Gersende FORT

LTCI CNRS - TELECOM ParisTech

En collaboration avec S. MEYN (Univ. Illinois), E. MOULINES (TELECOM ParisTech) et P. PRIOURET (Univ. Paris 6).

Nous introduisons

- ► une transformation d'une Chaîne de Markov → processus à temps continu
- tq *la stabilité* de ce processus, est liée à *l'ergodicité* de la chaîne de Markov.
 - ⇒ caractériser l'ergodicité;
 - ⇒ identifier les facteurs responsables de la dynamique de la Chaîne de Markov.

Nous introduisons

- ► une transformation d'une Chaîne de Markov → processus à temps continu
- tq *la stabilité* de ce processus, est liée à *l'ergodicité* de la chaîne de Markov.
 - ⇒ caractériser l'ergodicité;
 - ⇒ identifier les facteurs responsables de la dynamique de la Chaîne de Markov.

Les algorithmes Markov Chain Monte Carlo (MCMC)

- sont des algorithmes itératifs qui produisent une chaîne de Markov de loi stationnaire donnée;
- et dont les performances sont liées (entre autre) à des paramètres de mise en oeuvre.
- ► ⇒ identifier le rôle de ces paramètres dans la définition des *limites fluides* et proposer un "choix optimal" de ces paramètres.

 $\hookrightarrow \mathsf{Plan} \ \mathsf{de} \ \mathsf{l'expos}\acute{\mathsf{e}}$

- I. Méthodes MCMC
- II. Limites fluides

III. Echantillonneur Metropolis-within-Gibbs adaptatif

IV. Conclusion

I. Méthodes MCMC

└─ I-a Présentation générale

Usage des méthodes MCMC :

Pour une loi donnée π , produire une Chaîne de Markov $\{\Phi_n, n \ge 0\}$ admettant π pour unique loi invariante.

$\, \hookrightarrow \, Permettent$

- d'explorer la densité cible π .
- ► d'approcher des espérances E_π[g(Φ)] dès lors que la chaîne est suffisamment régulière pour justifier LGN (et autres théos limites).

 \hookrightarrow Nécessaires dès que π est trop complexe et tirages i.i.d. de loi π impossibles.

 \hookrightarrow Nécessitent la connaissance de π à une constante de normalisation près.

 \hookrightarrow Algorithmes : Hastings-Metropolis, Gibbs, \cdots

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Echantillonneurs de Hastings-Metropolis

- Choisir un noyau de transition q(x, y) ex. q(x, y) = N(x, Σ)[y]
 Itérativement :
 - proposer une nouvelle valeur $Y \sim q(\Phi_n, \cdot)$.
 - accepter / rejeter le candidat :

$$\begin{split} \Phi_{n+1} &= Y \quad \text{avec proba} \quad \alpha(\Phi_n,Y) = 1 \wedge \frac{\pi(Y)}{\pi(\Phi_n)} \frac{q(Y,\Phi_n)}{q(\Phi_n,Y)} \\ \Phi_{n+1} &= \Phi_n \quad \text{sinon.} \end{split}$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

- I-b Echantillonneur de Hastings-Metropolis

Exemple :

Explorer la loi sur \mathbb{R}^2

$$\pi(x_1, x_2) = \mathcal{N}_2(0, \Gamma),$$

I. Méthodes MCMC

└─ I-c Autres échantillonneurs

Autres échantillonneurs :

► Echantillonneur de Gibbs : Mettre à jour composante par composante la chaîne en proposant Φ_{n+1,k} ~ π(x_k|Φ_{n,-k}).

Echantillonneur Metropolis-within-Gibbs :

- Se donner
- · une procédure de sélection des composantes $\{\omega_i, i \in \{1, \cdots, d\}\}.$
- \cdot des lois de proposition sur $\mathbb R.$
- A chaque itération :
 - choisir aléatoirement LA composante mise à jour $\mathbb{P}(I = k) = \omega_k.$
 - faire une mise à jour type Hastings-Metropolis dans la direction sélectionnée.

I. Méthodes MCMC

- I-d Paramètres de mise en oeuvre

Choix des paramètres de mise en oeuvre

L'efficacité des échantillonneurs dépend des paramètres de mise en oeuvre. Par ex.

- ► pour HM : choix des lois de proposition (ex. : choix de la structure de cov quand $q(x, \cdot) \sim \mathcal{N}(x, \Gamma)$).
- ▶ pour MwG : procédure de sélection des composantes {\u03c6_i, i ≤ d}, ET lois de proposition dans chaque direction.

I. Méthodes MCMC

I-d Paramètres de mise en oeuvre

Choix des paramètres de mise en oeuvre

L'efficacité des échantillonneurs dépend des paramètres de mise en oeuvre. Par ex.

