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Example : Computational Statistics

Penalized Maximum Likelihood inference with untractable Likelihood

@ N observations : Y = (Y1, ,Yn)

o A parametric statistical model 6 e 9 g Rd the dependance upon Y is omitted
0 — L(Y,0) likelihood of the observations

@ A penalty term on the parameter §: 6+ g(0) >0 for sparsity
constraints on 6. Usually, g non-smooth and convex.

Goal: Computation of

0 — argmaxyc o <% log L(Y,0) — 9(0)>

when the likelihood L has no closed form expression, and can not be evaluated.
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Example : Computational Statistics

Example: Latent variable model

@ The log-likelihood of the observations Y is of the form
0> g L(Y.0)  L(Y.6) = [ po(¥,) e,
X

where p is a positive o-finite measure on a set X.

o z collect the missing/latent data.

In these models,
o the complete likelihood py(Y,x) can be evaluated explicitly,
o the likelihood has no closed expression.

@ The exact integral could be replaced by a Monte Carlo approximation ;
known to be inefficient since sampling under the a priori distribution

0 log L(Y,0) MK@=AmWMm@M@W
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Example : Computational Statistics

1st strategy: EM algorithm (1/3)

@ Expectation Maximization : an example of MM algorithm
@ lterative algorithm : at iteration ¢,
a) compute the minorizing function

05 Qu(6,6,) = / log po (Y, z) po, (zY)u(dz)

b) update the parameter
041 € argmaxyQy (0, 04)
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Example : Computational Statistics

1st strategy: EM algorithm (1/3)

@ Expectation Maximization : an example of MM algorithm
@ lterative algorithm : at iteration ¢,
a) compute the minorizing function

60— Qv(6,0:) = /logpe(\ﬂ z) pe, (z[Y)p(dz)

b) update the parameter
041 € argmaxyQy (0, 04)

@ Unfortunately

a) exact integration under the a posteriori distribution: NO
b) exact sampling under the a posteriori distribution: NO
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Example : Computational Statistics

1st strategy: EM algorithm (2/3)

Unknown quantity of the form
/ Ho() mo(dz)
X

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7y, and define a Monte Carlo approximation.
MCMC samplers provide such a chain.
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Example : Computational Statistics

1st strategy: EM algorithm (2/3)
Unknown quantity of the form
/ Ho() mo(dz)
X

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7y, and define a Monte Carlo approximation.
MCMC samplers provide such a chain.

Stochastic approximation of the gradient

A biased approximation, since for MCMC samples X; o

E[h(X;0)] 75/ ) mo(dx).

If the Markov chain is ergodic, the bias vanishes when j — oo.

Therefore Stochastic EM algorithms with biased stoch approx: exact
integration is replaced with a Markov chain Monte Carlo-based sampling step
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Example : Computational Statistics

1st strategy: EM algorithm (3/3)

What about the convergence analysis of Stochastic EM (at least convergence
of t = log L(Y,6,)) ?

o For EM: the proof relies on a Lyapunov function
log L(Y, 0t+1) — log L(Y, 0t) > QY(9t+1; Ot) — Qy(@t, 6,5) > 0.

@ When Qv (+,0:) is replaced with an appoximation @y(~,6t) and/or the
M-step is not explicit: the monotonicity property does not hold any more.
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Example : Computational Statistics

1st strategy: EM algorithm (3/3)

What about the convergence analysis of Stochastic EM (at least convergence
of t = log L(Y,6,)) ?

o For EM: the proof relies on a Lyapunov function
log L(Y, 0t+1) — log L(Y, Ot) Z QY(9t+1; Ot) - Qy(&t, 6,5) 2 0.

@ When Qv (+,0:) is replaced with an appoximation @y(~,9t) and/or the
M-step is not explicit: the monotonicity property does not hold any more.

e Sufficient conditions exist for the convergence of perturbed iterative
algorithms 741 = T'(7¢), having a Lyapunov function W. For example:

Hm [W(0r41) = W (T(6:))] Topex = 0

@ In the case of MCMC-based stochastic perturbations

mi41 P
ZE |: mtlJrl Z F(Xi0) = /f(.r) po, (x|Y)dpu(x) ]'—t:| Tp,ex < o0 a.s.
t j=1
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Example : Computational Statistics

2nd strategy: gradient-based methods (1/2)

log L(¥,8) = log [ pu(Y.) u(de)
Under regularity conditions, 8 — log L(Y, ) is C* and

