Perturbed (accelerated) Proximal-Gradient algorithms

Gersende Fort

CNRS & Institut de Mathématiques de Toulouse France

Works with Eric Moulines (Ecole Polytechnique, France); Yves Atchadé (Univ. Michigan, USA); J.F. Aujol (Univ. Bordeaux, France) and C. Dossal (INSA Toulouse, France)

Interested in (1/3)

$(\mathrm{arg}) \mathrm{min}_{\theta \in \mathbb{R}^p} \left(f(\theta) + g(\theta) \right)$

with

- $g:\mathbb{R}^p\to [0,\infty]$ is convex, non smooth, not identically equal to $+\infty,$ and lsc.
- $\operatorname{Prox}_{\gamma g}(\tau)$ is explicit
- f is smooth (gradient Lipschitz) with an untractable gradient

Algorithm: Perturbed Proximal-Gradient

$$\theta_{k+1} = \operatorname{Prox}_{\gamma_{k+1}g}\left(\theta_k - \gamma_{k+1}\widehat{\nabla f(\theta_k)}\right)$$

Questions: Conditions on γ_{k+1} and on $\nabla f(\theta_k) - \nabla f(\theta_k)$ to ensure the same limiting behavior as the Prox-Gdt algorithm ?

Interested in (2/3)

Furthermore, in the case

a) the gradient is an untractable expectation

$$\nabla f(\theta) = \int_{\mathsf{X}} \underbrace{H(\theta, x)}_{\text{explicit}} \underbrace{\pi_{\theta}(\mathsf{d}x)}_{\text{probability}}$$

- b) Stochastic approximation to avoid curse of dimensionality
- c) i.i.d. Monte Carlo not possible/efficient \rightarrow Markov Chain MC (MCMC) sampling

Questions: Since MCMC provides a biased approximation

$$\nabla f(\theta_k) \approx \frac{1}{m_{k+1}} \sum_{j=1}^{m_{k+1}} H(\theta, X_{jk}) \qquad \mathbb{E}\left[\frac{1}{m_{k+1}} \sum_{j=1}^{m_{k+1}} H(\theta, X_{jk})\right] - \nabla f(\theta_k) \neq 0$$

where $\{X_{1k}, \cdots, X_{jk}, \cdots\}$ Markov chain with stationary distribution π_{θ_k}

- which conditions on γ_{k+1} and on the Monte Carlo batch size m_{k+1} ?
- is it possible to have a non vanishing bias i.e. $m_{k+1} = m$?

Interested in (3/3)

Perturbed Prox-Gdt + Acceleration:

$$\tau_k = \theta_k + \frac{t_{k-1} - 1}{t_k} (\theta_k - \theta_{k-1})$$
$$\theta_{k+1} = \operatorname{Prox}_{\gamma_{k+1}g} \left(\theta_k - \gamma_{k+1} \widehat{\nabla f(\tau_k)} \right)$$

Questions:

• Which sequences γ_k , t_k , among those satisfying

$$\gamma_{k+1}t_k(t_k-1) \le \gamma_k t_{k-1}^2$$

- When stochastic approx of the gradient: which Monte Carlo batch size m_k ?
- Is there a gain to consider $t_k = O(k^d)$ for some $0 \le d \le 1$?

Motivations for MCMC approx (1/3)

Computational Statistics, Statistical Learning

- Online learning: here the "Monte Carlo points" are the examples/observations.
- Penalized Maximum Likelihood Estimation in a parametric model

 $\operatorname{argmin}_{\theta}$ $\underbrace{f(\theta)}_{-}$ + $\underbrace{g(\theta)}_{-}$ negative log-likelihood penalty term

Motivations for MCMC approx (2/3)

Example 1: Latent variable models

 \bullet The log-likelihood $\ell(\theta)$ of the n observations $_{\mbox{\tiny dependence upon the obs. is omitted}}$

$$\ell(\theta) = \log \int_{\mathsf{X}} \underbrace{p(x, \theta)}_{\text{complete likelihood}} \mu(\mathsf{d}x)$$

Untractable integral

• Its gradient

$$\nabla \ell(\theta) = \int \partial_{\theta} \log p(x,\theta) \quad \underbrace{\frac{p(x,\theta)}{\int p(u,\theta)\mu(\mathsf{d}u)} \mu(\mathsf{d}x)}_{}$$

a posteriori distribution

Untractable integral since the normalizing constant unknown \longrightarrow MCMC

Motivations for MCMC approx (3/3)

Example 2: Binary graphical model

 $\bullet~N$ i.i.d. $\{0,1\}^p$ observations from the distribution

$$\pi_{\theta}(y_{1:p}) \propto \frac{1}{Z_{\theta}} \exp\left(\sum_{i=1}^{p} \theta_{i} y_{i} + \sum_{1 \leq i < j \leq p} \theta_{ij} \mathbb{I}_{y_{i}=y_{j}}\right)$$

 $\bullet~$ The log-likelihood of the obs. Y^1, \cdots, Y^N

$$\ell(\theta) = \sum_{i=1}^{p} \theta_{i} \sum_{n=1}^{N} Y_{i}^{n} + \sum_{1 \le i < j \le p} \theta_{ij} \sum_{n=1}^{N} \mathbb{1}_{Y_{i}^{n} = Y_{j}^{n}} - N \log Z_{\theta}$$

• Its gradient

$$\nabla_{\theta_{i}}\ell(\theta) = \sum_{n=1}^{N} Y_{i}^{n} - \sum_{y_{1:p} \in \{0,1\}^{p}} y_{i}\pi_{\theta}(y)$$
$$\nabla_{\theta_{ij}}\ell(\theta) = \sum_{n=1}^{N} \mathbb{I}_{Y_{i}^{n}=Y_{j}^{n}} - \sum_{y_{1:p} \in \{0,1\}^{p}} \mathbb{I}_{y_{i}=y_{j}}\pi_{\theta}(y)$$