- ► pour HM : choix des lois de proposition (ex. : choix de la structure de cov quand $q(x, \cdot) \sim \mathcal{N}(x, \Gamma)$).
- ▶ pour MwG : procédure de sélection des composantes {\u03c6_i, i ≤ d}, ET lois de proposition dans chaque direction.

$\hookrightarrow \mathsf{Questions}\ \mathsf{ouvertes}$

- Valeur optimale de ces paramètres.
- Méthodes adaptatives : correction en ligne de ces paramètres basée sur le comportement passé de l'algorithme.

I. Méthodes MCMC

- I-d Paramètres de mise en oeuvre

Dans la suite :

- idendifier le rôle de ces paramètres de mise en oeuvre dans la dynamique de la chaîne;
- en déduire une définition de ces paramètres.

Partie 2 : Limites fluides

- · Exhiber le "squelette" de la chaîne.
- $\cdot\,$ Résultats généraux, ne se limitant pas aux Chaînes issues des MCMC.

Partie 3 : Applications aux échantillonneurs MwG

II. Limites fluides

└─ II-a Définition

Processus renormalisés

Soit $\{\Phi_k, k \ge 0\}$ une chaîne de Markov à valeur X (X = \mathbb{R}^d). Famille de processus renormalisés η_r , pour r > 0(i) en le point initial :

$$\eta_r(0;x) = \frac{1}{r}\Phi_0 = x, \qquad \Phi_0 = rx$$

(ii) en temps et en espace :

$$\eta_r(t;x) = \frac{1}{r} \Phi_{\lfloor tr \rfloor}.$$

II. Limites fluides

LI-a Définition

Processus renormalisés

Soit $\{\Phi_k, k \ge 0\}$ une chaîne de Markov à valeur X (X = \mathbb{R}^d). Famille de processus renormalisés η_r , pour r > 0(i) en le point initial :

$$\eta_r(0;x) = \frac{1}{r}\Phi_0 = x, \qquad \Phi_0 = rx$$

(ii) en temps et en espace :

$$\eta_r(t;x) = \frac{1}{r} \Phi_{\lfloor tr \rfloor}.$$

Donc $\eta_r(\cdot; x) = \frac{1}{r} \Phi_k$ sur l'intervalle de temps $\left[\frac{k}{r}; \frac{(k+1)}{r}\right)$.

Par construction, trajectoires cad-lag.

II. Limites fluides

LI-a Définition

Définition

 $\hookrightarrow \mathsf{Distributions}$

- · \mathbb{P}_x : distribution de la chaîne $\{\Phi_k, k \ge 0\}$ de loi initiale δ_x .
- $\cdot \ \mathbb{Q}_{r;x}$: prob. image de \mathbb{P}_{rx} par η_r ,

probabilité sur l'espace $\mathbb{D}(\mathbb{R}^+,X)$ $_{\text{des fonctions cad-lag}\ \mathbb{R}^+ \to x}$

II. Limites fluides

LI-a Définition

Définition

 $\hookrightarrow \mathsf{Distributions}$

- · \mathbb{P}_x : distribution de la chaîne $\{\Phi_k, k \ge 0\}$ de loi initiale δ_x .
- $\cdot \ \mathbb{Q}_{r;x}$: prob. image de \mathbb{P}_{rx} par η_r ,

probabilité sur l'espace $\mathbb{D}(\mathbb{R}^+,X)$ $_{\text{des fonctions cad-lag }\mathbb{R}^+ \to x}$

 \hookrightarrow Définition *Limite Fluide*. \mathbb{Q} probabilité sur $\mathbb{D}(\mathbb{R}^+, X)$ est une limite fluide si il existe une famille de points initiaux $\{x_n, n \ge 0\}$ tq $x_n \to x$ et une famille d'échelles $r_n \to +\infty$ tq

$$\mathbb{Q}_{r_n;x_n} \Longrightarrow \mathbb{Q}.$$

Notée \mathbb{Q}_x ci-après.

II. Limites fluides

LI-a Définition

Exemple

 $\{\Phi_n, n \geq 0\}$ chaîne de Hastings-Metropolis lorsque la loi cible sur \mathbb{R}^2 est donnée par

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

et la loi de proposition est $4 \mathcal{N}_2(x, \mathbb{I})$.

Figures : Différentes réalisations du processus normalisé $\eta_r(\cdot, x)$ sur [0, T]; puis pour différents points initiaux x; puis pour différents facteurs d'échelle r.

un point initial

II. Limites fluides

LI-a Définition

Exemple

 $\{\Phi_n, n \geq 0\}$ chaîne de Hastings-Metropolis lorsque la loi cible sur \mathbb{R}^2 est donnée par

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

et la loi de proposition est $4 \mathcal{N}_2(x, \mathbb{I})$.

