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Adaptive MCMC : theory and methods

We will provide sufficient conditions so that

the process {Xn,n ≥ 0} produced by an adaptive MCMC sampler
approximates a target density π? i.e.

I (convergence of the marginals) for any bounded function f

lim
n

E [f(Xn)] = π?(f)

I (strong LLN) for any function f in a large class of functions

1
n

n∑
k=1

f(Xk) −→ π?(f) P− a.s.
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Example 1: Adaptive SRWM

Example 1 : Adaptive SRWM

I MCMC depends on some design parameters.

Ex. for the Symmetric Random Walk Metropolis (SRWM) with normal
proposal distribution, the design parameter is the variance Σq of the
Gaussian proposal.

I Tune these design parameters “on the fly”, during the run of the
algorithm.

Ex. (to follow)

based on results obtained by the scaling technique, choose Σq ∝ Σπ.

usually, Σπ is unknown : at iteration n, replace it by an estimation
computed with the samples {Xk, k ≤ n}.
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Two examples

Example 1: Adaptive SRWM

This yields the adaptive SRWM

I Pθ : kernel of a SRWM algorithm with proposal Nd(0,θ)
I Iteration n

I draw Xn+1 ∼ Pθn(Xn,·)
I update the estimate of Σπ : θn+1 = φn(θn,Xn+1).
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Two examples

Example 1: Adaptive SRWM

This is an example of the following general framework :

I let a family of transition kernels {Pθ,θ ∈ Θ}
I with the same invariant probability distribution π?.

I define a process {(Xn,θn),n ≥ 0} as follows
I given the past (a filtration Fn), draw

Xn+1 ∼ Pθn(Xn,·)

I update the ’parameter’ with an “internal adaptation” scheme

θn+1 ←→ built from the process {Xk,k ≤ n} itself



Adaptive MCMC : theory and methods

Two examples

Example 2: Equi-Energy sampler

Example 2: Equi-Energy sampler
I Given

a transition kernel P s.t. π?P = π?

a probability of swap ε ∈ (0,1)
an auxiliary process {Yn,n ≥ 0} target : π

β
?
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Example 2: Equi-Energy sampler

I Given

a transition kernel P s.t. π?P = π?

a probability of swap ε ∈ (0,1)
an auxiliary process {Yn,n ≥ 0} target : π

β
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Fig.: Example : Mixture of a 2D-Normal distribution [target / EE / Parallel
Tempering / SRWM]
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Example 2: Equi-Energy sampler

I Given

a transition kernel P s.t. π?P = π?

a probability of swap ε ∈ (0,1)
an auxiliary process {Yn,n ≥ 0} target : π

β
?

I Iteration n :

(a) with probability (1− ε) draw Xn+1 ∼ P (Xn,·)

Pθn(Xn,A) = (1− ε)P (Xn,A) + · · ·
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Two examples

Example 2: Equi-Energy sampler

Example 2: Equi-Energy sampler
I Given

a transition kernel P s.t. π?P = π?

a probability of swap ε ∈ (0,1)
an auxiliary process {Yn,n ≥ 0} target : π

β
?

I Iteration n :

(b) with probability ε, draw a point Y? among {Y1, · · · ,Yn} and
accept/reject with probability α(Xn,Y?)

Pθn
(Xn,A) = (1− ε)P (Xn,A) + ε

{∫
A

θn(dy) α(Xn,y)

+1A(Xn)
∫

θn(dy) {1− α(Xn,y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk
(dy).
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Example 2: Equi-Energy sampler

In practice

I Choose the auxiliary process {Yn,n ≥ 0} such that limn θn = π̃
in some sense, so that asymptotically, “Pθn

≈ Pπ̃”.

I Choose the acceptation-rejection mecanism α(x,y) so that
π? Pπ̃ = π?, so that asymptotically, “π? is invariant for Pθn

”.
I When sampling in the past of the auxiliary process, select the

points : introduce a selection g(x,y) (such that g(x,y) = g(y,x))
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in some sense, so that asymptotically, “Pθn ≈ Pπ̃”.

I Choose the acceptation-rejection mecanism α(x,y) so that
π? Pπ̃ = π?, so that asymptotically, “π? is invariant for Pθn”.

