Perturbed (accelerated) Proximal-Gradient algorithms

Gersende Fort
CNRS \& Institut de Mathématiques de Toulouse France

Works with Eric Moulines (Ecole Polytechnique, France); Yves Atchadé (Univ. Michigan, USA); J.F. Aujol (Univ. Bordeaux, France) and C. Dossal (INSA Toulouse, France)

Interested in (1/3)

$$
(\arg) \min _{\theta \in \mathbb{R}^{p}}(f(\theta)+g(\theta))
$$

with

- $g: \mathbb{R}^{p} \rightarrow[0, \infty]$ is convex, non smooth, not identically equal to $+\infty$, and Isc.
- $\operatorname{Prox}_{\gamma g}(\tau)$ is explicit
- f is smooth (gradient Lipschitz) with an untractable gradient

Algorithm: Perturbed Proximal-Gradient

$$
\theta_{k+1}=\operatorname{Prox}_{\gamma_{k+1} g}\left(\theta_{k}-\gamma_{k+1} \widehat{\nabla f\left(\theta_{k}\right)}\right)
$$

Questions: Conditions on γ_{k+1} and on $\widehat{\nabla f\left(\theta_{k}\right)}-\nabla f\left(\theta_{k}\right) \quad$ to ensure the same limiting behavior as the Prox-Gdt algorithm ?

Furthermore, in the case
a) the gradient is an untractable expectation

$$
\nabla f(\theta)=\int_{\mathrm{X}} \underbrace{H(\theta, x)}_{\text {explicit }} \underbrace{\pi_{\theta}(\mathrm{d} x)}_{\text {probability }}
$$

b) Stochastic approximation to avoid curse of dimensionality
c) i.i.d. Monte Carlo not possible/efficient \rightarrow Markov Chain MC (MCMC) sampling

Questions: Since MCMC provides a biased approximation

$$
\nabla f\left(\theta_{k}\right) \approx \frac{1}{m_{k+1}} \sum_{j=1}^{m_{k+1}} H\left(\theta, X_{j k}\right) \quad \mathbb{E}\left[\frac{1}{m_{k+1}} \sum_{j=1}^{m_{k+1}} H\left(\theta, X_{j k}\right)\right]-\nabla f\left(\theta_{k}\right) \neq 0
$$

where $\left\{X_{1 k}, \cdots, X_{j k}, \cdots\right\}$ Markov chain with stationary distribution $\pi_{\theta_{k}}$

- which conditions on γ_{k+1} and on the Monte Carlo batch size m_{k+1} ?
- is it possible to have a non vanishing bias i.e. $m_{k+1}=m$?

Interested in (3/3)

Perturbed Prox-Gdt + Acceleration:

$$
\begin{aligned}
& \tau_{k}=\theta_{k}+\frac{t_{k-1}-1}{t_{k}}\left(\theta_{k}-\theta_{k-1}\right) \\
& \theta_{k+1}=\operatorname{Prox}_{\gamma_{k+1} g}\left(\theta_{k}-\gamma_{k+1} \widehat{\nabla f\left(\tau_{k}\right)}\right)
\end{aligned}
$$

Questions:

- Which sequences γ_{k}, t_{k}, among those satisfying

$$
\gamma_{k+1} t_{k}\left(t_{k}-1\right) \leq \gamma_{k} t_{k-1}^{2}
$$

- When stochastic approx of the gradient: which Monte Carlo batch size m_{k} ?
- Is there a gain to consider $t_{k}=O\left(k^{d}\right)$ for some $0 \leq d \leq 1$?