Figures : Différentes réalisations du processus normalisé $\eta_r(\cdot, x)$ sur [0, T]; puis pour différents points initiaux x; puis pour différents facteurs d'échelle r.

un point initial, différents points initiaux (r=100)

II. Limites fluides

LI-a Définition

Exemple

 $\{\Phi_n, n \geq 0\}$ chaîne de Hastings-Metropolis lorsque la loi cible sur \mathbb{R}^2 est donnée par

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

et la loi de proposition est $4 \mathcal{N}_2(x,\mathbb{I})$.

Figures : Différentes réalisations du processus normalisé $\eta_r(\cdot, x)$ sur [0, T]; puis pour différents points initiaux x; puis pour différents facteurs d'échelle r.

un point initial, différents points initiaux (r = 100), différentes valeurs du scaling r (r = 1000)

II. Limites fluides

LI-a Définition

Exemple

 $\{\Phi_n, n \geq 0\}$ chaîne de Hastings-Metropolis lorsque la loi cible sur \mathbb{R}^2 est donnée par

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

et la loi de proposition est $4 \mathcal{N}_2(x,\mathbb{I})$.

Figures : Différentes réalisations du processus normalisé $\eta_r(\cdot, x)$ sur [0, T]; puis pour différents points initiaux x; puis pour différents facteurs d'échelle r.

un point initial, différents points initiaux (r = 100), différentes valeurs du scaling r (r = 1000) (r = 5000)

II. Limites fluides

LI-a Définition

Exemple

 $\{\Phi_n, n \geq 0\}$ chaîne de Hastings-Metropolis lorsque la loi cible sur \mathbb{R}^2 est donnée par

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

et la loi de proposition est $4 \mathcal{N}_2(x,\mathbb{I})$.

Figures : Différentes réalisations du processus normalisé $\eta_r(\cdot, x)$ sur [0, T]; puis pour différents points initiaux x; puis pour différents facteurs d'échelle r.

un point initial, différents points initiaux (r = 100), différentes valeurs du scaling r (r = 1000) (r = 5000) (Limite Fluide)

II. Limites fluides

II-b Existence

CS d'Existence

$$\begin{split} \Phi_{k+1} &= \Phi_k + \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k + \Phi_{k+1} - \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] \\ &= \Phi_k + \underbrace{\mathbb{E}_x\left[\Phi_{k+1} - \Phi_k|\mathcal{F}_k\right]}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \quad \text{incrément de martingale}}. \end{split}$$

II. Limites fluides

II-b Existence

CS d'Existence

$$\begin{split} \Phi_{k+1} &= \Phi_k + \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k + \Phi_{k+1} - \mathbb{E}\left[\Phi_{k+1}|\mathcal{F}_k\right] \\ &= \Phi_k + \underbrace{\mathbb{E}_x\left[\Phi_{k+1} - \Phi_k|\mathcal{F}_k\right]}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \quad \text{incrément de martingale}}. \end{split}$$

$$\begin{array}{l} \cdot \ \exists p > 1, \qquad \lim_{K \to +\infty} \ \sup_{x \in \mathbf{X}} \mathbb{E}_x \left[|\epsilon_1|^p \mathrm{I}_{|\epsilon_1| > K} \right] \to 0. \\ \cdot \ 0 < \sup_{x \in \mathbf{X}} |\Delta(x)| < \infty. \end{array}$$

Alors

- $\begin{array}{l} \cdot \ \forall x_n \to x, r_n \to +\infty \text{, } \exists \text{ sous-suite } \{r_{n_j}, x_{n_j}\} \text{ tq} \\ \mathbb{Q}_{r_{n_j}; x_{n_j}} \Rightarrow \mathbb{Q}_x \end{array}$
- · \mathbb{Q}_x prob. sur l'espace des fonctions continues de $\mathbb{R}^+ \to X$.

II. Limites fluides

└─ II-c Stabilité

Stabilité des Limites Fluides

 \hookrightarrow Définition Modèle Fluide stable : il existe T>0 et $\rho<1$ tq pour tout x sue la sphère unité,

$$\mathbb{Q}_x\left(\eta \in \mathbb{D}(\mathbb{R}^+, \mathsf{X}), \inf_{[0,T]} |\eta(t)| \le \rho\right) = 1.$$

II. Limites fluides

└─ II-c Stabilité

Stabilité des Limites Fluides

 \hookrightarrow Définition $\mathit{Modèle\ Fluide\ stable}$: il existe T>0 et $\rho<1$ tq pour tout x sue la sphère unité,

$$\mathbb{Q}_x\left(\eta\in\mathbb{D}(\mathbb{R}^+,\mathsf{X}),\inf_{[0,T]}|\eta(t)|\leq
ho
ight)=1.$$

