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Introduction

Introduction (1/3)

The goal is to compute expectations under the distribution π when

• the dimension of the support/state space X is very large,

• π is multimodal (or metastable).

Example: in Molecular dynamics, the models consist in the description of
the state of the system: the location of the N particles x` (e.g. the set of
N points in R3) and sometimes the speed of the particles.

A state of the system is characterized by a probability π(x):

π(x) ∝ exp(−H(x)) where x = (x1, · · · ,xN ) ∈ X.

The potential/Hamiltonian H(x) describes interactions between the
x1, · · · ,xN .

The goal is to compute derivatives of the partition function.
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Introduction

Introduction (2/3)

Exact computations of
∫
φdπ are not possible (π is known up to a

normalizing constant, the domain of integration is very large, · · · )
(Markov chain) Monte Carlo methods allow to sample points (Xt)t s.t.

lim
T→∞

1

T

T∑
t=1

φ(Xt)
a.s.−→
∫
φdπ.

Unfortunately, in mestastable systems, the samples remain trapped in local
modes for a very long time

Fig.: [left] level curves of a potential in R2 which is metastable in the first direction. [right] path of the first component of (Xt)t

In such situations, the convergence is very long to obtain!
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Introduction (3/3)

Nevertheless, in Molecular Dynamics, it is often possible to identify a
reaction coordinate that is, in some sense a ”direction of metastability”.

A new approach to define samplers robust to metastability:

1) sample from a biased distribution π? such that
the image of π? by the reaction coordinate O is uniform:

O(X) when X ∼ π? has a uniform distribution

the conditional distribution of x given O(x) under π? and π are the same.

2) approximate integrals w.r.t. π by an importance sampling algorithm with
proposal π?
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(General) Wang-Landau Algorithm

General Wang-Landau (1/4)

Choose a partition X1, · · · ,Xd of X.

Set O(x) = i iff x ∈ Xi.

Then

π?(x) denoted hereafter πθ?(x) ∝
d∑
i=1

π(x)

θ?(i)
1IXi(x)

where θ? = (θ?(1), · · · ,θ?(d)) is the weight vector i.e.
∑
i θ?(i) = 1 and θ?(i) ≥ 0

θ?(i) =

∫
Xi
dπ(x)

↪→ BUT: πθ? is unknown since in non-trivial applications θ? is unknown
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(General) Wang-Landau Algorithm

General Wang-Landau (2/4)

Wang-Landau is an iterative algorithm designed to simultaneously

learn the weight vector θ?

draw samples {Xk,k ≥ 0} approximating the distribution πθ? .

Note that π? 6= π but

roughly:
1

n

n∑
k=1

δXk ≈ πθ? =⇒ 1

n

n∑
k=1

θ?(i)1IXk∈Xi δXk ≈ π

an empirical approximation of π is obtained by importance sampling from
samples approximating πθ? .
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(General) Wang-Landau Algorithm

General Wang-Landau (3/4): the algorithm

Iteratively, define {(Xt,θt),t ≥ 0}

(i) sample Xt+1 ∼ Pθt(Xt,·) where Pθt is a Markov kernel with invariant
distribution πθt

πθ(x) ∝
d∑
i=1

π(x)

θ(i)
1IXi(x).

(ii) Update the weights

θt+1 = function(t,θt,Xt+1)

For θt+1, updating strategy based on stochastic approximation

θt+1 = θt + γt+1H(θt,Xt+1)

where (γt)t is a positive stepsize sequence and, the field H is chosen so that θ? is a zero of

θ 7→
∫
πθ(dx)H(θ,x).
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(General) Wang-Landau Algorithm

General Wang-Landau (4/4): the algorithm

Many updating strategies for (θt,γt) such that: the chain is pushed towards
strata with weaker frequency of visit thus improving the exploration of the
space. Among examples

(exponential update) for any i ∈ {1, · · · ,d}

θt+1(i) =
θt(i) exp

(
γt+1 (1IXi (Xt+1)− 1/d)

)∑d
`=1 θt(`) exp

(
γt+1 (1IX` (Xt+1)− 1/d)

)
(linearized version) if Xt+1 ∈ Xi,{

θt+1(i) = θt(i) + γt+1 θt(i)(1− θt(i))
θt+1(k) = θt(k)− γt+1 θt(k)θt(i) k 6= i

Deterministic or random decreasing stepsize sequence (γt)t.