I When sampling in the past of the auxiliary process, select the
points : introduce a selection g(x,y) (such that g(x,y) = g(y,x))

This yields :

Pθn
(Xn,A) = (1− ε)P (Xn,A) + ε

{∫
A

g(x,y)θn(dy)∫
g(x,y)θn(dy)

α(Xn,y)

+1A(Xn)
∫

g(x,y)θn(dy)∫
g(x,y)θn(dy)

{1− α(Xn,y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk
(dy) α(x,y) = 1 ∧ π(y) π̃(x)

π̃(y) π(x)



Adaptive MCMC : theory and methods

Two examples

Example 2: Equi-Energy sampler

In practice

I Choose the auxiliary process {Yn,n ≥ 0} such that limn θn = π̃
in some sense, so that asymptotically, “Pθn

≈ Pπ̃”.

I Choose the acceptation-rejection mecanism α(x,y) so that
π? Pπ̃ = π?, so that asymptotically, “π? is invariant for Pθn

”.
I When sampling in the past of the auxiliary process, select the

points : introduce a selection g(x,y) (such that g(x,y) = g(y,x))

This yields :

Pθn(Xn,A) = (1−εθn(x))P (Xn,A)+εθn(x)
{∫

A

g(x,y)θn(dy)∫
g(x,y)θn(dy)

α(Xn,y)

+1A(Xn)
∫

g(x,y)θn(dy)∫
g(x,y)θn(dy)

{1− α(Xn,y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk
(dy) α(x,y) = 1∧π(y) π̃(x)

π̃(y) π(x)
εθ(x) := ε1R

θ(dy)g(x,y)>0.
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Example 2: Equi-Energy sampler

This is an example of the following general framework :

I let a family of transition kernels {Pθ,θ ∈ Θ}
I with their own invariant probability distribution πθ : πθPθ = πθ

I define a process {(Xn,θn),n ≥ 0} as follows
I given the past (a filtration Fn), draw

Xn+1 ∼ Pθn(Xn,·)

I update the ’parameter’ with an “external adaptation” scheme

θn+1 ←→ built from an auxiliary process {Yk,k ≤ n}
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Two examples

Conclusion

Conclusion of Section I

We have

I a family of transition kernels {Pθ,θ ∈ Θ},
I with invariant distribution : πθ or π?.

We define a filtration Fn, and a process {(Xn,θn),n ≥ 0} s.t.

I component θn : Fn adapted with internal / external adaptation

I component Xn (process of interest):

E [f(Xn+1)|Fn] =
∫

Pθn
(Xn,dy) f(y).
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1. Examples

2. Sufficient conditions for convergence of the marginals

3. Sufficient conditions for strong LLN

Suff Cond for : the existence of π? s.t.

lim
n

E [f(Xn)] = π?(f)

for any bounded function f .
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Idea, when ∀θ, πθ = π?

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PN
θn−N

f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PN
θn−N

f(Xn−N )− π?(f)︸ ︷︷ ︸
ergodicity of the frozen chain

 + π?(f).

Conditions on

I (Diminishing adaptation) two successive transition kernels are
similar : “‖Pθn(x,·)− Pθn−1(x,·)‖TV → 0”

I (Containment condition) ergodicity of the transition kernel “
‖Pn

θ (x,·)− π?‖TV → 0 uniformly”
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Result, when ∀θ, πθ = π?

Define
Mε(x,θ) := inf{n ≥ 1,‖Pn

θ (x,·)− π?‖TV ≤ ε}

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn(x,·)− Pθn−1(x,·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn,θn) ≥ M) = 0.

Then
lim
n

sup
f,|f |∞≤1

|E [f(Xn)]− π?(f)| = 0
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How to check these conditions?

I (Diminishing adaptation)

sup
x
‖Pθn

(x,·)− Pθn−1(x,·)‖TV −→P 0

↪→ Problem specific.
For ex. we can have

sup
x
‖Pθn

(x,·)− Pθn−1(x,·)‖TV ≤ C ‖θn − θn−1‖xxx

so that convergence in probability is implied by the adaptation
scheme.
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How to check these conditions?

How to check these conditions?
I (Containment condition)

lim
M

lim sup
n

P (Mε(Xn,θn) ≥ M) = 0, Mε(x,θ) := inf{n ≥ 1,‖P
n
θ (x,·) − π?‖TV ≤ ε}

↪→ usually, deduced from uniform-in-θ ergodicity : if

sup
θ
‖Pn

θ (x,·)− π?‖TV ≤ ρ(n) U(x) lim
n

ρ(n) = 0

then
Mε(x,θ) ≤ ρ−1

(
εC−1U−1(x)

)
.