 $\stackrel{\hookrightarrow}{\to} {\rm Stabilit\acutee} \ {\rm du} \ {\rm modèle} \ {\rm fluide} \ {\rm et} \ {\rm stabilit\acutee} \ {\rm du} \ {\rm nother} \ {\rm initiale} : {\rm on} \ {\rm montre} \ {\rm que} \ {\rm la} \ {\rm stabilit\acutee} \ {\rm du} \ {\rm modèle} \ {\rm fluide} \ {\rm entraine} \ {\rm une} \ {\rm condition} \ {\rm de} \ {\rm drift} \ {\rm pour} \ {\rm la} \ {\rm chaîne} \ {\rm de} \ {\rm nother} \ {\rm de} \ {\rm drift} \ {\rm pour} \ {\rm la} \ {\rm chaîne} \ {\rm de} \ {\rm drift} \ {\rm pour} \ {\rm la} \ {\rm chaîne} \ {\rm de} \ {\rm drift} \ {\rm pour} \ {\rm la} \ {\rm de} \ {\rm drift} \ {\rm pour} \ {\rm la} \ {\rm drift} \ {\rm de} \ {\rm de} \ {\rm drift} \ {\rm de} \ {\rm de} \ {\rm drift} \ {\rm de} \ {\rm drift} \ {\rm de} \ {\rm drift} \ {\rm de} \ {\rm$

$$\tau_{\Phi_0} := \lfloor T | \Phi_0 |^{1+\beta} \rfloor \wedge \sigma, \qquad \sigma := \inf\{k, |\Phi_k| \le \rho | \Phi_0 | \}.$$

On en déduit l'ergodicité de la chaîne initiale.

II. Limites fluides

└─ II-c Stabilité

Résultat $(\star \star \star \star)$ (Fort et al, 2007)

Si

- $\{\Phi_k, k \ge 0\}$ est phi-irréductible apériodique; et que les ensembles compact sont petites.
- le modèle fluide existe et est stable

Alors la chaîne de Markov est (f, r)-ergodique

$$(n+1)^{q-1} \sup_{\{f, |f| \le 1+|x|^{p-q}\}} |\mathbb{E}_x[f(\Phi_n)] - \pi(f)| \longrightarrow_{n \to +\infty} 0, \qquad 1 \le q \le p.$$

II. Limites fluides

└─ II-c Stabilité

Résultat $(\star \star \star)$ (Fort et al, 2007)

Si

- $\{\Phi_k, k \ge 0\}$ est phi-irréductible apériodique; et que les ensembles compact sont petites.
- le modèle fluide existe et est stable

Alors la chaîne de Markov est (f, r)-ergodique

$$(n+1)^{q-1} \sup_{\{f, |f| \le 1+|x|^{p-q}\}} |\mathbb{E}_x[f(\Phi_n)] - \pi(f)| \longrightarrow_{n \to +\infty} 0, \qquad 1 \le q \le p.$$

p : contrôle du terme martingale dans la décomposition de la chaîne

 $\Phi_{n+1} - \Phi_n = \Delta(\Phi_n) + \text{incrément de martingale.}$

Le temps T d'atteinte de la boule de rayon ρ par le modèle fluide joue un rôle sur le contrôle de la convergence de $P^n(x,\cdot)$ vers $\pi.$

II. Limites fluides

II-d Caractérisation des limites fluides

Squelette de la chaîne

$$\Phi_{k+1} = \Phi_k + \underbrace{\left(\mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k\right)}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \text{incrément de martingale}}$$

▶ Pour le processus normalisé :

$$\eta_r \left[\frac{k+1}{r}, x \right] = \frac{1}{r} \Phi_{k+1} = \eta_r \left[\frac{k}{r}, x \right] + \frac{1}{r} \Delta \left(r \ \eta_r \left[\frac{k}{r}, x \right] \right) + \frac{1}{r} \epsilon_{k+1}$$
$$= \eta_r \left[\frac{k}{r}, x \right] + \frac{1}{r} \ h \left(\eta_r \left[\frac{k}{r}, x \right] \right) + \frac{1}{r} \left(\xi_k + \epsilon_{k+1} \right)$$

en ayant posé

$$h(x) = \lim_{r \to +\infty} \Delta(r \ x).$$

II. Limites fluides

II-d Caractérisation des limites fluides

Squelette de la chaîne

$$\Phi_{k+1} = \Phi_k + \underbrace{\left(\mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right] - \Phi_k\right)}_{\Delta(\Phi_k)} + \underbrace{\left(\Phi_{k+1} - \mathbb{E}_x\left[\Phi_{k+1}|\mathcal{F}_k\right]\right)}_{\epsilon_{k+1} \text{incrément de martingale}}$$

