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The landmark-based Simultaneous Localization And Mapping (SLAM) problem is written as a prob-
lem of inference in a Hidden Markov Model (HMM). We consider the case when approximation
of the SLAM model by a Linear Gaussian model is not suitable so that Kalman-based solutions (see
e.g. |7]) do not apply. We are thus faced with online inference in HMM when the (extended) Kalman
filter has a very poor behavior.

We propose a solution based on Expectation Maximization (EM) type algorithms: we derive the
Block Online EM algorithm when the E-step is explicit, and the Particle Block Online EM algorithm
otherwise. These algorithms are streaming procedures: data are processed only once and need not
to be stored.

Consistency of these algorithms is addressed in |4, 5|: the limiting values of the Block Online EM
sequences are the stationary points of the limiting normalized log-likelihood of the observations
im7_oo T tlog p(y1.7;0) (see [2] for a similar result in the i.i.d.case)

The robot evolves in an unknown environment.
Observation: at each time step, the robot ob-
serves the landmarks in a neighborhood.
Mapping: The robot has to find the location of
the landmarks.

Localization: The pose of the robot is unknown,
and measurements depend on its pose.

Classical model for SLAM: HMM with a hidden

e Markovian dynamic for the hidden state: £(X:|X:_1) = me(Xi_1, Xt).

e Observations governed by the hidden state: L£(Y;|X:) = go( X4, Y:) state collecting both the map and the pose. But,

» Assumption (exponential model): usual methods are unstable due to the static
/ / _ / . tap.

log(mg(z,x") go(z',y)) = &(0) + (S(z, 2", y); ¥(0)) — New model: parameterized HMM. The pose of

» EM algorithm based on streaming data the robot is the hidden state with Markovian dy-

o FE-step: compute ths statistic SSEM (1) = % 23;1 o [S( X1, Xe, Y3)| Vi) namic, and this state governs the observations.

The transition of the hidden state, and/or the
conditional distribution of the observations given

Unfortunately, (i) each iteration necessitates to process all the (past) data; (i) for general HMM, | | the hidden state are parameterized by a vector
the E-step is not explicit. collecting the location of the landmarks.

e M-step: update the parameter Or = argmax, ¢(0) + (SFEM(0r_1);1(0))

e Choose increasing times: 17,75,--- ,1,,,--- at which the parameter will be updated

» Block Online EM algorithm

e [i-step: Between time 7, + 1 and 7,,11, compute ths statistic S&?EM(H(,,L)) o Tn+11—Tn f;}iﬂ 500y [S(Xt_l, X, n)‘YTnH:TnH]-

e M-step: update the parameter O(n+1) = argmaxy ¢(0) + <85L())EM(6’(n)); ¢(9)>

» Particle Block Online EM algorithm:

When the conditional expectation is not explicit, replace it by a Particle approximation - Sequential Monte Carlo algorithms for online computation of
this approximation are proposed in |1, 3].

» Averaged (Particle)-BOEM algorithms:

The variability of {0, }» is reduced when S&?EM(H(,,L)) is replaced with a weighted linear combination of {SE?EM(H(]-))}J-SR
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left] True path (bold red) and estimated path by P-BOEM

(dashed blue) and MarginalSLAM (dotted black).
right] Mean error over 100 indep. run, when estimating each of

e S ad po Frey Yii = h(X:,0.5) + 0. the 20 landmarks by P-BOEM(left) and Marginal-SLAM (right).
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