (m) ∈ A
is known to be inefficient in the rare event setting: the mean number of loops
to accept one sample is 1/P(Y ∈ A).
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How to sample from a distribution restricted to a rare event ?

The method

Markov chain Monte Carlo sampling with target µ dλ

Choose a proposal kernel q(x, z)dλ(z) such that for all x, z ∈ A

q(x, z)µ(z) = µ(x)q(x, z) (reversible w.r.t. µ)

MCMC sampler (Gobet and Liu, 2015)

Init: X(0) ∼ ξ - a distribution on A
For m = 1 :M , repeat:

Draw a candidate X̃(m) ∼ q(X(m), z)dλ(z)

Update the chain: set

X(m+1) =

{
X̃(m) if X̃(m) ∈ A
X(m) otherwise

Return X(m),m = 0 :M .
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How to sample from a distribution restricted to a rare event ?

Application: toy example

Toy example

A stock price {St, t ≥ 0}, modeled as a 1-D geometric Brownian motion

A put option (K − ST ′)+ with strike K and maturity T ′

The owner of the contract aims at valuing the excess of the put price at
time T < T ′ above the threshold p?, conditionally to a stock value ST
lower that s?

E


E

[
(K − ST ′)+ |ST

]︸ ︷︷ ︸
put price at time T ; φ?(ST )

−p?


+

ST ≤ s?︸ ︷︷ ︸
rare event


In this toy example,

The rare event probability P(ST ≤ s?) is explicit

The conditional expectation φ?(s) is explicit
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How to sample from a distribution restricted to a rare event ?

Application: toy example

Toy example: how to sample X(m) ?

The target distribution:

the distribution of ST given {ST ≤ s?}:

ST = S0 exp

(
{r − 1

2
σ2}T + σWT

)
Equivalently: the distribution of a standard Gaussian distribution W
restricted to {W ≤ w?}.

In that case, we can choose

X̃ = ρx+
√

1− ρ2N (0, 1).

where ρ ∈ (0, 1).
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How to sample from a distribution restricted to a rare event ?

Application: toy example

Toy example: on the design parameters
In this example: P(Y ∈ A) = 5.6e− 5. We have

P(W ≤ w?) =
J∏

j=1

P(W ≤ wj |W ≤ wj−1) w0 < w1 < · · · < wJ = w?

Displayed

for different values of ρ ∈ (0, 1)

the boxplot of 100 independent realizations of the estimator
∏J

j=1
1
M

∑M
m=1 1I

W
(j)
m ≤wj

,

the boxplot of 100 independent realizations of the acceptance-rejection rate.
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How to estimate the conditional expectation ?

Goal

Wanted: An approximation of the function φ? given by

φ?(X) = E [R|X] .

Available:

Samples X(m),m = 1 :M , approximating the distribution of X.

A transition kernel Q (easy to sample from) for the conditional distribution
of R given X.

Basis functions φ`, ` = 1 :M chosen by the user.
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How to estimate the conditional expectation ?

Estimation through regression
The problem:

Approximation by a function of the form
∑L
`=1 α` φ`

Given an approximation R(m) ∼ Q(X(m), ·) of φ?(X
(m)).

The approach:

argminα∈RL

M∑
m=1

‖R(m) −
L∑
`=1

α` φ`(X
(m))‖2.

The solution: Compute a solution α̂M of

(ATA)α = ATR

so that [
φ̂M (X(m))

]
m=1:M

= Aα̂M

R
def
=

R(1)

· · ·
R(M)

 , A
def
=

 φ1(X
(1)) · · · φL(X(1))

· · · · · · · · ·
φ1(X

(M)) · · · φL(X(M))

 .
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How to estimate the conditional expectation ?

On a toy example (1/4)

Goal
φ?(ST ) = E

[
(K − ST ′)+ |ST

]
Sampling R(m) given X(m) Here,

R(m) = (K − S(m)

T ′ )+

where S
(m)

T ′ is sampled from the conditional distribution of ST ′ given

ST = X(m).

Basis functions
φ`(x) = x`−1
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How to estimate the conditional expectation ?