_ J9opo(Y, ) p(dx)
99 log L(Y, 0) = [ po(Y,2) u(dz)

= /89 log pe(Y, )

po(Y,x) u(dr)
S pe(Y,z) u(dz)
—_———

the a posteriori distribution
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Example : Computational Statistics

2nd strategy: gradient-based methods (1/2)

log L(¥,8) = log [ pu(Y.) u(de)
Under regularity conditions, 8 — log L(Y, ) is C* and

_ J9opo(Y, ) p(dx)
99 log L(Y, 0) = [ po(Y,2) u(dz)

:/(%logpo(ny) %
_’/_’

the a posteriori distribution

The gradient of the log-likelihood
Vo {105 L(¥,8)} = [ 0vlogp(Y.2) mo(de)

is an untractable expectation w.r.t. the conditional distribution of the latent
variable given the observations Y.
For all (x,0), 09 log pa(Y,x) can be evaluated.
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Example : Computational Statistics

2nd strategy: gradient-based methods (2/2)

Vo {log L(Y,0)} = /)(89 logpe(Y, ) me(dx)

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7, and define a Monte Carlo approximation.
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Example : Computational Statistics

2nd strategy: gradient-based methods (2/2)

Vo {log L(Y,0)} = /)(89 logpe(Y, ) me(dx)

© Quadrature techniques: poor behavior w.r.t. the dimension of X

@ use i.i.d. samples from 7y to define a Monte Carlo approximation: not
possible, in general.

@ use m samples from a non stationary Markov chain {Xj9,j > 0} with
unique stationary distribution 7, and define a Monte Carlo approximation.

Biased approximation

A biased approximation, since for MCMC samples X; ¢

E[b(650)) # [ (o) mo(da).

If the Markov chain is ergodic, the bias vanishes when j — .
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Example : Computational Statistics

Hereafter: focus on the second strategy

Problem:
argming o F'(6) with F(0) = f(0) + g(8)

when
00O CR?

@ the function g convex non-smooth nonnegative function (explicit)
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Example : Computational Statistics

Hereafter: focus on the second strategy

Problem:
argming o F'(6) with F(0) = f(0) + g(8)

when
00O CR?
@ the function g convex non-smooth nonnegative function (explicit)
o the function f is

- not necessarily convex,
- C* and Vf is L-Lipschitz

3L >0, v6,6"  [[VF(0) = VIO < L6 0]
- with an untractable gradient of the form

V) = / Ho () mo(da);

which can be approximated by biased Monte Carlo techniques.
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

The Proximal-Gradient algorithm (1/2)

argming c g F(0) with F(0) = f(0) + g(0)
N N
smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:

On+1 = Proxs,, g (0n — Y41V f(0n))
where

def . 1
Pty ) 2 i o <g<9> 4o lo- r||2)

Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

The Proximal-Gradient algorithm (1/2)

argming c g F(0) with F(0) = f(0) + g(0)
— —~—

smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {yn»,n > 0}, iterative algorithm:

Ont1 = Proxy, . g (On — 41V f(0n))

where
def g 1 2
Prox, ¢(7) = argming.g ( g(6) + ZHG —

Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

@ A generalization of the gradient algorithm to a composite objective
function.

o A MM/Majorize-Minimize algorithm from a quadratic majorization of f (since Lipschitz gradient)
which produces a sequence {6,,,n > 0} such that

F(Oni1) < F(0n).
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

L Algorithms

The proximal-gradient algorithm (2/2)

argming c g F(0) with F(0) = f(0) + g(0)
— —~—

smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {v,»,n > 0}, iterative algorithm:

Ont1 = Prox%wrlyg (On — 7n+1vf(0n))
where

def . 1
Bt o) 2 gt (g(9> 4o lo- r||2)

About the Prox-step:
e when g =0: Prox(r) =71
@ when g is the {0, +oo}-valued indicator fct of a closed set: the algorithm
is the projected gradient.

@ in some cases, Prox is explicit (e.g. elastic net penalty). Otherwise,
numerical approximation:

Ont1 = Proxy, 1,9 (On — Y1V f(0n)) +enia in this talk, €,41 =0
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

The perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:

On+1 = Proxy, ;.9 (On — yn1Hni1)

where Hy+1 is an approximation of V f(0,).
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

Monte Carlo-Proximal Gradient algorithm

In the case:

VF(0) = / Ho () mo () u(d),

The MC-Proximal Gradient algorithm

Choose a stepsize sequence {~yy,n > 0} and a batch size sequence {m,,n > 0}.