Pour le processus normalisé :

$$\eta_r \left[\frac{k+1}{r}, x \right] = \frac{1}{r} \Phi_{k+1} = \eta_r \left[\frac{k}{r}, x \right] + \frac{1}{r} \Delta \left(r \ \eta_r \left[\frac{k}{r}, x \right] \right) + \frac{1}{r} \epsilon_{k+1}$$
$$= \eta_r \left[\frac{k}{r}, x \right] + \frac{1}{r} \ h \left(\eta_r \left[\frac{k}{r}, x \right] \right) + \frac{1}{r} \left(\xi_k + \epsilon_{k+1} \right)$$

en ayant posé

$$h(x) = \lim_{r \to +\infty} \Delta(r x).$$

► Ainsi version bruitée de

$$\mu\left(\frac{k+1}{r}\right) = \mu\left(\frac{k}{r}\right) + \frac{1}{r}h\left(\mu\left(\frac{k}{r}\right)\right) \longleftrightarrow \mathsf{ODE} : \dot{\mu}(t) = h(\mu(t))$$

II. Limites fluides

II-d Caractérisation des limites fluides

En fait, limites fluides caractérisées par

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0,$$

pour tout compact $H \subset$?

II. Limites fluides

II-d Caractérisation des limites fluides

En fait, limites fluides caractérisées par

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0,$$

pour tout compact $H \subset ?$

► Dans les cas "favorables" (? = X), les limites fluides sont des distributions dégénérées : masses de Dirac en une fonction µ solution de l'ODE µ = h(µ). Stabilité du modèle fluide ↔ Stabilité de l'ODE.

Sinon, situations plus complexes, pas de résultats généraux.

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 1

Si

 $\cdot \exists h$ continue tq pour tout compact H de X \ $\{0\}$,

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

I' ODE $\dot{\mu}{=}\,h(\mu)$ est stable pour tout point initial x. Alors Le modèle fluide est stable.

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 1

Si

 $\cdot \exists h$ continue tq pour tout compact H de X \ $\{0\}$,

$$\lim_{r\to+\infty} \sup_{x\in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

. l' ODE $\mu = h(\mu)$ est stable pour tout point initial x. Alors Le modèle fluide est stable.

Exemple : Hastings-Metropolis

$$\pi(x_1, x_2) \propto (1 + x_1^2 + x_2^2 + x_1^8 x_2^2) \exp(-(x_1^2 + x_2^2))$$

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 2

Si

· $\exists h$ continue tq pour tout compact H d' un cône de X \ {0},

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

- · les ODE $\dot{\mu} = h(\mu)$ issues du cône sont stables.
- · le cône est " attractif".

Alors Le modèle fluide est stable.

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 2

Si

 $\cdot \exists h$ continue tq pour tout compact H d' un cône de X \ {0},

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - h(x)| = 0.$$

- · les ODE $\mu = h(\mu)$ issues du cône sont stables.
- · le cône est " attractif".

Alors Le modèle fluide est stable.

Exemple : Hastings-Metropolis. π mélange de gaussiennes

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 3 $(X = \mathbb{R}^2)$ \blacktriangleright Si $\cdot X = \bigcup_{\alpha=1}^{a} O_{\alpha} \cup \bigcup_{\beta=1}^{b} \{x, f_{\beta}'x = 0\}.$ $\cdot \exists \Sigma_{\alpha} \text{ tq pour tout compact H de } O_{\alpha},$ $\lim \sup |\Delta(rx) - \Sigma_{\alpha}| = 0.$

$$r \to +\infty x \in H$$

hyperplans sont "attractifs".

Alors le modèle fluide est stable.

II. Limites fluides

II-d Caractérisation des limites fluides

Caractérisation : cas 3 $(X = \mathbb{R}^2)$ Si $\cdot X = \bigcup_{\alpha=1}^{a} O_{\alpha} \cup \bigcup_{\beta=1}^{b} \{x, f'_{\beta}x = 0\}.$ $\cdot \exists \Sigma_{\alpha} \text{ tq pour tout compact H de } O_{\alpha},$

$$\lim_{r \to +\infty} \sup_{x \in \mathsf{H}} |\Delta(rx) - \Sigma_{\alpha}| = 0.$$

· hyperplans sont "attractifs".

Alors le modèle fluide est stable.

► Exemple : Metropolis within Gibbs

et limites fluides quand $\omega_1 = 0.5$

- II. Limites fluides
 - II-e Conclusion

Conclusion

- Par renormalisation de la chaîne : on extrait le comportement déterministe sous-jacent en éliminant les perturbations stochastiques.
- La stabilité du modèle fluide est liée à l'ergodicité de la chaîne initiale.
- ▶ Modèle fluide caractérisé (presque partout) par une ODE.

II. Limites fluides

II-e Conclusion

Conclusion

- Par renormalisation de la chaîne : on extrait le comportement déterministe sous-jacent en éliminant les perturbations stochastiques.
- La stabilité du modèle fluide est liée à l'ergodicité de la chaîne initiale.
- ► Modèle fluide caractérisé (presque partout) par une ODE.

et

► le modèle fluide caractérise le comportement de la chaîne initialisée "loin dans les queues" $\Phi_0 = rx$ et $r \to +\infty$.