In our work: the linearized update and a deterministic sequence {γt,t ≥ 0}.
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(General) Wang-Landau Algorithm

A numerical illustration

A numerical illustration (1/3)

Target density: π(x1,x2) ∝ exp(−βH(x1,x2))1I[−R,R](x1)
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Fig.: [left] Level curves of the potentialH. [center, right] Density π up to a normalizing constant.
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(General) Wang-Landau Algorithm

A numerical illustration

A numerical illustration (2/3)
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A numerical illustration

A numerical illustration (3/3)

Path of the x1-component of (Xt)t, when Xt is the WL chain (left) and the
HM chain (right).
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Limiting behavior of the Wang-Landau algorithm

Two points of view

Limiting behavior: Two points of view

1 Limiting behavior of {θt,t ≥ 0} i.e. of a stochastic approximation
procedure

θt+1 = θt + γt+1H(θt,Xt+1)

with controlled Markov chain dynamic {Xt,t ≥ 0}.

2 Limliting behavior of {Xt,t ≥ 0} i.e. of an adaptive Markov chain Monte
Carlo

P (Xt+1 ∈ A|Ft) = Pθt(Xt,A).
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Assumptions

Assumptions

The limiting behavior of the Wang-Landau is studied under the assumptions

A) The target distribution is π dλ on X ⊂ Rp and supX π <∞.

B) The partition (Xi)i such that θ?(i)
def
=
∫
Xi
π dλ > 0.

C) For any θ ∈ Θ, Pθ is a Hastings-Metropolis kernel with proposal q and
invariant distribution πθ. It is assumed: infX2 q > 0.

D) The stepsize sequence (γt)t is non-increasing and satisfies
∑
t γt = +∞

and
∑
t γ

2
t <∞.
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Limiting behavior of the Wang-Landau algorithm

Convergence of the weight sequence

Sufficient conditions for the convergence of {θt,t ≥ 0}
Benveniste et al. (1987), Andrieu et al. (2005), Fort (2013)

θt+1 = θt + γt+1H(θt,Xt+1) = θt + γt+1h(θt) + γt+1 (H(θt,Xt+1)− h(θt))

where the h is the mean field defined by

h(θ)
def
=

∫
H(θ,x)πθ(dx) =

(
d∑
i=1

θ?(i)

θ(i)

)−1

(θ? − θ)

Convergence to θ? when

the O.D.E θ̇ = h(θ) converges to θ? (Lyapunov function, · · · )

(stability condition) the sequence (θt)t visits infinitely often a compact
subset of {θ : θ(i) > 0 and

∑d
i=1 θ(i) = 1}

the noise sequence is small enough

·
∑
t γt =∞,

∑
t γ

2
t <∞

· the transition kernels (Pθ,θ ∈ Θ) are ergodic (enough) and are
smooth enough in θ.
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Limiting behavior of the Wang-Landau algorithm

Convergence of the weight sequence

Result: stability of {θt,t ≥ 0}
Theorem: F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the assumptions A to D and infX π > 0

P
(

lim sup
t

min
1≤i≤d

θt(i) > 0

)
= 1.

Sketch of the proof:

Tk <∞ w.p.1. where Tk are the successive times when a sample Xn is drawn in the
stratum i? such that θn(i?) = mink θn(k).

We prove that P(lim supk
(
mini θTk−1(i)

)
> 0) = 1, and a key property for this proof is

Pθ(x,Xj)1IXi (x) ≤ C 1 ∧
θ(i)

θ(j)
.

↪→ Low probability of moving from a stratum with small weight to a stratum with large
weight.
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Limiting behavior of the Wang-Landau algorithm

Convergence of the weight sequence

Result: convergence of {θt,t ≥ 0}
Theorem F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the assumptions A to D and the stability of the sequence {θt,t ≥ 0}

P
(

lim
t
θt = θ?

)
= 1.