Given the current value 6,,,

@ Sample a Markov chain {X; ,,j > 0} from a MCMC sampler with kernel
Py, (z,dz’), and unique invariant distribution g, dp.

Q Set
1 Mp+41
Hyy1 = — JZ:; He,, (Xjn)-

© Update the value of the parameter

On+1 = Proxy, 1,9 (On — Yn1Hnt1)
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Algorithms

Stochastic Approximation-Proximal Gradient algorithm
If in addition,
Hy(z) = ®(0) + U(0)S(x)
which implies

V£(0) = B(0) + U (0 (/s mo(z (dx))
The SA-Proximal Gradient algorithm

Choose two stepsize sequences {~yp,, 6n,n > 0} and a batch size sequence {m,,n > 0}

Given the current value 0,

@ Sample a Markov chain {X; n,j > 0} from a MCMC sampler with kernel
Py, (z,dz’), and unique invariant distribution g, d.

@ Set Hy i1 = ®(60,) + U(6,)Sn i1 with

Mp41

ZSXM

Sn+1 = (1 - 6n+1) Sn i 6n+1
Mn

© Update the value of the parameter

On+1 = Proxy, ;¢ (On — Ynt1Hnt1)
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

Design " parameters”

@ Stepsize v,: constant or not ?
@ Monte Carlo batch size my: constant or increasing (computational cost) ?
o Ergodicity of the MCMC sampler
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM Dpempster et al. (1977) is @ Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.
@ (Stochastic) EM algorithms

Tut1 = argmax, / log po () mo() du(x) = argmax, {A(8) + (B(6), Sui1)}

with

St = / S(z) 70 () dp(z)  EM

My 41
1
Sni1 = S(Xjn Monte Carlo EM  wei and Tanner (1990)
+1 r—— J; (Xjn) 1990
5 Mnp+41
Spi1 = (1= 6p41)8, + —FL Z S(Xj.n) Stoch. Approx. EM  peiyon et al. (1099)
Mn+1

j=1
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM pempster et al. (1977) is @ Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

o Generalized (Stochastic) EM algorithms
Tn41 = argmax, /10gp9(~’6) o(x) du(x) = argmaxy {A(0) + (B(0), Sni1)}
A(Tnt1) + (B(Tnt1), Sn1) 2 A(Tn) 4 (B(7n), Sn1)
with

St = / S(z) 7 () dp(z)  EM

My 41

Sni1 = S(Xjn Monte Carlo EM  wei and Tanner (1990)
5 M1
Sn+1 = (1 —0ny1)Sn + —— et Z S(Xjn) Stoch. Approx. EM  peiyon et al. (1999)

Mn41 =1
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Numerical methods for Penalized ML in such models: Perturbed Proximal Gradient algorithms

Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM Dpempster et al. (1977) is @ Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

@ Generalized Penalized (Stochastic) EM algorithms

Tut1 = argmax, / log po () mo() du(x) = argmax, {A(8) + (B(6), Sui1)}

A(Tnt1) + (B(Tn+1), Snt1)=g(Tn+1) > A(T) + (B(7n), Snt1)—g(Tn)

with

St = / S(z) 7 () dp(z)  EM

Mp+1

1
Snt1 = S(Xjn Monte Carlo EM  wei and Tanner
+1 r—— J; (Xjn) Wei and Tanner (1990)
5 Mnp+41
Snt+1 = (1 — Ony1)Sn + RAAR Z S(Xjn) Stoch. Approx. EM  Delyon et al. (1999)
Mn+1

j=1
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L Algorithms

(*) Penalized Expectation-Maximization (EM) vs Proximal-Gradient

@ EM pempster et al. (1977) is a Majorize-Minimize algorithm for the computation of
the ML estimate in latent variable models.

@ (Stochastic) EM algorithms

Tn41 = argmax, /logpg () mo(z) du(z) = argmax, {A(0) + (B(0), Sn+1)}

with

Syt = / S(z) 70 (2)dp(z)  EM

Mp+4+1
Sn+1 = Z S 7, n Monte Carlo EM  wei and Tanner (1990)
Mn+1 —
My 1
Sn1 = (1 —0png1)Sn + —— Ont1 Z S(Xjn) Stoch. Approx. EM  peiyon et al. (1999)
Mn41
Jj=1

® MC-Prox Gdt and SA-Prox GDT are Generalized Penalized EM algorithms
(in the convex case).
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Convergence analysis