II. Limites fluides

II-f Extensions

Extensions non présentées

 $\blacktriangleright \ \text{Lorsque } \sup_{x\in \mathbf{X}} |x|^{\beta} |\Delta(x)| < +\infty \ \text{pour} \ 0 \leq \beta < 1.$

II. Limites fluides

└─ II-f Extensions

Extensions non présentées

- $\blacktriangleright \ \text{Lorsque } \sup_{x\in \mathsf{X}} |x|^\beta |\Delta(x)| < +\infty \ \text{pour} \ 0 \leq \beta < 1.$
 - la chaîne a une dynamique plus lente.
 - limite fluide triviale : $\mathbb{Q}_x = \delta_\mu$ avec $\mu(t) = x$.
 - changer la définition du processus normalisé

$$\eta_r(t,x) = \frac{1}{r} \Phi_{\lceil tr^{1+\beta} \rceil} \qquad \Phi_0 = rx.$$

ergodicité plus lente.

II. Limites fluides

└─ II-f Extensions

Extensions non présentées

- ▶ Lorsque $\sup_{x \in \mathbf{X}} |x|^{\beta} |\Delta(x)| < +\infty$ pour $0 \leq \beta < 1$.
 - la chaîne a une dynamique plus lente.
 - limite fluide triviale : $\mathbb{Q}_x = \delta_\mu$ avec $\mu(t) = x$.
 - changer la définition du processus normalisé

$$\eta_r(t,x) = \frac{1}{r} \Phi_{\lceil tr^{1+\beta} \rceil} \qquad \Phi_0 = rx.$$

ergodicité plus lente.

• Espace d'état : pas forcément $X = \mathbb{R}^d$.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

LIII-a Rappel

Metropolis-within-Gibbs

- $\hookrightarrow \mathsf{Algorithme}$
 - \cdot choix aléatoire d'une direction de mise à jour : $\mathbb{P}(I=k)=\omega_k.$
 - mise à jour de la composante sélectionnée, selon une étape de Hastings-Metropolis.

 $\hookrightarrow \mathsf{Paramètres} \ \mathsf{de} \ \mathsf{mise} \ \mathsf{en} \ \mathsf{oeuvre}$

- · Probabilités $\omega_k, k \in \{1, \cdots, d\}.$
- · Lois de proposition : ici $q_k(x, \cdot) = \mathcal{N}(x, \sigma_k^2)$ donc variances $\sigma_k^2, k \in \{1, \cdots, d\}$.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-b Caractérisation de la limite fluide

Limite radiale de $\Delta(x) = \mathbb{E}_x[\Phi_1 - \Phi_0]$

Pour tout $i \in \{1, \cdots, d\}$, $q_i = \mathcal{N}(0, \sigma_i^2)$

$$\Delta_i(x) = \omega_i \, \int_{\{y \in \mathbb{R}, \pi(x+ye_i) < \pi(x)\}} y \, \left(\frac{\pi(x+ye_i)}{\pi(x)} - 1\right) \, q_i(y) \, dy.$$

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-b Caractérisation de la limite fluide

Limite radiale de $\Delta(x) = \mathbb{E}_x[\Phi_1 - \Phi_0]$

Pour tout $i \in \{1, \cdots, d\}$, $q_i = \mathcal{N}(0, \sigma_i^2)$

$$\Delta_i(x) = \omega_i \, \int_{\{y \in \mathbb{R}, \pi(x+ye_i) < \pi(x)\}} y \, \left(\frac{\pi(x+ye_i)}{\pi(x)} - 1\right) \, q_i(y) \, dy.$$

$\hookrightarrow \mathsf{Pour \ toute \ densit\acute{e} \ cible \ } \pi \ \mathsf{tq}$

- $|\lim_{r \to +\infty} |\nabla \ln \pi(rx)| = +\infty.$
- · ℓ donnée par $\lim_{r \to +\infty} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|} = \ell(x)$ est continue.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-b Caractérisation de la limite fluide

Limite radiale de $\Delta(x) = \mathbb{E}_x[\Phi_1 - \Phi_0]$

Pour tout $i \in \{1, \cdots, d\}$, $q_i = \mathcal{N}(0, \sigma_i^2)$

$$\Delta_i(x) = \omega_i \, \int_{\{y \in \mathbb{R}, \pi(x+ye_i) < \pi(x)\}} y \, \left(\frac{\pi(x+ye_i)}{\pi(x)} - 1\right) \, q_i(y) \, dy.$$

 \hookrightarrow Pour toute densité cible π tq

$$\cdot \lim_{r \to +\infty} |\nabla \ln \pi(rx)| = +\infty.$$

· ℓ donnée par $\lim_{r \to +\infty} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|} = \ell(x)$ est continue.

