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Interested in (1/3)

(arg)ming g, (f(0) + g(0))
with
@ g:RP — [0,00] is convex, non smooth, not identically equal to +o00, and Isc.
@ Prox.,(7) is explicit

e f is smooth (gradient Lipschitz) with an untractable gradient

Algorithm: Perturbed Proximal-Gradient

Ory1 = Prox,, , 4 (9k - '7k+1vf(9k))

o —

Questions: Conditions on ;11 and on  Vf(0r) — Vf(0r) to ensure the same
limiting behavior as the Prox-Gdt algorithm 7



Interested in (2/3)

Furthermore, in the case
a) the gradient is an untractable expectation

V0 :/H(ﬂ,m) mo(dx)
XN~ ——~
explicit  probability

b) Stochastic approximation to avoid curse of dimensionality
¢) i.i.d. Monte Carlo not possible/efficient — Markov Chain MC (MCMC)
sampling

Questions: Since MCMC provides a biased approximation

1 M1 1 ME41
V() ~ H(, X, E HO,Xk)| — V[0 0
fO) ~ ; (8, X;1) e ; (0, Xj) | — V(6r) #
where {X1g, -+, Xk, -} Markov chain with stationary distribution g,

@ which conditions on 741 and on the Monte Carlo batch size mj1 7
@ is it possible to have a non vanishing bias i.e. mg4 1 =m ?



Interested in (3/3)

Perturbed Prox-Gdt + Acceleration:
tp—1—1
T =0 + ktlik(@k —0k—1)

Ory1 = Prox,, , 4 (9k - 7k+1Vf(Tk))

Questions:

@ Which sequences 7, ti, among those satisfying

Yesrtr(ts — 1) < wti_

@ When stochastic approx of the gradient: which Monte Carlo batch size my, ?
e Is there a gain to consider t, = O(k?) for some 0 < d <17



Motivations for MCMC approx (1/3)

Computational Statistics, Statistical Learning

@ Online learning: here the "Monte Carlo points” are the
examples/observations.

@ Penalized Maximum Likelihood Estimation in a parametric model

argming @ + g\(@

negative log-likelihood  penalty term



Motivations for MCMC approx (2/3)

Example 1: Latent variable models

*] The |Og-|lke|lh00d [(9) Of the n Obsel’vatiOnS dependence upon the obs. is omitted

0(6) = log / p(r,0)  p(da)

complete likelihood

Untractable integral

@ lts gradient

p(z,0)
[ p(u, 0)p(du)

a posteriori distribution

Ve(l) = /89 logp(x, ) p(dx)

Untractable integral since the normalizing constant unknown — MCMC

6
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Motivations for MCMC approx (3/3)

Example 2: Binary graphical model
e N ii.d. {0,1}” observations from the distribution

o (Y1:p) X 7, &P Z&yﬂr Yo 0Ty,

1<i<j<p
@ The log-likelihood of the obs. Y, ... YN
Ze ZY"—i- > 0 Z]Iyn —yn — Nlog Zp
1<i<j<p n=1

@ Its gradient

N
Vol(0) =YY"= > ymaly)

y1:.p€{0,1}P

N
9) = Z I[yqnzyjn — Z I[yi:yj W@(y)
n=1

Ulrlle{owl}p



Results on Perturbed Prox-Gdt (1/2)

o —

Set: L = argming (f + g) M1 = V[(0n) =V f(bn)

Theorem (Atchadé, F., Moulines (2015))

Assume

@ g convex, lower semi-continuous; f convex, C' and its gradient is Lipschitz
with constant L; L is non empty.

® > Yn =400 and vy, € (0,1/L].
e Convergence of the series

> rsallmmrall?, D Ant1mnt1, > A1 (An, 1)
n n n

where A, = Prox,, ., ¢(0n — Ynr1Vf(0r)).
Then there exists 0, € L such that lim,, 0,, = 0,.

It generalizes and improves on previous results. What can be said in the
non-convex case (open question) and with non explicit “Prox” ?



Results on Perturbed Prox-Gdt (2/2)

. . . def
Given non-negative weights a1, -+ , ay, set A, = Zzzl ag

Theorem (Atchadé, F., Moulines)
For any 0, € argming(f + g),

= ag . aop 2
— — < — 0,
(f+9) (k_l A 9k> min(f 4+ g) < oL 60 — Ol
1 ~ Qg ak_1> 2
+ W 01 — 0.
24, (’Yk Vk—1 1951 |

1= , 1
— E = — E Ay —0,,
+ A, kzldﬂk”ﬂk” A, k=1ak (Ag—1 M)

o —

In the case of stochastic perturbation n = V f(0;) — Vf(0x): it yields bounds
with high probability, in expectation, in L9, ---



Stochastic Prox-Gdt, with (possibly) biased MC
approximation

Under ergodic conditions on the MCMC samplers, we have

| (129) i F| =0

with
e Constant MC batch size m,, = m (i.e. non vanishing approximation —
technical proof)

Up =

1
5 withy = %,a € [1/2,1]
@ Increasing MC batch size

1 .
Upy = — withy, =7« my, xXn
n

Rate with a computational MC cost: O(n?).
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Nesterov-based acceleration of the Stochastic Prox-Gdt alg

Convergence Choose v, my, t, s.t.

Tn € (Ov 1/L] ) ’)/k—t-ltk(tk - ]-) S 'thz_l

. 1
hTan’Ynth = +o00, zn:’}/ntn(l + ’Yntn)min <00

Then there exists 0, € argmingF' s.t lim,, 6,, = 0,.
Rate on F' In addition

E[F(0,41) — min F] = O (uy)

n° n n=2 nt

Y
v/yn n?  on | n3? Rl

In all strategies: for a MC computational cost N, the rate is 1/v N.
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Open questions

@ Variance reduction technique Here the variance of the MC approximation is

O(1/my,). What happens when a “variance reduction” MC technique is used
?

@ Averaging Given non-negative weights aq, -+ , a,, do Vg, g, my exist such
that

Supan ((f+g)(9n) - rnm(erg)) <o

(f +9) (sz — >_mm(f+g>=o(zzfl%)

© Maximal rate What is the maximal rate after n iterations ? after N Monte
Carlo draws ?

@ (F)ISTA ? What about t,, = O(n?) for some 0 < d < 17?
A first answer: With variance reduction MC techniques, Nesterov acceleration

(d=1), v =, my, =n> and a,, = n: after N MC draws, the rate is always
better than 1/V/N