On a toy example (2/4)

Displayed

(left) for different values of L, a realization of the estimator
x 7→ φ̂M (x)− φ?(x)
(right) the cdf of ST given ST ≤ s?.
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How to estimate the conditional expectation ?

On a toy example (3/4)

Displayed

for different values of L

boxplot of 100 ind. realizations of the mean squared error

1

M

M∑
m=1

(
φ̂M (X(m))− φ?(X(m))

)2
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How to estimate the conditional expectation ?

On a toy example (4/4)

Displayed

for different values of L
boxplot of 100 ind. realizations of

1

N

N∑
n=1

(
φ̂M (Z(n))− φ?(Z(n))

)2
≈ E

[(
φ̂M (X)− φ?(X)

)2]
where Z(n), n = 1 : N is a Markov chain independent of X(m),m = 1 :M .
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Convergence results

Convergence result on φ̂M

Theorem (F.,Gobet,Moulines (2016))

Let ψ s.t. |ψ − φ?|L2(µ) = minφ∈Span(φ`,`=1:L) |φ− φ?|2L2(µ)
.

Assume that

(i) the transition kernel P and the initial distribution ξ satisfy: there exists a
constant C and a rate sequence {ρ(m),m ≥ 0} such that for any m ≥ 0,∣∣∣∣ξPm[(ψ − φ?)2]−

∫
(ψ − φ?)2 µ dλ

∣∣∣∣ ≤ Cρ(m).

(ii) the conditional distribution Q satisfies

σ2 def
= sup

x∈A

{∫
r2 Q(x, dr)−

(∫
rQ(x, dr)

)2
}
<∞.

Then,

E

[
1

M

M∑
m=1

(
φ̂M (X(m))− φ?(X(m))

)2]
≤ σ2K

M
+
C

M

M∑
m=1

ρ(m) + |ψ − φ?|2L2(µ).
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Convergence results

Comments on the convergence result

1 In the case of i.i.d. sampling, C = 0 (same bound in e.g. Gyorfi et al. 2002)

2 When f is Lipschitz, first step for the control of the error

1

M

M∑
m=1

f
(
X(m), φ̂M (X(m))

)
− E [f (X, φ?(X))]

3 The proof is a bias/variance decomposition:

1

M

M∑
m=1

(
φ̂M (X(m))− φ?(X(m))

)2
=

1

M

M∑
m=1

(
φ̂M (X(m))− E

[
φ̂M (X(m))|X(1:M)

])2
controled by σ2K/M

+
1

M

M∑
m=1

(
E
[
φ̂M (X(m))|X(1:M)

]
− φ?(X(m))

)2 ergodicity of the chain
+ the norm ‖ψ − φ?‖L2(µ)
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Convergence results

Ergodicity of the MCMC sampler for rare event

Proposition (F.,Gobet,Moulines (2016))

Assume that

(i) for all x ∈ A, µ(z) > 0 =⇒ q(x, z) > 0.

(ii) the functions z 7→ µ(z) and (x, z) 7→ q(x, z) are continuous for all
x, z ∈ A.

(iii) there exists δ1 ∈ (0, 1) such that supx∈A
∫
Ac q(x, z)dλ(z) ≤ δ1.

(iv) there exist a measurable set C in A, δ2 ∈ (δ1, 1) and an unbounded off
compact set measurable function V : A → [1,+∞) such that

sup
x∈C

∫
A
V (z) q(x, z)dλ(z) <∞, sup

x∈Cc
V −1(x)

∫
A
V (z) q(x, z)dλ(z) ≤ δ2−δ1.

Then there exist κ ∈ (0, 1) and C <∞ such that for any function f : A → R,∣∣∣∣Pmf(x)− ∫ f(z)µ(z) dλ(z)

∣∣∣∣ ≤ C (sup
A

|f |
V

)
κmV (x), ∀x ∈ A.

↪→ When the target is a truncated Gaussian distribution: satisfied with
V (x) = exp(β‖x‖) and the proposal X̃ ∼ Nd(ρx, (1− ρ2)Id).
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