 \hookrightarrow Lorsque $r \to +\infty$

$$\Delta_i(rx) \longrightarrow \operatorname{sign}(\ell_i(x)) \,\,\omega_i \,\, \int_{\mathbb{R}^+} y q_i(y) dy = \operatorname{sign}(\ell_i(x)) \,\,\frac{\omega_i \,\,\sigma_i}{\sqrt{2\pi}}$$

- III. Echantillonneur Metropolis-within-Gibbs adaptatif
 - III-b Caractérisation de la limite fluide

$$\Delta_i(rx) \longrightarrow \operatorname{sign}(\ell_i(x)) \ \frac{\omega_i \ \sigma_i}{\sqrt{2\pi}}, \qquad \qquad \ell(x) := \lim_{r \to +\infty} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|}.$$

$\hookrightarrow \mathsf{Cela} \ \mathsf{entraine} \ \mathsf{que}$

- ► La limite radiale de ∆ dépend de la loi cible π via le "gradient normalisé limite".
- ► La limite radiale de Δ dépend des paramètres de mise en oeuvre via le produit $\omega_i \sigma_i$.
- La limite radiale est constante sur les ensembles

$$O_{\alpha} = \{x, \operatorname{sign}(\ell(x)) = \gamma_{\alpha}\}$$

où $\gamma_{\alpha} \in \{-1,1\}^d$.

 La valeur du champ limite sur O_α est donnée par les paramètres de mise en oeuvre.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-b Caractérisation de la limite fluide

Limite fluide linéaire par morceaux

 \hookrightarrow Exemple : MwG, $\pi \sim \mathcal{N}_2(0,\Gamma)$

$$\Longrightarrow \ell(x) = -\frac{\Gamma^{-1}x}{|\Gamma^{-1}x|}.$$

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-b Caractérisation de la limite fluide

Limite fluide linéaire par morceaux

 \hookrightarrow Exemple : MwG, $\pi \sim \mathcal{N}_2(0, \Gamma) \implies \ell(x) = -\frac{\Gamma^{-1}x}{|\Gamma^{-1}x|}.$

ightarrow Linéaire jusqu'au temps d'atteinte de $∂[∪_{\alpha=1}^{a}O_{\alpha}]$ On peut mq : $∀x ∈ O_{\alpha}$,

$$\forall t \leq T(x) \qquad \eta(t) = x + t \ \gamma_{\alpha} \circ \omega \circ \sigma, \qquad \mathbb{Q}_x - \mathsf{p.s.}$$

où T(x): temps d'atteinte de ∂O_{α} .

- III. Echantillonneur Metropolis-within-Gibbs adaptatif
 - III-b Caractérisation de la limite fluide

Stabilité du modèle fluide

(Résultats lorsque : d = 2 et les frontières sont des hyperplans)

Résulte

- · de l'existence d'une frontière "absorbante".
- du fait que toute frontière absorbante est "stable" (pour ces limites fluides associées au MwG).

• Exemple : MwG, $\pi \sim \mathcal{N}_2(0, \Gamma)$

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-c Paramètres de mise en oeuvre contrôlés

Stratégie adaptative :

Puisque la limite fluide dépend des paramètres de mise en oeuvre à travers le produit $\omega_i \sigma_i$,

Stratégie 1. Fixer $\omega_i = 1/d$ et choisir $\sigma_i(x)$.

Stratégie 2. Fixer $\sigma_i = c$ et choisir $\omega_i(x)$.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-c Paramètres de mise en oeuvre contrôlés

Stratégie adaptative :

Puisque la limite fluide dépend des paramètres de mise en oeuvre à travers le produit $\omega_i \sigma_i$,

Stratégie 1. Fixer $\omega_i = 1/d$ et choisir $\sigma_i(x)$.Stratégie 2. Fixer $\sigma_i = c$ et choisir $\omega_i(x)$.

Par exemple, en prenant

$$[\omega_i \sigma_i](x) = c |\ell_i(x)| \qquad \qquad \ell_i(x) = \lim_r \frac{\nabla_i \ln \pi(rx)}{|\nabla \ln \pi(rx)|}.$$

dans les deux stratégies, la limite fluide \longleftrightarrow solution de l'ODE $\mu=h(\mu)$ avec

$$h(x) = \frac{c}{\sqrt{2\pi}} \left(\lim_{r} \frac{\nabla \ln \pi(rx)}{|\nabla \ln \pi(rx)|} \right).$$

Algorithme de gradient pour ramener la chaîne vers les modes de π

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-c Paramètres de mise en oeuvre contrôlés

Ex. : Limites fluides du MwG [gauche] non-adaptatif Quand $\pi \sim \mathcal{N}_2(0, \Gamma_1)$ Γ_1 diagonale

▶ Quand $\pi \sim \mathcal{N}_2(0, \Gamma_2)$ Γ_2 non-diagonale

[droite] adaptatif

▶ Quand $\pi \sim \mathcal{N}_2(0,\Gamma_1) + \mathcal{N}_2(0,\Gamma_2)$

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Comparaison des procédures

Comparaison des procédures

 \hookrightarrow Critère 1 : Basé sur la Limite fluide et sur le temps d'atteinte d'une sphère de rayon $\rho \in]0,1[$ par la limite fluide issue de la sphère unité.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Comparaison des procédures

