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Interested in (1/3)

(arg)minθ∈Rp (f(θ) + g(θ))

with

g : Rp → [0,∞] is convex, non smooth, not identically equal to +∞, and lsc.

Proxγg(τ) is explicit

f is smooth (gradient Lipschitz) with an untractable gradient

Algorithm: Perturbed Proximal-Gradient

θk+1 = Proxγk+1g

(
θk − γk+1∇̂f(θk)

)

Questions: Conditions on γk+1 and on ∇̂f(θk)−∇f(θk) to ensure the same
limiting behavior as the Prox-Gdt algorithm ?
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Interested in (2/3)

Furthermore, in the case

a) the gradient is an untractable expectation

∇f(θ) =
∫

X

H(θ, x)︸ ︷︷ ︸
explicit

πθ(dx)︸ ︷︷ ︸
probability

b) Stochastic approximation to avoid curse of dimensionality

c) i.i.d. Monte Carlo not possible/efficient → Markov Chain MC (MCMC)
sampling

Questions: Since MCMC provides a biased approximation

∇f(θk) ≈
1

mk+1

mk+1∑
j=1

H(θ,Xjk) E

 1

mk+1

mk+1∑
j=1

H(θ,Xjk)

−∇f(θk) 6= 0

where {X1k, · · · , Xjk, · · · } Markov chain with stationary distribution πθk
which conditions on γk+1 and on the Monte Carlo batch size mk+1 ?

is it possible to have a non vanishing bias i.e. mk+1 = m ?
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Interested in (3/3)

Perturbed Prox-Gdt + Acceleration:

τk = θk +
tk−1 − 1

tk
(θk − θk−1)

θk+1 = Proxγk+1g

(
θk − γk+1∇̂f(τk)

)

Questions:

Which sequences γk, tk, among those satisfying

γk+1tk(tk − 1) ≤ γkt2k−1

When stochastic approx of the gradient: which Monte Carlo batch size mk ?

Is there a gain to consider tk = O(kd) for some 0 ≤ d ≤ 1 ?
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Motivations for MCMC approx (1/3)

Computational Statistics, Statistical Learning

Online learning: here the “Monte Carlo points” are the
examples/observations.

Penalized Maximum Likelihood Estimation in a parametric model

argminθ f(θ)︸︷︷︸
negative log-likelihood

+ g(θ)︸︷︷︸
penalty term

5 / 12



Motivations for MCMC approx (2/3)

Example 1: Latent variable models

The log-likelihood `(θ) of the n observations dependence upon the obs. is omitted

`(θ) = log

∫
X

p(x, θ)︸ ︷︷ ︸
complete likelihood

µ(dx)

Untractable integral

Its gradient

∇`(θ) =
∫
∂θ log p(x, θ)

p(x, θ)∫
p(u, θ)µ(du)

µ(dx)︸ ︷︷ ︸
a posteriori distribution

Untractable integral since the normalizing constant unknown −→ MCMC
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Motivations for MCMC approx (3/3)

Example 2: Binary graphical model

N i.i.d. {0, 1}p observations from the distribution

πθ(y1:p) ∝
1

Zθ
exp

 p∑
i=1

θiyi +
∑

1≤i<j≤p

θij1Iyi=yj


The log-likelihood of the obs. Y 1, · · · , Y N

`(θ) =

p∑
i=1

θi

N∑
n=1

Y ni +
∑

1≤i<j≤p

θij

N∑
n=1

1IY n
i =Y n

j
−N logZθ

Its gradient

∇θi`(θ) =
N∑
n=1

Y ni −
∑

y1:p∈{0,1}p
yiπθ(y)

∇θij `(θ) =
N∑
n=1

1IY n
i =Y n

j
−

∑
y1:p∈{0,1}p

1Iyi=yjπθ(y)
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Results on Perturbed Prox-Gdt (1/2)

Set: L = argminΘ(f + g) ηn+1 = ∇̂f(θn)−∇f(θn)

Theorem (Atchadé, F., Moulines (2015))

Assume

g convex, lower semi-continuous; f convex, C1 and its gradient is Lipschitz
with constant L; L is non empty.∑
n γn = +∞ and γn ∈ (0, 1/L].

Convergence of the series∑
n

γ2
n+1‖ηn+1‖2,

∑
n

γn+1ηn+1,
∑
n

γn+1 〈An, ηn+1〉

where An = Proxγn+1,g(θn − γn+1∇f(θn)).

Then there exists θ? ∈ L such that limn θn = θ?.

It generalizes and improves on previous results. What can be said in the
non-convex case (open question) and with non explicit “Prox” ?
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Results on Perturbed Prox-Gdt (2/2)

Given non-negative weights a1, · · · , an, set An
def
=
∑n
k=1 ak

Theorem (Atchadé, F., Moulines)

For any θ? ∈ argminΘ(f + g),

(f + g)

(
n∑
k=1

ak
An

θk

)
−min(f + g) ≤ a0

2γ0An
‖θ0 − θ?‖2

+
1

2An

n∑
k=1

(
ak
γk
− ak−1

γk−1

)
‖θk−1 − θ?‖2

+
1

An

n∑
k=1

akγk‖ηk‖2 −
1

An

n∑
k=1

ak 〈Ak−1 − θ?, ηk〉

In the case of stochastic perturbation ηk = ∇̂f(θk)−∇f(θk): it yields bounds
with high probability, in expectation, in Lq, · · ·
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Stochastic Prox-Gdt, with (possibly) biased MC
approximation

Under ergodic conditions on the MCMC samplers, we have

∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq

= O (un)

with

Constant MC batch size mn = m (i.e. non vanishing approximation →
technical proof)

un =
1√
n

with γn =
γ?
na
, a ∈ [1/2, 1]

Increasing MC batch size

un =
1

n
with γn = γ? mn ∝ n

Rate with a computational MC cost: O(n2).
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Nesterov-based acceleration of the Stochastic Prox-Gdt alg

Convergence Choose γn,mn, tn s.t.

γn ∈ (0, 1/L] , γk+1tk(tk − 1) ≤ γkt2k−1

lim
n
γnt

2
n = +∞,

∑
n

γntn(1 + γntn)
1

mn
<∞

Then there exists θ? ∈ argminΘF s.t limn θn = θ?.

Rate on F In addition

E [F (θn+1)−minF ] = O (un)

γn mn tn un NbrMC
γ n3 n n−2 n4

γ/
√
n n2 n n−3/2 n3

In all strategies: for a MC computational cost N , the rate is 1/
√
N .
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Open questions

1 Variance reduction technique Here the variance of the MC approximation is
O(1/mn). What happens when a “variance reduction” MC technique is used
?

2 Averaging Given non-negative weights a1, · · · , an, do γk, tk,mk exist such
that

sup
n
an ((f + g)(θn)−min(f + g)) <∞

(f + g)

(
n∑
k=1

ak∑n
j=1 aj

θk

)
−min(f + g) = O

(
1∑n

k=1 ak

)
3 Maximal rate What is the maximal rate after n iterations ? after N Monte

Carlo draws ?

4 (F)ISTA ? What about tn = O(nd) for some 0 < d < 1 ?

A first answer: With variance reduction MC techniques, Nesterov acceleration
(d = 1), γk = γ, mn = n3 and an = n: after N MC draws, the rate is always
better than 1/

√
N
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