Sketch of the proof: Check the conditions of Andrieu, Moulines and Priouret (2005). Main ingredients:

The Lyapunov function V associated to the mean field h

V (θ) = −
d∑
i=1

θ?(i) log

(
θ(i)

θ?(i)

)
The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV + ‖πθ − πθ′‖TVC ‖θ − θ′‖



Convergence of the Wang-Landau algorithm

Limiting behavior of the Wang-Landau algorithm

Convergence of the weight sequence

Result: Rate of convergence of {θt,t ≥ 0}
Theorem F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the assumptions A to D, when γt ∼ γ?/tα (1/2 < α ≤ 1)

γ
−1/2
t (θt − θ?)

dist.−→ Nd
(

0,
dγ?

2γ? − d
U?

)
where

U? =
d

2

∫
X

{
Ĥ?(x)ĤT

? (x)− Pθ?Ĥ?(x)Pθ?Ĥ
T
? (x)

}
πθ?(x)λ(dx)

and
Ĥ?(x) =

∑
`≥0

P `θ? (H(θ?,·)− h(θ?)) (x)

The optimal rate is reached with γt = d/t thus yielding to the optimal
covariance matrix d2U?.

Averaging technique can also be used to reach this optimal rate.
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Limiting behavior of the Wang-Landau algorithm

Convergence of the samples {Xt,t ≥ 0}

Sufficient conditions for the ergodicity of {Xt,t ≥ 0}
Roberts and Rosenthal (2007); F., Moulines and Priouret (2012)

E [f(Xt)]− πθ?(f) = E [f(Xt)− E [f(Xt)|Ft−`]]

+ E
[
E [f(Xt)|Ft−`]− P `θt−`f(Xt−`)

]
+ E

[
P `θt−`f(Xt−`)− πθt−`(f)

]
+ E

[
πθt−`(f)− πθ?(f)

]

Convergence when

the first term is null

the second term is small when adaptation is diminishing

the third term is small when the transition kernels (Pθ,θ ∈ Θ) are ergodic
(enough), at a rate which is uniform (enough) in θ (containment
condition)

the last term is small provided (θt,t ≥ 0) converges to θ? since in our case

‖πθ − πθ?‖TV ≤ C ‖θ − θ?‖



Convergence of the Wang-Landau algorithm

Limiting behavior of the Wang-Landau algorithm

Main results

Result: ergodicity and LLN for the samples {Xt,t ≥ 0} (1/2)

Theorem F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the assumptions A to D and the stability of the sequence {θt,t ≥ 0},

lim
t

E [f(Xt)] =

∫
f(x) πθ?(x)λ(dx)

1

T

T∑
t=1

f(Xt)
a.s.−→

∫
f(x) πθ?(x)λ(dx)

for any bounded measurable function f .

Proof: Check the conditions of F., Moulines and Priouret (2012). Main ingredients:

The uniform (in x,θ) geometric ergodicity of the transition kernels Pθ

The regularity properties

‖πθ − πθ′‖TV + sup
x∈X
‖Pθ(x,·)− Pθ′ (x,·)‖TV ≤ C‖θ − θ′‖
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Limiting behavior of the Wang-Landau algorithm

Main results

Result: ergodicity and LLN for the weighted samples {Xt,t ≥ 0} (2/2)

Theorem F., Jourdain, Kuhn, Lelièvre, Stoltz (2012)

Under the assumptions A to D and the stability of the sequence {θt,t ≥ 0},

lim
t

E

[
d

d∑
i=1

θt(i) f(Xt)1IXi(Xt)

]
=

∫
f(x) π(x)λ(dx)

1

T

T∑
t=1

(
d

d∑
i=1

θt(i)1IXi(Xt)

)
f(Xt)

a.s.−→
∫
f(x) π(x)λ(dx)

for any bounded measurable function f .
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Conclusion

Conclusion

Wang-Landau algorithms are designed to be able to switch as fast as
possible from a metastable state to another metastable state in order to
efficiently explore the whole configuration space.

We obtained results on the asymptotic behavior of WL but

how to study the efficiency of the WL and how to compare WL to a
non-adaptive MCMC sampler?

↪→ in a companion paper,
Comparison in terms of how rapidly does the sampler escape from a
metastable state
Computation of exit times for some models

and these discussions evidence the interest of WL over classical MCMC
algorithms.
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T. Lelièvre, M. Rousset and G. Stoltz. Computation of free energy profiles with adaptive parallel
dynamics. J. Chem. Phys. 126: (2007).
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