Motivations for MCMC approx (1/3)

Computational Statistics, Statistical Learning

- Online learning: here the "Monte Carlo points" are the examples/observations.
- Penalized Maximum Likelihood Estimation in a parametric model

Motivations for MCMC approx (2/3)

Example 1: Latent variable models

- The log-likelihood $\ell(\theta)$ of the n observations dependence upon the obs. is omitted

$$
\ell(\theta)=\log \int_{\mathbf{X}} \underbrace{p(x, \theta)}_{\text {complete likelihood }} \mu(\mathrm{d} x)
$$

Untractable integral

- Its gradient

$$
\nabla \ell(\theta)=\int \partial_{\theta} \log p(x, \theta) \underbrace{\frac{p(x, \theta)}{\int p(u, \theta) \mu(\mathrm{d} u)} \mu(\mathrm{d} x)}_{\text {a posteriori distribution }}
$$

Untractable integral since the normalizing constant unknown \longrightarrow MCMC

Motivations for MCMC approx $(3 / 3)$

Example 2: Binary graphical model

- N i.i.d. $\{0,1\}^{p}$ observations from the distribution

$$
\pi_{\theta}\left(y_{1: p}\right) \propto \frac{1}{Z_{\theta}} \exp \left(\sum_{i=1}^{p} \theta_{i} y_{i}+\sum_{1 \leq i<j \leq p} \theta_{i j} \mathbb{I}_{y_{i}=y_{j}}\right)
$$

- The log-likelihood of the obs. Y^{1}, \cdots, Y^{N}

$$
\ell(\theta)=\sum_{i=1}^{p} \theta_{i} \sum_{n=1}^{N} Y_{i}^{n}+\sum_{1 \leq i<j \leq p} \theta_{i j} \sum_{n=1}^{N} \mathbb{I}_{Y_{i}^{n}=Y_{j}^{n}}-N \log Z_{\theta}
$$

- Its gradient

$$
\begin{aligned}
& \nabla_{\theta_{i}} \ell(\theta)=\sum_{n=1}^{N} Y_{i}^{n}-\sum_{y_{1: p} \in\{0,1\}^{p}} y_{i} \pi_{\theta}(y) \\
& \nabla_{\theta_{i j}} \ell(\theta)=\sum_{n=1}^{N} \mathbb{I}_{Y_{i}^{n}=Y_{j}^{n}}-\sum_{y_{1: p} \in\{0,1\}^{p}} \mathbb{I}_{y_{i}=y_{j}} \pi_{\theta}(y)
\end{aligned}
$$

Results on Perturbed Prox-Gdt (1/2)

$$
\text { Set: } \quad \mathcal{L}=\operatorname{argmin}_{\Theta}(f+g) \quad \eta_{n+1}=\widehat{\nabla f\left(\theta_{n}\right)}-\nabla f\left(\theta_{n}\right)
$$

Theorem (Atchadé, F., Moulines (2015))

Assume

- g convex, lower semi-continuous; f convex, C^{1} and its gradient is Lipschitz with constant $L ; \mathcal{L}$ is non empty.
- $\sum_{n} \gamma_{n}=+\infty$ and $\gamma_{n} \in(0,1 / L]$.
- Convergence of the series

$$
\sum_{n} \gamma_{n+1}^{2}\left\|\eta_{n+1}\right\|^{2}, \quad \quad \sum_{n} \gamma_{n+1} \eta_{n+1}, \quad \sum_{n} \gamma_{n+1}\left\langle\mathbf{A}_{n}, \eta_{n+1}\right\rangle
$$

where $\mathbf{A}_{n}=\operatorname{Prox}_{\gamma_{n+1}, g}\left(\theta_{n}-\gamma_{n+1} \nabla f\left(\theta_{n}\right)\right)$.
Then there exists $\theta_{\star} \in \mathcal{L}$ such that $\lim _{n} \theta_{n}=\theta_{\star}$.
It generalizes and improves on previous results. What can be said in the non-convex case (open question) and with non explicit "Prox" ?

Results on Perturbed Prox-Gdt (2/2)

Given non-negative weights $a_{1}, \cdots, a_{n}, \quad$ set $A_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{k}$

Theorem (Atchadé, F., Moulines)