Results on Perturbed Prox-Gdt (1/2)

Set:
$$\mathcal{L} = \operatorname{argmin}_{\Theta}(f+g)$$
 $\eta_{n+1} = \nabla f(\theta_n) - \nabla f(\theta_n)$

Theorem (Atchadé, F., Moulines (2015))

Assume

- g convex, lower semi-continuous; f convex, C¹ and its gradient is Lipschitz with constant L; \mathcal{L} is non empty.
- $\sum_n \gamma_n = +\infty$ and $\gamma_n \in (0, 1/L]$.
- Convergence of the series

$$\sum_{n} \gamma_{n+1}^2 \|\eta_{n+1}\|^2, \qquad \sum_{n} \gamma_{n+1} \eta_{n+1},$$

$$\sum_{n} \gamma_{n+1} \left\langle \mathbf{A}_{n}, \eta_{n+1} \right\rangle$$

where
$$\mathbf{A}_n = \operatorname{Prox}_{\gamma_{n+1},g}(\theta_n - \gamma_{n+1} \nabla f(\theta_n)).$$

Then there exists $\theta_{\star} \in \mathcal{L}$ such that $\lim_{n} \theta_{n} = \theta_{\star}$.

It generalizes and improves on previous results. What can be said in the non-convex case (open question) and with non explicit "Prox" ?

Results on Perturbed Prox-Gdt (2/2)

Given non-negative weights a_1, \cdots, a_n ,

set
$$A_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k$$

Theorem (Atchadé, F., Moulines)

For any $\theta_{\star} \in \operatorname{argmin}_{\Theta}(f+g)$,

$$(f+g)\left(\sum_{k=1}^{n} \frac{a_{k}}{A_{n}}\theta_{k}\right) - \min(f+g) \leq \frac{a_{0}}{2\gamma_{0}A_{n}} \|\theta_{0} - \theta_{\star}\|^{2} + \frac{1}{2A_{n}}\sum_{k=1}^{n} \left(\frac{a_{k}}{\gamma_{k}} - \frac{a_{k-1}}{\gamma_{k-1}}\right) \|\theta_{k-1} - \theta_{\star}\|^{2} + \frac{1}{A_{n}}\sum_{k=1}^{n} a_{k}\gamma_{k}\|\eta_{k}\|^{2} - \frac{1}{A_{n}}\sum_{k=1}^{n} a_{k}\left\langle \mathbf{A}_{k-1} - \theta_{\star}, \eta_{k} \right\rangle$$

In the case of stochastic perturbation $\eta_k = \widehat{\nabla f(\theta_k)} - \nabla f(\theta_k)$: it yields bounds with high probability, in expectation, in L^q , \cdots

Stochastic Prox-Gdt, with (possibly) biased MC approximation

Under ergodic conditions on the MCMC samplers, we have

$$\left\|F\left(\frac{1}{n}\sum_{k=1}^{n}\theta_{k}\right) - \min F\right\|_{L^{q}} = O\left(u_{n}\right)$$

with

• Constant MC batch size $m_n = m$ (i.e. non vanishing approximation \rightarrow technical proof)

$$u_n = rac{1}{\sqrt{n}}$$
 with $\gamma_n = rac{\gamma_\star}{n^a}, a \in [1/2, 1]$

• Increasing MC batch size

$$u_n = \frac{1}{n}$$
 with $\gamma_n = \gamma_\star$ $m_n \propto m$

Rate with a computational MC cost: $O(n^2)$.

Nesterov-based acceleration of the Stochastic Prox-Gdt alg

Convergence Choose γ_n, m_n, t_n s.t.

$$\begin{split} \gamma_n &\in (0, 1/L], \qquad \gamma_{k+1} t_k (t_k - 1) \le \gamma_k t_{k-1}^2 \\ \lim_n \gamma_n t_n^2 &= +\infty, \qquad \sum_n \gamma_n t_n (1 + \gamma_n t_n) \frac{1}{m_n} < \infty \end{split}$$

Then there exists $\theta_{\star} \in \operatorname{argmin}_{\Theta} F$ s.t $\lim_{n} \theta_{n} = \theta_{\star}$.

Rate on F In addition

$$\mathbb{E}\left[F(\theta_{n+1}) - \min F\right] = O\left(u_n\right)$$

γ_n	m_n	t_n	u_n	NbrMC
γ	n^3	n	n^{-2}	n^4
γ/\sqrt{n}	n^2	n	$n^{-3/2}$	n^3

In all strategies: for a MC computational cost N, the rate is $1/\sqrt{N}$.

Open questions

- Variance reduction technique Here the variance of the MC approximation is $O(1/m_n)$. What happens when a "variance reduction" MC technique is used ?
- **2** Averaging Given non-negative weights a_1, \cdots, a_n , do γ_k, t_k, m_k exist such that

$$\sup_{n} a_n \left((f+g)(\theta_n) - \min(f+g) \right) < \infty$$
$$(f+g) \left(\sum_{k=1}^n \frac{a_k}{\sum_{j=1}^n a_j} \theta_k \right) - \min(f+g) = O\left(\frac{1}{\sum_{k=1}^n a_k} \right)$$

- $\textcircled{\ } \textbf{Maximal rate What is the maximal rate after n iterations ? after N Monte Carlo draws ?}$
- (F)ISTA ? What about $t_n = O(n^d)$ for some 0 < d < 1 ?

A first answer: With variance reduction MC techniques, Nesterov acceleration (d = 1), $\gamma_k = \gamma$, $m_n = n^3$ and $a_n = n$: after N MC draws, the rate is always better than $1/\sqrt{N}$