Hence : Containment Cond is proved if Ũ(Xn) is bounded in
probability.

It can thus be proved from uniform-in-θ conditions of the form :

• ∃ε > 0,ν,C Pθ(x,·) ≥ εν(·)1C(x)
• PθV (x) ≤ V (x)− φ ◦ V (x) + b1C(x).
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= E

 E [f(Xn)|Fn−N ]− PN
θn−N

f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PN
θn−N

f(Xn−N )− πθn−N
(f)︸ ︷︷ ︸

ergodicity of the frozen chain

+πθn−N
(f)− π?(f)

]
+ π?(f).

Conditions on

I (same) : Diminishing adaptation, Containment condition

I Convergence of the invariant measures {πθn
,n ≥ 0} to some π?
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Result when πθPθ = πθ

Result when πθPθ = πθ

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn

(x,·)− Pθn−1(x,·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn,θn) ≥ M) = 0.

3. (Convergence of the invariant distributions)

πθn
(f)− π?(f) →P 0.

Then
lim
n

|E [f(Xn)]− π?(f)| = 0
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Convergence of the marginals

How to check these conditions?

How to check these conditions?
I (Convergence of the invariant distributions)

πθn
(f)− π?(f) →P 0.

We proved that if

(i) there exist x s.t.

lim
n

sup
θ
‖Pn

θ (x,·)− πθ‖TV = 0,

(ii) there exist θ? ∈ Θ and a set A such that P(A) = 1 and

∀ω ∈ A,x ∈ X,B ∈ B(X) lim
n

Pθn(ω)(x,B) = Pθ?
(x,B)

(iii) the state space X is Polish

then for any bounded function f ,

πθn
(f) −→a.s. πθ?

(f)
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Conclusion of Section II

Conclusion : when applied to the Equi-Energy sampler

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0,1).

I On the auxiliary process :

I On the transition kernel P :

I On the probability of swap ε:
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Let β ∈ (0,1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. πβ
? (f).

I On the transition kernel P : P is phi-irreducible, π?P = π?, the level
sets {π ≥ p} are 1-small and

PV (x) ≤ λV (x) + b1C(x) V (x) =
(

π(x)
supX π

)−τ(1−β)

for some λ ∈ (0,1), b < +∞, a set C, τ ∈ (0,1].

I On the probability of swap ε:
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Conclusion of Section II

Conclusion : when applied to the Equi-Energy sampler
Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0,1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. πβ
? (f).

I On the transition kernel P : P is phi-irreducible, π?P = π?, the level
sets {π ≥ p} are 1-small and

PV (x) ≤ λV (x) + b1C(x) V (x) =
(

π(x)
supX π

)−τ(1−β)

for some λ ∈ (0,1), b < +∞, a set C, τ ∈ (0,1].

I On the probability of swap ε:

0 ≤ ε <
1− λ

1− λ + τ(1− τ)(1−τ)/τ
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Convergence of the marginals

Conclusion of Section II

Under these conditions,

I the diminishing adaptation condition holds

I a uniform-in-θ drift condition holds

λ̃ ∈ (0,1), PθV (x) ≤ λ̃V (x) + b1C(x),

and we prove the containment condition.

I the invariant measures a.s. converge : limn πθn
(f) = π?(f) a.s. for

any bounded function.

Hence, for any bounded function f

E [f(Xn)] −→n π?(f).
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Strong LLN

1. Examples

2. Sufficient conditions for convergence of the marginals

3. Sufficient conditions for strong LLN

Suff Cond for : the existence of π? s.t.

1
n

n∑
k=1

f(Xk) −→a.s. π?(f)

for any function f in a large class of functions.
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Strong LLN

Idea

Idea : use the Poisson equation

1
n

n∑
k=1

f(Xk)−π?(f) =
1
n

n∑
k=1

{f(Xk)− πθk−1(f)}︸ ︷︷ ︸
“Poisson term”

+
1
n

n∑
k=1

πθk−1(f)− π?(f)︸ ︷︷ ︸
Cesaro mean (is null when πθ = π?)

About the convergence of the invariant measures: we prove that

if

(i) uniform-in-θ V -ergodicity for some x,

lim
n

sup
θ
‖Pn

θ (x,·)− πθ‖V = 0,

(ii) There exist θ? ∈ Θ and A s.t. P(A) = 1 and

∀ω ∈ A,x,B Pθn(ω)(x,B) −→ Pθ?
(x,B)

(iii) Polish state space X

then

πθn
(f) −→a.s. πθ?