For any $\theta_{\star} \in \operatorname{argmin}_{\Theta}(f+g)$,

$$
\begin{aligned}
(f+g)\left(\sum_{k=1}^{n} \frac{a_{k}}{A_{n}} \theta_{k}\right) & -\min (f+g) \leq \frac{a_{0}}{2 \gamma_{0} A_{n}}\left\|\theta_{0}-\theta_{\star}\right\|^{2} \\
& +\frac{1}{2 A_{n}} \sum_{k=1}^{n}\left(\frac{a_{k}}{\gamma_{k}}-\frac{a_{k-1}}{\gamma_{k-1}}\right)\left\|\theta_{k-1}-\theta_{\star}\right\|^{2} \\
& +\frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \gamma_{k}\left\|\eta_{k}\right\|^{2}-\frac{1}{A_{n}} \sum_{k=1}^{n} a_{k}\left\langle\mathbf{A}_{k-1}-\theta_{\star}, \eta_{k}\right\rangle
\end{aligned}
$$

In the case of stochastic perturbation $\eta_{k}=\widehat{\nabla f\left(\theta_{k}\right)}-\nabla f\left(\theta_{k}\right)$: it yields bounds with high probability, in expectation, in L^{q}, \ldots

Stochastic Prox-Gdt, with (possibly) biased MC approximation

Under ergodic conditions on the MCMC samplers, we have

$$
\left\|F\left(\frac{1}{n} \sum_{k=1}^{n} \theta_{k}\right)-\min F\right\|_{L^{q}}=O\left(u_{n}\right)
$$

with

- Constant MC batch size $m_{n}=m$ (i.e. non vanishing approximation \rightarrow technical proof)

$$
u_{n}=\frac{1}{\sqrt{n}} \quad \text { with } \gamma_{n}=\frac{\gamma_{\star}}{n^{a}}, a \in[1 / 2,1]
$$

- Increasing MC batch size

$$
u_{n}=\frac{1}{n} \quad \text { with } \gamma_{n}=\gamma_{\star} \quad m_{n} \propto n
$$

Rate with a computational MC cost: $O\left(n^{2}\right)$.

Nesterov-based acceleration of the Stochastic Prox-Gdt alg

Convergence Choose γ_{n}, m_{n}, t_{n} s.t.

$$
\begin{aligned}
& \gamma_{n} \in(0,1 / L], \quad \gamma_{k+1} t_{k}\left(t_{k}-1\right) \leq \gamma_{k} t_{k-1}^{2} \\
& \lim _{n} \gamma_{n} t_{n}^{2}=+\infty, \quad \sum_{n} \gamma_{n} t_{n}\left(1+\gamma_{n} t_{n}\right) \frac{1}{m_{n}}<\infty
\end{aligned}
$$

Then there exists $\theta_{\star} \in \operatorname{argmin}_{\Theta} F$ s.t $\lim _{n} \theta_{n}=\theta_{\star}$.

Rate on F In addition

$$
\mathbb{E}\left[F\left(\theta_{n+1}\right)-\min F\right]=O\left(u_{n}\right)
$$

γ_{n}	m_{n}	t_{n}	u_{n}	NbrMC
γ	n^{3}	n	n^{-2}	n^{4}
γ / \sqrt{n}	n^{2}	n	$n^{-3 / 2}$	n^{3}

In all strategies: for a MC computational cost N, the rate is $1 / \sqrt{N}$.

Open questions

(1) Variance reduction technique Here the variance of the MC approximation is $O\left(1 / m_{n}\right)$. What happens when a "variance reduction" MC technique is used ?
(2) Averaging Given non-negative weights a_{1}, \cdots, a_{n}, do γ_{k}, t_{k}, m_{k} exist such that

$$
\begin{aligned}
& \sup _{n} a_{n}\left((f+g)\left(\theta_{n}\right)-\min (f+g)\right)<\infty \\
& (f+g)\left(\sum_{k=1}^{n} \frac{a_{k}}{\sum_{j=1}^{n} a_{j}} \theta_{k}\right)-\min (f+g)=O\left(\frac{1}{\sum_{k=1}^{n} a_{k}}\right)
\end{aligned}
$$

(3) Maximal rate What is the maximal rate after n iterations? after N Monte Carlo draws ?
(4) (F)ISTA? What about $t_{n}=O\left(n^{d}\right)$ for some $0<d<1$?

A first answer: With variance reduction MC techniques, Nesterov acceleration ($d=1$), $\gamma_{k}=\gamma, m_{n}=n^{3}$ and $a_{n}=n$: after N MC draws, the rate is always better than $1 / \sqrt{N}$