The assumptions

argming o F'(6) with F(0) = f(0) + g(8)
where

o the function g: R* — [0, 00] is convex, non smooth, not identically equal
to +00, and lower semi-continuous

e the function f: R? — R is a smooth convex function
i.e. f is continuously differentiable and there exists L > 0 such that

IVFO) V@) <L|o-0| V0,0 R

o © C R? is the domain of g: © = {# € R?: () < o0}

@ The set argmingF' is a non-empty subset of ©.
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Convergence analysis

Existing results in the literature
There exist results under (some of) the assumptions

i.i.d. Monte Carlo approx, infy, > 0, Z |Hng1 — Vf(6n)] < oo,

i.e. results for

@ unbiased sampling. Almost no conditions for the biased sampling, such as
the MCMC one.

@ non vanishing stepsize sequence {yn,n > 0}.
@ increasing batch size: when H, 41 is a Monte Carlo sum i.e.

My 41
1
H = E Ho (X;n),
n+1 1 = 9n( Jyn)

the assumptions imply that lim,, m,, = +o0 at some rate.

Combettes (2001) Elsevier Science.

Combettes-Wajs (2005) Multiscale Modeling and Simulation.
Combettes-Pesquet (2015, 2016) SIAM J. Optim, arXiv
Lin-Rosasco-Villa-Zhou (2015) arXiv

Rosasco-Villa-Vu (2014,2015) arXiv

Schmidt-Leroux-Bach (2011) NIPS
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (1/3)
Ont1 =Proxy, g (0n — Ynt1 Hni1) with Hpq1 = Vf(6,)

Set: L = argming (f + g) Mnt1 = Hpy1 — Vf(0r)

Theorem (Atchadé, F., Moulines (2015))

Assume

e g convex, lower semi-continuous; f convex, C* and its gradient is
Lipschitz with constant L; L is non empty.

® > ¥n =400 and v, € (0,1/L].
o Convergence of the series

> varallmsal?, D Ynttlnt1, D Ynt1 (Tas Tt
n

n n

where Ty, = Proxy,, ,,,¢(0n — Ynt1V f(0n)).

Then there exists 0, € L such that lim,, 6,, = 0.
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Convergence analysis

Convergence of the perturbed proximal gradient algorithm (2/3)

This convergence result
o for the convex case: f and g are convex.

@ is a deterministic result.
Covered: deterministic and random approximations Hy+1 of Vf(6,).
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Convergence analysis

Proof / Convergence of the perturbed proximal gradient algorithm (3/3)

Its proof relies on
© a deterministic Lyapunov inequality

2 2 . 2 2
10n+1—0x11" < 102 —6xlI” = 2vnt1 (F(nt1) —min F) =241 (Tn = 0x, Mnt1) + 275 41 10041 |l

non-negative signed noise

@ (an extension of) the Robbins-Siegmund lemma

Let {vn,n > 0} and {xn,n > 0} be non-negative sequences and
{&n,n > 0} be such that &, exists. If for any n >0,

Unt1 < Un — Xnt1 + Ent1

then 3~ xn < 00 and lim, v, exists.

Note: deterministic lemma, signed noise.
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (1/3)

let us check the condition “Y" vnnn < co w.p.1":

1 Mnp+1
Z’Yn+17ln+1 = Z’Ynﬂ <m " Z Hyp, (X /Hen (x) ™o, (d@’))
n n n Jj=1
= Z’Yn+1 n+1 — Vf(0n))
where
Xjt1,nlpast ~ Po, (Xjn, ) mePo = To;
» The RHS

> it {Hnpr = E[Hna Fal} + D ynsr {E[Hoia| Fa] = VS (00)}

unbiased MC: null
biased MC: O(1/my,)
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (1/3)

let us check the condition “Y" vnnn < co w.p.1":

Mnp+1

Z’Yn+17]n+1 = Z%H-l <mn Z Hy, (Xjn /Hen (z) o, (da:))
= Z’Yn+1 ntl — Vf( )

where
Xjt1,nlpast ~ Po, (Xjn, ) mePo = To;

» The RHS
Z Yot1 {Hnt1 — E[Hny1|Fnl} + Z Yrt1 {E [Hnt1|Fn] = Vf(0n)}

unbiased MC: null
biased MC: O(1/my,)

» The most technical case: the biased case with constant batch size m,, = m
Solution PIG to the Poisson equation: Hg — mgHy = I;'g — Py PI@
Hy 1 — Vf(6n) = martingale increment + remainder