(f) for any f ∈ LV α , α ∈ [0,1)
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Strong LLN

Idea

About the “Poisson” term we write

1

n

nX
k=1

{f(Xk) − πθk−1
(f)} = n

−1
nX

k=1
{f̂θk−1

(Xk) − Pθk−1
f̂θk−1

(Xk−1)}

| {z }
martingale term

+
1

n

n−1X
k=1

{Pθk
f̂θk

(Xk) − Pθk−1
f̂θk−1

(Xk)}

| {z }
Remainder term (I)

+ n
−1{Pθ0

fθ0
(X0) − Pθn−1

fθn−1
(Xn−1)}| {z }

Remainder term (II)

where f̂θ solves f−πθ(f)=f̂θ−Pθf̂θ .

I a.s. convergence of the martingale : conditions on the Lp-moments
of the increment ↪→ in practice, uniform-in-θ drift
conditions on the kernels Pθ.

I a.s. convergence of the remainder terms : regularity in θ of the
solution to the Poisson equation ↪→ in practice,
strenghtened diminishing adaptation condition.
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solution to the Poisson equation ↪→ in practice,
strenghtened diminishing adaptation condition.



Adaptive MCMC : theory and methods

Strong LLN

Result

Define

DV (θ,θ′) := sup
x

‖Pθ(x,·)− Pθ′(x,·)‖V

V (x)

Theorem
Assume

(i) (uniform ergodic behavior) Pθ is phi-irreducible,

PθV ≤ λV + b1C λ ∈ (0,1),b < +∞,

and level sets of V are 1-small.

(ii) (strenghtened D.A.)
∑

k
1
kV α(Xk) DV α(θk,θk−1) < +∞ a.s.

(iii) (convergence of the invariant measures)

Then : if E[V (X0)] < ∞, for any α ∈ [0,1) and any f ∈ LV α

1
n

n∑
k=1

f(Xk) −→a.s. π?(f),
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Strong LLN

Conclusion of Section III

Conclusion : when applied to the Equi-Energy sampler

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0,1).

I On the transition kernel P :

I On the probability of swap ε:

I On the auxiliary process :

Note that : it is assumed that a strong LLN holds for the auxiliary process
and any function f ∈ LV α , α ∈ (0,1); in order to prove a strong LLN for
the process of interest and any function f ∈ LV α , α ∈ (0,1).

↪→ repeat the mecanism and prove the convergence of the marginals + a
strong LLN for the K-levels Equi-Energy sampler
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Overall conclusion

Conclusion of the talk

I We prove convergence of the marginals + strong LLN for general
adaptive MCMC samplers with the main ingredients

I (strenghtened) diminishing adaptation
I “uniform” ergodic behavior of the kernels
I when πθ 6= π? : a.s. convergence of the invariant measures πθn

.

I And illustrate the conditions by considering the Equi-Energy sampler.

I Extensions (not discussed here) : uniform-in-θ ergodicity conditions
have been proved by showing that the transition kernels are
geometrically ergodic. We also provide examples in which they are
only sub-geometrically ergodic. For ex. in the case

PθV ≤ V − c V 1−α + b1C

we prove a strong LLN for functions increasing like V β for any
β ∈ [0,1− α).



Adaptive MCMC : theory and methods

Overall conclusion

Conclusion of the talk

I We prove convergence of the marginals + strong LLN for general
adaptive MCMC samplers with the main ingredients

I (strenghtened) diminishing adaptation
I “uniform” ergodic behavior of the kernels
I when πθ 6= π? : a.s. convergence of the invariant measures πθn

.

I And illustrate the conditions by considering the Equi-Energy sampler.

I Extensions (not discussed here) : uniform-in-θ ergodicity conditions
have been proved by showing that the transition kernels are
geometrically ergodic. We also provide examples in which they are
only sub-geometrically ergodic. For ex. in the case

PθV ≤ V − c V 1−α + b1C

we prove a strong LLN for functions increasing like V β for any
β ∈ [0,1− α).


	Two examples
	Example 1: Adaptive SRWM
	Example 2: Equi-Energy sampler
	Conclusion

	Convergence of the marginals
	Idea, when ,   = 
	Result, when ,   = 
	How to check these conditions?
	Idea, when P= 
	Result when P= 
	How to check these conditions ?
	Conclusion of Section II

	Strong LLN
	Idea
	Result
	Conclusion of Section III

	Overall conclusion