Comparaison des procédures

 \hookrightarrow Critère 1 : Basé sur la Limite fluide et sur le temps d'atteinte d'une sphère de rayon $\rho \in]0,1[$ par la limite fluide issue de la sphère unité.

x-axes : coordonnée polaire de la valeur initiale.

y-axes : temps d'atteinte.

pour les trois algorithmes Stratégie adaptative Non-Adaptative, $\omega_1 = 0.25$ Non-Adaptative, $\omega_1 = 0.5$

 $\pi \, \sim \, \mathcal{N}_2(0, \, \Gamma_2 \,) \, \ \Gamma_2$ non diagonale

$$\pi \sim \mathcal{N}_2(0,\Gamma_1) + \mathcal{N}_2(0,\Gamma_2)$$

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Comparaison des procédures

→ Critère 2 : Basé sur la chaîne de Markov et le temps d'atteinte du "centre de l'espace " quand chaîne initialisée "loin" du centre.

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Comparaison des procédures

 $\hookrightarrow {\sf Critère}\ 2: {\sf Basé}\ {\sf sur}\ {\sf la}\ {\sf chaîne}\ {\sf de}\ {\sf Markov}\ {\sf et}\ {\sf le}\ {\sf temps}\ {\sf d'atteinte}\ {\sf du}$ "centre de l'espace" quand chaîne initialisée "loin" du centre.

► Exemple : comparaison des deux procédures adaptatives $\pi \sim \mathcal{N}_8(0,\Gamma)$ d = 8 Γ : diagonale, avec $\Gamma_{i,i} \sim \mathcal{E}(1)$. 5000 chaines adaptatives, issues de $x \in \{z'\Gamma^{-1}z = d\}$.

x-axes : temps d'atteinte de la boule de rayon \sqrt{d} pour la Strat 1 (σ adapté) *y*-axes : temps d'atteinte de la boule de rayon \sqrt{d} pour la Strat 2 (ω adapté)

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Comparaison des procédures

► Exemple : intérêt de l'adaptation $\pi \sim \mathcal{N}_8(0,\Gamma)$ d = 8 Γ : diagonale, avec $\Gamma_{i,i} \sim \mathcal{E}(1)$. 5000 chaines adaptatives, issues de $x \in \{z'\Gamma^{-1}z = d\}$

x-axes : temps d'atteinte de la boule de rayon \sqrt{d} pour l'algorithme standard *y*-axes : temps d'atteinte de la boule de rayon \sqrt{d} pour la Stratégie 2 (ω adapté)

III. Echantillonneur Metropolis-within-Gibbs adaptatif

LIII-d Conclusion

Conclusion

Pour une famille de densités cibles, nous avons

- établi l'existence d'un modèle fluide et la stabilité du modèle.
- montré que ce modèle dépendait des paramètres de mise en oeuvre de l'algorithme.
- exploité la forme de dépendance pour proposer des procédures adaptatives de choix des paramères.
- vérifié l'intérêt de ces stratégies d'adaptation en regardant le comportement des chaînes dans la phase "transitoire".

III. Echantillonneur Metropolis-within-Gibbs adaptatif

III-d Conclusion

Conclusion

Pour une famille de densités cibles, nous avons

- établi l'existence d'un modèle fluide et la stabilité du modèle.
- montré que ce modèle dépendait des paramètres de mise en oeuvre de l'algorithme.
- exploité la forme de dépendance pour proposer des procédures adaptatives de choix des paramères.
- vérifié l'intérêt de ces stratégies d'adaptation en regardant le comportement des chaînes dans la phase "transitoire".

Néanmoins,

- résultats théoriques en faible dimension (conditions complexes et peu générales).
- informations portées par les fluctuations autour de la dérive moyenne (étude à l'ordre 2) non exploitées (travail en cours).

III. Echantillonneur Metropolis-within-Gibbs adaptatif

LIII-d Conclusion

Autre Exemple (MwG)

En conclusion de cette présentation,

- Hist. : les limites fluides sont utilisées pour l'étude des proc. de Markov à temps continu modélisant les files d'attente.
 Extension à l'étude de certaines Chaînes de Markov.
- Limites fluides ou conditions de drifts pour établir l'ergodicité des chaînes?
- Pour l'étude des méthodes MCMC : étude du régime transitoire de la chaîne (avant "stationnarité").

Résultats disponibles

- G. Fort, S. Meyn, E. Moulines and P. Priouret. The ODE method for the stability of skip-free Markov Chains with applications to MCMC. To be published, Ann. Appl. Probab. (2007)
- G. Fort. Fluid limit-based tuning of some hybrid MCMC samplers. Submitted (2007).