Regularity in 6 of ¢t — I’:IL
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (2/3)

Increasing batch size: lim,, m,, = +0c0

Conditions on the step sizes and batch sizes

2
Z’V" = 400, i 00; I <00 (biased case)
B — M, — My,

Conditions on the Markov kernels: There exist A € (0,1), b < 0o, p > 2 and a measurable
function W : X — [1, 4-00) such that

sup |Hyg|w < oo, sup PgWP < AXWP +b.
6co 0€e©

In addition, for any £ € (0, p), there exist C < oo and p € (0, 1) such that for any z € X,

sup || Pg(z, ) — mgll e < Cp" W (). 6
ISE)

Condition on ©: © is bounded.
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Convergence analysis

Convergence: when H,, 1 is a Monte-Carlo approximation (3/3)

Fixed batch size: m,, = m

Condition on the step size:

Dm=400 D ya<oo > |-l <o

n

Condition on the Markov chain: same as in the case "increasing batch size” and there exists a
constant C such that for any 0,6’ € ©

[Py () = Pyr (@, ) llw

+ ||mg — 7 <Clo—-6|.
W) llmg — morllw < Cl I

|Hg — Hy, |w + sup
x
Condition on the Prox:

sup  supy ' ||Prox, ¢(0) — 0] < oc.
~v€(0,1/L) 6€©

Condition on ©: © is bounded.
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Convergence analysis

Rates of convergence (1/3) : the problem

For non negative weights ay, find an upper bound of

ZZ o F(0r) — min F
=1

It provides
@ an upper bound for the cumulative regret (ar = 1)

@ an upper bound for an averaging strategy when F' is convex since

<Zzz T )—mlnF<Zzl a F(0;) — min F.
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Convergence analysis

Rates of convergence (2/3): a deterministic control

Theorem (Atchadé, F., Moulines (2016))

For any 0, € argming F,

n

A F(0x) — min F' < ||00 —0.°
k=1
ak—1 2
— —— ) |0k=1 — O«
2A Z(’Yk ’Yk—l) 162 |
1 n
2
+F A_n Zak%HflkH e > ak (Tho1 — Os, i)
k=1 k=1
where

An=>as, mp=He=VfOr-1), Tk =Proxy, o(0k—1—wVf(0k-1)).
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Convergence analysis

Rates (3/3): when H,, 1 is a Monte Carlo approximation, bound in L4
[ (3 350) <], = |33 00—, =

with fixed size of the batch and (slowly) decaying stepsize

’ynz%,ae[l/ll] My = M.

With averaging: optimal rate, even with slowly decaying stepsize v, ~ 1/y/n.

u, = O(lnn/n)

with increasing batch size and constant stepsize
Yrn = Yx My X N.

Rate with O(n?) Monte Carlo samples !
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Convergence analysis

Acceleration (1)

Let {t,,n > 0} be a positive sequence s.t.

Tnti1tn(tn —1) < ’)’ntifl

Nesterov acceleration of the Proximal Gradient algorithm

Ont1 = PrOX7n+1,g (Tn = Y41V f(0))

tn — 1
(On+1—0n)
tn+1

Tn+l — 0n+1 +

Nesterov(2004), Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

1
(deterministic) Proximal-gradient F(6,) —min F =0 <ﬁ>
(deterministic) Accelerated Proximal-gradient F(6n) —minF =0 (%)
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Convergence analysis

Acceleration (2) Aujol-Dossal-F.-Moulines, work in progress

Perturbed Nesterov acceleration: some convergence results

Choose 7n, Mn, ty s.t.

1
n € (0,1/1], lim 2 = +oo, ntn (14 Yntn) —
Yn € (0,1/L) imy +00, ) ntn(l+7 ) <00

n

Then there exists 0, € argming F' s.t lim, 0, = 6,.
In addition

. 1
F(0n+1) — min F' = O (m)

Schmidt-Le Roux-Bach (2011); Dossal-Chambolle(2014); Aujol-Dossal(2015)

YTn my tn | rate NbrMC

ns n n? nt

v
y/vy/n n? on | a7 p?

Table: Control of F(0,) — min F’
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Conclusion

Conclusion (1/2): acceleration ?

with or without the acceleration: complexity O(1/y/n).
acceleration: longer Markov chains, few iterations.
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Conclusion

Conclusion (2/2): weaken the assumptions

e § € R* — 0 in a Hilbert space
@ O bounded — no boundedness condition on ©

e f convex — f non convex



